1
|
Buono G, Capozzi M, Caputo R, Lauro VD, Cianniello D, Piezzo M, Cocco S, Martinelli C, Verrazzo A, Tafuro M, Calderaio C, Calabrese A, Nuzzo F, Pagliuca M, Laurentiis MD. CAR-T cell therapy for breast cancer: Current status and future perspective. Cancer Treat Rev 2024; 133:102868. [PMID: 39798230 DOI: 10.1016/j.ctrv.2024.102868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 12/09/2024] [Accepted: 12/23/2024] [Indexed: 01/15/2025]
Abstract
Within the expanding therapeutic landscape for breast cancer (BC), metastatic breast cancer (MBC) remains virtually incurable and tend to develop resistance to conventional treatments ultimately leading to metastatic progression and death. Cellular immunotherapy (CI), particularly chimeric antigen receptor-engineered T (CAR-T) cells, has emerged as a promising approach for addressing this challenge. In the wake of their striking efficacy against hematological cancers, CAR-T cells have also been used where the clinical need is greatest - in patients with aggressive BCs. Unfortunately, current outcomes fall considerably short of replicating that success, primarily owing to the scarcity of tumor-specific antigens and the immunosuppressive microenvironment within BC. Herein, we provide an up-to-date overview of both preclinical and clinical data concerning the application of CAR-T cell therapy in BC. By surveying the existing literature, we discuss the prevailing constrains of this therapeutic approach and overview possible strategies to advance it in the context of breast malignancies. Possible approaches include employing synthetic biology to refine antigen targeting and mitigate off-target toxicity, utilizing logic-gated CAR constructs to enhance specificity, and leveraging armored CARs to remodel the tumor micro-environment. Temporal and spatial regulation of CAR-T cells using inducible gene switches and external triggers further improves safety and functionality. In addition, promoting T cell homing through chemokine receptor engineering and enhancing manufacturing processes with universal CAR platforms expand therapeutic applicability. These innovations not only address antigen escape and T cell exhaustion but also optimize the efficacy and safety profile of CAR-T cell therapy. We, therefore, outline a trajectory wherein CAR-T cells may evolve from a promising experimental approach to a standard modality in BC therapy.
Collapse
Affiliation(s)
- Giuseppe Buono
- Istituto Nazionale Tumori, IRCCS, Fondazione G. Pascale, Napoli, Italy
| | - Monica Capozzi
- Istituto Nazionale Tumori, IRCCS, Fondazione G. Pascale, Napoli, Italy
| | - Roberta Caputo
- Istituto Nazionale Tumori, IRCCS, Fondazione G. Pascale, Napoli, Italy
| | - Vincenzo Di Lauro
- Istituto Nazionale Tumori, IRCCS, Fondazione G. Pascale, Napoli, Italy
| | | | - Michela Piezzo
- Istituto Nazionale Tumori, IRCCS, Fondazione G. Pascale, Napoli, Italy
| | - Stefania Cocco
- Istituto Nazionale Tumori, IRCCS, Fondazione G. Pascale, Napoli, Italy
| | - Claudia Martinelli
- Istituto Nazionale Tumori, IRCCS, Fondazione G. Pascale, Napoli, Italy; Clinical and Translational Oncology, Scuola Superiore Meridionale (SSM), Napoli, Italy
| | - Annarita Verrazzo
- Istituto Nazionale Tumori, IRCCS, Fondazione G. Pascale, Napoli, Italy; Clinical and Translational Oncology, Scuola Superiore Meridionale (SSM), Napoli, Italy
| | - Margherita Tafuro
- Clinical and Translational Oncology, Scuola Superiore Meridionale (SSM), Napoli, Italy; Department of Clinical Medicine and Surgery, University of Naples Federico II, Napoli, Italy
| | - Claudia Calderaio
- Clinical and Translational Oncology, Scuola Superiore Meridionale (SSM), Napoli, Italy; Department of Clinical Medicine and Surgery, University of Naples Federico II, Napoli, Italy
| | | | - Francesco Nuzzo
- Istituto Nazionale Tumori, IRCCS, Fondazione G. Pascale, Napoli, Italy
| | - Martina Pagliuca
- Istituto Nazionale Tumori, IRCCS, Fondazione G. Pascale, Napoli, Italy; Clinical and Translational Oncology, Scuola Superiore Meridionale (SSM), Napoli, Italy; Université Paris-Saclay, Gustave Roussy, INSERM, Molecular Predictors and New Targets in Oncology, Villejuif, France.
