1
|
Mogi K, Akiyama U, Futagawa N, Tamura K, Kamiya M, Mizuta M, Yamaoka M, Kamimura I, Kuze-Arata S, Kikusui T. Intergenerational transmission of maternal behavioral traits in mice: involvement of the gut microbiota. Front Neurosci 2024; 17:1302841. [PMID: 38260015 PMCID: PMC10800389 DOI: 10.3389/fnins.2023.1302841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 12/13/2023] [Indexed: 01/24/2024] Open
Abstract
The matrilineal transmission of maternal behavior has been reported in several species. Studies, primarily on rats, have suggested the importance of postnatal experience and the involvement of epigenetic mechanisms in mediating these transmissions. This study aims to determine whether the matrilineal transmission of maternal behavior occurs in mice and whether the microbiota is involved. We first observed that early weaned (EW) female mice showed lower levels of maternal behavior, particularly licking/grooming (LG) of their own pups, than normally weaned (NW) female mice. This difference in maternal behavioral traits was also observed in the second generation, even though all mice were weaned normally. In the subsequent cross-fostering experiment, the levels of LG were influenced by the nurturing mother but not the biological mother. Finally, we transplanted the fecal microbiota from EW or NW mice into germ-free (GF) mice raising pups. The maternal behaviors that the pups exhibited toward their own offspring after growth were analyzed, and the levels of LG in GF mice colonized with microbiota from EW mice were lower than those in GF mice colonized with microbiota from NW mice. These results clearly indicate that, among maternal behavioral traits, LG is intergenerationally transmitted in mice and suggest that the vertical transmission of microbiota is involved in this process. This study demonstrates the universality of the intergenerational transmission of maternal behavioral traits and provides new insights into the role of microbiota.
Collapse
Affiliation(s)
- Kazutaka Mogi
- Department of Animal Science and Biotechnology, Azabu University, Sagamihara, Japan
| | | | | | | | | | | | | | | | | | - Takefumi Kikusui
- Department of Animal Science and Biotechnology, Azabu University, Sagamihara, Japan
| |
Collapse
|
2
|
Harauma A, Murai M, Nakamura I, Moriguchi T. Anxiety-like behaviors in artificially reared mice is reduced by contact with foster mothers. Physiol Behav 2023; 260:114052. [PMID: 36495998 DOI: 10.1016/j.physbeh.2022.114052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/29/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022]
Abstract
Experimental systems using animal models are important for nutritional and pharmacological research on newborns and infants. Accordingly, artificial nursing systems for rodents based exclusively on formula are critical to studying nutrient requirements, chemical safety, and immune system development in newborns and infants while eliminating the influence of mother's milk. Such systems can also be used to study the influence of rearing environment-related factors, including physical contact between newborns and mothers or caregivers. However, artificially reared (AR) mice exhibit higher anxiety levels than dam-reared (DR) mice. Therefore, in addition to AR and DR groups, we produced a third group of mice cared for by ovariectomized foster mothers except during nursing time (AR+OVX) and investigated the impact of infant rearing environment on emotional behaviour in adult male C57BL/6 J mice. In the behavioural evaluation with mild stress such as fasting, AR+OVX mice exhibited intermediate anxiety levels between those of DR and AR mice. AR+OVX mice reached anxiety levels similar to those of DR mice in a behavioural evaluation under less stressful conditions, although AR mice remained at high anxiety levels. This suggests that care with physical contact and warmth from foster mothers leads to emotional development similar to that of DR mice, even when reared on artificial milk. This experimental system also makes it possible to investigate the importance of nutrients during the neonatal period while suppressing the influence of rearing environment-related factors.
Collapse
Affiliation(s)
- Akiko Harauma
- Laboratory for Functional Lipid Science, School of Life and Environmental Science, Azabu University, 1-17-71 Fuchinobe, Sagamihara, Kanagawa, 252-5201 Japan
| | - Mizuki Murai
- Laboratory of Food and Nutritional Science, Department of Food and Life Science, School of Life and Environmental Science, Azabu University, 1-17-71 Fuchinobe, Sagamihara, Kanagawa, 252-5201 Japan
| | - Ito Nakamura
- Laboratory of Food and Nutritional Science, Department of Food and Life Science, School of Life and Environmental Science, Azabu University, 1-17-71 Fuchinobe, Sagamihara, Kanagawa, 252-5201 Japan
| | - Toru Moriguchi
- Laboratory for Functional Lipid Science, School of Life and Environmental Science, Azabu University, 1-17-71 Fuchinobe, Sagamihara, Kanagawa, 252-5201 Japan; Laboratory of Food and Nutritional Science, Department of Food and Life Science, School of Life and Environmental Science, Azabu University, 1-17-71 Fuchinobe, Sagamihara, Kanagawa, 252-5201 Japan.
| |
Collapse
|
3
|
Bienboire-Frosini C, Marcet-Rius M, Orihuela A, Domínguez-Oliva A, Mora-Medina P, Olmos-Hernández A, Casas-Alvarado A, Mota-Rojas D. Mother-Young Bonding: Neurobiological Aspects and Maternal Biochemical Signaling in Altricial Domesticated Mammals. Animals (Basel) 2023; 13:ani13030532. [PMID: 36766424 PMCID: PMC9913798 DOI: 10.3390/ani13030532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/27/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
Mother-young bonding is a type of early learning where the female and their newborn recognize each other through a series of neurobiological mechanisms and neurotransmitters that establish a behavioral preference for filial individuals. This process is essential to promote their welfare by providing maternal care, particularly in altricial species, animals that require extended parental care due to their limited neurodevelopment at birth. Olfactory, auditory, tactile, and visual stimuli trigger the neural integration of multimodal sensory and conditioned affective associations in mammals. This review aims to discuss the neurobiological aspects of bonding processes in altricial mammals, with a focus on the brain structures and neurotransmitters involved and how these influence the signaling during the first days of the life of newborns.
