1
|
Westall GP, Gottlieb D, Hughes P, Marinelli T, Rawlinson WD, Ritchie D, Sasadeusz J, Yong MK. Emerging concepts of CMV in transplantation. Intern Med J 2025; 55:12-19. [PMID: 39620697 DOI: 10.1111/imj.16587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 10/30/2024] [Indexed: 01/18/2025]
Abstract
Cytomegalovirus (CMV) infections continue to be associated with significant morbidity and mortality following solid organ transplantation and haemopoietic stem cell transplantation. Advances in understanding the biology of CMV in the immunosuppressed host will translate into improved management approaches and better clinical outcomes. Updated definitions of resistant and refractory CMV infections will lead to more consistent reporting of CMV outcomes, better inform appropriate antiviral strategies and influence clinical trial design. Improved knowledge of the immunological control of CMV in the immunosuppressed host has led to novel diagnostics, emerging therapeutic cellular therapies and the development of an informed rationale for prophylactic and pre-emptive strategies. As the boundaries of transplantation are extended, new patterns of CMV infection are being recognised. Finally, recent studies support the use of novel antiviral therapies in transplant recipients in the appropriate clinical setting. In this review, we provide an update on important new and emerging concepts in the management of CMV in immunosuppressed transplant recipients.
Collapse
Affiliation(s)
- Glen P Westall
- Department of Respiratory Medicine, Alfred Health, Monash University, Melbourne, Victoria, Australia
| | - David Gottlieb
- Blood Transplant and Cell Therapies Program, Westmead Hospital, University of Sydney, Sydney, New South Wales, Australia
| | - Peter Hughes
- Department of Nephrology, Royal Melbourne Hospital, University of Melbourne, Melbourne, Victoria, Australia
| | - Tina Marinelli
- Department of Infectious Diseases and Microbiology, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
| | - William D Rawlinson
- SAViD (Serology and Virology Division), NSW Health Pathology, The Prince of Wales Hospital, University of New South Wales, Sydney, New South Wales, Australia
| | - David Ritchie
- Clinical Haematology, Peter MacCallum Cancer Centre, Royal Melbourne Hospital, University of Melbourne, Melbourne, Victoria, Australia
| | - Joe Sasadeusz
- Victorian Infectious Diseases Service, Royal Melbourne Hospital, University of Melbourne, Melbourne, Victoria, Australia
| | - Michelle K Yong
- Victorian Infectious Diseases Service, Royal Melbourne Hospital, University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
2
|
Ruiz-Arabi E, Torre-Cisneros J, Aguilera V, Alonso R, Berenguer M, Bestard O, Bodro M, Cantisán S, Carratalà J, Castón JJ, Cordero E, Facundo C, Fariñas MC, Fernández-Alonso M, Fernández-Ruiz M, Fortún J, García-Cosío MD, Herrera S, Iturbe-Fernández D, Len O, López-Medrano F, López-Oliva MO, Los-Arcos I, Marcos MÁ, Martín-Dávila P, Monforte V, Muñoz P, Navarro D, Páez-Vega A, Pérez AB, Redondo N, Álvarez R R, Rodríguez-Benot A, Rodríguez-Goncer I, San-Juan R, Sánchez-Céspedes J, Valerio M, Vaquero JM, Viasus D, Vidal E, Aguado JM. Management of cytomegalovirus in adult solid organ transplant patients: GESITRA-IC-SEIMC, CIBERINFEC, and SET recommendations update. Transplant Rev (Orlando) 2024; 38:100875. [PMID: 39168020 DOI: 10.1016/j.trre.2024.100875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/02/2024] [Accepted: 08/03/2024] [Indexed: 08/23/2024]
Abstract
Cytomegalovirus (CMV) infection remains a significant challenge in solid organ transplantation (SOT). The last international consensus guidelines on the management of CMV in SOT were published in 2018, highlighting the need for revision to incorporate recent advances, notably in cell-mediated immunity monitoring, which could alter the current standard of care. A working group including members from the Group for the Study of Infection in Transplantation and the Immunocompromised Host (GESITRA-IC) of the Spanish Society of Infectious Diseases and Clinical Microbiology (SEIMC) and the Spanish Society of Transplantation (SET), developed consensus-based recommendations for managing CMV infection in SOT recipients. Recommendations were classified based on evidence strength and quality using the Grading of Recommendations Assessment, Development and Evaluation (GRADE) system. The final recommendations were endorsed through a consensus meeting and approved by the expert panel.
Collapse
Affiliation(s)
- Elisa Ruiz-Arabi
- Service of Infectious Diseases, Reina Sofia University Hospital, Maimonides Institute for Biomedical Research (IMIBIC), Cordoba, Spain
| | - Julian Torre-Cisneros
- Service of Infectious Diseases, Reina Sofia University Hospital. Maimonides Institute for Biomedical Research (IMIBIC), University of Cordoba, Córdoba, Spain; Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain.
| | - Victoria Aguilera
- Hepatology and Liver Transplantation Unit, Hospital Universitario La Fe-IIS La Fe Valencia, CiberEHD and University of Valencia, Spain
| | - Rodrigo Alonso
- Lung Transplant Unit, Pneumology Service, Instituto de Investigación Hospital 12 de Octubre (imas12), University Hospital 12 de Octubre, Madrid, Spain
| | - Marina Berenguer
- Hepatology and Liver Transplantation Unit, Hospital Universitario La Fe-IIS La Fe Valencia, CiberEHD and University of Valencia, Spain
| | - Oriol Bestard
- Department of Nephrology and Kidney Transplantation, Vall d'Hebron University Hospital-VHIR, Barcelona, Spain
| | - Marta Bodro
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain; Department of Infectious Diseases, Hospital Clinic-IDIBAPS, University of Barcelona, Spain
| | - Sara Cantisán
- Service of Infectious Diseases, Reina Sofia University Hospital. Maimonides Institute for Biomedical Research (IMIBIC), University of Cordoba, Córdoba, Spain; Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Jordi Carratalà
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain; Department of Infectious Diseases, Bellvitge University Hospital-IDIBELL, University of Barcelona, Spain
| | - Juan José Castón
- Service of Infectious Diseases, Reina Sofia University Hospital. Maimonides Institute for Biomedical Research (IMIBIC), University of Cordoba, Córdoba, Spain; Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Elisa Cordero
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain; Unit of Infectious Diseases, Microbiology and Parasitology, Instituto de Biomedicina de Sevilla (IBiS), Virgen del Rocío University Hospital, Junta de Andalucía, CSIC, Universidad de Sevilla, Sevilla, Spain; Departament of Medicine, Faculty of Medicine, Universidad de Sevilla, Spain
| | - Carme Facundo
- Department of Nephrology, Fundacio Puigvert, Institut de Recerca Sant Pau (IR Sant Pau), RICORS 2024 (Kidney Disease), Barcelona, Spain
| | - María Carmen Fariñas
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain; Department of Infectious Diseases, Hospital Universitario Marqués de Valdecilla-IDIVAL, Universidad de Cantabria, Santander, Spain
| | - Mirian Fernández-Alonso
- Microbiology Service, Clínica Universidad de Navarra, IdiSNA, Navarra Institute for Health Research, Pamplona, Spain
| | - Mario Fernández-Ruiz
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain; Unit of Infectious Diseases, University Hospital "12 de Octubre", Instituto de Investigación Hospital "12 de Octubre" (i+12), School of Medicine, Universidad Complutense, Madrid, Spain
| | - Jesús Fortún
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain; Service of Infectious Diseases, Ramón y Cajal University Hospital, IRYCIS, Madrid, Spain
| | - Maria Dolores García-Cosío
- Department of Cardiology, University Hospital "12 de Octubre", Instituto de Investigación Hospital "12 de Octubre" (i+12), CIBERCV, Madrid, Spain
| | - Sabina Herrera
- Department of Infectious Diseases, Hospital Clinic-IDIBAPS, University of Barcelona, Spain
| | - David Iturbe-Fernández
- Department of Pneumology, University Hospital Marqués de Valdecilla-IDIVAL, Santander, Spain
| | - Oscar Len
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain; Department of Infectious Diseases, Vall d'Hebron for Solid Organ Transplantation Research Group, Vall d'Hebron University Hospital, Barcelona, Spain
| | - Francisco López-Medrano
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain; Unit of Infectious Diseases, University Hospital "12 de Octubre", Instituto de Investigación Hospital "12 de Octubre" (i+12), School of Medicine, Universidad Complutense, Madrid, Spain
| | | | - Ibai Los-Arcos
- Department of Infectious Diseases, Vall d'Hebron for Solid Organ Transplantation Research Group, Vall d'Hebron University Hospital, Barcelona, Spain
| | - María Ángeles Marcos
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain; Department of Clinical Microbiology, Hospital Clinic, University of Barcelona, ISGlobal Barcelona Institute for Global Health, Barcelona, Spain
| | - Pilar Martín-Dávila
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain; Service of Infectious Diseases, Ramón y Cajal University Hospital, IRYCIS, Madrid, Spain
| | - Víctor Monforte
- Lung Transplant Program, Department of Pulmonology, Hospital Universitari Vall d'Hebron, Barcelona, Spain; CIBER Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
| | - Patricia Muñoz
- CIBER Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain; Department of Clinical Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitario Gregorio Marañon, Departamento de Medicina, Universidad Complutense, Madrid, Spain
| | - David Navarro
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain; Microbiology Service, Clinic University Hospital, INCLIVA Health Research Institute, Valencia, Spain. Department of Microbiology School of Medicine, University of Valencia, Spain
| | - Aurora Páez-Vega
- Maimonides Institute for Biomedical Research of Cordoba (IMIBIC), Reina Sofia University Hospital, University of Cordoba, Spain
| | - Ana Belén Pérez
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain; Microbiology Unit, Hospital Universitario Reina Sofía-Maimonides Institute for Biomedical Research (IMIBIC), Cordoba, Spain
| | - Natalia Redondo
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain; Unit of Infectious Diseases, University Hospital "12 de Octubre", Instituto de Investigación Hospital "12 de Octubre" (i+12), School of Medicine, Universidad Complutense, Madrid, Spain
| | | | | | - Isabel Rodríguez-Goncer
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain; Unit of Infectious Diseases, University Hospital "12 de Octubre", Instituto de Investigación Hospital "12 de Octubre" (i+12), School of Medicine, Universidad Complutense, Madrid, Spain
| | - Rafael San-Juan
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain; Unit of Infectious Diseases, University Hospital "12 de Octubre", Instituto de Investigación Hospital "12 de Octubre" (i+12), School of Medicine, Universidad Complutense, Madrid, Spain
| | - Javier Sánchez-Céspedes
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain; Unit of Infectious Diseases, Microbiology and Parasitology, Instituto de Biomedicina de Sevilla (IBiS), Virgen del Rocío University Hospital, Junta de Andalucía, CSIC, Universidad de Sevilla, Sevilla, Spain
| | - Maricela Valerio
- CIBER Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain; Department of Clinical Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitario Gregorio Marañon, Departamento de Medicina, Universidad Complutense, Madrid, Spain
| | - José Manuel Vaquero
- Unit of Pneumology, Thoracic Surgery, and Lung Transplant, Reina Sofía University Hospital, Cordoba, Spain
| | - Diego Viasus
- Division of Health Sciences, Faculty of Medicine, Universidad del Norte, Hospital Universidad del Norte, Barranquilla, Colombia
| | - Elisa Vidal
- Service of Infectious Diseases, Reina Sofia University Hospital. Maimonides Institute for Biomedical Research (IMIBIC), University of Cordoba, Córdoba, Spain; Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - José María Aguado
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain; Unit of Infectious Diseases, University Hospital "12 de Octubre", Instituto de Investigación Hospital "12 de Octubre" (i+12), School of Medicine, Universidad Complutense, Madrid, Spain.
| |
Collapse
|
3
|
Shang Z, Li X. Human cytomegalovirus: pathogenesis, prevention, and treatment. MOLECULAR BIOMEDICINE 2024; 5:61. [PMID: 39585514 PMCID: PMC11589059 DOI: 10.1186/s43556-024-00226-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 11/04/2024] [Accepted: 11/05/2024] [Indexed: 11/26/2024] Open
Abstract
Human cytomegalovirus (HCMV) infection remains a significant global health challenge, particularly for immunocompromised individuals and newborns. This comprehensive review synthesizes current knowledge on HCMV pathogenesis, prevention, and treatment strategies. We examine the molecular mechanisms of HCMV entry, focusing on the structure and function of key envelope glycoproteins (gB, gH/gL/gO, gH/gL/pUL128-131) and their interactions with cellular receptors such as PDGFRα, NRP2, and THBD. The review explores HCMV's sophisticated immune evasion strategies, including interference with pattern recognition receptor signaling, modulation of antigen presentation, and regulation of NK and T cell responses. We highlight recent advancements in developing neutralizing antibodies, various vaccine strategies (live-attenuated, subunit, vector-based, DNA, and mRNA), antiviral compounds (both virus-targeted and host-targeted), and emerging cellular therapies such as TCR-T cell approaches. By integrating insights from structural biology, immunology, and clinical research, we identify critical knowledge gaps and propose future research directions. This analysis aims to stimulate cross-disciplinary collaborations and accelerate the development of more effective prevention and treatment strategies for HCMV infections, addressing a significant unmet medical need.
Collapse
Affiliation(s)
- Zifang Shang
- Research Experiment Center, Meizhou Academy of Medical Sciences, Meizhou People's Hospital, Meizhou, 514031, Guangdong, China.
- Guangdong Engineering Technological Research Center of Clinical Molecular Diagnosis and Antibody Drugs, Meizhou, 514031, Guangdong, China.
| | - Xin Li
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, 100101, China
| |
Collapse
|
4
|
Yang J, Riemann SB, Lyu J, Feng S, Bi Y, Lentini NA, Kang I, Kashemirov BA, Hartline CB, James SH, Tollefson AE, Cline-Smith A, Toth K, McKenna CE. Synthesis of USC-093 and comparison with its promoiety enantiomer USC-093D against adenovirus in vitro and in a Syrian hamster model. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.01.621456. [PMID: 39554161 PMCID: PMC11566020 DOI: 10.1101/2024.11.01.621456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Adenovirus infections of immunocompromised humans are a significant source of morbidity and mortality. At present, no drug has been approved by FDA for the treatment of adenovirus infections. A current treatment of such infections is off-label use of an antiviral acyclic nucleotide phosphonate, cidofovir (CDV, ( S )-HPMPC), which requires i.v. administration and has dose-limiting kidney toxicity. We recently reported that USC-093, a homoserinamide analogue of the tyrosinamide ( S )- HPMPA prodrug USC-087, was orally effective at a 10 mg/kg against disseminated human adenovirus infection (HAdV-C6) in a Syrian hamster model, although their efficacy was marginal after respiratory infection. Neither prodrug manifested GI toxicity. Unlike USC-087, USC-093 showed no significant nephrotoxicity at the effective dose. Here, we describe in detail the synthesis of USC-093 and also its D-homoserinamide analogue, USC-093D, in four steps (20-40% overall yield) starting from Boc-protected L-homoserine or D-homoserine lactone, respectively. The two stereoisomeric prodrugs had EC 50 30-70 nM vs. Ad5 or 1-6 nM vs. Ad6 in HFF cells, with USC-093D giving the lower values. The prodrugs were 30-59x more potent vs. Ad5 and 82-332x more potent than Ad6 relative to the positive control, CDV. To ascertain whether D-chirality in the promoiety could enhance the performance of the prodrug in vivo, USC-093D and USC-093 were compared in the Syrian hamster model (treated from day 1 q.d at an experimentally determined maximum tolerated oral dose of 20 mg/kg)). In this study, the hamsters were instilled i.n. with vehicle or 4X10 10 PFU/kg of HAdV-C6 to promote lung infection. Oral valganciclovir (VGCV) at 200 mg/kg b.i.d. was used as the positive control. The body weights were recorded daily, and at 3 days post challenge, gross pathological observation was performed. Lung samples were collected, and the virus burden was determined by TCID 50 assay. The results show that altering homoserine stereochemistry did not markedly improve the efficacy of the orally administered prodrug, consistent with the premise that its mechanism of transport is likely not dependent on stereoselective pathways, such as hPEPT1-mediated uptake.