| | | |
Collapse
|
2
|
Scherer LD, Rouce RH. Targeted cellular therapy for treatment of relapsed or refractory leukemia. Best Pract Res Clin Haematol 2023; 36:101481. [PMID: 37612000 DOI: 10.1016/j.beha.2023.101481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 05/24/2023] [Indexed: 08/25/2023]
Abstract
While the mainstay of treatment for high-risk or relapsed, refractory leukemia has historically revolved around allogeneic hematopoietic stem cell transplant (allo-HSCT), targeted immunotherapies have emerged as a promising therapeutic option, especially given the poor prognosis of patients who relapse after allo-HSCT. Novel cellular immunotherapies that harness the cytotoxic abilities of the immune system in a targeted manner (often called "adoptive" cell therapy), have changed the way we treat r/r hematologic malignancies and continue to change the treatment landscape given the rapid evolution of these powerful, yet sophisticated precision therapies that often offer a less toxic alternative to conventional salvage therapies. Importantly, adoptive cell therapy can be allo-HSCT-enabling or a therapeutic option for patients in whom transplantation has failed or is contraindicated. A solid understanding of the core concepts of adoptive cell therapy is necessary for stem cell transplant physicians, nurses and ancillary staff given its proximity to the transplant field as well as its inherent complexities that require specific expertise in compliant manufacturing, clinical application, and risk mitigation. Here we will review use of targeted cellular therapy for the treatment of r/r leukemia, focusing on chimeric antigen receptor T-cells (CAR T-cells) given the remarkable sustained clinical responses leading to commercial approval for several hematologic indications including leukemia, with brief discussion of other promising investigational cellular immunotherapies and special considerations for sustainability and scalability.
Collapse
Affiliation(s)
- Lauren D Scherer
- Texas Children's Cancer Center, USA; Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital and Houston Methodist Hospital, USA
| | - Rayne H Rouce
- Texas Children's Cancer Center, USA; Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital and Houston Methodist Hospital, USA.
| |
Collapse
|
3
|
Chen YF, Li J, Xu LL, Găman MA, Zou ZY. Allogeneic stem cell transplantation in the treatment of acute myeloid leukemia: An overview of obstacles and opportunities. World J Clin Cases 2023; 11:268-291. [PMID: 36686358 PMCID: PMC9850970 DOI: 10.12998/wjcc.v11.i2.268] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 12/02/2022] [Accepted: 01/05/2023] [Indexed: 01/12/2023] Open
Abstract
As an important treatment for acute myeloid leukemia, allogeneic hematopoietic stem cell transplantation (allo-HSCT) plays an important role in reducing relapse and improving long-term survival. With rapid advancements in basic research in molecular biology and immunology and with deepening understanding of the biological characteristics of hematopoietic stem cells, allo-HSCT has been widely applied in clinical practice. During allo-HSCT, preconditioning, the donor, and the source of stem cells can be tailored to the patient’s conditions, greatly broadening the indications for HSCT, with clear survival benefits. However, the risks associated with allo-HSCT remain high, i.e. hematopoietic reconstitution failure, delayed immune reconstitution, graft-versus-host disease, and post-transplant relapse, which are bottlenecks for further improvements in allo-HSCT efficacy and have become hot topics in the field of HSCT. Other bottlenecks recognized in the current treatment of individuals diagnosed with acute myeloid leukemia and subjected to allo-HSCT include the selection of the most appropriate conditioning regimen and post-transplantation management. In this paper, we reviewed the progress of relevant research regarding these aspects.
Collapse
Affiliation(s)
- Yong-Feng Chen
- Department of Basic Medical Sciences, School of Medicine of Taizhou University, Taizhou University, Taizhou 318000, Zhejiang Province, China
| | - Jing Li
- Department of Histology and Embryology, North Sichuan Medical College, Nanchong 637000, Sichuan Province, China
| | - Ling-Long Xu
- Department of Hematology, Taizhou Central Hospital, Taizhou 318000, Zhejiang Province, China
| | - Mihnea-Alexandru Găman
- Faculty of Medicine, “Carol Davila” University of Medicine and Pharmacy, Bucharest 050474, Romania
| | - Zhen-You Zou
- Department of Scientific Research,Brain Hospital of Guangxi Zhuang Autonomous Region, Liuzhou 545005, Guangxi Zhuang Autonomous Region, China
| |
Collapse
|
4
|
Chen S, Chen H, Zhang Y, Li W. Efficacy and Safety of Cellular Immunotherapy by Local Infusion for Liver Tumor: A Systematic Review and Meta-Analysis. Front Oncol 2022; 12:772509. [PMID: 35296019 PMCID: PMC8918675 DOI: 10.3389/fonc.2022.772509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 02/01/2022] [Indexed: 01/30/2023] Open
Abstract
Background Cellular immunotherapy has become a new and promising treatment for patients with liver tumor. However, as most immune cells are delivered by intravenous injection, the effect is limited and is likely to produce systemic toxicity. Here, the objective was to investigate the efficacy and safety of cellular immunotherapy by local infusion, which seems to be a promising approach and has not been well-studied. Methods The PubMed, Web of Science, Embase, and Cochrane Library databases were searched to obtain literature. The overall response rate (ORR), overall survival (OS) rates, and adverse events were investigated to evaluate the effectiveness and safety of locoregional therapy. The methodological quality of the articles was assessed using the methodological index for non-randomized studies (MINORS) score. The meta-analysis was performed using Stata 15.0. Results The eligible 17 studies involved a total of 318 patients. The random-effects model demonstrated that the ORR of local cell infusion therapy was 48% (95% confidence interval [CI]: 26%–70%). The pooled OS rate was 94% (95% CI: 83%–100%) at 6 months, 87% (95% CI: 74%–96%) at 12 months, and 42% (95% CI: 16%–70%) at 24 months. Subgroup analyses suggested that minimally invasive treatment and absence of metastasis were significantly associated with better ORR. Fourteen studies reported a variety of adverse events related to cell therapy by local perfusion. The most common complications after regional infusion of immune cells were myelosuppression (66%), fever (50%), gastrointestinal toxicity (22%), hepatic dysfunction (15%), and pleural effusion and/or ascites (14%). Conclusions Immune cell therapy through local perfusion is effective for patients with liver cancer, with manageable toxicity. It demonstrates better prognosis when combined with minimally invasive therapy. Considering the potential limitations, more randomized controlled trials are needed to provide solid evidence for our findings.