Collapse
Affiliation(s)
- Cécile Bienboire-Frosini
- Department of Molecular Biology and Chemical Communication, Research Institute in Semiochemistry and Applied Ethology (IRSEA), 84400 Apt, France
| | - Míriam Marcet-Rius
- Animal Behaviour and Welfare Department, Research Institute in Semiochemistry and Applied Ethology (IRSEA), 84400 Apt, France
| | - Agustín Orihuela
- Facultad de Ciencias Agropecuarias, Universidad Autónoma del Estado de Morelos, Cuernavaca 62209, Mexico
| | - Adriana Domínguez-Oliva
- Neurophysiology, Behavior and Animal Welfare Assessment, DPAA, Universidad Autónoma Metropolitana, Xochimilco Campus, Mexico City 04960, Mexico
| | - Patricia Mora-Medina
- Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de Mexico (UNAM), Cuautitlán Izcalli 54740, Mexico
| | - Adriana Olmos-Hernández
- Division of Biotechnology—Bioterio and Experimental Surgery, Instituto Nacional de Rehabilitación-Luis Guillermo Ibarra Ibarra (INR-LGII), Tlalpan, Mexico City 14389, Mexico
| | - Alejandro Casas-Alvarado
- Neurophysiology, Behavior and Animal Welfare Assessment, DPAA, Universidad Autónoma Metropolitana, Xochimilco Campus, Mexico City 04960, Mexico
| | - Daniel Mota-Rojas
- Neurophysiology, Behavior and Animal Welfare Assessment, DPAA, Universidad Autónoma Metropolitana, Xochimilco Campus, Mexico City 04960, Mexico
- Correspondence:
| |
Collapse
|
4
|
Effects of early social separation on the behaviour of kittens of the domestic cat. Appl Anim Behav Sci 2023. [DOI: 10.1016/j.applanim.2023.105849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
5
|
Bründl AC, Girard-Buttoz C, Bortolato T, Samuni L, Grampp M, Löhrich T, Tkaczynski P, Wittig RM, Crockford C. Maternal effects on the development of vocal communication in wild chimpanzees. iScience 2022; 25:105152. [PMID: 36238895 PMCID: PMC9550609 DOI: 10.1016/j.isci.2022.105152] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 07/08/2022] [Accepted: 09/14/2022] [Indexed: 11/19/2022] Open
Abstract
Early-life experiences, such as maternal care received, influence adult social integration and survival. We examine what changes to social behavior through ontogeny lead to these lifelong effects, particularly whether early-life maternal environment impacts the development of social communication. Chimpanzees experience prolonged social communication development. Focusing on a central communicative trait, the "pant-hoot" contact call used to solicit social engagement, we collected cross-sectional data on wild chimpanzees (52 immatures and 36 mothers). We assessed early-life socioecological impacts on pant-hoot rates across development, specifically: mothers' gregariousness, age, pant-hoot rates and dominance rank, maternal loss, and food availability, controlling for current maternal effects. We found that early-life maternal gregariousness correlated positively with offspring pant-hoot rates, while maternal loss led to reduced pant-hoot rates across development. Males had steeper developmental trajectories in pant-hoot rates than females. We demonstrate the impact of maternal effects on developmental trajectories of a rarely investigated social trait, vocal production.
Collapse
Affiliation(s)
- Aisha C. Bründl
- Department of Human Behavior, Ecology and Culture, Max Planck Institute for Evolutionary Anthropology, Leipzig 04103, Germany
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig 04103, Germany
- Taï Chimpanzee Project, Centre Suisse de Recherches Scientifiques, 01 BP 1303, Abidjan, Côte d’Ivoire
| | - Cédric Girard-Buttoz
- Department of Human Behavior, Ecology and Culture, Max Planck Institute for Evolutionary Anthropology, Leipzig 04103, Germany
- Taï Chimpanzee Project, Centre Suisse de Recherches Scientifiques, 01 BP 1303, Abidjan, Côte d’Ivoire
- The Great Ape Social Mind Lab, Institut des Sciences Cognitives, CNRS, 67 Boulevard Pinel, Bron, 69675 Lyon, France
| | - Tatiana Bortolato
- Department of Human Behavior, Ecology and Culture, Max Planck Institute for Evolutionary Anthropology, Leipzig 04103, Germany
- Taï Chimpanzee Project, Centre Suisse de Recherches Scientifiques, 01 BP 1303, Abidjan, Côte d’Ivoire
- The Great Ape Social Mind Lab, Institut des Sciences Cognitives, CNRS, 67 Boulevard Pinel, Bron, 69675 Lyon, France
| | - Liran Samuni
- Taï Chimpanzee Project, Centre Suisse de Recherches Scientifiques, 01 BP 1303, Abidjan, Côte d’Ivoire
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| | - Mathilde Grampp
- Department of Human Behavior, Ecology and Culture, Max Planck Institute for Evolutionary Anthropology, Leipzig 04103, Germany
- Taï Chimpanzee Project, Centre Suisse de Recherches Scientifiques, 01 BP 1303, Abidjan, Côte d’Ivoire
- The Great Ape Social Mind Lab, Institut des Sciences Cognitives, CNRS, 67 Boulevard Pinel, Bron, 69675 Lyon, France
| | - Therese Löhrich
- Taï Chimpanzee Project, Centre Suisse de Recherches Scientifiques, 01 BP 1303, Abidjan, Côte d’Ivoire
- Epidemiology of Highly Pathogenic Microorganisms, Robert Koch Institute, Seestraße 10, Berlin 13353, Germany
- World Wide Fund for Nature, Dzanga Sangha Protected Areas, Bangui BP 1053, Central African Republic
- Veterinary Group Practice Heeslingen, Stader Straße 5, 27404 Heeslingen, Germany
| | - Patrick Tkaczynski
- Department of Human Behavior, Ecology and Culture, Max Planck Institute for Evolutionary Anthropology, Leipzig 04103, Germany
- Taï Chimpanzee Project, Centre Suisse de Recherches Scientifiques, 01 BP 1303, Abidjan, Côte d’Ivoire
- School of Biological and Environmental Sciences, Liverpool John Moores University, Liverpool L33AF, UK
| | - Roman M. Wittig
- Department of Human Behavior, Ecology and Culture, Max Planck Institute for Evolutionary Anthropology, Leipzig 04103, Germany
- Taï Chimpanzee Project, Centre Suisse de Recherches Scientifiques, 01 BP 1303, Abidjan, Côte d’Ivoire
| | - Catherine Crockford
- Department of Human Behavior, Ecology and Culture, Max Planck Institute for Evolutionary Anthropology, Leipzig 04103, Germany
- Taï Chimpanzee Project, Centre Suisse de Recherches Scientifiques, 01 BP 1303, Abidjan, Côte d’Ivoire
- The Great Ape Social Mind Lab, Institut des Sciences Cognitives, CNRS, 67 Boulevard Pinel, Bron, 69675 Lyon, France
| |
Collapse
|
6
|
Rowell MK, Rymer TL. Problem solving in fawn-footed mosaic-tailed rats Melomys cervinipes is not significantly influenced by maternal care or genetic effects. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2022; 337:802-811. [PMID: 35754194 PMCID: PMC9796929 DOI: 10.1002/jez.2637] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 06/08/2022] [Accepted: 06/13/2022] [Indexed: 01/07/2023]
Abstract
Innovative problem solving is thought to be a flexible trait that allows animals to adjust to changing or challenging environmental conditions. However, it is not known how problem solving develops during an animal's early life, or whether it may have a heritable component. We investigated whether maternal genetic and nongenetic effects influenced problem-solving ability in a native Australian rodent, the fawn-footed mosaic-tailed rat Melomys cervinipes. We measured direct (time spent grooming and huddling), indirect (time spent nesting), and total amount of maternal care received across pup development (postnatal Days 1-13). We measured problem solving in juveniles using matchbox tasks, and in mothers and adult offspring using six tasks of varying complexity (matchbox, cylinder, obstruction, pillar, tile, and lever tasks). We found no relationship between any maternal care measures and problem-solving abilities across multiple tests, suggesting limited (if any) maternal nongenetic effects. We also found that, as shown by low heritability estimates, problem solving only had a small heritable component in some tasks, but this was nonsignificant and requires further investigation. These results suggest that problem solving is unlikely to be constrained by maternal effects experienced during early development, and is, instead, more likely to be influenced by other factors (e.g., experience) later in an individual's lifetime.