Collapse
|
5
|
Prévost J, Sloan A, Deschambault Y, Tailor N, Tierney K, Azaransky K, Kammanadiminti S, Barker D, Kodihalli S, Safronetz D. Treatment efficacy of cidofovir and brincidofovir against clade II Monkeypox virus isolates. Antiviral Res 2024; 231:105995. [PMID: 39243894 DOI: 10.1016/j.antiviral.2024.105995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/27/2024] [Accepted: 09/03/2024] [Indexed: 09/09/2024]
Abstract
While historically confined to endemic areas, Monkeypox virus (MPXV) infection has increasingly garnered international attention due to sporadic outbreaks in non-endemic countries in the last two decades and its potential for human-to-human transmission. In 2022, a multi-country outbreak of mpox disease was declared by the World Health Organization (WHO) and nearly 100 000 mpox cases have been reported since the beginning of this pandemic. The clade II variant of the virus appears to be responsible for the vast majority of these infections. While there are no antiviral drugs currently approved to treat mpox specifically, the use of tecovirimat (TPOXX®) and brincidofovir (Tembexa®) is recommended by the Centers for Disease Control and Prevention (CDC) for compassionate use in severe mpox cases, since both are FDA-approved for the treatment of the closely related smallpox disease. Given the emergence of multiple tecovirimat-resistant infections, we aimed to evaluate the treatment efficacy of brincidofovir and its active compound, cidofovir, against MPXV clade II strains. Following intranasal infection, we show that cidofovir and brincidofovir can strongly reduce the viral replication of MPXV clade IIa and IIb viruses in the respiratory tract of susceptible mice when administered systemically and orally, respectively. The high antiviral activity of both compounds against historical and currently circulating MPXV strains supports their therapeutic potential for clinical application.
Collapse
Affiliation(s)
- Jérémie Prévost
- Special Pathogens Program, National Microbiology Laboratory Branch, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - Angela Sloan
- Special Pathogens Program, National Microbiology Laboratory Branch, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - Yvon Deschambault
- Special Pathogens Program, National Microbiology Laboratory Branch, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - Nikesh Tailor
- Special Pathogens Program, National Microbiology Laboratory Branch, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - Kevin Tierney
- Special Pathogens Program, National Microbiology Laboratory Branch, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - Kimberly Azaransky
- Special Pathogens Program, National Microbiology Laboratory Branch, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | | | - Douglas Barker
- Emergent BioSolutions Canada Inc., Winnipeg, Manitoba, Canada
| | | | - David Safronetz
- Special Pathogens Program, National Microbiology Laboratory Branch, Public Health Agency of Canada, Winnipeg, Manitoba, Canada; Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Manitoba, Canada.
| |
Collapse
|
6
|
Mercado NB, Real JN, Kaiserman J, Panagioti E, Cook CH, Lawler SE. Clinical implications of cytomegalovirus in glioblastoma progression and therapy. NPJ Precis Oncol 2024; 8:213. [PMID: 39343770 PMCID: PMC11439950 DOI: 10.1038/s41698-024-00709-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 09/16/2024] [Indexed: 10/01/2024] Open
Abstract
Glioblastoma (GBM) is one of the deadliest brain cancers with a median survival of only 15 months. This poor prognosis has prompted exploration of novel therapeutic targets for GBM patients. Human cytomegalovirus (HCMV) has been implicated in GBM; however, its impact remains poorly defined, and there is conflicting data over the presence of HCMV in tumors. Nonetheless, clinical trials targeting HCMV have shown promising initial data, and evidence suggests that HCMV may negatively impact GBM patient survival by multiple mechanisms including changes in GBM cell behavior and the tumor microenvironment (TME) that potentiate tumor progression as well as therapy-induced virus reactivation. Moreover, HCMV has many effects on host immunity that could impact tumor behavior by altering the TME, which are largely unexplored. The goal of this review is to describe these potential interactions between HCMV and GBM. Better understanding of these processes may allow the development of new therapeutic modalities to improve GBM patient outcomes.
Collapse
Affiliation(s)
- Noe B Mercado
- Department of Pathology and Laboratory Medicine, Legorreta Cancer Center, Brown University, Providence, RI, US
- The Warren Alpert Medical School, Brown University, Providence, RI, US
| | - Jacqueline N Real
- Department of Pathology and Laboratory Medicine, Legorreta Cancer Center, Brown University, Providence, RI, US
- The Warren Alpert Medical School, Brown University, Providence, RI, US
| | - Jacob Kaiserman
- Department of Pathology and Laboratory Medicine, Legorreta Cancer Center, Brown University, Providence, RI, US
- The Warren Alpert Medical School, Brown University, Providence, RI, US
| | - Eleni Panagioti
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, US
| | - Charles H Cook
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, US
| | - Sean E Lawler
- Department of Pathology and Laboratory Medicine, Legorreta Cancer Center, Brown University, Providence, RI, US.
- The Warren Alpert Medical School, Brown University, Providence, RI, US.
| |
Collapse
|
7
|
Piñana JL, Giménez E, Vázquez L, Marcos MÁ, Guerreiro M, Duarte R, Pérez A, de Miguel C, Espigado I, González-Vicent M, Suarez-Lledó M, García-Cadenas I, Martino R, Cedillo A, Rovira M, de la Cámara R, Navarro D, Solano C. Update on Cytomegalovirus Infection Management in Allogeneic Hematopoietic Stem Cell Transplant Recipients. A Consensus Document of the Spanish Group for Hematopoietic Transplantation and Cell Therapy (GETH-TC). Mediterr J Hematol Infect Dis 2024; 16:e2024065. [PMID: 39258183 PMCID: PMC11385272 DOI: 10.4084/mjhid.2024.065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 08/02/2024] [Indexed: 09/12/2024] Open
Abstract
Background Cytomegalovirus (CMV) infection is a common complication following allogeneic hematopoietic stem cell transplantation (allo-HSCT) and in patients receiving novel hematological therapies. Its impact on morbidity and mortality necessitates effective management strategies. Despite recent advances in diagnostics and treatment, unresolved questions persist regarding monitoring and treatment, prompting the need for updated recommendations. Methods A consensus was reached among a panel of experts selected for their expertise in CMV research and clinical practice. Key clinical areas and questions were identified based on previous surveys and literature reviews. Recommendations were formulated through consensus and graded using established guidelines. Results Recommendations were provided for virological monitoring, including the timing and frequency of CMV DNAemia surveillance, especially during letermovir (LMV) prophylaxis. We evaluated the role of CMV DNA load quantification in diagnosing CMV disease, particularly pneumonia and gastrointestinal involvement, along with the utility of specific CMV immune monitoring in identifying at-risk patients. Strategies for tailoring LMV prophylaxis, managing breakthrough DNAemia, and implementing secondary prophylaxis in refractory cases were outlined. Additionally, criteria for initiating early antiviral treatment based on viral load dynamics were discussed. Conclusion The consensus provides updated recommendations for managing CMV infection in hematological patients, focusing on unresolved issues in monitoring, prophylaxis, treatment, and resistance. These recommendations aim to guide clinical practice and improve outcomes in this high-risk population. Further research is warranted to validate these recommendations and address ongoing challenges in CMV management with emerging antiviral combinations, particularly in pediatric populations.
Collapse
Affiliation(s)
- José Luis Piñana
- Hematology Service, Hospital Clinico Universitario, INCLIVA Biomedical Research Institute, Valencia, Spain
| | - Estela Giménez
- Microbiology Service, Hospital Clinico Universitario, INCLIVA Biomedical Research Institute, Valencia, Spain
| | - Lourdes Vázquez
- Hematology Department, University Hospital of Salamanca (HUS/IBSAL), CIBERONC and Cancer Research Institute of Salamanca-IBMCC (USAL-CSIC), Salamanca, Spain
| | | | - Manuel Guerreiro
- Hematology Service, Hospital Universitario y Politécnico La Fe. Health Research, Valencia, Spain
| | - Rafael Duarte
- Hematology Service, Hospital Universitario Puerta de Hierro, Madrid, Spain
| | - Ariadna Pérez
- Hematology Service, Hospital Clinico Universitario, INCLIVA Biomedical Research Institute, Valencia, Spain
| | - Carlos de Miguel
- Hematology Service, Hospital Universitario Puerta de Hierro, Madrid, Spain
| | - Ildefonso Espigado
- Hematology Service, Hospital Universitario Virgen del Rocío, Sevilla, Spain
| | | | - María Suarez-Lledó
- BMT Unit, Haematology Department, Institute of Haematology and Oncology, IDIBAPS, Hospital Clinic, University of Barcelona, Barcelona, Spain. Josep Carreras Leukaemia Research Foundation
| | | | - Rodrigo Martino
- Hematology Service. Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Angel Cedillo
- Spanish Hematopoietic Stem Cell Transplantation and Cell Therapy Group (GETH-TC) Secretary, Madrid, Spain
| | - Monserrat Rovira
- BMT Unit, Haematology Department, Institute of Haematology and Oncology, IDIBAPS, Hospital Clinic, University of Barcelona, Barcelona, Spain. Josep Carreras Leukaemia Research Foundation
| | | | - David Navarro
- Hematology Department, University Hospital of Salamanca (HUS/IBSAL), CIBERONC and Cancer Research Institute of Salamanca-IBMCC (USAL-CSIC), Salamanca, Spain
- Department of Microbiology School of Medicine, University of Valencia, Valencia, Spain
| | - Carlos Solano
- Hematology Service, Hospital Clinico Universitario, INCLIVA Biomedical Research Institute, Valencia, Spain
- Department of Medicine, School of Medicine, University of Valencia, Valencia, Spain
| |
Collapse
|
8
|
Jaing TH, Wang YL, Chiu CC. Antiviral Agents for Preventing Cytomegalovirus Disease in Recipients of Hematopoietic Cell Transplantation. Viruses 2024; 16:1268. [PMID: 39205242 PMCID: PMC11359103 DOI: 10.3390/v16081268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/01/2024] [Accepted: 08/03/2024] [Indexed: 09/04/2024] Open
Abstract
This systematic review discusses the use of prophylaxis to prevent cytomegalovirus (CMV) infection in recipients who have undergone hematopoietic cell transplantation. It highlights the need for new approaches to control and prevent CMV infection. The approval of the anti-CMV drug letermovir has made antiviral prophylaxis more popular. CMV-specific T cell-mediated immunity tests are effective in identifying patients who have undergone immune reconstitution and predicting disease progression. Maribavir (MBV) has been approved for the treatment of post-transplant CMV infection/disease in adolescents. Adoptive T-cell therapy and the PepVax CMV vaccine show promise in tackling refractory and resistant CMV. However, the effectiveness of PepVax in reducing CMV viremia/disease was not demonstrated in a phase II trial. Cell-mediated immunity assays are valuable for personalized management plans, but more interventional studies are needed. MBV and adoptive T-cell therapy are promising treatments, and trials for CMV vaccines are ongoing.
Collapse
Affiliation(s)
- Tang-Her Jaing
- Division of Hematology and Oncology, Department of Pediatrics, Chang Gung Memorial Hospital, Taoyuan 33315, Taiwan;
| | - Yi-Lun Wang
- Division of Hematology and Oncology, Department of Pediatrics, Chang Gung Memorial Hospital, Taoyuan 33315, Taiwan;
| | - Chia-Chi Chiu
- Division of Nursing, Chang Gung Memorial Hospital, Taoyuan 33315, Taiwan;
| |
Collapse
|
9
|
Tollefson AE, Cline-Smith A, Spencer JF, Ying B, Reyna DM, Lipka E, James SH, Toth K. Longitudinal Monitoring of the Effects of Anti-Adenoviral Treatment Regimens in a Permissive In Vivo Model. Viruses 2024; 16:1200. [PMID: 39205174 PMCID: PMC11359180 DOI: 10.3390/v16081200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 07/22/2024] [Accepted: 07/24/2024] [Indexed: 09/04/2024] Open
Abstract
Adenovirus infections of immunocompromised patients can cause life-threatening disseminated disease. While there are presently no drugs specifically approved to treat these infections, there are several compounds that showed efficacy against adenovirus in preclinical studies. For any such compound, low toxicity is an essential requirement. As cumulative drug effects can accentuate pathology, especially in patients with other morbidities, it is important to limit antiviral exposure to what is absolutely necessary. This is achievable by monitoring the virus burden of the patients and administering antivirals to suppress virus replication to a non-pathogenic level. We modeled such a system using Syrian hamsters infected with a replication-competent adenovirus vector, in which luciferase expression is coupled to virus replication. We found that virus replication could be followed in vivo in the same animal by repeated measurement of luciferase expression. To test the utility of an interrupted treatment regimen, we used NPP-669 and valganciclovir, two antiviral compounds with high and moderate anti-adenoviral efficacy, respectively. We found that short-term treatment of adenovirus-infected hamsters at times of peak virus replication can prevent virus-associated pathology. Thus, we believe that this animal model can be used to model different treatment regimens for anti-adenoviral compounds.
Collapse
Affiliation(s)
- Ann E Tollefson
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, MO 63104, USA
| | - Anna Cline-Smith
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, MO 63104, USA
| | - Jacqueline F Spencer
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, MO 63104, USA
| | - Baoling Ying
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, MO 63104, USA
| | | | | | - Scott H James
- Division of Pediatric Infectious Diseases, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Karoly Toth
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, MO 63104, USA
| |
Collapse
|
10
|
Sadowska-Klasa A, Özkök S, Xie H, Leisenring W, Zamora D, Seo S, Sheldon J, Lee SJ, Jerome KR, Green ML, Boeckh M. Late cytomegalovirus disease after hematopoietic cell transplantation: significance of novel transplantation techniques. Blood Adv 2024; 8:3639-3651. [PMID: 38537062 PMCID: PMC11284709 DOI: 10.1182/bloodadvances.2023012175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 03/01/2024] [Indexed: 07/12/2024] Open
Abstract
ABSTRACT Preemptive therapy (PET) and letermovir prophylaxis are effective in preventing cytomegalovirus (CMV) disease within the first 100 days after allogeneic hematopoietic cell transplantation (HCT) but are associated with late-onset CMV disease. We retrospectively examined the clinical manifestations, risk factors, prevention algorithm, and outcome of late CMV disease in CMV seropositive day 100 survivors transplanted between 2001-2017 (PET cohort) and 2018-2021 (letermovir cohort). There were 203 episodes of late CMV disease among 2469 day 100 survivors, and the estimated cumulative incidence of first late CMV disease was 7.2% (95% confidence interval [CI], 6.2-8.3) with no difference between the PET (7.4%; 95% CI, 6.4-8.6) and the letermovir group (5.4%; 95% CI, 3.2-8.3). Thirty-seven patients (1.5%) had a second episode of CMV disease. In multivariable Cox regression models, posttransplant cyclophosphamide was associated with an increased risk of gastrointestinal CMV disease. CMV viremia or disease detected before day 100, corticosteroid treatment after day 100 at dose ≥1 mg/kg, acute and chronic graft-versus-host disease, lymphopenia, HLA-mismatched related donor status, were also associated with late CMV disease. HLA-mismatched donor status and late use of corticosteroids (≥1 mg/kg) were risk factors for late CMV disease recurrence. Late CMV disease occurred most frequently in a setting of prolonged low-level untreated viremia and was independently associated with death by 2 years after HCT. In summary, late CMV disease continues to occur in the present era. Improved prevention strategies for late CMV disease are needed.