Collapse
|
5
|
Lu H, Zhao X, Li Z, Hu Y, Wang H. From CAR-T Cells to CAR-NK Cells: A Developing Immunotherapy Method for Hematological Malignancies. Front Oncol 2021; 11:720501. [PMID: 34422667 PMCID: PMC8377427 DOI: 10.3389/fonc.2021.720501] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 07/26/2021] [Indexed: 12/29/2022] Open
Abstract
The approval of CD19 chimeric antigen receptor (CAR)-engineered T (CAR-T) cell products in B-cell malignancies represents a breakthrough in CAR-T cell immunotherapy. However, the remaining limitations concerning the graft-versus-host disease (GVHD) and other adverse effects (e.g., cytokine release syndromes [CRS] and neurotoxicity) still restrict their wider applications. Natural killer (NK) cells have been identified as promising candidates for CAR-based cellular immunotherapy because of their unique characteristics. No HLA-matching restriction and abundant sources make CAR-engineered NK (CAR-NK) cells potentially available to be off-the-shelf products that could be readily available for immediate clinical use. Therefore, researchers have gradually shifted their focus from CAR-T cells to CAR-NK cells in hematological malignancies. This review discusses the current status and applications of CAR-NK cells in hematological malignancies, as well as the unique advantages of CAR-NK cells compared with CAR-T cells. It also discusses challenges and prospects regarding clinical applications of CAR-NK cells.
Collapse
Affiliation(s)
- Hui Lu
- Department of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoyan Zhao
- Department of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ziying Li
- Department of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yu Hu
- Department of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huafang Wang
- Department of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
6
|
Wu K, Wang L, Liu M, Xiu Y, Hu Y, Fu S, Huang H, Xu B, Xiao H. The CD226-ERK1/2-LAMP1 pathway is an important mechanism for Vγ9Vδ2 T cell cytotoxicity against chemotherapy-resistant acute myeloid leukemia blasts and leukemia stem cells. Cancer Sci 2021; 112:3233-3242. [PMID: 34107135 PMCID: PMC8353902 DOI: 10.1111/cas.15014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 04/18/2021] [Accepted: 06/01/2021] [Indexed: 12/13/2022] Open
Abstract
Vγ9Vδ2 T cells are attractive effector cells for immunotherapy with potent cytotoxic activity against a variety of malignant cells. However, the effect of Vγ9Vδ2 T cells on chemotherapy-resistant acute myeloid leukemia (AML) blasts, especially highly refractory leukemia stem cells (LSCs) is still unknown. In this study, we investigated the effect of cytotoxicity of allogeneic Vγ9Vδ2 T cells on chemotherapy-resistant AML cell lines, as well as on primary AML blasts and LSCs obtained from refractory AML patients. The results indicated that Vγ9Vδ2 T cells can efficiently kill drug-resistant AML cell lines in vitro and in vivo, and the sensitivity of AML cells to Vγ9Vδ2 T cell-mediated cytotoxicity is not influenced by the sensitivity of AML cells to chemotherapy. We further found that Vγ9Vδ2 T cells exhibited a comparable effect of cytotoxicity against LSCs to primary AML blasts. More importantly, we revealed that the CD226-extracellular signal-regulatory kinase1/2 (ERK1/2)-lysosome-associated membrane protein 1 (LAMP1) pathway is an important mechanism for Vγ9Vδ2 T cell-induced cytotoxicity against AML cells. First, Vγ9Vδ2 T cells recognized AML cells by receptor-ligand interaction of CD226-Nectin-2, which then induced ERK1/2 phosphorylation in Vγ9Vδ2 T cells. Finally, triggering the movement of lytic granules toward AML cells induced cytolysis of AML cells. The expression level of Nectin-2 may be used as a novel marker to predict the susceptibility/resistance of AML cells to Vγ9Vδ2 T cell treatment.