Collapse
Affiliation(s)
- Misha K. Rowell
- College of Science and EngineeringJames Cook UniversityCairnsQueenslandAustralia,Centre for Tropical Environmental and Sustainability SciencesJames Cook UniversityCairnsQueenslandAustralia
| | - Tasmin L. Rymer
- College of Science and EngineeringJames Cook UniversityCairnsQueenslandAustralia,Centre for Tropical Environmental and Sustainability SciencesJames Cook UniversityCairnsQueenslandAustralia
| |
Collapse
|
7
|
Wrage B. Caring animals and care ethics. BIOLOGY & PHILOSOPHY 2022; 37:18. [PMID: 35637869 PMCID: PMC9135829 DOI: 10.1007/s10539-022-09857-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 05/09/2022] [Accepted: 05/15/2022] [Indexed: 06/15/2023]
Abstract
Are there nonhuman animals who behave morally? In this paper I answer this question in the affirmative by applying the framework of care ethics to the animal morality debate. According to care ethics, empathic care is the wellspring of morality in humans. While there have been several suggestive analyses of nonhuman animals as empathic, much of the literature within the animal morality debate has marginalized analyses from the perspective of care ethics. In this paper I examine care ethics to extract its core commitments to what is required for moral care: emotional motivation that enables the intentional meeting of another's needs, and forward-looking responsibility in particular relationships. What is not required, I argue, are metarepresentational capacities or the ability to scrutinize one's reasons for action, and thus being retrospectively accountable. This minimal account of moral care is illustrated by moral practices of parental care seen in many nonhuman animal species. In response to the worry that parental care in nonhuman animals lacks all evaluation and is therefore nonmoral I point to cultural differences in human parenting and to normativity in nonhuman animals.
Collapse
Affiliation(s)
- Birte Wrage
- Unit of Ethics and Human-Animal Studies, Messerli Research Institute, Vetmeduni Vienna, Uni Vienna, MedUni Vienna, Vienna, Austria
| |
Collapse
|
8
|
Sanson A, Bosch OJ. Dysfunctions of brain oxytocin signaling: Implications for poor mothering. Neuropharmacology 2022; 211:109049. [PMID: 35390436 DOI: 10.1016/j.neuropharm.2022.109049] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 03/03/2022] [Accepted: 03/29/2022] [Indexed: 10/18/2022]
Abstract
Good mothering has profound impact on both the mother's and the young's well-being. Consequently, experiencing inadequate maternal care - or even neglect - in the first stages of life is a major risk factor for the development of psychiatric disorders, and even for poor parenting towards the future offspring. Thus, understanding the neurobiological basis of maternal neglect becomes crucial. Along with other neurotransmitters and neuropeptides, oxytocin (OXT) has long been known as one of the main modulators of maternal behavior. In rodents, disruptions of central OXT transmission have been associated with poor maternal responses, like impaired onset of nursing behaviors, and reduced care and defense of the pups. Importantly, such behavioral and molecular deficits can be transmitted through generations, creating a vicious circle of low-quality maternal behavior. Similarly, evidence from human studies shows that OXT signaling is defective in conditions of inadequate mothering and child neglect. On those premises, this review aims at providing a comprehensive overview of animal and human studies linking perturbed OXT transmission to poor maternal behavior. Considering the important fallouts of inadequate maternal responses, we believe that unraveling the alterations in OXT transmission might provide useful insights for a better understanding of maternal neglect and, ultimately, for future intervention approaches.
Collapse
Affiliation(s)
- Alice Sanson
- Department of Behavioural and Molecular Neurobiology, Regensburg Center of Neuroscience, University of Regensburg, Regensburg, Germany.
| | - Oliver J Bosch
- Department of Behavioural and Molecular Neurobiology, Regensburg Center of Neuroscience, University of Regensburg, Regensburg, Germany.
| |
Collapse
|
9
|
Neuroendocrine Mechanisms of Social Bonds and Separation Stress in Rodents, Dogs, and Other Species. Curr Top Behav Neurosci 2021; 54:3-22. [PMID: 34518995 DOI: 10.1007/7854_2021_257] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Mammalian species form unique bonds between mothers and infants. Maternal care, including suckling, is necessary for infant survival, and the mother and, sometimes, the father require a lot of effort in nurturing infants. An infant's probability of survival depends on the extent of the investment of care by the mother. In parallel, mothers must identify their offspring and invest only in those who possess their genes to achieve evolutionary benefits. Therefore, they need to recognize their offspring and show a strong preference for them. For this reason, bond formation between mothers and infants is important. The mother monitors her offspring's physical condition and stays close to them. The offspring also form strong bonds with their mothers. Therefore, a separation between the mother and infant causes severe stress for both parties. Although it was initially thought that such bonds between mother and infant are limited to the same species, we have also observed a similar phenomenon in the human-dog relationship. In this article, we discuss the neuroendocrine mechanisms that underlie bond formation and separation based on findings of neurobiological research in mice and the relationship between humans and dogs.
