1
|
Vybornykh DE, Ivanov SV, Gemdzhian EG, Esina LV, Gaponova TV. [Therapy of mental disorders in patients with hematological malignancies]. Zh Nevrol Psikhiatr Im S S Korsakova 2024; 124:127-136. [PMID: 38676687 DOI: 10.17116/jnevro2024124041127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2024]
Abstract
OBJECTIVE To assess the possibilities of therapy with minimal effective doses (MED) of psychotropic drugs for mental disorders (MD) that manifest during the treatment of hematological malignancies (HM). MATERIAL AND METHODS A prospective study was conducted at the National Medical Research Center for Hematology of the Russian Ministry of Health (Moscow), which included 204 (39.4%) men and 314 (60.6%) women (518 patients in total), aged 17 to 83 years (median 45 years), with various HM, in which the manifestation of MD occurred during the treatment of the underlying disease. To minimize the side-effects of psychotropic drugs and given the relatively mild level of MD, psychopharmacotherapy of patients was carried out mainly at MED. The severity of MD, manifested in patients, was assessed by the illness severity scale of the Clinical Global Impression (CGI) scale, and the effectiveness of the treatment was assessed by the improvement scale (CGI-I). RESULTS Mainly mild (188, 36%) and moderately pronounced (270, 52%) MD were noted in patients with HM during the treatment of the underlying disease. Severe psychopathological disorders (60, 12%) were observed much less often. Because of psychopharmacotherapy with MED, patients experienced a very significant (97, 19%) and significant improvement (354, 68%) of their mental state, less often the improvement was regarded as minimal (67, 13%). Therefore, almost all patients showed a stable relief of MD; in 87% (95% CI 84-90) of patients, this improvement was significant. CONCLUSION The tactics of treatment MD that manifest in patients with HM with MED of psychotropic drugs turned out to be therapeutically effective according to the results of the assessment on CGI scales.
Collapse
Affiliation(s)
- D E Vybornykh
- National Medical Research Center for Hematology, Moscow, Russia
| | - S V Ivanov
- Mental Health Research Center, Moscow, Russia
- Sechenov First Moscow State Medical University, Moscow, Russia
| | - E G Gemdzhian
- National Medical Research Center for Hematology, Moscow, Russia
| | - L V Esina
- National Medical Research Center for Hematology, Moscow, Russia
- Sechenov First Moscow State Medical University, Moscow, Russia
| | - T V Gaponova
- National Medical Research Center for Hematology, Moscow, Russia
| |
Collapse
|
2
|
Zihlif M, Hameduh T, Bulatova N, Hammad H. Alteration in the expression of the chemotherapy resistance‑related genes in response to chronic and acute hypoxia in pancreatic cancer. Biomed Rep 2023; 19:88. [PMID: 37901880 PMCID: PMC10603373 DOI: 10.3892/br.2023.1670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 09/08/2023] [Indexed: 10/31/2023] Open
Abstract
Pancreatic cancer is currently one of the least curable types of human cancer and remains a key health problem. One of the most important characteristics of pancreatic cancer is its ability to grow under hypoxic conditions. Hypoxia is associated with resistance of cancer cells to radiotherapy and chemotherapy. It is a major contributor to pancreatic cancer genetic instability, which local and systemic resistance that may result in poor clinical outcome. Accordingly, identifying gene expression changes in cancer resistance genes that occur under hypoxic conditions may identify a new therapeutic target. The aim of the present study was to explore the association between hypoxia and resistance to chemotherapy and determine the alteration in the expression of cancer resistance-related genes in the presence of hypoxia. Pancreatic cancer cells (PANC-1) were exposed to 8 h hypoxic episodes (<1% oxygen) three times/week for a total of 20 episodes (chronic hypoxia) or 72 h hypoxic episodes twice/week for a total of 10 episodes (acute hypoxia). The alterations in gene expression were examined using reverse transcription-quantitative PCR array compared with normoxic cells. Chemoresistance of hypoxic cells toward doxorubicin was assessed using MTT cell proliferation assay. Both chronic and acute hypoxia induced chemoresistance toward doxorubicin in PANC-1 pancreatic cancer cell line. The greatest changes occurred in estrogen Receptor Alpha Gene (ESR1) and ETS Like-1 protein (ELK1) pathways, in nucleic transcription factor Peroxisome proliferator-activated receptors (PPARs) and in a cell cycle inhibitor cyclin dependent kinase inhibitor 1A (CDKN1A). The present study demonstrated that exposing cells to prolonged hypoxia results in different gene expression changes involving pleotropic pathways that serve a role in inducing resistance in pancreatic cancer.