Collapse
MESH Headings
- Animals
- Antigens, Differentiation, T-Lymphocyte/metabolism
- Cytotoxicity, Immunologic
- Drug Resistance, Neoplasm
- Female
- HL-60 Cells
- Humans
- Immunotherapy, Adoptive
- K562 Cells
- Leukemia, Myeloid, Acute/immunology
- Leukemia, Myeloid, Acute/therapy
- Lysosomal Membrane Proteins/metabolism
- MAP Kinase Signaling System
- Mice
- T-Lymphocytes, Cytotoxic/immunology
- T-Lymphocytes, Cytotoxic/transplantation
- Treatment Outcome
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Kangni Wu
- Bone Marrow Transplantation CenterThe First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
- Department of HematologyThe First Affiliated Hospital of Xiamen University and Institute of HematologyMedical College of Xiamen UniversityXiamenChina
| | - Li‐mengmeng Wang
- Bone Marrow Transplantation CenterThe First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Meng Liu
- Bone Marrow Transplantation CenterThe First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Yanghui Xiu
- Eye Institute and Xiamen Eye Center Affiliated to Xiamen UniversityXiamenChina
| | - Yongxian Hu
- Bone Marrow Transplantation CenterThe First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Shan Fu
- Bone Marrow Transplantation CenterThe First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - He Huang
- Bone Marrow Transplantation CenterThe First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Bing Xu
- Department of HematologyThe First Affiliated Hospital of Xiamen University and Institute of HematologyMedical College of Xiamen UniversityXiamenChina
| | - Haowen Xiao
- Department of HematologySir Run Run Shaw HospitalZhejiang University School of MedicineHangzhouChina
| |
Collapse
|
7
|
Iovino L, Thur LA, Gnjatic S, Chapuis A, Milano F, Hill JA. Shared inflammatory pathways and therapeutic strategies in COVID-19 and cancer immunotherapy. J Immunother Cancer 2021; 9:e002392. [PMID: 33986127 PMCID: PMC8126446 DOI: 10.1136/jitc-2021-002392] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/15/2021] [Indexed: 01/28/2023] Open
Abstract
COVID-19, the syndrome caused by the infection with SARS-CoV-2 coronavirus, is characterized, in its severe form, by interstitial diffuse pneumonitis and acute respiratory distress syndrome (ARDS). ARDS and systemic manifestations of COVID-19 are mainly due to an exaggerated immune response triggered by the viral infection. Cytokine release syndrome (CRS), an inflammatory syndrome characterized by elevated levels of circulating cytokines, and endothelial dysfunction are systemic manifestations of COVID-19. CRS is also an adverse event of immunotherapy (IMTX), the treatment of diseases using drugs, cells, and antibodies to stimulate or suppress the immune system. Graft-versus-host disease complications after an allogeneic stem cell transplant, toxicity after the infusion of chimeric antigen receptor-T cell therapy and monoclonal antibodies can all lead to CRS. It is hypothesized that anti-inflammatory drugs used for treatment of CRS in IMTX may be useful in reducing the mortality in COVID-19, whereas IMTX itself may help in ameliorating effects of SARS-CoV-2 infection. In this paper, we focused on the potential shared mechanisms and differences between COVID-19 and IMTX-related toxicities. We performed a systematic review of the clinical trials testing anti-inflammatory therapies and of the data published from prospective trials. Preliminary evidence suggests there might be a benefit in targeting the cytokines involved in the pathogenesis of COVID-19, especially by inhibiting the interleukin-6 pathway. Many other approaches based on novel drugs and cell therapies are currently under investigation and may lead to a reduction in hospitalization and mortality due to COVID-19.
Collapse
Affiliation(s)
- Lorenzo Iovino
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Laurel A Thur
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Sacha Gnjatic
- Medicine-Hematology/Oncology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Aude Chapuis
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
- Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Filippo Milano
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
- Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Joshua A Hill
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
- Department of Medicine, University of Washington, Seattle, Washington, USA
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| |
Collapse
|
8
|
Valdivia G, Alonso-Diez Á, Pérez-Alenza D, Peña L. From Conventional to Precision Therapy in Canine Mammary Cancer: A Comprehensive Review. Front Vet Sci 2021; 8:623800. [PMID: 33681329 PMCID: PMC7925635 DOI: 10.3389/fvets.2021.623800] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 01/11/2021] [Indexed: 12/16/2022] Open
Abstract
Canine mammary tumors (CMTs) are the most common neoplasm in intact female dogs. Canine mammary cancer (CMC) represents 50% of CMTs, and besides surgery, which is the elective treatment, additional targeted and non-targeted therapies could offer benefits in terms of survival to these patients. Also, CMC is considered a good spontaneous intermediate animal model for the research of human breast cancer (HBC), and therefore, the study of new treatments for CMC is a promising field in comparative oncology. Dogs with CMC have a comparable disease, an intact immune system, and a much shorter life span, which allows the achievement of results in a relatively short time. Besides conventional chemotherapy, innovative therapies have a large niche of opportunities. In this article, a comprehensive review of the current research in adjuvant therapies for CMC is conducted to gather available information and evaluate the perspectives. Firstly, updates are provided on the clinical-pathological approach and the use of conventional therapies, to delve later into precision therapies against therapeutic targets such as hormone receptors, tyrosine kinase receptors, p53 tumor suppressor gene, cyclooxygenases, the signaling pathways involved in epithelial-mesenchymal transition, and immunotherapy in different approaches. A comparison of the different investigations on targeted therapies in HBC is also carried out. In the last years, the increasing number of basic research studies of new promising therapeutic agents on CMC cell lines and CMC mouse xenografts is outstanding. As the main conclusion of this review, the lack of effort to bring the in vitro studies into the field of applied clinical research emerges. There is a great need for well-planned large prospective randomized clinical trials in dogs with CMC to obtain valid results for both species, humans and dogs, on the use of new therapies. Following the One Health concept, human and veterinary oncology will have to join forces to take advantage of both the economic and technological resources that are invested in HBC research, together with the innumerable advantages of dogs with CMC as a spontaneous animal model.