Collapse
|
10
|
Sakamoto T, Ishio Y, Ishida Y, Mogi K, Kikusui T. Low maternal licking/grooming stimulation increases pain sensitivity in male mouse offspring. Exp Anim 2021; 70:13-21. [PMID: 32741955 PMCID: PMC7887629 DOI: 10.1538/expanim.20-0030] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 07/03/2020] [Indexed: 12/21/2022] Open
Abstract
Deprivation of maternal care has been associated with higher pain sensitivity in offspring. In the present study, we hypothesized that the maternal licking/grooming behavior was an important factor for the development of the pain regulatory system. To test this hypothesis, we used male F2 offspring of early-weaned (EW) F1 mother mice that exhibit lower frequency of licking/grooming behavior. The formalin test revealed that F2 offspring of EW F1 dams showed significantly higher pain behavior than F2 offspring of normally-weaned (NW) F1 dams. We found that the mRNA levels of transient receptor potential vanilloid 1 (TRPV1), a nociceptor, were higher in the lumbosacral dorsal root ganglion (DRG) of F2 offspring of EW F1 dams than those of F2 offspring of NW F1 dams, suggesting that the higher pain sensitivity may be attributed to low licking/grooming, which may result in developmental changes in nociceptive neurons. In the DRG, mRNA levels of Mas-related G-protein coupled receptor B4 (MrgprB4), a marker of sensory neurons that detect gentle stroking, was also up-regulated in the F2 offspring of EW F1 dams. Considering that gentle touch alleviates pain, Mrgprb4 up-regulation may reflect a compensatory change. The present findings indicate important implications of maternal licking/grooming behavior in the development of the pain regulatory system.
Collapse
Affiliation(s)
- Takashi Sakamoto
- Department of Animal Science and Biotechnology, Azabu University, 1-17-71 Fuchinobe, Sagamihara, Kanagawa 252-5201, Japan
| | - Yukino Ishio
- Department of Animal Science and Biotechnology, Azabu University, 1-17-71 Fuchinobe, Sagamihara, Kanagawa 252-5201, Japan
| | - Yuiko Ishida
- Department of Animal Science and Biotechnology, Azabu University, 1-17-71 Fuchinobe, Sagamihara, Kanagawa 252-5201, Japan
| | - Kazutaka Mogi
- Department of Animal Science and Biotechnology, Azabu University, 1-17-71 Fuchinobe, Sagamihara, Kanagawa 252-5201, Japan
| | - Takefumi Kikusui
- Department of Animal Science and Biotechnology, Azabu University, 1-17-71 Fuchinobe, Sagamihara, Kanagawa 252-5201, Japan
| |
Collapse
|
11
|
Ferreira EKGD, Mazzarotto GACA, Silveira GF. Zootechnical data analysis in a breeding animal facility: tracing the patterns of mouse production. Lab Anim Res 2021; 37:1. [PMID: 33397516 PMCID: PMC7784384 DOI: 10.1186/s42826-020-00082-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 12/22/2020] [Indexed: 11/10/2022] Open
Abstract
Background With the enactment of the Brazilian Law Arouca 11,794/2008 and Decree 6.899/2009, there has been an urgent need for changes in the processes related to animal experimentation in Brazil; in particular, there is a need for improvements in enhancements of the lab animal management. To improve the management capacity of the Lab animal facility of the Carlos Chagas Institute’s Laboratory Animals Science (LAS), BioterC software was developed and implemented in 2014 for tracking mouse laboratory colonies. Five years after the implementation of this software, we sought to analyze the information in the database originated from BioterC using the Exploratory Analysis Data methodology (EDA). This article aims to identify animal breeding patterns using a data mining tool (Data Science) with Python programming language. Results The results show that from September 2014 to June 2019, under the license IACUC number LW- 6/17, 15.106 animals were produced. The C57BL/6, BALB/c and Swiss strains were the most frequently produced strains. The distribution of births due to crosses between these strains showed a median of 6 to 10 animals, depending on the genetic homozygosis and heterozygosis of the animal. The median number of days of mating was 35 days. In the sexing period, the records reported a median of 19 days. A total of 393 requests for animals from internal and external laboratories were registered. It was noted that approximately half of the animals produced to meet the demand for orders were discarded. Of the 15,106 animals, 38% were requested for animal experimentation, 58% were discarded and 4% did not have an outcome recorded in the data. Conclusions This volume of data provides an initial view of the information retrieval capabilities contained in BioterC, allowing for unique breeding knowledge by installing laboratory animals.
Collapse
Affiliation(s)
| | - Giovanny A C A Mazzarotto
- Instituto Carlos Chagas- Fiocruz/PR, Curitiba, PR, Brazil.,Laboratório de Criação e Experimentação Animal- Fiocruz/PR, Curitiba, Brazil
| | | |
Collapse
|
12
|
Khodamoradi K, Khosravizadeh Z, Amini-Khoei H, Hosseini SR, Dehpour AR, Hassanzadeh G. The effects of maternal separation stress experienced by parents on male reproductive potential in the next generation. Heliyon 2020; 6:e04807. [PMID: 33024852 PMCID: PMC7527646 DOI: 10.1016/j.heliyon.2020.e04807] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 05/31/2020] [Accepted: 08/25/2020] [Indexed: 11/17/2022] Open
Abstract
There is little information available about the effects of early-life parental stress on the reproductive potential of the next generation. The aim of this study is to examine the reproductive potential of male mice whose parents experienced maternal separation stress. In the present study, male first-generation offspring from parents were undergone of maternal separation (MS) were examined. Sperm characteristics, histological changes in testis, reactive oxygen species (ROS) production, expression of apoptotic and inflammatory genes and proteins were assessed. Findings showed that MS experienced by parents significantly decreased the morphology and viability of spermatozoa. Furthermore, significant changes in testicular tissue histology were observed. Increased production of ROS, decreased glutathione peroxidase (GPX) and adenosine triphosphate (ATP) concentrations, and affected the expression of genes and cytokines involved in inflammation. Finally, the mean percentage of caspase-1 and NLRP3 (NOD-, LRR- and pyrin domain-containing protein 3) positive cells was significantly higher in first-generation group. MS experienced by parents may negatively affect the reproduction of first generation offspring.