Collapse
Affiliation(s)
- Malek Zihlif
- Department of Pharmacology, School of Medicine, The University of Jordan, Amman 11942, Jordan
| | - Tareq Hameduh
- Department of Pharmacology, School of Medicine, The University of Jordan, Amman 11942, Jordan
| | - Nailya Bulatova
- Department of Biopharmaceutics and Clinical Pharmacy, School of Pharmacy, The University of Jordan, Amman 11942, Jordan
| | - Hana Hammad
- Department of Biology, School of Science, The University of Jordan, Amman 11942, Jordan
| |
Collapse
|
3
|
Abuelsoud NN, El Khateeb EM. Genetic polymorphisms effect on cyclophosphamide's tolerability and clinical efficacy in Egyptian patients with lupus nephritis. Pharmacogenet Genomics 2023; 33:172-180. [PMID: 37611146 DOI: 10.1097/fpc.0000000000000506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
OBJECTIVES Many studies were conducted to determine the association between genetic polymorphisms in CYP2B6 c.516G>T and cyclophosphamide (CYC) efficacy or toxicity, no studies were focused on both clinical efficacy and toxicity of CYC. This study aimed to investigate the relationship between the CYP2B6 c.516G>T polymorphism (rs 3745274) and 17 different parameters related to CYC efficacy and tolerability in Egyptian patients with lupus nephritis (LN). METHODS A prospective cohort study on 142 LN patients with a mean age of 36.26 was conducted at Kasr Al Ainy School of Medicine, Cairo University, Egypt after the exclusion of 14 patients due to receiving an interacting medication with CYC. All clinical parameters related to CYC efficacy or toxicity were recorded and compared between the different genotypes. RESULTS There was a statistically significant difference between different genotypes in 11 out of 13 of the studied efficacy-related parameters. Many of the studied clinical parameters revealed that CYC's efficacy was associated with the presence of the T allele. There was a statistically significant difference between different genotypes in hepatotoxicity, diarrhea, and blood-related toxicities. CONCLUSION To our knowledge, this study is the first study that focused on studying 17 different parameters related to CYC efficacy and tolerability. Our findings paint a picture of the function that CYP2B6 polymorphisms play in Egyptian LN patients. Pre-treatment evaluation of CYP2B6 rs 3745274 may account for some individual differences in treatment response.
Collapse
Affiliation(s)
- Nermeen N Abuelsoud
- Department of Pharmacy Practice and Clinical Pharmacy, College of Pharmacy, Egyptian Russian University
| | - Engy M El Khateeb
- Department of Clinical and Chemical Pathology, Kasr Al Aini School of Medicine, Cairo University, Egypt
| |
Collapse
|
4
|
Muñiz P, Andrés-Zayas C, Carbonell D, Chicano M, Bailén R, Oarbeascoa G, Suárez-González J, Gómez Centurión I, Dorado N, Gallardo D, Anguita J, Kwon M, Díez-Martín JL, Martínez-Laperche C, Buño I. Association between gene polymorphisms in the cyclophosphamide metabolism pathway with complications after haploidentical hematopoietic stem cell transplantation. Front Immunol 2022; 13:1002959. [PMID: 36211438 PMCID: PMC9537744 DOI: 10.3389/fimmu.2022.1002959] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 09/01/2022] [Indexed: 11/24/2022] Open
Abstract
Allogeneic hematopoietic stem cell transplantation (allo-HSCT) is a curative treatment for patients with hematologic malignances. Haploidentical HSCT (Haplo-HSCT) is an alternative option for patients who do not have an HLA-matched donor. The use of post-transplantation high dose cyclophosphamide (PT-Cy) is commonly employed for graft-versus-host disease (GVHD) prophylaxis in haplo-HSCT. Cyclophosphamide (Cy) is an alkylating agent with antineoplastic and immunosuppressive activity, whose bioactivation requires the activity of polymorphic enzymes in the liver to produce phosphoramide mustard, which is a DNA alkylating agent. To identify polymorphisms in the genes of Cy metabolism and correlate them with post-HSCT complications [GVHD, sinusoidal obstruction syndrome (SOS), hemorrhagic cystitis (HC) and transplant-related mortality (TRM)], we designed a custom next-generation sequencing panel with Cy metabolism enzymes. We analyzed 182 patients treated with haplo-HSCT with PT-Cy from 2007 to 2019, detecting 40 variants in 11 Cy metabolism genes. Polymorphisms in CYP2B6, a major enzyme involved in Cy activation, were associated with decreased activity of this enzyme and a higher risk of Graf-versus-host disease (GVHD). Variants in other activation enzymes (CYP2A6, CYP2C8, CYP2C9, CYP2C19) lead to decreased enzyme activity and were associated with GVHD. Polymorphisms in detoxification genes such as glutathione S-transferases decreased the ability to detoxify cyclophosphamide metabolites due to lower enzyme activity, which leads to increased amounts of toxic metabolites and the development of III-IV acute GVHD. GSMT1*0 a single nucleotide polymorphism previously recognized as a risk factor for SOS was associated with a higher risk of SOS. We conclude that polymorphisms of genes involved in the metabolism of cyclophosphamide in our series are associated with severe grades of GVHD and toxicities (SOS and TRM) after haplo-HSCT and could be used to improve the clinical management of transplanted patients.