Collapse
Affiliation(s)
- Alicja Sadowska-Klasa
- Fred Hutchinson Cancer Center, Seattle, WA
- Department of Hematology and Transplantology, Medical University of Gdańsk, Gdańsk, Poland
| | | | - Hu Xie
- Fred Hutchinson Cancer Center, Seattle, WA
| | - Wendy Leisenring
- Fred Hutchinson Cancer Center, Seattle, WA
- University of Washington, Seattle, WA
| | | | - Sachiko Seo
- Department of Hematology and Oncology, Dokkyo Medical University, Tochigi, Japan
| | | | - Stephanie J. Lee
- Fred Hutchinson Cancer Center, Seattle, WA
- University of Washington, Seattle, WA
| | - Keith R. Jerome
- Fred Hutchinson Cancer Center, Seattle, WA
- University of Washington, Seattle, WA
| | | | - Michael Boeckh
- Fred Hutchinson Cancer Center, Seattle, WA
- University of Washington, Seattle, WA
| |
Collapse
|
11
|
Tollefson AE, Cline-Smith AB, Spencer JF, Reyna DM, Lipka E, Toth K. NPP-669, a prodrug of cidofovir, is highly efficacious against human adenovirus infection in the permissive Syrian hamster model. Antimicrob Agents Chemother 2024; 68:e0048924. [PMID: 38775484 PMCID: PMC11232382 DOI: 10.1128/aac.00489-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 04/29/2024] [Indexed: 07/10/2024] Open
Abstract
Human adenoviruses can cause serious, disseminated infections in immunocompromised patients. For pediatric allogeneic stem cell transplant patients, the case fatality rate can reach 80%. Still, there is no available antiviral drug that is specifically approved by the Food and Drug Administration for the treatment of adenovirus infections. To fill this pressing medical need, we have developed NPP-669, a prodrug of cidofovir with broad activity against double-stranded DNA viruses, including adenoviruses. Here, we report on the in vivo anti-adenoviral efficacy of NPP-669. Using the immunosuppressed Syrian hamster as the model, we show that NPP-669 is highly efficacious when dosed orally at 1 mg/kg and 3 mg/kg. In a delayed administration experiment, NPP-669 was more effective than brincidofovir, a similar compound that reached Phase III clinical trials. Furthermore, parenteral administration of NPP-669 increased its efficacy approximately 10-fold compared to oral dosing without apparent toxicity, suggesting that this route may be preferable in a hospital setting. Based on these findings, we believe that NPP-669 is a promising new compound that needs to be further investigated.
Collapse
Affiliation(s)
- Ann E. Tollefson
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, Missouri, USA
| | - Anna B. Cline-Smith
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, Missouri, USA
| | - Jacqueline F. Spencer
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, Missouri, USA
| | | | | | - Karoly Toth
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
12
|
Royston L, Papanicolaou GA, Neofytos D. Refractory/Resistant Cytomegalovirus Infection in Transplant Recipients: An Update. Viruses 2024; 16:1085. [PMID: 39066247 PMCID: PMC11281367 DOI: 10.3390/v16071085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/26/2024] [Accepted: 07/04/2024] [Indexed: 07/28/2024] Open
Abstract
Despite the significant progress made, CMV infection is one of the most frequent infectious complications in transplant recipients. CMV infections that become refractory or resistant (R/R) to the available antiviral drugs constitute a clinical challenge and are associated with increased morbidity and mortality. Novel anti-CMV therapies have been recently developed and introduced in clinical practice, which may improve the treatment of these infections. In this review, we summarize the treatment options for R/R CMV infections in adult hematopoietic cell transplant and solid organ transplant recipients, with a special focus on newly available antiviral agents with anti-CMV activity, including maribavir and letermovir.
Collapse
Affiliation(s)
- Léna Royston
- Division of Infectious Diseases, University Hospital of Geneva, 1211 Geneva, Switzerland
| | - Genovefa A. Papanicolaou
- Infectious Disease Service, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Dionysios Neofytos
- Division of Infectious Diseases, University Hospital of Geneva, 1211 Geneva, Switzerland
| |
Collapse
|
13
|
Sadowska-Klasa A, Leisenring WM, Limaye AP, Boeckh M. Cytomegalovirus Viral Load Threshold to Guide Preemptive Therapy in Hematopoietic Cell Transplant Recipients: Correlation With Cytomegalovirus Disease. J Infect Dis 2024; 229:1435-1439. [PMID: 37682870 PMCID: PMC11095528 DOI: 10.1093/infdis/jiad386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 09/08/2023] [Indexed: 09/10/2023] Open
Abstract
A systematic review of randomized and observational studies from 2013 to 2023 demonstrated that antiviral preemptive therapy started at cytomegalovirus viral load thresholds between 2 and 3 log10 IU/mL was associated with similar cytomegalovirus disease rates. Thus, viral thresholds in this range appear to effectively protect patients not receiving prophylaxis.
Collapse
Affiliation(s)
- Alicja Sadowska-Klasa
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Department of Hematology and Transplantology, Medical University of Gdansk, Gdansk, Poland
| | - Wendy M Leisenring
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Ajit P Limaye
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Michael Boeckh
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington, Seattle, Washington, USA
| |
Collapse
|
14
|
Hissong E, Arora K, Andy C, Jessurun J, Yantiss RK. Histologic Manifestations of Gastrointestinal Adenovirus Infection After Stem Cell Transplant. Am J Surg Pathol 2024; 48:521-527. [PMID: 38329327 DOI: 10.1097/pas.0000000000002197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Adenovirus can cause severe disease in hematopoietic stem cell transplant (HSCT) patients. Histopathologic features of this infection in gastrointestinal biopsies and their distinction from graft-versus-host disease (GVHD) have been incompletely studied. We retrospectively identified patients with gastrointestinal adenovirus infection. H&E-stained sections were reviewed and the histologic features were recorded. The extent of immunostaining was determined using a semiquantitative scale and a maximum number of positive cells per high-power field. Information regarding the clinical course and endoscopic findings were obtained from the electronic medical records. The study group included 32 HSCT patients. Most (81%) presented with diarrhea and detectable virus in the serum. Twenty patients had multiorgan involvement in the gastrointestinal tract, mostly in the duodenum (62%) and colon (56%). Characteristic features included apoptotic epithelial cells with nuclear disarray (84%) and tufted aggregates of degenerating epithelial cells (69%), the latter of which was more commonly seen in the study population more than a control group of HSCT patients with GI involvement by GVHD. Viral inclusions were limited to the superficial epithelium in 59% of samples, and the density of viral inclusions within biopsies was variable (grade 1: 40%, grade 2: 38%, and grade 3: 22%). Following therapy, 10 patients (30%) improved and 14 (42%) had progressive disease. Patients with disease progression were often older (64 vs. 36 years, P =0.01) with higher serologic viral loads, prior history of GVHD, multifocal involvement, and increased number and density of immunoreactive nuclei. Adenovirus infection elicits a spectrum of histologic changes that can simulate or occur in combination with gastrointestinal GVHD. Patients with progressive disease are more likely to have high viral loads and more extensive infection of the gastrointestinal tract.
Collapse
Affiliation(s)
| | | | - Caroline Andy
- Population Health Sciences, Weill Cornell Medicine, New York, NY
| | | | - Rhonda K Yantiss
- Department of Pathology and Laboratory Medicine, Miller School of Medicine, University of Miami, Miami, FL
| |
Collapse
|
15
|
Qiu Y, Zhang Y, Teng M, Cheng S, Du Q, Yang L, Wang Q, Wang T, Wang Y, Dong Y, Dong H. Efficacy, Safety, and Cost-effectiveness Analysis of Antiviral Agents for Cytomegalovirus Prophylaxis in Allogeneic Hematopoietic Stem Cell Transplantation Recipients. Transplantation 2024; 108:1021-1032. [PMID: 38049935 DOI: 10.1097/tp.0000000000004856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2023]
Abstract
BACKGROUND Cytomegalovirus (CMV) infection is associated with higher non-relapse mortality after allogeneic hematopoietic stem cell transplantation (allo-HSCT). But the preferred drug for preventing cytomegalovirus infection is still controversial. We evaluate the efficacy, safety, and cost-effectiveness of antiviral agents based on the most recent studies. METHODS A pairwise and network meta-analysis was conducted to obtain direct and indirect evidence of antivirals. The cost of allo-HSCT recipients in a teaching hospital was collected, and a cost-effectiveness analysis using a decision tree combined with Markov model was completed from the perspective of allo-HSCT recipients over a lifetime horizon. RESULTS A total of 19 RCTs involving 3565 patients (8 antivirals) were included. In the network meta-analysis, relative to placebo, letermovir, valacyclovir, and ganciclovir significantly reduced CMV infection incidence; ganciclovir significantly reduced CMV disease incidence; ganciclovir significantly increased the incidence of serious adverse event; none of antivirals significantly reduced all-cause mortality. Based on meta-analysis and Chinese medical data, the incremental cost-effectiveness ratios (ICER) per quality-adjusted life year (QALY) saved for maribavir, acyclovir, valacyclovir, ganciclovir, and letermovir relative to placebo corresponded to US$216 635.70, US$11 590.20, US$11 816.40, US$13 049.90, and US$12 189.40, respectively. One-way sensitivity analysis showed the most influential parameter was discount rate. The probabilistic sensitivity analysis indicated a 53.0% probability of letermovir producing an ICER below the willingness-to-pay threshold of US$38 824.23/QALY. The scenario analysis demonstrated prophylaxis with letermovir is considered cost-effective in the United States. CONCLUSIONS Currently, letermovir is an effective and well-tolerated treatment for preventing CMV infection, and it might be a cost-effective choice in allo-HSCT recipients in China.
Collapse
Affiliation(s)
- Yulan Qiu
- Department of Pharmacy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yijing Zhang
- Department of Pharmacy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Mengmeng Teng
- Department of Pharmacy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Shiqi Cheng
- Department of Pharmacy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Qian Du
- Department of Pharmacy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Luting Yang
- Department of Pharmacy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Quanfang Wang
- Department of Pharmacy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Taotao Wang
- Department of Pharmacy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yan Wang
- Department of Pharmacy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yalin Dong
- Department of Pharmacy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Haiyan Dong
- Department of Pharmacy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
16
|
Monday LM, Keri V, Chandrasekar PH. Advances in pharmacotherapies for cytomegalovirus infection: what is the current state of play? Expert Opin Pharmacother 2024; 25:685-694. [PMID: 38717943 DOI: 10.1080/14656566.2024.2353627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 05/07/2024] [Indexed: 06/12/2024]
Abstract
INTRODUCTION Cytomegalovirus (CMV) remains a serious opportunistic infection in hematopoietic cell transplant (HCT) and solid-organ transplant (SOT) recipients. Traditional anti-CMV drugs are limited by toxicities and the development of resistance. Letermovir and maribavir are newly approved antivirals for the prevention and treatment of CMV. AREAS COVERED Prior reviews have discussed use of letermovir for prevention of CMV after HCT and maribavir for resistant or refractory (R/R) CMV post HCT or SOT. Subsequent data have expanded their use including letermovir for primary CMV prophylaxis in high-risk renal transplant recipients and new recommendations for extending prophylaxis through day + 200 in certain HCT patients. Data on the use of maribavir for first asymptomatic CMV infection post-HCT has also been published. This review compares the pharmacology of anti-CMV agents and discusses the updated literature of these new drugs in the prevention and treatment of CMV. EXPERT OPINION Letermovir and maribavir are much needed tools that spare toxicities of ganciclovir, foscarnet, and cidofovir. High cost is a challenge preventing their integration into clinical practice in resource-limited countries. Transplant centers need to exercise restraint in overuse to avoid resistance, particularly in the setting of high viral loads.
Collapse
Affiliation(s)
- Lea M Monday
- Division of Infectious Diseases, Department of Medicine, Wayne State University, Detroit, MI, USA
| | - Vishakh Keri
- Division of Infectious Diseases, Department of Medicine, Wayne State University, Detroit, MI, USA
| | | |
Collapse
|
17
|
Rani I, Joshi H, Sharma U, Kaur J, Sood S, Ramniwas S, Chauhan A, Abdulabbas HS, Tuli HS. Potential use of cidofovir, brincidofovir, and tecovirimat drugs in fighting monkeypox infection: recent trends and advancements. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:2055-2065. [PMID: 37837475 DOI: 10.1007/s00210-023-02769-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 10/03/2023] [Indexed: 10/16/2023]
Abstract
Recent years have witnessed the rise of more recent pandemic outbreaks including COVID-19 and monkeypox. A multinational monkeypox outbreak creates a complex situation that necessitates countermeasures to the existing quo. The first incidence of monkeypox was documented in the 1970s, and further outbreaks led to a public health emergency of international concern. Yet as of right now, neither vaccines nor medicines are certain to treat monkeypox. Even the inability of conducting human clinical trials has prevented thousands of patients from receiving effective disease management. The current state of the disease's understanding, the treatment options available, financial resources, and lastly international policies to control an epidemic state are the major obstacles to controlling epidemics. The current review focuses on the epidemiology of monkeypox, scientific ideas, and available treatments, including potential monkeypox therapeutic methods. As a result, a thorough understanding of monkeypox literature will facilitate in the development of new therapeutic medications for the prevention and treatment of monkeypox.
Collapse
Affiliation(s)
- Isha Rani
- Department of Biochemistry, Maharishi Markandeshwar College of Medical Sciences and Research (MMCMSR), Sadopur, Ambala, 134007, India
| | - Hemant Joshi
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Ujjawal Sharma
- Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda, Punjab, 151401, India
| | - Jagjit Kaur
- Graduate School of Biomedical Engineering, Faculty of Engineering, The University of New South Wales, Sydney, 2052, Australia
| | - Shivani Sood
- GIOSTAR-USA, Global Institute of Stem Cell Therapy and Research, Mohali, 140308, India
| | - Seema Ramniwas
- University Centre for Research and Development, University Institute of Pharmaceutical Sciences, Chandigarh University, Gharuan, Mohali, 140413, India
| | - Abhishek Chauhan
- Amity Institute of Environmental Toxicology, Safety and Management, Amity University, Noida, 201303, India
| | - Hadi Sajid Abdulabbas
- Department of Biology, College of Science, University of Babylon, Babylon, 51002, Iraq
| | - Hardeep Singh Tuli
- Department of Bio-Sciences and Technology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (Deemed to Be University), Mullana, Ambala, 133207, India.
| |
Collapse
|
18
|
Huh K, Lee SO, Kim J, Lee SJ, Choe PG, Kang JM, Yang J, Sung H, Kim SH, Moon C, Seok H, Shi HJ, Wi YM, Jeong SJ, Park WB, Kim YJ, Kim J, Ahn HJ, Kim NJ, Peck KR, Kim MS, Kim SI. Prevention of Cytomegalovirus Infection in Solid Organ Transplant Recipients: Guidelines by the Korean Society of Infectious Diseases and the Korean Society for Transplantation. Infect Chemother 2024; 56:101-121. [PMID: 38527780 PMCID: PMC10990892 DOI: 10.3947/ic.2024.0016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 03/04/2024] [Indexed: 03/27/2024] Open
Abstract
Cytomegalovirus (CMV) is the most important opportunistic viral pathogen in solid organ transplant (SOT) recipients. The Korean guideline for the prevention of CMV infection in SOT recipients was developed jointly by the Korean Society for Infectious Diseases and the Korean Society of Transplantation. CMV serostatus of both donors and recipients should be screened before transplantation to best assess the risk of CMV infection after SOT. Seronegative recipients receiving organs from seropositive donors face the highest risk, followed by seropositive recipients. Either antiviral prophylaxis or preemptive therapy can be used to prevent CMV infection. While both strategies have been demonstrated to prevent CMV infection post-transplant, each has its own advantages and disadvantages. CMV serostatus, transplant organ, other risk factors, and practical issues should be considered for the selection of preventive measures. There is no universal viral load threshold to guide treatment in preemptive therapy. Each institution should define and validate its own threshold. Valganciclovir is the favored agent for both prophylaxis and preemptive therapy. The evaluation of CMV-specific cell-mediated immunity and the monitoring of viral load kinetics are gaining interest, but there was insufficient evidence to issue recommendations. Specific considerations on pediatric transplant recipients are included.