Collapse
Affiliation(s)
- Kajal Khodamoradi
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,University of Miami, Miller School of Medicine, Miami, FL, USA
| | - Zahra Khosravizadeh
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hossein Amini-Khoei
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Seyed Reza Hosseini
- Departent of Urology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmad Reza Dehpour
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Gholamreza Hassanzadeh
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
13
|
Does early weaning shape future endocrine and metabolic disorders? Lessons from animal models. J Dev Orig Health Dis 2020; 11:441-451. [PMID: 32487270 DOI: 10.1017/s2040174420000410] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Obesity and its complications occur at alarming rates worldwide. Epidemiological data have associated perinatal conditions, such as malnutrition, with the development of some disorders, such as obesity, dyslipidemia, diabetes, and cardiovascular diseases, in childhood and adulthood. Exclusive breastfeeding has been associated with protection against long-term chronic diseases. However, in humans, the interruption of breastfeeding before the recommended period of 6 months is a common practice and can increase the risk of several metabolic disturbances. Nutritional and environmental changes within a critical window of development, such as pregnancy and breastfeeding, can induce permanent changes in metabolism through epigenetic mechanisms, leading to diseases later in life via a phenomenon known as programming or developmental plasticity. However, little is known regarding the underlying mechanisms by which precocious weaning can result in adipose tissue dysfunction and endocrine profile alterations. Here, the authors give a comprehensive report of the different animal models of early weaning and programming that can result in the development of metabolic syndrome. In rats, for example, pharmacological and nonpharmacological early weaning models are associated with the development of overweight and visceral fat accumulation, leptin and insulin resistance, and neuroendocrine and hepatic changes in adult progeny. Sex-related differences seem to influence this phenotype. Therefore, precocious weaning seems to be obesogenic for offspring. A better understanding of this condition seems essential to reducing the risk for diseases. Additionally, this knowledge can generate new insights into therapeutic strategies for obesity management, improving health outcomes.
Collapse
|
14
|
Nuñez CMV, Rubenstein DI. Communication is key: Mother-offspring signaling can affect behavioral responses and offspring survival in feral horses (Equus caballus). PLoS One 2020; 15:e0231343. [PMID: 32302348 PMCID: PMC7164835 DOI: 10.1371/journal.pone.0231343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 03/22/2020] [Indexed: 11/21/2022] Open
Abstract
Acoustic signaling plays an important role in mother-offspring recognition and subsequent bond-formation. It remains unclear, however, if mothers and offspring use acoustic signaling in the same ways and for the same reasons throughout the juvenile stage, particularly after mutual recognition has been adequately established. Moreover, despite its critical role in mother-offspring bond formation, research explicitly linking mother-infant communication strategies to offspring survival are lacking. We examined the communicative patterns of mothers and offspring in the feral horse (Equus caballus) to better understand 1) the nature of mother-offspring communication throughout the first year of development; 2) the function(s) of mother- vs. offspring-initiated communication and; 3) the importance of mare and foal communication to offspring survival. We found that 1) mares and foals differ in when and how they initiate communication; 2) the outcomes of mare- vs. foal-initiated communication events consistently differ; and 3) the communicative patterns between mares and their foals can be important for offspring survival to one year of age. Moreover, given the importance of maternal activity to offspring behavior and subsequent survival, we submit that our data are uniquely positioned to address the long-debated question: do the behaviors exhibited during the juvenile stage (by both mothers and their young) confer delayed or immediate benefits to offspring? In summary, we aimed to better understand 1) the dynamics of mother-offspring communication, 2) whether mother-offspring communicative patterns were important to offspring survival, and 3) the implications of our research regarding the function of the mammalian juvenile stage. Our results demonstrate that we have achieved those aims.
Collapse
Affiliation(s)
- Cassandra M. V. Nuñez
- Department of Biological Sciences, The University of Memphis, Memphis, Tennessee, United States of America
- Department of Natural Resource Ecology and Management, Iowa State University, Ames, Iowa, United States of America
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, New Jersey, United States of America
| | - Daniel I. Rubenstein
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, New Jersey, United States of America
| |
Collapse
|
15
|
Stroobants S, Creemers J, Bosmans G, D’Hooge R. Post-weaning infant-to-mother bonding in nutritionally independent female mice. PLoS One 2020; 15:e0227034. [PMID: 31940385 PMCID: PMC6961874 DOI: 10.1371/journal.pone.0227034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 12/11/2019] [Indexed: 01/22/2023] Open
Abstract
Infant-parent attachment is highly selective and continues beyond essential care in primates, most prominently in humans, and the quality of this attachment crucially determines cognitive and emotional development of the infant. Altricial rodent species such as mice (Mus musculus) display mutual recognition and communal nursing in wild and laboratory environments, but parental bonding beyond the nursing period has not been reported. We presently demonstrated that socially and nutritionally independent mice still prefer to interact selectively with their mother dam. Furthermore, we observed gender differences in the mother-infant relationship, and showed disruption of this relationship in haploinsufficient Nbea+/- mice, a putative autism model with neuroendocrine dysregulation. To our knowledge, this is the first observation of murine infant-to-mother bonding beyond the nursing period.
Collapse
Affiliation(s)
- Stijn Stroobants
- Laboratory of Biological Psychology, KU Leuven, Leuven, Belgium
- mINT Behavioral Phenotyping Facility, KU Leuven, Leuven, Belgium
| | - John Creemers
- Laboratory of Biochemical Neuroendocrinology, KU Leuven, Leuven, Belgium
| | - Guy Bosmans
- Parenting and Special Education Research Unit, KU Leuven, Leuven, Belgium
| | - Rudi D’Hooge
- Laboratory of Biological Psychology, KU Leuven, Leuven, Belgium
- mINT Behavioral Phenotyping Facility, KU Leuven, Leuven, Belgium
| |
Collapse
|
16
|
Sakamoto T, Ishio Y, Ishida Y, Mogi K, Kikusui T. Low maternal care enhances the skin barrier resistance of offspring in mice. PLoS One 2019; 14:e0219674. [PMID: 31295326 PMCID: PMC6624014 DOI: 10.1371/journal.pone.0219674] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 06/30/2019] [Indexed: 01/25/2023] Open
Abstract
Deprivation of maternal care via lack of somatosensory input causes offspring to experience adverse consequences, especially in the central nervous system. However, little is known about the developmental effect of maternal care on peripheral tissues such as the skin, which includes cutaneous sensory neurons. In the present study, we examined the involvement of maternal care in the development of the skin. We investigated offspring reared by early-weaned mother mice who spontaneously showed lower frequency of licking/grooming on nursing. Offspring of early-weaned mothers showed higher resistance against skin barrier disruption than did offspring of normally-weaned mothers, and had normal skin barrier function in the intact trunk skin. In the dorsal root ganglion of early-weaned mother offspring, we also found up-regulation of mRNA levels of the Mas-related G-protein coupled receptor B4 (MrgprB4), which is a marker of sensory neurons that detect gentle stroking. We further found that levels of MrgprB4 mRNA were correlated with the enhancement of skin resistance. The present findings suggest that maternal somatosensory inputs have a developmental impact on the cutaneous sensory neurons of the skin in offspring. Interestingly, the present results suggest that lower maternal care has a benefit on the skin resistance. This provides important information for understanding the development of peripheral tissues in offspring reared under severe conditions such as lower maternal care in the wild.