Collapse
Affiliation(s)
- Paula Muñiz
- Department of Hematology, Gregorio Marañón General University Hospital (HGUGM), Madrid, Spain
- Gregorio Marañón Health Research Institute (IiSGM), Madrid, Spain
| | - Cristina Andrés-Zayas
- Gregorio Marañón Health Research Institute (IiSGM), Madrid, Spain
- Genomics Unit, Gregorio Marañón General University Hospital (HGUGM), Madrid, Spain
| | - Diego Carbonell
- Department of Hematology, Gregorio Marañón General University Hospital (HGUGM), Madrid, Spain
- Gregorio Marañón Health Research Institute (IiSGM), Madrid, Spain
| | - María Chicano
- Department of Hematology, Gregorio Marañón General University Hospital (HGUGM), Madrid, Spain
- Gregorio Marañón Health Research Institute (IiSGM), Madrid, Spain
| | - Rebeca Bailén
- Department of Hematology, Gregorio Marañón General University Hospital (HGUGM), Madrid, Spain
- Gregorio Marañón Health Research Institute (IiSGM), Madrid, Spain
| | - Gillen Oarbeascoa
- Department of Hematology, Gregorio Marañón General University Hospital (HGUGM), Madrid, Spain
- Gregorio Marañón Health Research Institute (IiSGM), Madrid, Spain
| | - Julia Suárez-González
- Gregorio Marañón Health Research Institute (IiSGM), Madrid, Spain
- Genomics Unit, Gregorio Marañón General University Hospital (HGUGM), Madrid, Spain
| | - Ignacio Gómez Centurión
- Department of Hematology, Gregorio Marañón General University Hospital (HGUGM), Madrid, Spain
- Gregorio Marañón Health Research Institute (IiSGM), Madrid, Spain
| | - Nieves Dorado
- Department of Hematology, Gregorio Marañón General University Hospital (HGUGM), Madrid, Spain
- Gregorio Marañón Health Research Institute (IiSGM), Madrid, Spain
| | - David Gallardo
- Department of Hematology, Instituto Catalan de Oncología Hospital Josep Trueta, Girona, Spain
| | - Javier Anguita
- Department of Hematology, Gregorio Marañón General University Hospital (HGUGM), Madrid, Spain
- Gregorio Marañón Health Research Institute (IiSGM), Madrid, Spain
| | - Mi Kwon
- Department of Hematology, Gregorio Marañón General University Hospital (HGUGM), Madrid, Spain
- Gregorio Marañón Health Research Institute (IiSGM), Madrid, Spain
| | - Jose L. Díez-Martín
- Department of Hematology, Gregorio Marañón General University Hospital (HGUGM), Madrid, Spain
- Gregorio Marañón Health Research Institute (IiSGM), Madrid, Spain
- Department of Medicine, School of Medicine, Complutense University of Madrid, Madrid, Spain
| | - Carolina Martínez-Laperche
- Department of Hematology, Gregorio Marañón General University Hospital (HGUGM), Madrid, Spain
- Gregorio Marañón Health Research Institute (IiSGM), Madrid, Spain
- *Correspondence: Carolina Martínez-Laperche,
| | - Ismael Buño
- Department of Hematology, Gregorio Marañón General University Hospital (HGUGM), Madrid, Spain
- Gregorio Marañón Health Research Institute (IiSGM), Madrid, Spain
- Genomics Unit, Gregorio Marañón General University Hospital (HGUGM), Madrid, Spain
- Department of Cell Biology, School of Medicine, Complutense University of Madrid, Madrid, Spain
| |
Collapse
|
5
|
Wei H, Li AP. Permeabilized cryopreserved human hepatocytes as an exogenous metabolic system in a novelmetabolism-dependent cytotoxicity assay (MDCA) for the evaluation of metabolic activation anddetoxification of drugs associated with drug induced liver injuries: Results with acetaminophen,amiodarone, cyclophosphamide, ketoconazole, nefazodone, and troglitazone. Drug Metab Dispos 2021; 50:140-149. [PMID: 34750194 DOI: 10.1124/dmd.121.000645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 11/05/2021] [Indexed: 11/22/2022] Open
Abstract
We report here a novel in vitro experimental system, the metabolism-dependent cytotoxicity assay (MDCA), for the definition of the roles of hepatic drug metabolism in toxicity. MDCA employs permeabilized cofactor-supplemented cryopreserved human hepatocytes (MetMax{trade mark, serif} human hepatocytes, MMHH), as an exogenous metabolic activating system, and HEK-293 cells, a cell line devoid of drug metabolizing enzyme activity, as target cells for the quantification of drug toxicity. The assay was performed in the presence and absence of cofactors for key drug metabolism pathways known to play key roles in drug toxicity: NADPH/NAD+ for phase 1 oxidation, UDPGA for UGT mediated glucuronidation, PAPS for SULT mediated sulfation, and GSH for GST mediated GSH conjugation. Six drugs with clinically significant