Collapse
Affiliation(s)
- Guillermo Valdivia
- Department Animal Medicine, Surgery and Pathology, Veterinary School, Complutense University of Madrid, Madrid, Spain
- Mammary Oncology Unit, Complutense Veterinary Teaching Hospital, Complutense University of Madrid, Madrid, Spain
| | - Ángela Alonso-Diez
- Department Animal Medicine, Surgery and Pathology, Veterinary School, Complutense University of Madrid, Madrid, Spain
- Mammary Oncology Unit, Complutense Veterinary Teaching Hospital, Complutense University of Madrid, Madrid, Spain
| | - Dolores Pérez-Alenza
- Department Animal Medicine, Surgery and Pathology, Veterinary School, Complutense University of Madrid, Madrid, Spain
- Mammary Oncology Unit, Complutense Veterinary Teaching Hospital, Complutense University of Madrid, Madrid, Spain
| | - Laura Peña
- Department Animal Medicine, Surgery and Pathology, Veterinary School, Complutense University of Madrid, Madrid, Spain
- Mammary Oncology Unit, Complutense Veterinary Teaching Hospital, Complutense University of Madrid, Madrid, Spain
| |
Collapse
|
9
|
Lin WY, Wang HH, Chen YW, Lin CF, Fan HC, Lee YY. Gene Modified CAR-T Cellular Therapy for Hematologic Malignancies. Int J Mol Sci 2020; 21:ijms21228655. [PMID: 33212810 PMCID: PMC7697548 DOI: 10.3390/ijms21228655] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/15/2020] [Accepted: 11/15/2020] [Indexed: 02/06/2023] Open
Abstract
With advances in the understanding of characteristics of molecules, specific antigens on the surface of hematological malignant cells were identified and multiple therapies targeting these antigens as neoplasm treatments were developed. Among them, chimeric antigen receptor (CAR) T-cell therapy, which got United States Food and Drug Administration (FDA) approval for relapsed/refractory (r/r) diffuse large B-cell lymphoma (DLBCL) as well as for recurrent acute lymphoblastic leukemia (ALL) within the past five years, and for r/r mantle cell lymphoma (MCL) this year, represents one of the most rapidly evolving immunotherapies. Nevertheless, its applicability to other hematological malignancies, as well as its efficacy and persistence are fraught with clinical challenges. Currently, more than one thousand clinical trials in CAR T-cell therapy are ongoing and its development is changing rapidly. This review introduces the current status of CAR T-cell therapy in terms of the basic molecular aspects of CAR T-cell therapy, its application in hematological malignancies, adverse reactions during clinical use, remaining challenges, and future utilization.
Collapse
Affiliation(s)
- Wen-Ying Lin
- Department of Internal Medicine, Taipei Veterans General Hospital, Taipei 11217, Taiwan;
| | - Hsin-Hui Wang
- Department of Pediatrics, Division of Pediatric Immunology and Nephrology, Taipei Veterans General Hospital, Taipei 11217, Taiwan;
- Department of Pediatrics, Faculty of Medicine, School of Medicine, National Yang-Ming University, Taipei 11221, Taiwan
- Institute of Emergency and Critical Care Medicine, School of Medicine, National Yang-Ming University, Taipei 11221, Taiwan
| | - Yi-Wei Chen
- Division of Radiation Oncology, Department of Oncology, Taipei Veterans General Hospital, Taipei 11217, Taiwan;
- School of Medicine, National Yang-Ming University, Taipei 11221, Taiwan;
| | - Chun-Fu Lin
- School of Medicine, National Yang-Ming University, Taipei 11221, Taiwan;
- Department of Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, Taipei 11217, Taiwan
| | - Hueng-Chuen Fan
- Department of Pediatrics, Tungs’ Taichung Metroharbor Hospital, Wuchi, Taichung 435403, Taiwan;
- Department of Medical Research, Tungs’ Taichung Metroharbor Hospital, Wuchi, Taichung 435403, Taiwan
- Department of Life Sciences, National Chung Hsing University, Taichung 402, Taiwan
- Department of Rehabilitation, Jen-Teh Junior College of Medicine, Nursing and Management, Miaoli 356, Taiwan
| | - Yi-Yen Lee
- School of Medicine, National Yang-Ming University, Taipei 11221, Taiwan;
- Department of Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, Taipei 11217, Taiwan
- Division of Pediatric Neurosurgery, Department of Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, Taipei 11217, Taiwan
- Correspondence: ; Tel.: +886-2-28757491; Fax: +886-2-28757588
| |
Collapse
|
10
|
Venetis K, Invernizzi M, Sajjadi E, Curigliano G, Fusco N. Cellular immunotherapy in breast cancer: The quest for consistent biomarkers. Cancer Treat Rev 2020; 90:102089. [PMID: 32889360 DOI: 10.1016/j.ctrv.2020.102089] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/06/2020] [Accepted: 08/07/2020] [Indexed: 02/07/2023]
Abstract
Breast cancer is the most common malignancy in women worldwide, with a relatively high proportion of patients experiencing resistance to standard treatments. Cellular immunotherapy (CI), which is based on the extraction, modification, and re-infusion of the patient's immune cells, is showing promising results in these patients. Among CI possible approaches, adoptive cell therapy (ACT) and dendritic cell (DC) vaccination are the most comprehensively explored in both primary/translational research studies and clinical trials. ACT may include the use of tumor-infiltrating lymphocytes (TILs), T cell receptor (TCR)-, or chimeric antigen receptor (CAR)-engineered T-cells. There are indications suggesting that a biomarker-based approach might be beneficial in effectively selecting breast cancer patients for CI. Here, we sought to provide the current knowledge of CI in breast cancer, focusing on candidate biomarkers, ongoing clinical trials, limitations, and immediate future perspectives.