Collapse
Affiliation(s)
- Takashi Sakamoto
- Department of Animal Science and Biotechnology, Azabu University, Sagamihara, Kanagawa, Japan
| | - Yukino Ishio
- Department of Animal Science and Biotechnology, Azabu University, Sagamihara, Kanagawa, Japan
| | - Yuiko Ishida
- Department of Animal Science and Biotechnology, Azabu University, Sagamihara, Kanagawa, Japan
| | - Kazutaka Mogi
- Department of Animal Science and Biotechnology, Azabu University, Sagamihara, Kanagawa, Japan
- * E-mail:
| | - Takefumi Kikusui
- Department of Animal Science and Biotechnology, Azabu University, Sagamihara, Kanagawa, Japan
| |
Collapse
|
17
|
Mitchell SJ, Maguire EP, Cunningham L, Gunn BG, Linke M, Zechner U, Dixon CI, King SL, Stephens DN, Swinny JD, Belelli D, Lambert JJ. Early-life adversity selectively impairs α2-GABA A receptor expression in the mouse nucleus accumbens and influences the behavioral effects of cocaine. Neuropharmacology 2018; 141:98-112. [PMID: 30138693 PMCID: PMC6178871 DOI: 10.1016/j.neuropharm.2018.08.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 08/02/2018] [Accepted: 08/19/2018] [Indexed: 01/20/2023]
Abstract
Haplotypes of the Gabra2 gene encoding the α2-subunit of the GABAA receptor (GABAAR) are associated with drug abuse, suggesting that α2-GABAARs may play an important role in the circuitry underlying drug misuse. The genetic association of Gabra2 haplotypes with cocaine addiction appears to be evident primarily in individuals who had experienced childhood trauma. Given this association of childhood trauma, cocaine abuse and the Gabra2 haplotypes, we have explored in a mouse model of early life adversity (ELA) whether such events influence the behavioral effects of cocaine and if, as suggested by the human studies, α2-GABAARs in the nucleus accumbens (NAc) are involved in these perturbed behaviors. In adult mice prior ELA caused a selective decrease of accumbal α2-subunit mRNA, resulting in a selective decrease in the number and size of the α2-subunit (but not the α1-subunit) immunoreactive clusters in NAc core medium spiny neurons (MSNs). Functionally, in adult MSNs ELA decreased the amplitude and frequency of GABAAR-mediated miniature inhibitory postsynaptic currents (mIPSCs), a profile similar to that of α2 "knock-out" (α2-/-) mice. Behaviourally, adult male ELA and α2-/- mice exhibited an enhanced locomotor response to acute cocaine and blunted sensitisation upon repeated cocaine administration, when compared to their appropriate controls. Collectively, these findings reveal a neurobiological mechanism which may relate to the clinical observation that early trauma increases the risk for substance abuse disorder (SAD) in individuals harbouring haplotypic variations in the Gabra2 gene.
Collapse
Affiliation(s)
- Scott J Mitchell
- Division of Neuroscience, Medical Research Institute, Ninewells Hospital & Medical School, Dundee University, Dundee DD1 9SY, Scotland, United Kingdom
| | - Edward P Maguire
- Division of Neuroscience, Medical Research Institute, Ninewells Hospital & Medical School, Dundee University, Dundee DD1 9SY, Scotland, United Kingdom
| | - Linda Cunningham
- Division of Neuroscience, Medical Research Institute, Ninewells Hospital & Medical School, Dundee University, Dundee DD1 9SY, Scotland, United Kingdom
| | - Benjamin G Gunn
- Division of Neuroscience, Medical Research Institute, Ninewells Hospital & Medical School, Dundee University, Dundee DD1 9SY, Scotland, United Kingdom
| | - Matthias Linke
- Institute of Human Genetics, Mainz University, Medical Center, Mainz, Germany
| | - Ulrich Zechner
- Institute of Human Genetics, Mainz University, Medical Center, Mainz, Germany
| | - Claire I Dixon
- School of Psychology, University of Sussex, Falmer, Brighton, BN 9QG, United Kingdom
| | - Sarah L King
- School of Psychology, University of Sussex, Falmer, Brighton, BN 9QG, United Kingdom
| | - David N Stephens
- School of Psychology, University of Sussex, Falmer, Brighton, BN 9QG, United Kingdom
| | - Jerome D Swinny
- Institute for Biomedical & Biomolecular Sciences, School of Pharmacy & Biomedical Sciences, University of Portsmouth, Portsmouth PO1 2DT, United Kingdom.
| | - Delia Belelli
- Division of Neuroscience, Medical Research Institute, Ninewells Hospital & Medical School, Dundee University, Dundee DD1 9SY, Scotland, United Kingdom.
| | - Jeremy J Lambert
- Division of Neuroscience, Medical Research Institute, Ninewells Hospital & Medical School, Dundee University, Dundee DD1 9SY, Scotland, United Kingdom.