hepatoxicity, resulting in liver failure or a need for liver transplantation: acetaminophen, amiodarone, cyclophosphamide, ketoconazole, nefazodone and troglitazone were evaluated. All six drugs exhibited cytotoxicity enhancement by NADPH, suggesting metabolic activation via phase 1 oxidation. Attenuation of cytotoxicity by UDPGA was observed for acetaminophen, ketoconazole and troglitazone, by PAPS for acetaminophen, ketoconazole and troglitazone, and by GSH for all six drugs. Our results suggest that MDCA can be applied towards the elucidation of metabolic activation and detoxification pathways, providing information that can be applied in drug development to guide structure optimization to reduce toxicity and to aid the assessment of metabolism-based risk factors for drug toxicity. GSH detoxification represents an endpoint for the identification of drugs forming cytotoxic reactive metabolites, a key property of drugs with idiosyncratic hepatotoxicity. Significance Statement Application of the metabolism-dependent cytotoxicity assay (MDCA) for the elucidation of the roles of metabolic activation and detoxification pathways in drug toxicity may provide information to guide structure optimization in drug development to reduce hepatotoxic potential, and to aid the assessment of metabolism-based risk factors. GSH detoxification represents an endpoint for the identification of drugs forming cytotoxic reactive metabolites may be applied towards the evaluation of idiosyncratic hepatotoxicity.
Collapse
Affiliation(s)
- Hong Wei
- In Vitro ADMET Laboratories, United States
| | - Albert P Li
- In Vitro ADMET Laboratories Inc., United States
| |
Collapse
|
6
|
Langmia IM, Just KS, Yamoune S, Brockmöller J, Masimirembwa C, Stingl JC. CYP2B6 Functional Variability in Drug Metabolism and Exposure Across Populations-Implication for Drug Safety, Dosing, and Individualized Therapy. Front Genet 2021; 12:692234. [PMID: 34322158 PMCID: PMC8313315 DOI: 10.3389/fgene.2021.692234] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 06/14/2021] [Indexed: 12/11/2022] Open
Abstract
Adverse drug reactions (ADRs) are one of the major causes of morbidity and mortality worldwide. It is well-known that individual genetic make-up is one of the causative factors of ADRs. Approximately 14 million single nucleotide polymorphisms (SNPs) are distributed throughout the entire human genome and every patient has a distinct genetic make-up which influences their response to drug therapy. Cytochrome P450 2B6 (CYP2B6) is involved in the metabolism of antiretroviral, antimalarial, anticancer, and antidepressant drugs. These drug classes are commonly in use worldwide and face specific population variability in side effects and dosing. Parts of this variability may be caused by single nucleotide polymorphisms (SNPs) in the CYP2B6 gene that are associated with altered protein expression and catalytic function. Population variability in the CYP2B6 gene leads to changes in drug metabolism which may result in adverse drug reactions or therapeutic failure. So far more than 30 non-synonymous variants in CYP2B6 gene have been reported. The occurrence of these variants show intra and interpopulation variability, thus affecting drug efficacy at individual and population level. Differences in disease conditions and affordability of drug therapy further explain why some individuals or populations are more exposed to CYP2B6 pharmacogenomics associated ADRs than others. Variabilities in drug efficacy associated with the pharmacogenomics of CYP2B6 have been reported in various populations. The aim of this review is to highlight reports from various ethnicities that emphasize on the relationship between CYP2B6 pharmacogenomics variability and the occurrence of adverse drug reactions. In vitro and in vivo studies evaluating the catalytic activity of CYP2B6 variants using various substrates will also be discussed. While implementation of pharmacogenomic testing for personalized drug therapy has made big progress, less data on pharmacogenetics of drug safety has been gained in terms of CYP2B6 substrates. Therefore, reviewing the existing evidence on population variability in CYP2B6 and ADR risk profiles suggests that, in addition to other factors, the knowledge on pharmacogenomics of CYP2B6 in patient treatment may be useful for the development of personalized medicine with regards to genotype-based prescription.