Collapse
Affiliation(s)
- Kyungmin Huh
- Division of Infectious Diseases, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Sang-Oh Lee
- Department of Infectious Diseases, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea.
| | - Jungok Kim
- Division of Infectious Diseases, Department of Medicine, Chungnam National University School of Medicine, Daejeon, Korea
| | - Su Jin Lee
- Division of Infectious Diseases, Department of Internal Medicine, Pusan National University School of Medicine, Yangsan, Korea
| | - Pyoeng Gyun Choe
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Ji-Man Kang
- Department of Pediatrics, Severance Children's Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Jaeseok Yang
- Department of Internal Medicine, Yonsei University College of Medicine, Severance Hospital, Seoul, Korea
| | - Heungsup Sung
- Department of Laboratory Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Si-Ho Kim
- Division of Infectious Diseases, Samsung Changwon Hospital, Sungkyunkwan University School of Medicine, Changwon, Korea
| | - Chisook Moon
- Division of Infectious Diseases, Department of Internal Medicine, Inje University Busan Paik Hospital, College of Medicine, Busan, Korea
| | - Hyeri Seok
- Division of Infectious Diseases, Department of Internal Medicine, Korea University Ansan Hospital, Korea University Medicine, Ansan, Korea
| | - Hye Jin Shi
- Division of Infectious Diseases, Department of Internal Medicine, Gachon University Gil Medical Center, Gachon University College of Medicine, Incheon, Korea
| | - Yu Mi Wi
- Division of Infectious Diseases, Samsung Changwon Hospital, Sungkyunkwan University School of Medicine, Changwon, Korea
| | - Su Jin Jeong
- Division of Infectious Diseases, Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Wan Beom Park
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Youn Jeong Kim
- Division of Infectious Diseases, Department of Internal Medicine, Incheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Incheon, Korea
| | - Jongman Kim
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Hyung Joon Ahn
- Department of Surgery, College of Medicine, Kyung Hee University, Seoul, Korea
| | - Nam Joong Kim
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Kyong Ran Peck
- Division of Infectious Diseases, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Myoung Soo Kim
- Department of Surgery, The Research Institute for Transplantation, Yonsei University College of Medicine, Seoul, Korea
| | - Sang Il Kim
- Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| |
Collapse
|
19
|
Włodarczyk M, Wieczorkiewicz-Kabut A, Białas K, Koclęga A, Noster I, Zielińska P, Helbig G. Real-Life Data on the Efficacy and Safety of Letermovir for Primary Prophylaxis of Cytomegalovirus in Allogeneic Hematopoietic Stem Cell Recipients: A Single-Center Analysis. Turk J Haematol 2024; 41:9-15. [PMID: 38345092 PMCID: PMC10918401 DOI: 10.4274/tjh.galenos.2024.2024.0026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 02/11/2024] [Indexed: 03/05/2024] Open
Abstract
Objective Cytomegalovirus (CMV) reactivation is a life-threatening complication after allogeneic hematopoietic stem cell transplantation (HSCT). Introduction of letermovir (LMV) seems to improve post-transplant outcomes, but delayed-onset CMV reactivation still remains a challenge. In this study, we report on our first experience with LMV prophylaxis in 93 CMV-seropositive adult patients receiving HSCT in our center. Materials and Methods We retrospectively analyzed the data of 93 adult CMV-seropositive recipients receiving LMV as CMV prophylaxis after HSCT for hematological malignancies between 2019 and 2023. The starting LMV dose was 480 mg daily, reduced to 240 mg daily for those receiving cyclosporin A co-administration. CMV DNA in the blood was measured by real-time polymerase chain reaction weekly for the first 2 months after transplantation, then every other week until the end of immunosuppressive treatment. LMV was continued to day +100 or to CMV reactivation. Results The median recipient age at the time of transplant was 51 (range: 20-71) years. All patients received grafts from peripheral blood, mostly for acute myeloid leukemia (60%). The median time from transplantation to LMV initiation was 3 (range: 0-24) days. While 55% of patients were transplanted from matched related donors, 32% had unrelated donors and 13% underwent haploidentical HSCT. Four patients (4%) had CMV “blips” while on LMV, but the drug was continued and repeated assays were negative. Only 2 patients (2%) experienced CMV reactivation while on LMV, on days 48 and 34 after HSCT, respectively. Seven patients (7%) developed late-onset CMV reactivation after a median of 124 days after HSCT (range: 118-152 days) and they were successfully treated with ganciclovir. CMV disease was not observed. Grade III-IV acute graft-versus-host disease occurred in 6 patients (6%) during LMV treatment. LMV treatment was free of side effects. Conclusion LMV prophylaxis was effective in preventing CMV reactivation with a favorable safety profile. CMV reactivation occurred mostly after LMV discontinuation; thus, extending the duration of prophylaxis beyond 100 days could be beneficial.
Collapse
Affiliation(s)
- Martyna Włodarczyk
- Medical University of Silesia, Faculty of Medicine in Katowice, Department of Hematology and Bone Marrow Transplantation, Katowice, Poland
| | - Agata Wieczorkiewicz-Kabut
- Medical University of Silesia, Faculty of Medicine in Katowice, Department of Hematology and Bone Marrow Transplantation, Katowice, Poland
| | - Krzysztof Białas
- Medical University of Silesia, Faculty of Medicine in Katowice, Department of Hematology and Bone Marrow Transplantation, Katowice, Poland
| | - Anna Koclęga
- Medical University of Silesia, Faculty of Medicine in Katowice, Department of Hematology and Bone Marrow Transplantation, Katowice, Poland
| | - Izabela Noster
- Medical University of Silesia, Faculty of Medicine in Katowice, Department of Hematology and Bone Marrow Transplantation, Katowice, Poland
| | - Patrycja Zielińska
- Medical University of Silesia, Faculty of Medicine in Katowice, Department of Hematology and Bone Marrow Transplantation, Katowice, Poland
| | - Grzegorz Helbig
- Medical University of Silesia, Faculty of Medicine in Katowice, Department of Hematology and Bone Marrow Transplantation, Katowice, Poland
| |
Collapse
|
20
|
Kotton CN, Torre-Cisneros J, Yakoub-Agha I. Slaying the "Troll of Transplantation"-new frontiers in cytomegalovirus management: A report from the CMV International Symposium 2023. Transpl Infect Dis 2024; 26:e14183. [PMID: 37942955 DOI: 10.1111/tid.14183] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 10/15/2023] [Indexed: 11/10/2023]
Abstract
The 2023 International CMV Symposium took place in Barcelona in May 2023. During the 2-day meeting, delegates and faculty discussed the ongoing challenge of managing the risk of cytomegalovirus infection (the Troll of Transplantation) after solid organ or hematopoietic cell transplantation. Opportunities to improve outcomes of transplant recipients by applying advances in antiviral prophylaxis or pre-emptive therapy, immunotherapy, and monitoring of cell-mediated immunity to routine clinical practice were debated and relevant educational clinical cases presented. This review summarizes the presentations, cases, and discussions from the meeting and describes how further advances are needed before the Troll of Transplantation is slain.
Collapse
Affiliation(s)
- Camille N Kotton
- Transplant and Immunocompromised Host Infectious Diseases, Infectious Diseases Division, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Julian Torre-Cisneros
- Maimónides Institute for Biomedical Research of Cordoba (IMIBIC)/Reina Sofía University Hospital/University of Cordoba (UCO), Cordoba, Spain
- CIBERINFEC, ISCIII - CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
| | | |
Collapse
|
21
|
Tollefson AE, Riemann SB, Ying B, Spencer JF, Overhulse JM, Kashemirov BA, Wold WSM, McKenna CE, Toth K. Oral USC-093, a novel homoserinamide analogue of the tyrosinamide (S)-HPMPA prodrug USC-087 has decreased nephrotoxicity while maintaining antiviral efficacy against human adenovirus infection of Syrian hamsters. Antiviral Res 2024; 222:105799. [PMID: 38190973 PMCID: PMC11756854 DOI: 10.1016/j.antiviral.2024.105799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 01/04/2024] [Accepted: 01/05/2024] [Indexed: 01/10/2024]
Abstract
Adenovirus infections of immunocompromised humans are a significant source of morbidity and mortality. Presently, there is no drug specifically approved for the treatment of adenovirus infections by the FDA. The state-of-the-art treatment of such infections is the off-label use of cidofovir, an acyclic nucleotide phosphonate. While cidofovir inhibits adenovirus replication, it has dose-limiting kidney toxicity. There is an apparent need for a better compound to treat adenovirus infections. To this end, we have been developing acyclic nucleotide phosphonate prodrugs that utilize an amino acid scaffold equipped with a lipophilic modifier. Here, we compare the antiviral potential of two prodrugs of HPMPA that differ only in the amino acid-based promoiety: USC-087, based on an N-hexadecyl tyrosinamide, and USC-093, based on an N-hexadecyl serinamide. Oral administration of both compounds was very efficacious against disseminated HAdV-C6 infection in immunosuppressed Syrian hamsters, suppressing virus replication and mitigating pathology even when treatment was withheld until 4 days after challenge. We saw only marginal efficacy after respiratory infection of hamsters, which may reflect suboptimal distribution to the lung. Importantly, neither compound induced intestinal toxicity, which was observed as the major adverse effect in clinical trials of brincidofovir, a prodrug of cidofovir which also contains a C-16 modifier. Notably, we found that there was a significant difference in the nephrotoxicity of the two compounds: USC-087 caused significant kidney toxicity while USC-093 did not, at effective doses. These findings will be valuable guidepoints in the future evolution of this new class of potential prodrugs to treat adenovirus infections.
Collapse
Affiliation(s)
- Ann E Tollefson
- Saint Louis University School of Medicine, St. Louis, MO, 63104, USA
| | | | - Baoling Ying
- Saint Louis University School of Medicine, St. Louis, MO, 63104, USA
| | | | | | | | - William S M Wold
- Saint Louis University School of Medicine, St. Louis, MO, 63104, USA
| | | | - Karoly Toth
- Saint Louis University School of Medicine, St. Louis, MO, 63104, USA.
| |
Collapse
|
22
|
Shah BM, Modi P. Breaking Barriers: Current Advances and Future Directions in Mpox Therapy. Curr Drug Targets 2024; 25:62-76. [PMID: 38151842 DOI: 10.2174/0113894501281263231218070841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/21/2023] [Accepted: 11/28/2023] [Indexed: 12/29/2023]
Abstract
BACKGROUND Mpox, a newly discovered zoonotic infection, can be transmitted from animal to human and between humans. Serological and genomic studies are used to identify the virus. OBJECTIVE Currently, there are no proven effective treatments for Mpox. Also, the safety and efficacy of intravenous vaccinia immune globulin, oral Tecovirimat (an inhibitor of intracellular viral release), and oral Brincidofovir (a DNA polymerase inhibitor) against the Mpox virus are uncertain, highlighting the need for more effective and safe treatments. As a result, drug repurposing has emerged as a promising strategy to identify previously licensed drugs that can be repurposed to treat Mpox. RESULTS Various approaches have been employed to identify previously approved drugs that can target specific Mpox virus proteins, including thymidylate kinase, D9 decapping enzyme, E8 protein, Topoisomerase1, p37, envelope proteins (D13, A26, and H3), F13 protein, virus's main cysteine proteases, and DNA polymerase. CONCLUSION In this summary, we provide an overview of potential drugs that could be used to treat Mpox and discuss the underlying biological processes of their actions.
Collapse
Affiliation(s)
- Bhumi M Shah
- Department of Pharmaceutical Chemistry, L.J. Institute of Pharmacy, L.J. University, Ahmedabad, Gujarat 382210, India
| | - Palmi Modi
- Department of Pharmaceutical Chemistry, L.J. Institute of Pharmacy, L.J. University, Ahmedabad, Gujarat 382210, India
| |
Collapse
|
23
|
Mishra A. Approaches to optimize outcomes in transplant recipients. HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2023; 2023:723-730. [PMID: 38066935 PMCID: PMC10727018 DOI: 10.1182/hematology.2023000459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
Curative therapy with an allogeneic hematopoietic cell transplant (HCT) can now be offered to a wider patient population due to improvements in donor selection, transplant conditioning regimens, and supportive care measures. However, risk of transplant-related morbidity and mortality remains, and thus appropriate transplant candidate workup pre-HCT for risk stratification and a management plan after HCT is crucial for success of the procedure. These include understanding and identifying risk of underlying malignant disease relapse, graft-versus-host disease, and infectious complications a patient may be predisposed toward, irrespective of allogeneic donor type. Progress in these domains with new therapeutic paradigms allows for development of a treatment plan prior to HCT to mitigate these potential risks tailored to the patient's case. Herein, we present case studies to focus on factors that influence decision-making in HCT and the approaches and strategies used to optimize post-HCT outcomes based on the individual HCT recipient's clinical scenario to improve on these high-risk scenarios.
Collapse
Affiliation(s)
- Asmita Mishra
- H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL
| |
Collapse
|
24
|
Hinman B, Cox J, Umoru G, Kamble R, Musick W. Extended duration letermovir in allogeneic hematopoietic stem cell transplant. Transpl Immunol 2023; 81:101936. [PMID: 37770000 DOI: 10.1016/j.trim.2023.101936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 09/17/2023] [Accepted: 09/24/2023] [Indexed: 10/03/2023]
Abstract
OBJECTIVES Despite the use of antiviral prophylaxis in recipients of allogeneic hematopoietic cell transplants (HCT), cytomegalovirus (CMV) is a common clinically significant infection and is associated with significant morbidity and mortality in this patient population. Based on current approval, letermovir is initiated within 28 days following allogeneic HCT for CMV seropositive recipients and continued through 100 days post-transplant. However, it is unknown whether patients who receive extended duration CMV prophylaxis with letermovir would result in less CMV reactivation and reactivation compared to those who do not. This study aimed to evaluate the efficacy of letermovir prophylaxis in CMV seropositive patients when continued for greater than 100 days post-allogeneic stem cell transplant. METHODS A single-center retrospective chart review was conducted on recipients of allogeneic HCT from November 2017 to July 2021. Patients were eligible for inclusion if they were at least 18 years of age, received an allogeneic HCT, CMV seropositive, and initiated letermovir between days 0-28 post-transplant. The primary endpoint of this study is to compare rates of CMV reactivation in patients who stopped letermovir prophylaxis at 100 days post-transplant (standard duration group) versus those who continued letermovir prophylaxis past day 100 (extended duration group). RESULTS A total of 87 patients met the eligibility criteria for inclusion. The median duration of letermovir prophylaxis was 78 days in the standard duration group versus and 132 days in the extended duration group. There were more CMV reactivations in the standard duration group versus the extended duration group, 28% versus 19% respectively. CMV pneumonitis was observed in one of the patients in the standard duration group. All-cause mortality at day 200 post-transplant was similar between the two groups. CONCLUSION The results of this study suggest that extended duration letermovir prophylaxis may be associated with less CMV reactivation compared to the standard duration of prophylaxis.