Collapse
Affiliation(s)
- Konstantinos Venetis
- Department of Oncology and Hemato-Oncology, University of Milan, 20122 Milan, Italy; Ph.D. Program in Translational Medicine, University of Milan, 20133 Milan, Italy; Division of Pathology and Laboratory Medicine, IEO, European Institute of Oncology IRCCS, 20141 Milan, Italy
| | - Marco Invernizzi
- Department of Health Sciences, University of Eastern Piedmont, 28100 Novara, Italy
| | - Elham Sajjadi
- Division of Pathology and Laboratory Medicine, IEO, European Institute of Oncology IRCCS, 20141 Milan, Italy
| | - Giuseppe Curigliano
- Department of Oncology and Hemato-Oncology, University of Milan, 20122 Milan, Italy; Division of Early Drug Development for Innovative Therapies, IEO, European Institute of Oncology IRCCS, 20141 Milan, Italy.
| | - Nicola Fusco
- Department of Oncology and Hemato-Oncology, University of Milan, 20122 Milan, Italy; Division of Pathology and Laboratory Medicine, IEO, European Institute of Oncology IRCCS, 20141 Milan, Italy.
| |
Collapse
|
11
|
Gutiérrez-García G, Rovira M, Arab N, Gallego C, Sánchez J, Ángeles Álvarez M, Ayora P, Domenech A, Borràs N, Gerardo Rodríguez-Lobato L, Rosiñol L, Marín P, Pedraza A, Martínez-Roca A, Carcelero E, Dolores Herrera M, Teresa Solano M, Ramos C, de Llobet N, Serrahima A, Lozano M, Cid J, Martínez C, Suárez-Lledó M, Urbano-Ispizua Á, Fernández-Avilés F. A reproducible and safe at-home allogeneic haematopoietic cell transplant program: first experience in Central and Southern Europe. Bone Marrow Transplant 2020; 55:965-973. [PMID: 31932656 DOI: 10.1038/s41409-019-0768-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 11/19/2019] [Accepted: 11/26/2019] [Indexed: 11/09/2022]
Abstract
In 2015, we implemented an at-home allogeneic haematopoietic cell transplant (allo-HCT) program. Between 2015 and 2018, 252 patients underwent allo-HCT; 41 patients underwent allo-HCT in the at-home program (46% myeloablative; 63% unrelated donor; 32% posttransplant cyclophosphamide), and these patients were compared with 39 in-patients; safety, capacity to release beds for other programs, and economic efficiency cost were evaluated. We observed a lower incidence of febrile neutropenia in the at-home group compared with that in the in-patient group (32% versus 90%; p < 0.0001), whereas the incidence of aspergillosis was similar among groups (at-home 1% versus in-patient 3%; p = 0.5). The at-home patients showed a lower incidence of 1-year severe graft-versus-host disease (GVHD; 10% versus 29%; p = 0.03). There were no differences in 1-year transplant-related mortality, relapse, or overall survival among groups. The re-admission rate in the at-home group was 7%. The at-home setting was less expensive (9087 €/transplant), and its implementation increased capacity by 10.5 allo-HCTs/year. Moreover, a chimeric antigen receptor T-cell program could be established without increasing beds. Thus, our at-home allo-HCT program may be a safe modality to reduce febrile neutropenia and acute GVHD, resulting in lower re-admission rates.