Collapse
Affiliation(s)
- Immaculate M. Langmia
- Institute of Clinical Pharmacology, University Hospital of Rheinisch-Westfälische Technische Hochschule Aachen, Aachen, Germany
| | - Katja S. Just
- Institute of Clinical Pharmacology, University Hospital of Rheinisch-Westfälische Technische Hochschule Aachen, Aachen, Germany
| | - Sabrina Yamoune
- Institute of Clinical Pharmacology, University Hospital of Rheinisch-Westfälische Technische Hochschule Aachen, Aachen, Germany
| | - Jürgen Brockmöller
- Department of Clinical Pharmacology, University Medical Center Göttingen, Georg-August University, Göttingen, Germany
| | - Collen Masimirembwa
- African Institute of Biomedical Science and Technology (AiBST), Harare, Zimbabwe
| | - Julia C. Stingl
- Institute of Clinical Pharmacology, University Hospital of Rheinisch-Westfälische Technische Hochschule Aachen, Aachen, Germany
| |
Collapse
|
7
|
Helsby NA, Yong M, van Kan M, de Zoysa JR, Burns KE. The importance of both CYP2C19 and CYP2B6 germline variations in cyclophosphamide pharmacokinetics and clinical outcomes. Br J Clin Pharmacol 2019; 85:1925-1934. [PMID: 31218720 DOI: 10.1111/bcp.14031] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 05/28/2019] [Accepted: 05/31/2019] [Indexed: 12/17/2022] Open
Abstract
Cyclophosphamide is an alkylating agent used in the treatment of solid and haematological malignancies and as an immunosuppressive agent. As a prodrug, it is dependent on bioactivation to the active phosphoramide mustard metabolite to elicit its therapeutic effect. This focused review will highlight the evidence for the role of germline pharmacogenetic variation in both plasma pharmacokinetics and clinical outcomes. There is a substantial indication from 13 pharmacokinetic and 17 therapeutic outcome studies, in contexts as diverse as haematological malignancy, breast cancer, systemic lupus erythematosus and myeloablation, that pharmacogenetic variation in both CYP2C19 and CYP2B6 influence the bioactivation of cyclophosphamide. An additional role for pharmacogenetic variation in ALDH1A1 has also been reported. Future studies should comprehensively assess these 3 pharmacogenes and undertake appropriate statistical analysis of gene-gene interactions to confirm these findings and may allow personalised treatment regimens.