Collapse
Affiliation(s)
- Breanna Hinman
- Houston Methodist Hospital, 6565 Fannin St., Houston, TX 77054, USA.
| | - James Cox
- Houston Methodist Hospital, 6565 Fannin St., Houston, TX 77054, USA.
| | - Godsfavour Umoru
- Houston Methodist Hospital, 6565 Fannin St., Houston, TX 77054, USA.
| | - Rammurti Kamble
- Center for Cell and Gene Therapy, Baylor College of Medicine and Houston Methodist Hospital, 6565 Fannin St., Houston, TX 77054, USA.
| | - Will Musick
- Houston Methodist Hospital, 6565 Fannin St., Houston, TX 77054, USA.
| |
Collapse
|
25
|
Gourin C, Alain S, Hantz S. Anti-CMV therapy, what next? A systematic review. Front Microbiol 2023; 14:1321116. [PMID: 38053548 PMCID: PMC10694278 DOI: 10.3389/fmicb.2023.1321116] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 11/06/2023] [Indexed: 12/07/2023] Open
Abstract
Human cytomegalovirus (HCMV) is one of the main causes of serious complications in immunocompromised patients and after congenital infection. There are currently drugs available to treat HCMV infection, targeting viral polymerase, whose use is complicated by toxicity and the emergence of resistance. Maribavir and letermovir are the latest antivirals to have been developed with other targets. The approval of letermovir represents an important innovation for CMV prevention in hematopoietic stem cell transplant recipients, whereas maribavir allowed improving the management of refractory or resistant infections in transplant recipients. However, in case of multidrug resistance or for the prevention and treatment of congenital CMV infection, finding new antivirals or molecules able to inhibit CMV replication with the lowest toxicity remains a critical need. This review presents a range of molecules known to be effective against HCMV. Molecules with a direct action against HCMV include brincidofovir, cyclopropavir and anti-terminase benzimidazole analogs. Artemisinin derivatives, quercetin and baicalein, and anti-cyclooxygenase-2 are derived from natural molecules and are generally used for different indications. Although they have demonstrated indirect anti-CMV activity, few clinical studies were performed with these compounds. Immunomodulating molecules such as leflunomide and everolimus have also demonstrated indirect antiviral activity against HCMV and could be an interesting complement to antiviral therapy. The efficacy of anti-CMV immunoglobulins are discussed in CMV congenital infection and in association with direct antiviral therapy in heart transplanted patients. All molecules are described, with their mode of action against HCMV, preclinical tests, clinical studies and possible resistance. All these molecules have shown anti-HCMV potential as monotherapy or in combination with others. These new approaches could be interesting to validate in clinical trials.
Collapse
Affiliation(s)
- Claire Gourin
- INSERM, CHU Limoges, University of Limoges, RESINFIT, Limoges, France
| | - Sophie Alain
- INSERM, CHU Limoges, University of Limoges, RESINFIT, Limoges, France
- CHU Limoges, Laboratoire de Bactériologie-Virologie-Hygiène, National Reference Center for Herpesviruses, Limoges, France
| | - Sébastien Hantz
- INSERM, CHU Limoges, University of Limoges, RESINFIT, Limoges, France
- CHU Limoges, Laboratoire de Bactériologie-Virologie-Hygiène, National Reference Center for Herpesviruses, Limoges, France
| |
Collapse
|
26
|
Cesaro S. Adenovirus infection in allogeneic hematopoietic cell transplantation. Transpl Infect Dis 2023; 25 Suppl 1:e14173. [PMID: 37846850 DOI: 10.1111/tid.14173] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/30/2023] [Accepted: 10/03/2023] [Indexed: 10/18/2023]
Abstract
Adenovirus (AdV) infection occurs in 0-20% of patients in the first 3-4 months after allogeneic hematopoietic cell transplantation (HCT), being higher in pediatric than in adult patients. About 50% of AdV infections involve the blood, which in turn, correlates with an increased risk developing AdV diseases, end-organ damage, and 6-month overall mortality. The main risk factors for AdV infection are T-cell depletion of the graft by ex vivo selection procedures or in vivo use of alemtuzumab or antithymocyte serum, development of graft versus host disease (GVHD) grade III-IV, donor type (haploidentical or human leucocyte antigen mismatched related donor > cord blood> unrelated matched donor) and severe lymphopenia (<0.2 × 109 /L). The prevention of AdV disease relies on early diagnosis of increasing viral replication in blood or stool and the pre-emptive start of cidofovir as viral load exceeds the threshold of ≥102-3 copies/mL in blood and/or 106 copies/g stool in the stool. Cidofovir (CDV), a cytosine monophosphate nucleotide analog, is currently the only antiviral recommended for AdV infection despite limited efficacy and moderate risk of nephrotoxicity. Brincidofovir, a lipid derivative of CDV with more favorable pharmacokinetics properties and superior efficacy, is not available and currently is being investigated for other viral infections. The enhancement of virus-specific T-cell immunity in the first few months post-HCT by the administration of donor-derived or third-party-donor-derived virus-specific T-cells represents an innovative and promising modality of intervention and data of efficacy and safety of the ongoing prospective randomized studies are eagerly awaited.
Collapse
Affiliation(s)
- Simone Cesaro
- Pediatric Hematology Oncology, Department of Mother and Child, Azienda Ospedaliera Universitaria Integrata Verona, Verona, Italy
| |
Collapse
|
27
|
Yong MK, Slavin MA, Chemaly RF, Papanicolaou GA. CMV prevention strategies in allogeneic hematopoietic cell transplantation; the role of prophylaxis and pre-emptive monitoring in the era of letermovir. Transpl Infect Dis 2023; 25 Suppl 1:e14171. [PMID: 37864299 DOI: 10.1111/tid.14171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/26/2023] [Accepted: 10/03/2023] [Indexed: 10/22/2023]
Abstract
The preferred strategy for preventing CMV in at-risk populations in alloHCT has undergone a significant practice shift in recent years where the pendulum has swung from a pre-emptive approach to now offering letermovir prophylaxis to all CMV seropositive recipients. Letermovir prophylaxis has resulted in significant reductions in post-transplant clinically significant CMV infection (csCMVi) as well as other important outcomes such as CMV disease, resistant, and refractory CMV infections and nonrelapse mortality. However, prophylactic strategies are not without some limitations, namely delayed onset CMV infections, delayed CMV-specific T cell immune reconstitution, increased drug costs and limited data within pediatric populations. Thus, this review aims to provide an overview of prophylaxis and pre-emptive CMV preventative strategies, and how they are applicable in the current era of letermovir prophylaxis.
Collapse
Affiliation(s)
- Michelle K Yong
- Department of Infectious Diseases, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Victoria, Australia
- Department of Infectious Diseases, Royal Melbourne Hospital, Melbourne, Victoria, Australia
| | - Monica A Slavin
- Department of Infectious Diseases, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Victoria, Australia
- Department of Infectious Diseases, Royal Melbourne Hospital, Melbourne, Victoria, Australia
| | - Roy F Chemaly
- Department of Infectious Diseases, Infection Control, and Employee Health, The University of Texas MD Anderson Cancer Centre, Houston, Texas, USA
| | - Genovefa A Papanicolaou
- Department of Medicine, Infectious Diseases Service, Memorial Sloan Kettering Cancer Center, New York, New York, USA
- Department of Medicine, Weill Cornell Medical College, New York, New York, USA
| |
Collapse
|
28
|
Huston J, Curtis S, Egelund EF. Brincidofovir: A Novel Agent for the Treatment of Smallpox. Ann Pharmacother 2023; 57:1198-1206. [PMID: 36688308 DOI: 10.1177/10600280231151751] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
OBJECTIVE This article reviews the published data encompassing the development, pharmacology, efficacy, and safety of brincidofovir, a nucleotide analogue DNA polymerase inhibitor developed for the treatment of smallpox. DATA SOURCES A literature review was conducted in PubMed, MEDLINE, and Clinicaltrials.gov from inception up to December 2022, using terms Tembexa, brincidofovir, CMX001, smallpox treatment, and variola treatment. STUDY SELECTION AND DATA EXTRACTION Data were limited to studies published in English language, which evaluated the efficacy and safety of brincidofovir. DATA SYNTHESIS Two surrogate animal models were included in the Food and Drug Administration's (FDA) decision to approve brincidofovir: ectromelia virus in mice and rabbitpox in rabbits. Phases 2 and 3 studies established safety for approval. Brincidofovir biweekly for the treatment of disseminated adenovirus disease resulted in all-cause mortality, ranging from 13.8% to 29%. In a study for cytomegalovirus prophylaxis, patients with clinically significant cytomegalovirus infection through week 24 posttransplant was 51.2% with brincidofovir and 52.3% with placebo. CONCLUSIONS Brincidofovir adds a second oral agent to treat smallpox, with a different mechanism of action than tecovirimat. In the event of a smallpox outbreak, prompt treatment will be necessary to contain its spread. Brincidofovir shows efficacy in surrogate animal models. In healthy volunteers and individuals treated, or used as prophylaxis, for cytomegalovirus or adenovirus, the primary adverse events were gastrointestinal in addition to transient hepatotoxicity. Additionally, excessive deaths were observed in hematopoietic cell transplant patients receiving it as cytomegalovirus prophylaxis, requiring a black box warning.
Collapse
Affiliation(s)
- Jessica Huston
- Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Jacksonville, FL USA
| | - Stacey Curtis
- Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Jacksonville, FL USA
| | - Eric F Egelund
- Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Jacksonville, FL USA
- Infectious Disease Pharmacokinetics Laboratory, Gainesville, FL, USA
| |
Collapse
|
29
|
Temrikar ZH, Golden JE, Jonsson CB, Meibohm B. Clinical and Translational Pharmacology Considerations for Anti-infectives Approved Under the FDA Animal Rule. Clin Pharmacokinet 2023; 62:943-953. [PMID: 37326917 PMCID: PMC10471120 DOI: 10.1007/s40262-023-01267-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/21/2023] [Indexed: 06/17/2023]
Abstract
The US Food and Drug Administration's Animal Rule provides a pathway for approval of drugs and biologics aimed to treat serious or life-threatening conditions wherein traditional clinical trials are either not ethical or feasible. In such a scenario, determination of safety and efficacy are based on integration of data on drug disposition and drug action collected from in vitro models, infected animals, and healthy volunteer human studies. The demonstration of clinical efficacy and safety in humans based on robust, well-controlled animal studies is filled with challenges. This review elaborates on the challenges in the translation of data from in vitro and animal models to human dosing for antimicrobials. In this context, it discusses precedents of drugs approved under the Animal Rule, along with the approaches and guidance undertaken by sponsors.
Collapse
Affiliation(s)
- Zaid H Temrikar
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, 881 Madison Avenue, Memphis, TN, 38163, USA
| | - Jennifer E Golden
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin, Madison, WI, USA
| | - Colleen B Jonsson
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, 881 Madison Avenue, Memphis, TN, 38163, USA
- Department of Microbiology, Immunology, Biochemistry, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, USA
- Regional Biocontainment Laboratory, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Bernd Meibohm
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, 881 Madison Avenue, Memphis, TN, 38163, USA.
| |
Collapse
|
30
|
Geisler A, Dieringer B, Elsner L, Klingel K, Klopfleisch R, Vornlocher HP, Kurreck J, Fechner H. Lipid nanoparticle-encapsulated, chemically modified anti-adenoviral siRNAs inhibit hepatic adenovirus infection in immunosuppressed Syrian hamsters. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 32:923-936. [PMID: 37346978 PMCID: PMC10280093 DOI: 10.1016/j.omtn.2023.05.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 05/10/2023] [Indexed: 06/23/2023]
Abstract
RNA interference has demonstrated its potential as an antiviral therapy for treatment of human adenovirus (hAd) infections. The only existing viral vector-based system for delivery of anti-adenoviral artificial microRNAs available for in vivo use, however, has proven to be inefficient in therapeutic applications. In this study, we investigated the potential of stabilized small interfering RNA (siRNA) encapsulated in lipid nanoparticles (LNPs) for treatment of hepatic hAd serotype 5 (hAd5) infection in an hAd infection model using immunosuppressed Syrian hamsters. The siRNA sipTPmod directed against the adenoviral pre-terminal protein (pTP) and containing 2'-O-methyl modifications as well as phosphorothioate linkages effectively inhibited hAd5 infection in vitro. In light of this success, sipTPmod was encapsulated in LNPs containing the cationic lipid XL-10, which enables hepatocyte-specific siRNA transfer, and injected intravenously into hAd5-infected immunosuppressed Syrian hamsters. This resulted in a significant reduction of liver hAd5 titers, a trend toward reduced liver injury and inflammation, and reduction of viral titers in the blood and spleen compared with hAd5-infected animals that received a non-silencing siRNA. These effects were demonstrated in animals infected with low and moderate doses of hAd5. These data demonstrate that hepatic hAd5 infection can be successfully treated with anti-adenoviral sipTPmod encapsulated in LNPs.
Collapse
Affiliation(s)
- Anja Geisler
- Department of Applied Biochemistry, Institute of Biotechnology, Technische Universität Berlin, Gustav-Meyer-Allee 25, 13355 Berlin, Germany
| | - Babette Dieringer
- Department of Applied Biochemistry, Institute of Biotechnology, Technische Universität Berlin, Gustav-Meyer-Allee 25, 13355 Berlin, Germany
| | - Leslie Elsner
- Department of Applied Biochemistry, Institute of Biotechnology, Technische Universität Berlin, Gustav-Meyer-Allee 25, 13355 Berlin, Germany
| | - Karin Klingel
- Cardiopathology, Institute for Pathology and Neuropathology, University Hospital Tübingen, Tübingen, Germany
| | - Robert Klopfleisch
- Institute of Veterinary Pathology, Freie Universität Berlin, Robert-von-Ostertag-Straße 15, 14163 Berlin, Germany
| | | | - Jens Kurreck
- Department of Applied Biochemistry, Institute of Biotechnology, Technische Universität Berlin, Gustav-Meyer-Allee 25, 13355 Berlin, Germany
| | - Henry Fechner
- Department of Applied Biochemistry, Institute of Biotechnology, Technische Universität Berlin, Gustav-Meyer-Allee 25, 13355 Berlin, Germany
| |
Collapse
|
31
|
Karim M, Lo CW, Einav S. Preparing for the next viral threat with broad-spectrum antivirals. J Clin Invest 2023; 133:e170236. [PMID: 37259914 PMCID: PMC10232003 DOI: 10.1172/jci170236] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023] Open
Abstract
There is a large global unmet need for the development of countermeasures to combat hundreds of viruses known to cause human disease and for the establishment of a therapeutic portfolio for future pandemic preparedness. Most approved antiviral therapeutics target proteins encoded by a single virus, providing a narrow spectrum of coverage. This, combined with the slow pace and high cost of drug development, limits the scalability of this direct-acting antiviral (DAA) approach. Here, we summarize progress and challenges in the development of broad-spectrum antivirals that target either viral elements (proteins, genome structures, and lipid envelopes) or cellular proviral factors co-opted by multiple viruses via newly discovered compounds or repurposing of approved drugs. These strategies offer new means for developing therapeutics against both existing and emerging viral threats that complement DAAs.