| |
Collapse
|
18
|
Broin PÓ, Beckert MV, Takahashi T, Izumi T, Ye K, Kang G, Pouso P, Topolski M, Pena JL, Hiroi N. Computational Analysis of Neonatal Mouse Ultrasonic Vocalization. CURRENT PROTOCOLS IN MOUSE BIOLOGY 2018; 8:e46. [PMID: 29927553 PMCID: PMC6055925 DOI: 10.1002/cpmo.46] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Neonatal vocalization is structurally altered in mouse models of autism spectrum disorder (ASD). Our published data showed that pup vocalization, under conditions of maternal separation, contains sequences whose alterations in a genetic mouse model of ASD impair social communication between pups and mothers. We describe details of a method which reveals the statistical structure of call sequences that are functionally critical for optimal maternal care. Entropy analysis determines the degree of non-random call sequencing. A Markov model determines the actual call sequences used by pups. Sparse partial least squares discriminant analysis (sPLS-DA) identifies call sequences that differentiate groups and reveals the degrees of individual variability in call sequences between groups. These three sets of analyses can be used to identify the otherwise hidden call structure that is altered in mouse models of developmental neuropsychiatric disorders, including not only autism but also schizophrenia. © 2018 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Pilib Ó Broin
- School of Mathematics, Statistics & Applied Mathematics,
National University of Ireland Galway, Galway, Ireland
| | - Michael V. Beckert
- Department of Neuroscience, Albert Einstein College of Medicine,
Bronx, NY, USA
| | - Tomohisa Takahashi
- Department of Psychiatry and Behavioral Sciences, Albert Einstein
College of Medicine, Bronx, NY, USA
| | - Takeshi Izumi
- Department of Psychiatry and Behavioral Sciences, Albert Einstein
College of Medicine, Bronx, NY, USA
| | - Kenny Ye
- Department of Epidemiology & Population Health, Albert
Einstein College of Medicine, Bronx, NY, USA
| | - Gina Kang
- Department of Psychiatry and Behavioral Sciences, Albert Einstein
College of Medicine, Bronx, NY, USA
| | - Patricia Pouso
- Department of Psychiatry and Behavioral Sciences, Albert Einstein
College of Medicine, Bronx, NY, USA
| | - Mackenzie Topolski
- Department of Psychiatry and Behavioral Sciences, Albert Einstein
College of Medicine, Bronx, NY, USA
| | - Jose L. Pena
- Department of Neuroscience, Albert Einstein College of Medicine,
Bronx, NY, USA
| | - Noboru Hiroi
- Department of Neuroscience, Albert Einstein College of Medicine,
Bronx, NY, USA
- Department of Psychiatry and Behavioral Sciences, Albert Einstein
College of Medicine, Bronx, NY, USA
- Department of Genetics, Albert Einstein College of Medicine, Bronx,
NY, USA
| |
Collapse
|
19
|
Kikusui T, Mogi K. [Emotional changes induced by social stress in juvenile period]. Nihon Yakurigaku Zasshi 2017; 149:66-71. [PMID: 28154299 DOI: 10.1254/fpj.149.66] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
|
20
|
Richter SH, Kästner N, Loddenkemper DH, Kaiser S, Sachser N. A Time to Wean? Impact of Weaning Age on Anxiety-Like Behaviour and Stability of Behavioural Traits in Full Adulthood. PLoS One 2016; 11:e0167652. [PMID: 27930688 PMCID: PMC5145172 DOI: 10.1371/journal.pone.0167652] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 11/17/2016] [Indexed: 12/31/2022] Open
Abstract
In mammals, weaning constitutes an important phase in the progression to adulthood. It comprises the termination of suckling and is characterized by several changes in the behaviour of both mother and offspring. Furthermore, numerous studies in rodents have shown that the time point of weaning shapes the behavioural profile of the young. Most of these studies, however, have focused on ‘early weaning’, while relatively little work has been done to study ‘late weaning’ effects. The aim of the present study was therefore to explore behavioural effects of ‘late weaning’, and furthermore to gain insights into modulating effects of weaning age on the consistency of behavioural expressions over time. In total, 25 male and 20 female C57BL/6J mice, weaned after three (W3) or four (W4) weeks of age, were subjected to a series of behavioural paradigms widely used to assess anxiety-like behaviour, exploratory locomotion, and nest building performance. Behavioural testing took place with the mice reaching an age of 20 weeks and was repeated eight weeks later to investigate the stability of behavioural expressions over time. At the group level, W4 mice behaved less anxious and more explorative than W3 animals in the Open Field and Novel Cage, while anxiety-like behaviour on the Elevated Plus Maze was modulated by a weaning-age-by-sex interaction. Furthermore, weaning age shaped the degree of behavioural stability over time in a sex-specific way. While W3 females and W4 males displayed a remarkable degree of behavioural stability over time, no such patterns were observed in W3 males and W4 females. Adding to the existing literature, we could thus confirm that effects of weaning age do indeed exist when prolonging this phase, and were furthermore able to provide first evidence for the impact of weaning age and sex on the consistency of behavioural expressions over time.
Collapse
Affiliation(s)
- S. Helene Richter
- Department of Behavioural Biology, University of Münster, Münster, Germany
- * E-mail:
| | - Niklas Kästner
- Department of Behavioural Biology, University of Münster, Münster, Germany
| | | | - Sylvia Kaiser
- Department of Behavioural Biology, University of Münster, Münster, Germany
| | - Norbert Sachser
- Department of Behavioural Biology, University of Münster, Münster, Germany
| |
Collapse
|
21
|
Mutual mother-infant recognition in mice: The role of pup ultrasonic vocalizations. Behav Brain Res 2016; 325:138-146. [PMID: 27567527 DOI: 10.1016/j.bbr.2016.08.044] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 08/22/2016] [Accepted: 08/24/2016] [Indexed: 11/23/2022]
Abstract
The importance of the mother-infant bond for the development of offspring health and sociality has been studied not only in primate species but also in rodent species. A social bond is defined as affiliative behaviors toward a specific partner. However, controversy remains concerning whether mouse pups can distinguish between their own mother and an alien mother, and whether mothers can differentiate their own pups from alien pups. In this study, we investigated whether mutual recognition exists between mother and infant in ICR mice. Furthermore, we studied pup ultrasonic vocalizations (USVs), which are emitted by pups when isolated from their mothers, to determine whether they constituted an individual signature used by the mother for pup recognition. We conducted a variety of two-choice tests and selective-retrieving tests. In a two-choice test for mother recognition by the pup, pups between the ages of 17 and 21days preferred their own mothers to alien mothers. In a two-choice test for pup recognition by its mother, the mothers located their own pups faster than alien pups at the beginning of the test, yet displayed similar retrieving activity for both their own and alien pups in the subsequent selective-retrieving test. Furthermore, after recording USVs from pups from subject and alien mothers, then playing them simultaneously, subject mothers displayed a preference for pup USVs emitted by their own pups. Overall, our findings support the existence of mother-infant bonding in mice and suggest that pup USVs contribute to pup recognition by mothers.