Collapse
Affiliation(s)
- N A Helsby
- Molecular Medicine and Pathology, Faculty of Medicine and Health Sciences, University of Auckland, Auckland, New Zealand
| | - M Yong
- Molecular Medicine and Pathology, Faculty of Medicine and Health Sciences, University of Auckland, Auckland, New Zealand
| | - M van Kan
- Molecular Medicine and Pathology, Faculty of Medicine and Health Sciences, University of Auckland, Auckland, New Zealand
| | - J R de Zoysa
- Renal Service, North Shore Hospital, Waitemata District Health Board, Auckland, New Zealand.,Department of Medicine, Faculty of Medicine and Health Sciences, University of Auckland, Auckland, New Zealand
| | - K E Burns
- Molecular Medicine and Pathology, Faculty of Medicine and Health Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
8
|
Visser M, Weber KL, Lyons LA, Rincon G, Boothe DM, Merritt DA. Identification and quantification of domestic feline cytochrome P450 transcriptome across multiple tissues. J Vet Pharmacol Ther 2019; 42:7-15. [PMID: 30171610 PMCID: PMC6322962 DOI: 10.1111/jvp.12708] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 07/12/2018] [Accepted: 07/29/2018] [Indexed: 12/20/2022]
Abstract
Understanding of cytochrome P450 (CYP) isoform distribution and function in the domestic feline is limited. Only a few studies have defined individual CYP isoforms across metabolically relevant tissues, hampering the ability to predict drug metabolism and potential drug-drug interactions. Using RNA sequencing (RNA-seq), transcriptomes from the 99 Lives Cat Genome Sequencing Initiative databank combined with experimentally acquired whole transcriptome sequencing of healthy, adult male (n = 2) and female (n = 2) domestic felines, expression of 42 CYP isoforms were identified in 20 different tissues. Thirty-seven of these isoforms had not been previously reported in cats. Depending on the tissue, three to twenty-nine CYP isoform transcripts were expressed. The feline genome annotations did not differentiate CYP2E1 and 2E2 genes, demonstrating poor annotation for this gene using the reference genome. As the majority of the sequences are based on automated pipelines, complete cDNA sequences for translation into CYP protein sequences could not be determined. This study is the first to identify and characterize 37 additional CYP isoforms in feline tissues, increasing the number of identified CYP from the previously reported seven isoforms to 42 across 20 tissues.
Collapse
Affiliation(s)
- Marike Visser
- Global Therapeutics Research, VMRD, Zoetis, Kalamazoo, MI
| | - Kristina L. Weber
- Bioinformatics Field Applications Support, Pacific Biosciences, Menlo Park, CA
| | - Leslie A. Lyons
- Department of Veterinary Medicine and Surgery, College of Veterinary Medicine, University of Missouri, Columbia, MO
| | | | - Dawn M. Boothe
- Department of Anatomy, Physiology, and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL
| | | |
Collapse
|
9
|
Watanabe T, Saito T, Rico EMG, Hishinuma E, Kumondai M, Maekawa M, Oda A, Saigusa D, Saito S, Yasuda J, Nagasaki M, Minegishi N, Yamamoto M, Yamaguchi H, Mano N, Hirasawa N, Hiratsuka M. Functional characterization of 40 CYP2B6 allelic variants by assessing efavirenz 8-hydroxylation. Biochem Pharmacol 2018; 156:420-430. [PMID: 30201214 DOI: 10.1016/j.bcp.2018.09.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 09/06/2018] [Indexed: 12/20/2022]
Abstract
Genetic variations within cytochrome P450 2B6 (CYP2B6) contribute to inter-individual variation in the metabolism of clinically important drugs, including cyclophosphamide, bupropion, methadone and efavirenz (EFZ). In this study, we performed an in vitro analysis of 40 CYP2B6 allelic variant proteins including seven novel variants identified in 1070 Japanese individuals. Wild-type and 39 variant proteins were heterologously expressed in 293FT cells to estimate the kinetic parameters (Km, Vmax, and CLint) of EFZ 8-hydroxylation and 7-ethoxy-4-trifluoromethylcoumarin (7-ETC) O-deethylation activities. The concentrations of CYP2B6 variant holo-enzymes were measured by using carbon monoxide (CO)-reduced difference spectroscopy, and the wild-type and 28 variants showed a peak at 450 nm. The kinetic parameters were measured for the wild-type and 24 variant proteins. The values for the remaining 15 variants could not be determined because the enzymatic activity was not detected at the highest substrate concentration used. Compared to wild-type, six variants showed significantly decreased EFZ 8-hydroxylation CLint values, while these values were significantly increased in another six variants, including CYP2B6.6. Although 7-ETC O-deethylation CLint values of CYP2B6 variants did not differ significantly from that of CYP2B6.1, the CLint ratios obtained for 7-ETC O-deethylation were highly correlated with EFZ 8-hydroxylation. Furthermore, three-dimensional structural modeling analysis was performed to elucidate the mechanism of changes in the kinetics of CYP2B6 variants. Our findings could provide evidence of the specific metabolic activities of the CYP2B6 proteins encoded by these variant alleles.