Collapse
Affiliation(s)
- Marwah Karim
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, and
| | - Chieh-Wen Lo
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, and
| | - Shirit Einav
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, and
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, USA
- Chan Zuckerberg Biohub San Francisco, San Francisco, California, USA
| |
Collapse
|
32
|
Hume J, Sweeney EL, Lowry K, Fraser C, Clark JE, Whiley DM, Irwin AD. Cytomegalovirus in children undergoing haematopoietic stem cell transplantation: a diagnostic and therapeutic approach to antiviral resistance. Front Pediatr 2023; 11:1180392. [PMID: 37325366 PMCID: PMC10267881 DOI: 10.3389/fped.2023.1180392] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 05/15/2023] [Indexed: 06/17/2023] Open
Abstract
Cytomegalovirus (CMV) is a ubiquitous virus which causes a mild illness in healthy individuals. In immunocompromised individuals, such as children receiving haematopoietic stem cell transplantation, CMV can reactivate, causing serious disease and increasing the risk of death. CMV can be effectively treated with antiviral drugs, but antiviral resistance is an increasingly common complication. Available therapies are associated with adverse effects such as bone marrow suppression and renal impairment, making the choice of appropriate treatment challenging. New agents are emerging and require evaluation in children to establish their role. This review will discuss established and emerging diagnostic tools and treatment options for CMV, including antiviral resistant CMV, in children undergoing haematopoietic stem cell transplant.
Collapse
Affiliation(s)
- Jocelyn Hume
- The University of Queensland Centre for Clinical Research (UQCCR), Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
- Central Microbiology, Pathology Queensland, Brisbane, QLD, Australia
| | - Emma L. Sweeney
- The University of Queensland Centre for Clinical Research (UQCCR), Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Kym Lowry
- The University of Queensland Centre for Clinical Research (UQCCR), Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Chris Fraser
- Blood and Bone Marrow Transplant Program, Queensland Children’s Hospital, Brisbane, QLD, Australia
| | - Julia E. Clark
- Infection Management and Prevention Service, Queensland Children’s Hospital, Brisbane, QLD, Australia
| | - David M. Whiley
- The University of Queensland Centre for Clinical Research (UQCCR), Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
- Central Microbiology, Pathology Queensland, Brisbane, QLD, Australia
| | - Adam D. Irwin
- The University of Queensland Centre for Clinical Research (UQCCR), Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
- Infection Management and Prevention Service, Queensland Children’s Hospital, Brisbane, QLD, Australia
| |
Collapse
|
33
|
Srinivas Kandadai A, Bai B, Rahim M, Lin F, Gu Z, Qi X, Zhang X, Dong H, Chen Y, Shen J, Nieman JA. Inhibition of the hERG potassium ion channel by different non-nucleoside human cytomegalovirus polymerase antiviral inhibitor series and the exploration of variations on a pyrroloquinoline core to reduce cardiotoxicity potential. Bioorg Med Chem 2023; 85:117276. [PMID: 37037115 DOI: 10.1016/j.bmc.2023.117276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/16/2023] [Accepted: 03/30/2023] [Indexed: 04/12/2023]
Abstract
Many non-nucleoside human cytomegalovirus (HCMV) inhibitors have been reported in patent and scientific literature, however, none have reached commercialization despite the urgent need for new HCMV treatments. Herein we report select compounds from different templates that all had low micromolar human ether-à-go-go (hERG) ion channel IC50 values. We also describe a series of pyrroloquinoline derivatives that were designed and synthesized to understand the effect of various substitution on human cytomegalovirus (HCMV) polymerase activity, antiviral activity, and hERG inhibition. These results demonstrated that hERG inhibition can be significantly altered based on the substitution on this template. An HCMV inhibitor with low hERG inhibition and reduced cytotoxicity is also described. The results suggest substitution can be fine tuned for the non-nucleoside polymerase inhibitors to reduce hERG inhibition and maintain HCMV antiviral potency.
Collapse
Affiliation(s)
- Appan Srinivas Kandadai
- Li Ka Shing Applied Virology Institute and Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta T6G 2E1, Canada
| | - Bing Bai
- Li Ka Shing Applied Virology Institute and Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta T6G 2E1, Canada
| | - Mohammad Rahim
- Rane Pharmaceuticals, Inc., Edmonton, Alberta T6E 5V2, Canada
| | - Fusen Lin
- WuXi AppTec (Shanghai) Co., Ltd., Shanghai 200131, China
| | - Zhengxian Gu
- WuXi AppTec (Shanghai) Co., Ltd., Shanghai 200131, China
| | - Xinyi Qi
- WuXi AppTec (Shanghai) Co., Ltd., Shanghai 200131, China
| | - Xuecheng Zhang
- WuXi AppTec (Shanghai) Co., Ltd., Shanghai 200131, China
| | - Haiheng Dong
- WuXi AppTec (Shanghai) Co., Ltd., Shanghai 200131, China
| | - Ying Chen
- WuXi AppTec (Shanghai) Co., Ltd., Shanghai 200131, China
| | - John Shen
- ProFoldin, 10 Technology Drive, Suite 40, Hudson, MA 01749-2791, USA
| | - James A Nieman
- Li Ka Shing Applied Virology Institute and Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta T6G 2E1, Canada.
| |
Collapse
|
34
|
Sourisseau M, Faure E, Béhal H, Chauvet P, Srour M, Capes A, Coiteux V, Magro L, Alfandari S, Alidjinou EK, Simon N, Vuotto F, Karam M, Faure K, Yakoub-Agha I, Beauvais D. The promising efficacy of a risk-based letermovir use strategy in CMV-positive allogeneic hematopoietic cell recipients. Blood Adv 2023; 7:856-865. [PMID: 36350752 PMCID: PMC9986711 DOI: 10.1182/bloodadvances.2022008667] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/21/2022] [Accepted: 10/25/2022] [Indexed: 11/11/2022] Open
Abstract
Letermovir is the first approved drug for cytomegalovirus (CMV) infection prophylaxis in adult patients who are CMV positive undergoing allogeneic hematopoietic cell transplantation (allo-HCT). Because CMV infection risk varies from patient to patient, we evaluated whether a risk-based strategy could be effective. In this single-center study, all consecutive adult patients who were CMV positive and underwent allo-HCT between 2015 and 2021 were included. During period 1 (2015-2017), letermovir was not used, whereas during period 2 (2018-2021), letermovir was used in patients at high risk but not in patients at low risk, except in those receiving corticosteroids. In patients at high risk, the incidence of clinically significant CMV infection (csCMVi) in period 2 was lower than that in period 1 (P < .001) by week 14 (10.5% vs 51.6%) and week 24 (16.9% vs 52.7%). In patients at low risk, although only 28.6% of patients received letermovir in period 2, csCMVi incidence was also significantly lower (P = .003) by week 14 (7.9% vs 29.0%) and week 24 (11.2% vs 33.3%). Among patients at low risk who did not receive letermovir (n = 45), 23 patients (51.1%) experienced transient positive CMV DNA without csCMVi, whereas 17 patients (37.8%) experienced negative results. In both risk groups, the 2 periods were comparable for CMV disease, overall survival, progression-free survival, relapse, and nonrelapse mortality. We concluded that a risk-based strategy for letermovir use is an effective strategy which maintains the high efficacy of letermovir in patients at high risk but allows some patients at low risk to not use letermovir.
Collapse
Affiliation(s)
- Mathilde Sourisseau
- Department of Infectious Disease, CHU Lille, University of Lille, Lille, France
| | - Emmanuel Faure
- Department of Infectious Disease, CHU Lille, University of Lille, Lille, France
- U1019-UMR 9017-Center for Infection and Immunity of Lille, INSERM, Centre National de la Recherche Scientifique, Institut Pasteur de Lille, University of Lille, Lille, France
| | - Hélène Béhal
- Department of Biostatistics, ULR 2694 - METRICS: Évaluation des Technologies de Santé et des Pratiques Médicales, CHU Lille, University of Lille, Lille, France
| | - Paul Chauvet
- Hematology Department, CHU Lille, Lille, France
- Infinite U1286, INSERM, University of Lille, Lille, France
| | - Micha Srour
- Hematology Department, CHU Lille, Lille, France
- Infinite U1286, INSERM, University of Lille, Lille, France
| | | | | | | | - Serge Alfandari
- Infectious Disease Department, Gustave Dron Hospital, Tourcoing, France
| | | | - Nicolas Simon
- ULR 7365 – GRITA – Groupe de Recherche sur les formes Injectables et les Technologies Associées, CHU Lille, University of Lille, Lille, France
| | - Fanny Vuotto
- Department of Infectious Disease, CHU Lille, University of Lille, Lille, France
| | | | - Karine Faure
- Department of Infectious Disease, CHU Lille, University of Lille, Lille, France
- U1019-UMR 9017-Center for Infection and Immunity of Lille, INSERM, Centre National de la Recherche Scientifique, Institut Pasteur de Lille, University of Lille, Lille, France
| | - Ibrahim Yakoub-Agha
- Hematology Department, CHU Lille, Lille, France
- Infinite U1286, INSERM, University of Lille, Lille, France
| | - David Beauvais
- Hematology Department, CHU Lille, Lille, France
- Infinite U1286, INSERM, University of Lille, Lille, France
| |
Collapse
|
35
|
Ahn B, Yun KW, Hong KT, Choi JY, Kang HJ, Seong MW, Kim TS, Ahn SJ, Choi EH. Threshold of Quantitative Cytomegalovirus DNA PCR for Preemptive Treatment in Pediatric Hematopoietic Stem Cell Transplant Recipients. J Pediatr Hematol Oncol 2023; 45:e200-e207. [PMID: 35482472 DOI: 10.1097/mph.0000000000002467] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 03/22/2022] [Indexed: 01/10/2023]
Abstract
BACKGROUND Consensus cytomegalovirus (CMV) DNA viral load thresholds for intervention in hematopoietic stem cell transplant (HSCT) recipients have not been established, especially in children. This study aimed at obtaining viral load thresholds of CMV DNA to guide preemptive management in pediatric HSCT recipients. MATERIALS AND METHODS A total of 465 blood samples from 177 children who received HSCT between 2015 and 2019 were included in a single center in Korea. The samples were analyzed for CMV infection by both antigenemia assay and quantitative DNA polymerase chain reaction. The 2 assay results were compared for the 233 samples which were collected when antiviral treatment has not been initiated. We determined the viral loads corresponding to the antigenemia of 5 pp65-positive cells/2×10 5 white blood cells (WBCs) as the level for initiating preemptive therapy. RESULTS Sixty percent of the samples were collected within 100 days (39.7% in 0 to 50 d, 60.2% in 0 to 100 d) from the graft infusion. The correlation between CMV DNA viral load and CMV antigenemia level increased significantly after 50 days from the graft infusion ( r =0.71 vs. r =0.93, P <0.0001). The correlation was greater in the antiviral treatment-naive group than the treatment group ( r =0.75 vs. r =0.66, P <0.0001). Under receiver operating characteristic curve analysis of the treatment-naive group, the estimated threshold CMV DNA viral loads corresponding to 5 pp65-positive cells/2×10 5 WBCs was 898 IU/mL. CONCLUSIONS The CMV DNA levels that corresponded to 5 pp65-positive cells/2×10 5 WBCs was 900 IU/mL in the HSCT group. The proposed viral load thresholds can be used to guide preemptive therapy in pediatric HSCT recipients, especially in the preengraftment period.
Collapse
Affiliation(s)
| | | | | | | | - Hyoung Jin Kang
- Departments of Pediatrics
- Seoul National University Cancer Research Institute, Seoul
- Wide River Institute of Immunology, Hongcheon-gun
| | - Moon-Woo Seong
- Laboratory Medicine, Seoul National University Hospital, Seoul National University College of Medicine
| | - Taek Soo Kim
- Laboratory Medicine, Seoul National University Hospital, Seoul National University College of Medicine
| | - Sung Jin Ahn
- Department of Information Statistics, Gyeongsang National University, Jinju, Korea
| | | |
Collapse
|
36
|
Douglas G, Yong MK, Tio SY, Chau M, Prabahran A, Sasadeusz J, Slavin M, Ritchie D, Chee L. Effective CMV prophylaxis with high-dose valaciclovir in allogeneic hematopoietic stem-cell recipients at a high risk of CMV infection. Transpl Infect Dis 2023; 25:e13994. [PMID: 36413495 DOI: 10.1111/tid.13994] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 09/29/2022] [Accepted: 10/17/2022] [Indexed: 11/23/2022]
Abstract
BACKGROUND Cytomegalovirus (CMV) infection increases mortality and morbidity following allogeneic hematopoietic stem-cell transplantation (alloHSCT). Universal antiviral prophylaxis with letermovir is effective but unsubsidized in Australia. Valaciclovir demonstrates anti-CMV activity in high doses, but few current real-world studies explore its use as primary prophylaxis in high-risk patients post-alloHSCT. METHODS We performed a retrospective analysis of alloHSCT recipients at high risk of clinically significant CMV infection (cs-CMVi), defined as a plasma CMV DNA viral load of >400 IU/ml requiring preemptive therapy, or CMV disease. High-risk recipients were CMV seropositive and underwent T-cell depleted, haploidentical or umbilical cord stem-cell transplants. Consecutive patients transplanted from July 2018 to January 2020, treated with valaciclovir 2 g TDS from day +7 to +100 (HD-VALA), were compared to a historical cohort (July 2017-June 2018) who only received preemptive CMV therapy, and standard valaciclovir (SD-VALA) for varicella/herpes prophylaxis. We compared incidence of and time to cs-CMVi. RESULTS In the SD-VALA cohort (n = 27, median CMV follow-up duration 259 days), 23/27 (85%) developed cs-CMVi at a median of 39 days. For the HD-VALA cohort (n = 35, median CMV follow-up duration 216 days), 19/35 (54%) developed cs-CMVi, at a median of 68 days. Time to cs-CMVi was significantly longer in HD-VALA cohort (p < .0001). On multivariate analysis, HD VALA reduced the risk of cs-CMVi (HR 0.32, p = .0005). CONCLUSIONS In alloHSCT recipients at high risk for cs-CMVi, HD-VALA resulted in lower cumulative reactivation, and delayed reactivation, reducing requirement for preemptive CMV therapy in the early post-engraftment period.
Collapse
Affiliation(s)
- Genevieve Douglas
- Department of Clinical Haematology and Bone Marrow Transplantation, Peter MacCallum Cancer Centre and The Royal Melbourne Hospital, Parkville, Australia
| | - Michelle K Yong
- Department of Infectious Diseases, Royal Melbourne Hospital, Parkville, Australia.,National Centre for Infections in Cancer, Parkville, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia
| | - Shio Yen Tio
- Department of Infectious Diseases, Royal Melbourne Hospital, Parkville, Australia.,National Centre for Infections in Cancer, Parkville, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia
| | - Maggie Chau
- Department of Clinical Haematology and Bone Marrow Transplantation, Peter MacCallum Cancer Centre and The Royal Melbourne Hospital, Parkville, Australia.,Pharmacy Department, Royal Melbourne Hospital, Parkville, Victoria, Australia
| | - Ashvind Prabahran
- Department of Clinical Haematology and Bone Marrow Transplantation, Peter MacCallum Cancer Centre and The Royal Melbourne Hospital, Parkville, Australia
| | - Joe Sasadeusz
- Department of Infectious Diseases, Royal Melbourne Hospital, Parkville, Australia
| | - Monica Slavin
- Department of Infectious Diseases, Royal Melbourne Hospital, Parkville, Australia.,National Centre for Infections in Cancer, Parkville, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia
| | - David Ritchie
- Department of Clinical Haematology and Bone Marrow Transplantation, Peter MacCallum Cancer Centre and The Royal Melbourne Hospital, Parkville, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia.,Department of Medicine, University of Melbourne, Melbourne, Australia
| | - Lynette Chee
- Department of Clinical Haematology and Bone Marrow Transplantation, Peter MacCallum Cancer Centre and The Royal Melbourne Hospital, Parkville, Australia.,Department of Medicine, University of Melbourne, Melbourne, Australia
| |
Collapse
|
37
|
Oral Brincidofovir Therapy for Monkeypox Outbreak: A Focused Review on the Therapeutic Potential, Clinical Studies, Patent Literature, and Prospects. Biomedicines 2023; 11:biomedicines11020278. [PMID: 36830816 PMCID: PMC9953536 DOI: 10.3390/biomedicines11020278] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/16/2022] [Accepted: 01/16/2023] [Indexed: 01/20/2023] Open
Abstract
The monkeypox disease (MPX) outbreak of 2022 has been reported in more than one hundred countries and is becoming a global concern. Unfortunately, only a few treatments, such as tecovirimat (TCV), are available against MPX. Brincidofovir (BCV) is a United States Food and Drug Administration (USFDA)-approved antiviral against smallpox. This article reviews the potential of BCV for treating MPX and other Orthopoxvirus (OPXVs) diseases. The literature for this review was collected from PubMed, authentic websites (USFDA, Chimerix), and freely available patent databases (USPTO, Espacenet, and Patentscope). BCV (a lipophilic derivative of cidofovir) has been discovered and developed by Chimerix Incorporation, USA. Besides smallpox, BCV has also been tested clinically for various viral infections (adenovirus, cytomegalovirus, ebola virus, herpes simplex virus, and double-stranded DNA virus). Many health agencies and reports have recommended using BCV for MPX. However, no health agency has yet approved BCV for MPX. Accordingly, the off-label use of BCV is anticipated for MPX and various viral diseases. The patent literature revealed some important antiviral compositions of BCV. The authors believe there is a huge opportunity to create novel, inventive, and patentable BCV-based antiviral therapies (new combinations with existing antivirals) for OPXVs illnesses (MPX, smallpox, cowpox, camelpox, and vaccinia). It is also advised to conduct drug interaction (food, drug, and disease interaction) and drug resistance investigations on BCV while developing its combinations with other medications. The BCV-based drug repurposing options are also open for further exploration. BCV offers a promising opportunity for biosecurity against OPXV-based bioterrorism attacks and to control the MPX outbreak of 2022.