Collapse
Affiliation(s)
- Gonzalo Gutiérrez-García
- Bone Marrow Transplant Unit, Department of Hematology, Hospital Clínic of Barcelona, Barcelona, Spain. .,University of Barcelona, Barcelona, Spain. .,Institut de Recerca Biomèdica August Pi i Sunyer, Barcelona, Spain. .,Josep Carreras Leukemia Research Institute, Barcelona, Spain.
| | - Montserrat Rovira
- Bone Marrow Transplant Unit, Department of Hematology, Hospital Clínic of Barcelona, Barcelona, Spain.,University of Barcelona, Barcelona, Spain.,Institut de Recerca Biomèdica August Pi i Sunyer, Barcelona, Spain.,Josep Carreras Leukemia Research Institute, Barcelona, Spain
| | - Nacira Arab
- Bone Marrow Transplant Unit, Department of Hematology, Hospital Clínic of Barcelona, Barcelona, Spain
| | - Cristina Gallego
- Bone Marrow Transplant Unit, Department of Hematology, Hospital Clínic of Barcelona, Barcelona, Spain
| | - Joan Sánchez
- Bone Marrow Transplant Unit, Department of Hematology, Hospital Clínic of Barcelona, Barcelona, Spain
| | - María Ángeles Álvarez
- Bone Marrow Transplant Unit, Department of Hematology, Hospital Clínic of Barcelona, Barcelona, Spain
| | - Pilar Ayora
- Bone Marrow Transplant Unit, Department of Hematology, Hospital Clínic of Barcelona, Barcelona, Spain
| | - Ariadna Domenech
- Bone Marrow Transplant Unit, Department of Hematology, Hospital Clínic of Barcelona, Barcelona, Spain
| | - Nuria Borràs
- Bone Marrow Transplant Unit, Department of Hematology, Hospital Clínic of Barcelona, Barcelona, Spain
| | - Luis Gerardo Rodríguez-Lobato
- Bone Marrow Transplant Unit, Department of Hematology, Hospital Clínic of Barcelona, Barcelona, Spain.,University of Barcelona, Barcelona, Spain.,Institut de Recerca Biomèdica August Pi i Sunyer, Barcelona, Spain.,Josep Carreras Leukemia Research Institute, Barcelona, Spain
| | - Laura Rosiñol
- Bone Marrow Transplant Unit, Department of Hematology, Hospital Clínic of Barcelona, Barcelona, Spain.,University of Barcelona, Barcelona, Spain.,Institut de Recerca Biomèdica August Pi i Sunyer, Barcelona, Spain.,Josep Carreras Leukemia Research Institute, Barcelona, Spain
| | - Pedro Marín
- Bone Marrow Transplant Unit, Department of Hematology, Hospital Clínic of Barcelona, Barcelona, Spain.,University of Barcelona, Barcelona, Spain.,Institut de Recerca Biomèdica August Pi i Sunyer, Barcelona, Spain.,Josep Carreras Leukemia Research Institute, Barcelona, Spain
| | - Alexandra Pedraza
- Bone Marrow Transplant Unit, Department of Hematology, Hospital Clínic of Barcelona, Barcelona, Spain.,University of Barcelona, Barcelona, Spain.,Institut de Recerca Biomèdica August Pi i Sunyer, Barcelona, Spain.,Josep Carreras Leukemia Research Institute, Barcelona, Spain
| | - Alexandra Martínez-Roca
- Bone Marrow Transplant Unit, Department of Hematology, Hospital Clínic of Barcelona, Barcelona, Spain.,University of Barcelona, Barcelona, Spain.,Institut de Recerca Biomèdica August Pi i Sunyer, Barcelona, Spain.,Josep Carreras Leukemia Research Institute, Barcelona, Spain
| | - Esther Carcelero
- Department of Pharmacy, Hospital Clínic of Barcelona, Barcelona, Spain
| | - María Dolores Herrera
- Bone Marrow Transplant Unit, Department of Hematology, Hospital Clínic of Barcelona, Barcelona, Spain
| | - María Teresa Solano
- Bone Marrow Transplant Unit, Department of Hematology, Hospital Clínic of Barcelona, Barcelona, Spain
| | - Carla Ramos
- Bone Marrow Transplant Unit, Department of Hematology, Hospital Clínic of Barcelona, Barcelona, Spain
| | - Noemí de Llobet
- Bone Marrow Transplant Unit, Department of Hematology, Hospital Clínic of Barcelona, Barcelona, Spain
| | - Anna Serrahima
- Bone Marrow Transplant Unit, Department of Hematology, Hospital Clínic of Barcelona, Barcelona, Spain
| | - Miquel Lozano
- University of Barcelona, Barcelona, Spain.,Institut de Recerca Biomèdica August Pi i Sunyer, Barcelona, Spain.,Department of Hemotherapy and Homeostasis, Hospital Clínic of Barcelona, Barcelona, Spain
| | - Joan Cid
- University of Barcelona, Barcelona, Spain.,Institut de Recerca Biomèdica August Pi i Sunyer, Barcelona, Spain.,Department of Hemotherapy and Homeostasis, Hospital Clínic of Barcelona, Barcelona, Spain
| | - Carmen Martínez
- Bone Marrow Transplant Unit, Department of Hematology, Hospital Clínic of Barcelona, Barcelona, Spain.,University of Barcelona, Barcelona, Spain.,Institut de Recerca Biomèdica August Pi i Sunyer, Barcelona, Spain.,Josep Carreras Leukemia Research Institute, Barcelona, Spain
| | - María Suárez-Lledó