Collapse
Affiliation(s)
- Takashi Watanabe
- Laboratory of Pharmacotherapy of Life-Style Related Diseases, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan; Department of Pharmacy, Tohoku Rosai Hospital, Sendai 981-8563, Japan
| | - Takahiro Saito
- Laboratory of Pharmacotherapy of Life-Style Related Diseases, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Evelyn Marie Gutiérrez Rico
- Laboratory of Pharmacotherapy of Life-Style Related Diseases, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Eiji Hishinuma
- Laboratory of Pharmacotherapy of Life-Style Related Diseases, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan; Advanced Research Center for Innovations in Next-Generation Medicine, Tohoku University, Sendai 980-8575, Japan; Tohoku Medical Megabank Organization, Tohoku University, Sendai 980-8575, Japan
| | - Masaki Kumondai
- Laboratory of Pharmacotherapy of Life-Style Related Diseases, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Masamitsu Maekawa
- Department of Pharmaceutical Sciences, Tohoku University Hospital, Sendai 980-8574, Japan
| | - Akifumi Oda
- Faculty of Pharmacy, Meijo University, Nagoya 468-8503, Japan
| | - Daisuke Saigusa
- Tohoku Medical Megabank Organization, Tohoku University, Sendai 980-8575, Japan
| | - Sakae Saito
- Tohoku Medical Megabank Organization, Tohoku University, Sendai 980-8575, Japan
| | - Jun Yasuda
- Tohoku Medical Megabank Organization, Tohoku University, Sendai 980-8575, Japan
| | - Masao Nagasaki
- Tohoku Medical Megabank Organization, Tohoku University, Sendai 980-8575, Japan
| | - Naoko Minegishi
- Tohoku Medical Megabank Organization, Tohoku University, Sendai 980-8575, Japan
| | - Masayuki Yamamoto
- Advanced Research Center for Innovations in Next-Generation Medicine, Tohoku University, Sendai 980-8575, Japan; Tohoku Medical Megabank Organization, Tohoku University, Sendai 980-8575, Japan
| | - Hiroaki Yamaguchi
- Department of Pharmaceutical Sciences, Tohoku University Hospital, Sendai 980-8574, Japan
| | - Nariyasu Mano
- Department of Pharmaceutical Sciences, Tohoku University Hospital, Sendai 980-8574, Japan
| | - Noriyasu Hirasawa
- Laboratory of Pharmacotherapy of Life-Style Related Diseases, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan; Advanced Research Center for Innovations in Next-Generation Medicine, Tohoku University, Sendai 980-8575, Japan; Department of Pharmaceutical Sciences, Tohoku University Hospital, Sendai 980-8574, Japan
| | - Masahiro Hiratsuka
- Laboratory of Pharmacotherapy of Life-Style Related Diseases, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan; Advanced Research Center for Innovations in Next-Generation Medicine, Tohoku University, Sendai 980-8575, Japan; Tohoku Medical Megabank Organization, Tohoku University, Sendai 980-8575, Japan; Department of Pharmaceutical Sciences, Tohoku University Hospital, Sendai 980-8574, Japan.
| |
Collapse
|
10
|
Meng HY, Luo ZH, Hu B, Jin WL, Yan CK, Li ZB, Xue YY, Liu Y, Luo YE, Xu LQ, Yang H. SNPs affecting the clinical outcomes of regularly used immunosuppressants. Pharmacogenomics 2018. [PMID: 29517418 DOI: 10.2217/pgs-2017-0182] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Recent studies have suggested that genomic diversity may play a key role in different clinical outcomes, and the importance of SNPs is becoming increasingly clear. In this article, we summarize the bioactivity of SNPs that may affect the sensitivity to or possibility of drug reactions that occur among the signaling pathways of regularly used immunosuppressants, such as glucocorticoids, azathioprine, tacrolimus, mycophenolate mofetil, cyclophosphamide and methotrexate. The development of bioinformatics, including machine learning models, has enabled prediction of the proper immunosuppressant dosage with minimal adverse drug reactions for patients after organ transplantation or for those with autoimmune diseases. This article provides a theoretical basis for the personalized use of immunosuppressants in the future.