Collapse
|
38
|
Huntjens DW, Dijkstra JA, Verwiel LN, Slijkhuis M, Elbers P, Welkers MRA, Veldkamp AI, Kuijvenhoven MA, de Leeuw DC, Abdullah-Koolmees H, Kuipers MT, Bartelink IH. Optimizing Antiviral Dosing for HSV and CMV Treatment in Immunocompromised Patients. Pharmaceutics 2023; 15:pharmaceutics15010163. [PMID: 36678792 PMCID: PMC9863155 DOI: 10.3390/pharmaceutics15010163] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 12/27/2022] [Accepted: 12/28/2022] [Indexed: 01/05/2023] Open
Abstract
Herpes simplex virus (HSV) and cytomegalovirus (CMV) are DNA viruses that are common among humans. Severely immunocompromised patients are at increased risk of developing HSV or CMV disease due to a weakened immune system. Antiviral therapy can be challenging because these drugs have a narrow therapeutic window and show significant pharmacokinetic variability. Above that, immunocompromised patients have various comorbidities like impaired renal function and are exposed to polypharmacy. This scoping review discusses the current pharmacokinetic (PK) and pharmacodynamic (PD) knowledge of antiviral drugs for HSV and CMV treatment in immunocompromised patients. HSV and CMV treatment guidelines are discussed, and multiple treatment interventions are proposed: early detection of drug resistance; optimization of dose to target concentration by therapeutic drug monitoring (TDM) of nucleoside analogs; the introduction of new antiviral drugs; alternation between compounds with different toxicity profiles; and combinations of synergistic antiviral drugs. This research will also serve as guidance for future research, which should focus on prospective evaluation of the benefit of each of these interventions in randomized controlled trials.
Collapse
Affiliation(s)
- Daan W. Huntjens
- Pharmacy & Clinical Pharmacology, Amsterdam University Medical Center, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Jacob A. Dijkstra
- Pharmacy & Clinical Pharmacology, Amsterdam University Medical Center, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
- Correspondence: ; Tel.: +31-20-444-3524
| | - Lisanne N. Verwiel
- Pharmacy & Clinical Pharmacology, Amsterdam University Medical Center, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Mirjam Slijkhuis
- Pharmacy & Clinical Pharmacology, Amsterdam University Medical Center, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Paul Elbers
- Department of Intensive Care Medicine, Laboratory for Critical Care Computational Intelligence (LCCI), Amsterdam Medical Data Science (AMDS), Amsterdam Cardiovascular Science (ACS), Amsterdam Institute for Infection and Immunity (AII), Amsterdam University Medical Centre, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Matthijs R. A. Welkers
- Medical Microbiology and Infection Prevention, Amsterdam University Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Agnes I. Veldkamp
- Pharmacy & Clinical Pharmacology, Amsterdam University Medical Center, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Marianne A. Kuijvenhoven
- Pharmacy & Clinical Pharmacology, Amsterdam University Medical Center, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - David C. de Leeuw
- Hematology, Amsterdam University Medical Center, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Heshu Abdullah-Koolmees
- Pharmacy & Clinical Pharmacology, Amsterdam University Medical Center, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
- Pharmacoepidemiology and Clinical Pharmacology, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Postbus 85500, 3508 GA Utrecht, The Netherlands
- Clinical Pharmacy, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| | - Maria T. Kuipers
- Hematology, Amsterdam University Medical Center, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Imke H. Bartelink
- Pharmacy & Clinical Pharmacology, Amsterdam University Medical Center, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
- Cancer Center Amsterdam, 1081HV Amsterdam, The Netherlands
| |
Collapse
|
39
|
Lipka E, Chadderdon AM, Harteg CC, Doherty MK, Simon ES, Domagala JM, Reyna DM, Hutchings KM, Gan X, White AD, Hartline CB, Harden EA, Keith KA, Prichard MN, James SH, Cardin RD, Bernstein DI, Spencer JF, Tollefson AE, Wold WSM, Toth K. NPP-669, a Novel Broad-Spectrum Antiviral Therapeutic with Excellent Cellular Uptake, Antiviral Potency, Oral Bioavailability, Preclinical Efficacy, and a Promising Safety Margin. Mol Pharm 2023; 20:370-382. [PMID: 36484496 PMCID: PMC9811456 DOI: 10.1021/acs.molpharmaceut.2c00668] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 11/03/2022] [Accepted: 11/16/2022] [Indexed: 12/13/2022]
Abstract
DNA viruses are responsible for many diseases in humans. Current treatments are often limited by toxicity, as in the case of cidofovir (CDV, Vistide), a compound used against cytomegalovirus (CMV) and adenovirus (AdV) infections. CDV is a polar molecule with poor bioavailability, and its overall clinical utility is limited by the high occurrence of acute nephrotoxicity. To circumvent these disadvantages, we designed nine CDV prodrug analogues. The prodrugs modulate the polarity of CDV with a long sulfonyl alkyl chain attached to one of the phosphono oxygens. We added capping groups to the end of the alkyl chain to minimize β-oxidation and focus the metabolism on the phosphoester hydrolysis, thereby tuning the rate of this reaction by altering the alkyl chain length. With these modifications, the prodrugs have excellent aqueous solubility, optimized metabolic stability, increased cellular permeability, and rapid intracellular conversion to the pharmacologically active diphosphate form (CDV-PP). The prodrugs exhibited significantly enhanced antiviral potency against a wide range of DNA viruses in infected human foreskin fibroblasts. Single-dose intravenous and oral pharmacokinetic experiments showed that the compounds maintained plasma and target tissue levels of CDV well above the EC50 for 24 h. These experiments identified a novel lead candidate, NPP-669. NPP-669 demonstrated efficacy against CMV infections in mice and AdV infections in hamsters following oral (p.o.) dosing at a dose of 1 mg/kg BID and 0.1 mg/kg QD, respectively. We further showed that NPP-669 at 30 mg/kg QD did not exhibit histological signs of toxicity in mice or hamsters. These data suggest that NPP-669 is a promising lead candidate for a broad-spectrum antiviral compound.
Collapse
Affiliation(s)
- Elke Lipka
- TSRL,
Inc., 540 Avis Dr., Suite
A, Ann Arbor, Michigan 48108, United States
| | | | - Cheryl C. Harteg
- TSRL,
Inc., 540 Avis Dr., Suite
A, Ann Arbor, Michigan 48108, United States
| | - Matthew K. Doherty
- TSRL,
Inc., 540 Avis Dr., Suite
A, Ann Arbor, Michigan 48108, United States
| | - Eric S. Simon
- TSRL,
Inc., 540 Avis Dr., Suite
A, Ann Arbor, Michigan 48108, United States
| | - John M. Domagala
- TSRL,
Inc., 540 Avis Dr., Suite
A, Ann Arbor, Michigan 48108, United States
| | - Dawn M. Reyna
- TSRL,
Inc., 540 Avis Dr., Suite
A, Ann Arbor, Michigan 48108, United States
| | - Kim M. Hutchings
- College
of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Xinmin Gan
- College
of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Andrew D. White
- College
of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Caroll B. Hartline
- Department
of Pediatrics, University of Alabama School
of Medicine, Birmingham, Alabama 35233, United
States
| | - Emma A. Harden
- Department
of Pediatrics, University of Alabama School
of Medicine, Birmingham, Alabama 35233, United
States
| | - Kathy A. Keith
- Department
of Pediatrics, University of Alabama School
of Medicine, Birmingham, Alabama 35233, United
States
| | - Mark N. Prichard
- Department
of Pediatrics, University of Alabama School
of Medicine, Birmingham, Alabama 35233, United
States
| | - Scott H. James
- Department
of Pediatrics, University of Alabama School
of Medicine, Birmingham, Alabama 35233, United
States
| | - Rhonda D. Cardin
- School
of Veterinary Medicine, Louisiana State
University, Baton
Rouge, Louisiana 70803, United States
| | - David I. Bernstein
- Cincinnati
Children’s Hospital Medical Center, University of Cincinnati, Cincinnati, Ohio 45229, United States
| | | | - Ann E. Tollefson
- Saint Louis
University School of Medicine, St. Louis, Missouri 63104, United States
| | - William S. M. Wold
- Saint Louis
University School of Medicine, St. Louis, Missouri 63104, United States
| | - Karoly Toth
- Saint Louis
University School of Medicine, St. Louis, Missouri 63104, United States
| |
Collapse
|
40
|
New trends in the management of cytomegalovirus infection after allogeneic hematopoietic cell transplantation: a survey of the Infectious Diseases Working Pary of EBMT. Bone Marrow Transplant 2023; 58:203-208. [PMID: 36396949 PMCID: PMC9672643 DOI: 10.1038/s41409-022-01863-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 10/19/2022] [Accepted: 10/24/2022] [Indexed: 11/18/2022]
Abstract
The management of cytomegalovirus (CMV) infection was assessed with a survey performed in 2020 by the Infectious Diseases Working Party of European Society for Blood and Marrow Transplantation (EBMT). One-hundred-eighty of the 579 EBMT centres (31%) responded. CMV monitoring with quantitative PCR for CMV-DNAemia was used by 97% of centres while the duration of monitoring was variable according to the patient immune recovery and the ongoing immunosuppressive therapy. CMV prophylaxis for high-risk patients was used in 101 (56%) of centres: letermovir in 62 centres (61%), aciclovir/valaciclovir in 19 centres (19%), ganciclovir/valganciclovir in 17 centres (17%), foscarnet in 3 (3%). The most used trigger for pre-emptive therapy was a threshold of >103 copies/ml or >103 IU/ml. Ganciclovir/valganciclovir confirmed the preferred first line treatment both for pre-emptive and CMV disease therapy. CMV-cytotoxic T-cells were used mainly in the setting of relapsing/refractory CMV disease. Forty-eight centres reported CMV refractory/resistant infection due to mutated CMV strain.This survey showed that letermovir prophylaxis is adopted by more than half of centres using a prophylaxis approach for CMV infection. How letermovir prophylaxis will modify other important pillars of daily CMV management, such as frequency of CMV-DNAemia monitoring and preemptive therapy, remain a matter of investigation.
Collapse
|
41
|
Balani SS, Sadiq S, Jensen CJ, Kizilbash SJ. Prevention and management of CMV infection in pediatric solid organ transplant recipients. Front Pediatr 2023; 11:1098434. [PMID: 36891229 PMCID: PMC9986459 DOI: 10.3389/fped.2023.1098434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 01/31/2023] [Indexed: 02/22/2023] Open
Abstract
Human cytomegalovirus (CMV) remains one of the most common opportunistic infections following solid organ transplantation in children. CMV causes morbidity and mortality through direct tissue-invasive disease and indirect immunomodulatory effects. In recent years, several new agents have emerged for the prevention and treatment of CMV disease in solid organ transplant recipients. However, pediatric data remain scarce, and many of the treatments are extrapolated from the adult literature. Controversies exist about the type and duration of prophylactic therapies and the optimal dosing of antiviral agents. This review provides an up-to-date overview of treatment modalities used to prevent and treat CMV disease in solid organ transplant (SOT) recipients.
Collapse
Affiliation(s)
- Shanthi S Balani
- Division of Nephrology, Department of Pediatrics, University of Minnesota, Minneapolis, MN, United States
| | - Sanober Sadiq
- Division of Nephrology, Department of Pediatrics, University of California, San Francisco, CA, United States
| | - Chelsey J Jensen
- Department of Solid Organ Transplant, University of Minnesota, Minneapolis, MN, United States
| | - Sarah J Kizilbash
- Division of Nephrology, Department of Pediatrics, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
42
|
DeLaurentis CE, Kiser J, Zucker J. New Perspectives on Antimicrobial Agents: Tecovirimat for Treatment of Human Monkeypox Virus. Antimicrob Agents Chemother 2022; 66:e0122622. [PMID: 36374026 PMCID: PMC9765296 DOI: 10.1128/aac.01226-22] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Tecovirimat is an antiviral drug initially developed against variola virus (VARV) to treat smallpox infection. Due to its mechanism of action, it has activity against the family of orthopoxviruses, including vaccinia and the human monkeypox virus (HMPXV). Efficacy studies have thus far been limited to animal models, with human safety trials showing no serious adverse events. Currently approved by the FDA only for the treatment of smallpox, tecovirimat shows promise for the treatment of HMPXV. Tecovirimat has been prescribed via an expanded access for an investigational new drug protocol during the 2022 outbreak. This review will examine the literature surrounding tecovirimat's mechanism of action, pharmacokinetics, safety, efficacy, and potential for resistance.
Collapse
Affiliation(s)
- Clare E. DeLaurentis
- Division of Infectious Diseases, Columbia University Medical Center, New York, New York, USA
| | - Jennifer Kiser
- University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Jason Zucker
- Division of Infectious Diseases, Columbia University Medical Center, New York, New York, USA
| |
Collapse
|
43
|
Challenges, Recent Advances and Perspectives in the Treatment of Human Cytomegalovirus Infections. Trop Med Infect Dis 2022; 7:tropicalmed7120439. [PMID: 36548694 PMCID: PMC9784992 DOI: 10.3390/tropicalmed7120439] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 11/30/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Human cytomegalovirus (HCMV) is ubiquitous worldwide and elicits global health problems. The diseases associated with HCMV are a serious threat to humans, especially for the sick, infant, elderly and immunocompromised/immunodeficient individuals. Although traditional antiviral drugs (e.g., ganciclovir, valganciclovir, cidofovir, foscarnet) can be used to treat or prevent acute HCMV infections, their efficacy is limited because of toxicity, resistance issues, side effects and other problems. Fortunately, novel drugs (e.g., letermovir and maribavir) with less toxicity and drug/cross-resistance have been approved and put on the market in recent years. The nucleic acid-based gene-targeting approaches including the external guide sequences (EGSs)-RNase, the clustered regularly interspaced short palindromic repeats (CRISPRs)/CRISPRs-associated protein 9 (Cas9) system and transcription activator-like effector nucleases (TALENs) have been investigated to remove both lytic and latent CMV in vitro and/or in vivo. Cell therapy including the adoptive T cell therapy (ACT) and immunotherapy have been tried against drug-resistant and recurrent HCMV in patients receiving hematopoietic stem cell transplantation (HSCT) or solid organ transplant (SOT), and they have also been used to treat glioblastoma (GBM) associated with HCMV infections. These newly developed antiviral strategies are expected to yield fruitful results and make a significant contribution to the treatment of HCMV infections. Despite this progress, the nucleic acid-based gene-targeting approaches are still under study for basic research, and cell therapy is adopted in a small study population size or only successful in case reports. Additionally, no current drugs have been approved to be indicated for latent infections. Therefore, the next strategy is to develop antiviral strategies to elevate efficacy against acute and/or latent infections and overcome challenges such as toxicity, resistance issues, and side effects. In this review, we would explore the challenges, recent advances and perspectives in the treatment of HCMV infections. Furthermore, the suitable therapeutic strategies as well as the possibility for compassionate use would be evaluated.