- Bone Marrow Transplant Unit, Department of Hematology, Hospital Clínic of Barcelona, Barcelona, Spain.,University of Barcelona, Barcelona, Spain.,Institut de Recerca Biomèdica August Pi i Sunyer, Barcelona, Spain.,Josep Carreras Leukemia Research Institute, Barcelona, Spain
| | - Álvaro Urbano-Ispizua
- Bone Marrow Transplant Unit, Department of Hematology, Hospital Clínic of Barcelona, Barcelona, Spain.,University of Barcelona, Barcelona, Spain.,Institut de Recerca Biomèdica August Pi i Sunyer, Barcelona, Spain.,Josep Carreras Leukemia Research Institute, Barcelona, Spain
| | - Francesc Fernández-Avilés
- Bone Marrow Transplant Unit, Department of Hematology, Hospital Clínic of Barcelona, Barcelona, Spain.,University of Barcelona, Barcelona, Spain.,Institut de Recerca Biomèdica August Pi i Sunyer, Barcelona, Spain.,Josep Carreras Leukemia Research Institute, Barcelona, Spain
| |
Collapse
|
12
|
Mosquito allergy: a novel strong prognostic symptom of outcome after allogeneic hematopoietic transplantation. Bone Marrow Transplant 2019; 55:1509-1511. [PMID: 31804620 DOI: 10.1038/s41409-019-0759-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 11/06/2019] [Accepted: 11/15/2019] [Indexed: 11/08/2022]
|
13
|
[The role of CAR-T in hematopoietic stem cell transplantation]. ZHONGHUA XUE YE XUE ZA ZHI = ZHONGHUA XUEYEXUE ZAZHI 2019; 40:340-343. [PMID: 31104451 PMCID: PMC7343021 DOI: 10.3760/cma.j.issn.0253-2727.2019.04.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
14
|
Berndt S, Turzi A, Pittet-Cuénod B, Modarressi A. Autologous Platelet-Rich Plasma (CuteCell PRP) Safely Boosts In Vitro Human Fibroblast Expansion. Tissue Eng Part A 2019; 25:1550-1563. [PMID: 30896295 DOI: 10.1089/ten.tea.2018.0335] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Nowadays autologous fibroblast application for skin repair presents an important clinical interest. In most cases, in vitro skin cell culture is mandatory. However, cell expansion using xenogeneic or allogenic culture media presents some disadvantages, such as the risk of infection transmission or slow cell expansion. In this study, we investigated an autologous culture system to expand human skin fibroblast cells in vitro with the patient's own platelet-rich plasma (PRP). Human dermal fibroblasts were isolated from patients undergoing abdominoplasty, and blood was collected to prepare nonactivated PRP using the CuteCell™ PRP medical device. Cultures were followed up to 7 days using a medium supplemented with either fetal bovine serum (FBS) or PRP. Fibroblasts cultured in medium supplemented with PRP showed dose-dependently significantly higher proliferation rates (up to 7.7 times with 20% of PRP) and initiated a faster migration in the in vitro wound healing assay compared with FBS, while chromosomal stability was maintained. At high concentrations, PRP changed fibroblast morphology, inducing cytoskeleton rearrangement and an increase of alpha-smooth muscle actin and vimentin expression. Our findings show that autologous PRP is an efficient and cost-effective supplement for fibroblast culture, and should be considered as a safe alternative to xenogeneic/allogenic blood derivatives for in vitro cell expansion. Impact Statement Autologous dermal fibroblast graft is an important therapy in skin defect repair, but in vitro skin cell culture is mandatory in most cases. However, cell expansion using xenogeneic/allogenic culture media presents some disadvantages, such as the risk of infection transmission. We demonstrated that an autologous culture system with the patient's own platelet-rich plasma is an efficient, cost-effective, and safe supplement for fibroblast culture. As it respects the good manufacturing practices and regulatory agencies standards, it should be considered as a potent alternative and substitute to xenogeneic or allogenic blood derivatives for the validation of future clinical protocols using in vitro cell expansion.
Collapse
Affiliation(s)
- Sarah Berndt
- Department of Plastic, Reconstructive and Aesthetic Surgery, Geneva University Hospitals, Geneva, Switzerland.,Faculty of Medicine, Geneva University, Geneva, Switzerland.,Regen Lab SA, Le Mont-sur-Lausanne, Switzerland
| | | | - Brigitte Pittet-Cuénod
- Department of Plastic, Reconstructive and Aesthetic Surgery, Geneva University Hospitals, Geneva, Switzerland.,Faculty of Medicine, Geneva University, Geneva, Switzerland
| | - Ali Modarressi
- Department of Plastic, Reconstructive and Aesthetic Surgery, Geneva University Hospitals, Geneva, Switzerland.,Faculty of Medicine, Geneva University, Geneva, Switzerland
| |
Collapse
|