Collapse
Affiliation(s)
- Huan-Yu Meng
- Department of Neurology, Xiangya Hospital of Central South University, Changsha, PR China
| | - Zhao-Hui Luo
- Department of Neurology, Xiangya Hospital of Central South University, Changsha, PR China
| | - Bo Hu
- Department of Neurology, Xiangya Hospital of Central South University, Changsha, PR China
| | - Wan-Lin Jin
- Department of Neurology, Xiangya Hospital of Central South University, Changsha, PR China
| | - Cheng-Kai Yan
- Department of Neurology, Xiangya Hospital of Central South University, Changsha, PR China
| | - Zhi-Bin Li
- Department of Neurology, Xiangya Hospital of Central South University, Changsha, PR China
| | - Yuan-Yuan Xue
- Department of Neurology, Xiangya Hospital of Central South University, Changsha, PR China
| | - Yu Liu
- Department of Neurology, Xiangya Hospital of Central South University, Changsha, PR China
| | - Yi-En Luo
- Department of Neurology, Xiangya Hospital of Central South University, Changsha, PR China
| | - Li-Qun Xu
- Department of Neurology, Xiangya Hospital of Central South University, Changsha, PR China
| | - Huan Yang
- Department of Neurology, Xiangya Hospital of Central South University, Changsha, PR China
| |
Collapse
|
11
|
Hedrich WD, Hassan HE, Wang H. Insights into CYP2B6-mediated drug-drug interactions. Acta Pharm Sin B 2016; 6:413-425. [PMID: 27709010 PMCID: PMC5045548 DOI: 10.1016/j.apsb.2016.07.016] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 05/18/2016] [Accepted: 05/27/2016] [Indexed: 01/11/2023] Open
Abstract
Mounting evidence demonstrates that CYP2B6 plays a much larger role in human drug metabolism than was previously believed. The discovery of multiple important substrates of CYP2B6 as well as polymorphic differences has sparked increasing interest in the genetic and xenobiotic factors contributing to the expression and function of the enzyme. The expression of CYP2B6 is regulated primarily by the xenobiotic receptors constitutive androstane receptor (CAR) and pregnane X receptor (PXR) in the liver. In addition to CYP2B6, these receptors also mediate the inductive expression of CYP3A4, and a number of important phase II enzymes and drug transporters. CYP2B6 has been demonstrated to play a role in the metabolism of 2%–10% of clinically used drugs including widely used antineoplastic agents cyclophosphamide and ifosfamide, anesthetics propofol and ketamine, synthetic opioids pethidine and methadone, and the antiretrovirals nevirapine and efavirenz, among others. Significant inter-individual variability in the expression and function of the human CYP2B6 gene exists and can result in altered clinical outcomes in patients receiving treatment with CYP2B6-substrate drugs. These variances arise from a number of sources including genetic polymorphism, and xenobiotic intervention. In this review, we will provide an overview of the key players in CYP2B6 expression and function and highlight recent advances made in assessing clinical ramifications of important CYP2B6-mediated drug–drug interactions.
Collapse
Key Words
- 4-OH-CPA, 4-hydroxycyclophosphamide
- C/EBP, CCAAT/enhancer-binding protein
- CAR
- CAR, constitutive androstane receptor
- CHOP, cyclophosphamide–doxorubicin–vincristine–prednisone
- CITCO, (6-(4-chlorophenyl)imidazo[2,1-b][1,3]thiazole-5-carbaldehyde-O-(3,4-dichlorobenzyl)oxime)
- COUP-TF, chicken ovalbumin upstream promoter-transcription factor
- CPA, cyclophosphamide
- CYP, cytochrome P450
- CYP2B6
- Cyclophosphamide
- DDI, drug–drug interaction
- DEX, dexamethasone
- Drug–drug interaction
- E2, estradiol
- EFV, efavirenz
- ERE, estrogen responsive element
- Efavirenz
- GR, glucocorticoid receptor
- GRE, glucocorticoid responsive element
- HAART, highly active antiretroviral therapy
- HNF, hepatocyte nuclear factor
- IFA, Ifosfamide
- MAOI, monoamine oxidase inhibitor
- NNRTI, non-nucleotide reverse-transcriptase inhibitor
- NR1/2, nuclear receptor binding site 1/2
- NVP, nevirapine
- PB, phenobarbital
- PBREM, phenobarbital-responsive enhancer module
- PCN, pregnenolone 16 alpha-carbonitrile
- PXR
- PXR, pregnane X receptor
- Polymorphism
- RIF, rifampin
- SNP, single nucleotide polymorphism
- TCPOBOP, 1,4-bis[3,5-dichloropyridyloxy]benzene
- UGT, UDP-glucuronosyl transferase
Collapse
Affiliation(s)
| | | | - Hongbing Wang
- Corresponding author at: Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 Penn Street, Baltimore, MD 21201, USA. Tel.: +1 410 706 1280; fax: +1 410 706 5017.
| |
Collapse
|