Collapse
|
44
|
Sukhdeo S, Mishra S, Walmsley S. Human monkeypox: a comparison of the characteristics of the new epidemic to the endemic disease. BMC Infect Dis 2022; 22:928. [PMID: 36503476 PMCID: PMC9742013 DOI: 10.1186/s12879-022-07900-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 11/25/2022] [Indexed: 12/14/2022] Open
Abstract
In May 2022, a new global outbreak of mpox (formerly, human monkeypox) emerged that was declared a public health emergency of international concern by the World Health Organization on July 23, 2022. With new patterns of person-to-person spread within sexual networks in nonendemic countries and several differences from the classic disease course, we performed a comprehensive review of existing literature on human monkeypox to discuss epidemiology, modes of transmission, clinical presentation and asymptomatic infection, diagnostics, therapeutics, and vaccines with the primary aim to identify important areas for future research of this new epidemic form of the disease. A comprehensive literature search was performed of all published literature to August 15, 2022. Historically, in regions of monkeypox virus endemicity, human outbreaks have occurred related to discrete zoonotic events. The animal reservoir is unknown, but the virus has been isolated from rodents. Traditionally, transmission occurred by direct or indirect contact with an infected animal. In nonendemic countries affected in the 2022 outbreak, almost exclusive person-to-person spread has been observed, and most cases are connected to sexual networks of gay, bisexual, and other men who have sex with men. After an incubation period of approximately 13 days, in traditional human cases affected persons developed a febrile prodrome preceding a rash that started on the face and body, spread centrifugally to the palms and soles and healed monomorphically over two to four weeks. However, in the 2022 outbreak, the febrile illness is often absent or occurs after the onset of the rash. The rash presents primarily in the anogenital region and face before disseminating throughout the body, with lesions displaying regional pleomorphism. There is a paucity of data for the role of antiviral agents or vaccines. The epidemiology and clinical course of mpox has changed in the 2022 epidemic from that observed with the endemic disease. There is an urgent need to establish rapid and collaborative research platforms to diagnose, treat and prevent disease and inform important public health and other strategies to stop the spread of disease.
Collapse
Affiliation(s)
- Sharon Sukhdeo
- Department of Medicine, University of Toronto, Toronto, Canada.
| | - Sharmistha Mishra
- Division of Infectious Diseases, Department of Medicine, St. Michael's Hospital, MAP Centre for Urban Health Solutions, University of Toronto, Toronto, Canada
| | - Sharon Walmsley
- Department of Medicine, Division of Infectious Diseases, University Health Network, University of Toronto, Toronto, Canada
| |
Collapse
|
45
|
Kotton CN, Torre-Cisneros J, Aguado JM, Alain S, Baldanti F, Baumann G, Boeken U, de la Calle M, Carbone J, Ciceri F, Comoli P, Couzi L, Danziger-Isakov L, Fernández-Ruiz M, Girmenia C, Grossi PA, Hirsch HH, Humar A, Kamar N, Kotton C, Ljungman P, Malagola M, Mira E, Mueller N, Sester M, Teng CLJ, Torre-Cisneros J, Ussetti P, Westall G, Wolf D, Zamora M. Cytomegalovirus in the transplant setting: Where are we now and what happens next? A report from the International CMV Symposium 2021. Transpl Infect Dis 2022; 24:e13977. [PMID: 36271650 PMCID: PMC10078482 DOI: 10.1111/tid.13977] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 09/16/2022] [Accepted: 09/27/2022] [Indexed: 12/24/2022]
Abstract
The CMV Symposium in September 2021 was an international conference dedicated to cytomegalovirus (CMV) infection after solid organ or hematopoietic stem cell transplantation. This review provides an overview of the presentations given by the expert faculty, supplemented with educational clinical cases. Topics discussed include CMV epidemiology and diagnosis, the burden of CMV infection and disease, CMV-specific immunity and management of CMV in transplant settings. Major advances in the prevention and treatment of CMV in the past decade and increased understanding of CMV immunity have led to improved patient outcomes. In the future, management algorithms may be individualized based on the transplant recipient's immune profile, which will mark the start of a new era for patients with CMV.
Collapse
Affiliation(s)
- Camille N Kotton
- Transplant and Immunocompromised Host Infectious Diseases, Infectious Diseases Division, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Julián Torre-Cisneros
- Maimónides Institute for Biomedical Research of Cordoba (IMIBIC)/Reina Sofía University Hospital/University of Cordoba (UCO), Cordoba, Spain.,CIBERINFEC, ISCIII - CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
| | | | - José Maria Aguado
- University Hospital 12 de Octubre, CIBERINFEC, ISCIII - CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
| | - Sophie Alain
- French References Center for Herpes Viruses, Microbiology Department, CHU-Limoges, Limoges, France
| | - Fausto Baldanti
- Università di Pavia, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | | | - Udo Boeken
- Department of Cardiac Surgery, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Germany
| | | | - Javier Carbone
- Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Fabio Ciceri
- IRCCS San Raffaele Scientific Institute, University Vita-Salute San Raffaele, Milan, Italy
| | - Patrizia Comoli
- Cell Factory and Center for Advanced Therapies and Pediatric Hematology/Oncology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Lionel Couzi
- Department of Nephrology, Transplantation, Dialysis and Apheresis, CHU Bordeaux CNRS-UMR 5164 ImmunoConcEpT, Bordeaux University, Bordeaux, France
| | - Lara Danziger-Isakov
- Cincinnati Children's Hospital Medical Center and University of Cincinnati, Cincinnati, USA
| | | | | | | | | | | | | | | | - Per Ljungman
- Karolinska Hospital and Karolinska Institute, Stockholm, Sweden
| | | | | | | | | | | | | | | | | | - Dana Wolf
- Hadassah University Medical Center, Jerusalem, Israel
| | - Marty Zamora
- University of Colorado at Denver Anschutz Medical Center, Colorado, USA
| |
Collapse
|
46
|
Acyclovir resistance in herpes simplex viruses: Prevalence and therapeutic alternatives. Biochem Pharmacol 2022; 206:115322. [DOI: 10.1016/j.bcp.2022.115322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/20/2022] [Accepted: 10/20/2022] [Indexed: 11/19/2022]
|
47
|
Yue Y, Meng L, Ling J, Fan L, Zhang Y, Hu Y, Chang AH, Hu S. Natural killer cell infusion for cytomegalovirus infection in pediatric patients with Wiskott-Aldrich syndrome following cord blood transplantation: A case report and literature review. Front Med (Lausanne) 2022; 9:988847. [PMID: 36300184 PMCID: PMC9588986 DOI: 10.3389/fmed.2022.988847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 09/20/2022] [Indexed: 11/19/2022] Open
Abstract
NK cells have important functions in resisting cytomegalovirus infection, as they proliferate after viral infection and have certain immunological memory. Here, we report infusion of haploid donor-derived natural killer cells to treat two pediatric patients with Wiskott-Aldrich syndrome (WAS) who were infected with cytomegalovirus after cord blood transplantation (CBT), which successfully cleared the viral infection in both patients.
Collapse
Affiliation(s)
- Yongwei Yue
- Department of Hematology & Oncology, Children's Hospital of Soochow University, Suzhou, China
| | - Lijun Meng
- Department of Hematology & Oncology, Children's Hospital of Soochow University, Suzhou, China
| | - Jing Ling
- Department of Hematology & Oncology, Children's Hospital of Soochow University, Suzhou, China
| | - Liyan Fan
- Department of Hematology & Oncology, Children's Hospital of Soochow University, Suzhou, China
| | - Yanlei Zhang
- Clinical Translational Research Center, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China,Shanghai YaKe Biotechnology Ltd., Shanghai, China
| | - Yixin Hu
- Department of Hematology & Oncology, Children's Hospital of Soochow University, Suzhou, China
| | - Alex H. Chang
- Clinical Translational Research Center, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China,Shanghai YaKe Biotechnology Ltd., Shanghai, China,*Correspondence: Alex H. Chang
| | - Shaoyan Hu
- Department of Hematology & Oncology, Children's Hospital of Soochow University, Suzhou, China,Shaoyan Hu
| |
Collapse
|
48
|
Cui J, Zhao K, Sun Y, Wen R, Zhang X, Li X, Long B. Diagnosis and treatment for the early stage of cytomegalovirus infection during hematopoietic stem cell transplantation. Front Immunol 2022; 13:971156. [PMID: 36211358 PMCID: PMC9537469 DOI: 10.3389/fimmu.2022.971156] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 09/05/2022] [Indexed: 11/13/2022] Open
Abstract
Cytomegalovirus (CMV) infection remains a frequent complication after hematopoietic stem cell transplantation (HSCT) and causes significant morbidity and mortality in transplantation recipients. In this review, we highlight the role of major risk factors that are associated with the incidence of CMV infection. Advances in immunosurveillance may predict CMV infection, allowing early interventions to prevent severe infection. Furthermore, numerous therapeutic strategies against CMV infection after HSCT are summarized. A comprehensive understanding of the current situation of CMV treatment may provide a hint for clinical practice and even promote the development of novel strategies for precision medicine.
Collapse
Affiliation(s)
| | | | | | | | | | - Xudong Li
- *Correspondence: Bing Long, longb3@ mail.sysu.edu.cn; Xudong Li,
| | - Bing Long
- *Correspondence: Bing Long, longb3@ mail.sysu.edu.cn; Xudong Li,
| |
Collapse
|
49
|
Mileto D, Riva A, Cutrera M, Moschese D, Mancon A, Meroni L, Giacomelli A, Bestetti G, Rizzardini G, Gismondo MR, Antinori S. New challenges in human monkeypox outside Africa: A review and case report from Italy. Travel Med Infect Dis 2022; 49:102386. [PMID: 35738529 PMCID: PMC9528171 DOI: 10.1016/j.tmaid.2022.102386] [Citation(s) in RCA: 86] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 06/13/2022] [Accepted: 06/16/2022] [Indexed: 12/17/2022]
Abstract
BACKGROUND Human monkeypox (MPX) is a neglected zoonotic disease caused by the MPX virus a double-stranded DNA virus which belongs to the Poxviridae family genus Orthopoxvirus. It is endemic in the rural rainforests of Central and Western Africa where it is responsible of human sporadic cases and outbreaks since 1970. Outside Africa MPXV caused an outbreak in 2003 in the United States linked to importation of infected rodents from Ghana and a few travel-related cases in the USA, United Kingdom, Israel and Singapore. Actually, a worldwide outbreak with more than 1200 confirmed cases mainly concentrated among men who have sex with men is ongoing. CASE REPORT We present the case of an Italian man living in Portugal that was diagnosed with MPX at our clinic in Milan, Italy. Monkeypox virus infection was confirmed by a specific homemade Real-Time PCR. Samples obtained from different sites (pharynx, skin lesions, anal ulcer, seminal fluid) turned all positive with different viral load. CONCLUSIONS Our report illustrates the challenge of a disease that seems to present in a different way from classic description with possible human-to-human transmission through sexual contact.
Collapse
Affiliation(s)
- Davide Mileto
- Clinical Microbiology, Virology and Bioemergency Diagnostics, ASST Fatebenefratelli Sacco, Luigi Sacco Hospital, Milan, Italy
| | - Agostino Riva
- Department of Biomedical and Clinical Sciences, Università Degli Studi di Milano, Italy; III Division of Infectious Diseases, ASST Fatebenefratelli Sacco, Luigi Sacco Hospital, Milan, Italy
| | - Miriam Cutrera
- Clinical Microbiology, Virology and Bioemergency Diagnostics, ASST Fatebenefratelli Sacco, Luigi Sacco Hospital, Milan, Italy
| | - Davide Moschese
- I Division of Infectious Diseases, ASST Fatebenefratelli Sacco, Luigi Sacco Hospital, Milan, Italy
| | - Alessandro Mancon
- Clinical Microbiology, Virology and Bioemergency Diagnostics, ASST Fatebenefratelli Sacco, Luigi Sacco Hospital, Milan, Italy
| | - Luca Meroni
- III Division of Infectious Diseases, ASST Fatebenefratelli Sacco, Luigi Sacco Hospital, Milan, Italy
| | - Andrea Giacomelli
- III Division of Infectious Diseases, ASST Fatebenefratelli Sacco, Luigi Sacco Hospital, Milan, Italy
| | - Giovanna Bestetti
- III Division of Infectious Diseases, ASST Fatebenefratelli Sacco, Luigi Sacco Hospital, Milan, Italy
| | - Giuliano Rizzardini
- I Division of Infectious Diseases, ASST Fatebenefratelli Sacco, Luigi Sacco Hospital, Milan, Italy
| | - Maria Rita Gismondo
- Clinical Microbiology, Virology and Bioemergency Diagnostics, ASST Fatebenefratelli Sacco, Luigi Sacco Hospital, Milan, Italy; Department of Biomedical and Clinical Sciences, Università Degli Studi di Milano, Italy
| | - Spinello Antinori
- Department of Biomedical and Clinical Sciences, Università Degli Studi di Milano, Italy; III Division of Infectious Diseases, ASST Fatebenefratelli Sacco, Luigi Sacco Hospital, Milan, Italy.
| |
Collapse
|
50
|
Adenovirus Infection in Pediatric Hematopoietic Cell Transplantation: A Challenge Still Open for Survival. J Clin Med 2022; 11:jcm11164827. [PMID: 36013066 PMCID: PMC9410345 DOI: 10.3390/jcm11164827] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 08/13/2022] [Accepted: 08/16/2022] [Indexed: 11/16/2022] Open
Abstract
Human Adenovirus (HAdV) infection occurs in 14−16% of patients in the early months after pediatric hematopoietic cell transplantation (HCT) and this correlates with a higher risk of developing HAdV disease and overall 6-month mortality. The main risk factors for HAdV infection are T-cell depletion of the graft by ex vivo CD34+ selection or in vivo use of alemtuzumab or anti-thymocyte serum, the development of grade III-IV graft versus host disease (GVHD), the type of donor (unrelated donor, cord blood, haploidentical, or HLA mismatched parent), and severe lymphopenia (<0.2 × 109/L). The prevention of HAdV disease is based on early intervention with antivirals in the asymptomatic patient when the permitted viral load threshold in the blood (≥102−3 copies/mL) and/or in the stool (109 copies/g stool) is exceeded. Cidofovir, a monophosphate nucleotide analog of cytosine, is the primary drug for preemptive therapy, used at 5 mg/kg/week for 2 weeks followed by 3−5 mg/kg every 2 weeks. The alternative schedule is 1 mg/kg every other day (three times/week). Enhancing virus-specific T-cell immunity in the first months post-HCT by donor-derived or third-party-derived virus-specific T cells represents an innovative and promising way of intervention, applicable both in prevention and therapeutic settings.
Collapse
|