Collapse
|
22
|
Gröger N, Matas E, Gos T, Lesse A, Poeggel G, Braun K, Bock J. The transgenerational transmission of childhood adversity: behavioral, cellular, and epigenetic correlates. J Neural Transm (Vienna) 2016; 123:1037-52. [DOI: 10.1007/s00702-016-1570-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 05/02/2016] [Indexed: 12/21/2022]
|
23
|
Guillou A, Romanò N, Steyn F, Abitbol K, Le Tissier P, Bonnefont X, Chen C, Mollard P, Martin AO. Assessment of lactotroph axis functionality in mice: longitudinal monitoring of PRL secretion by ultrasensitive-ELISA. Endocrinology 2015; 156:1924-30. [PMID: 25643154 DOI: 10.1210/en.2014-1571] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The pattern of prolactin (PRL) secretion depends on the physiological state. Due to insufficient detection sensitivity of existing assays, the precise description of these patterns in mice is lacking. We described an ultrasensitive ELISA assay that can detect mouse PRL in small fractions of whole blood, allowing longitudinal studies of PRL secretion profiles in freely moving mice. Over a 24-hour period, males displayed no oscillation in PRL levels, whereas virgin and lactating females showed large pulses. Peaks of PRL secretion reached 30-40 ng/mL in lactating female mice and rarely exceeded 10 ng/mL in virgin females. These pulses of PRL in lactating females were associated with suckling. The return of pups after an experimental 12-hour weaning induced a pulse of PRL release, reaching 100 ng/mL. This approach also enabled us to assess the inhibitory tone from hypothalamic dopamine neurons on PRL secretion. We used a dopamine D2 receptor antagonist to relieve pituitary lactotrophs from the tuberoinfundibular dopaminergic inhibitory tone and demonstrate a D2-induced PRL rise that can be used to evaluate both the secretory capacity of lactotrophs and the magnitude of the inhibitory tone on pituitary PRL release. We demonstrate that, although lactotroph function is altered to enhance chronic PRL output, their secretory response to acute stimulus is not modified during lactation and that chronic hyperprolactinemia is linked to a lower inhibitory tone. The combination of a sensitive PRL ELISA and administration of D2 receptor antagonist provide a unique opportunity to investigate the function and plasticity of the lactotroph axis in freely moving mice.
Collapse
Affiliation(s)
- Anne Guillou
- Unité Mixte de Recherche-5203 (A.G., N.R., K.A., X.B., P.M., A.O.M.), Centre National de la Recherche Scientifique, Institut de Génomique Fonctionnelle, INSERM (A.G., N.R., K.A., X.B., P.M., A.O.M.), Unité 661, and Unité Mixte de Recherche-5203 (A.G., N.R., K.A., X.B., P.M., A.O.M.), Universités de Montpellier 1 and 2, F-34000 Montpellier, France; School of Biomedical Sciences (F.S., C.C.), Faculty of Medicine and Biomedical Sciences, University of Queensland, St Lucia, Queensland 4072, Australia; and Centre for Integrative Physiology (P.L.T.), University of Edinburgh, Edinburgh EH8 9XD, United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Hensleigh E, Pritchard LM. Maternal separation increases methamphetamine-induced damage in the striatum in male, but not female rats. Behav Brain Res 2014; 295:3-8. [PMID: 25535855 DOI: 10.1016/j.bbr.2014.12.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Revised: 11/13/2014] [Accepted: 12/02/2014] [Indexed: 11/25/2022]
Abstract
Methamphetamine abuse impacts the global economy through costs associated with drug enforcement, emergency room visits, and treatment. Previous research has demonstrated early life stress, such as childhood abuse, increases the likelihood of developing a substance abuse disorder. However, the effects of early life stress on neuronal damage induced by binge methamphetamine administration are unknown. We aimed to elucidate the effects of early life stress on methamphetamine induced dopamine damage in the striatum. Pups were separated from dams for 3h per day during the first two weeks of development or 15 min for control. In adulthood, rats received either subcutaneous 0.9% saline or 5.0mg/kg METH injections every 2h for a total of four injections. Rectal temperatures were taken before the first injection and 1h after each subsequent injection. Seven days after treatment, rats were euthanized and striatum was collected for quantification of tyrosine hydroxylase (TH) and dopamine transporters (DAT) content by Western blot. Methamphetamine significantly elevated core body temperature in males and decreased striatal DAT and TH content, and this effect was potentiated by early life stress. Females did not exhibit elevated core body temperatures or changes in DAT or TH in either condition. Results indicate maternal separation increases methamphetamine induced damage, and females are less susceptible to methamphetamine induced damage.
Collapse
Affiliation(s)
- Emily Hensleigh
- Department of Psychology, University of Nevada Las Vegas, 4505 Maryland Parkway, Las Vegas, NV 89154, United States
| | - Laurel M Pritchard
- Department of Psychology, University of Nevada Las Vegas, 4505 Maryland Parkway, Las Vegas, NV 89154, United States.
| |
Collapse
|
25
|
Pittet F, Houdelier C, Le Bot O, Leterrier C, Lumineau S. Fearfulness affects quail maternal care and subsequent offspring development. PLoS One 2014; 9:e102800. [PMID: 25033292 PMCID: PMC4102550 DOI: 10.1371/journal.pone.0102800] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Accepted: 06/06/2014] [Indexed: 12/03/2022] Open
Abstract
Our study investigated relationships between a precocial bird’s fearfulness and maternal care, and the implication of maternal care as a vector for non-genomic transmission of fearfulness to chicks. We compared care given to chicks between two sets of female Japanese quail selected to present either high (LTI) or low fearfulness (STI). Chicks, from a broiler line, were adopted by these females following a sensitization procedure. Chicks’ fearfulness after separation from their mother was assessed by well-established procedures. LTIs took longer to present maternal responses, pecked chicks more during the first days post-hatch, presented impaired maternal vocal behaviour and were globally less active than STI females. Chicks mothered by LTIs presented more fearful reactions than did chicks mothered by STIs, supporting the hypothesis of a non-genetic maternal transmission of fearfulness. We suggest that the longer latencies required by LTIs to become maternal are a consequence of their greater fear of chicks, and that their lower general and vocal activity could be components of a heightened antipredatory strategy. We discuss the transmission of maternal fearfulness to fostered chicks, taking into account the possible implication of several well-known mechanisms underlying maternal effects.
Collapse
Affiliation(s)
- Florent Pittet
- Université Rennes 1, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 6552 « Ethos », Rennes, France
| | - Cécilia Houdelier
- Université Rennes 1, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 6552 « Ethos », Rennes, France
| | - Océane Le Bot
- Université Rennes 1, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 6552 « Ethos », Rennes, France
| | - Christine Leterrier
- Institut National de la Recharche Agronomique, Unité mixte de Recherche 85 Physiologie de la Reproduction et des Comportements, Nouzilly, France
| | - Sophie Lumineau
- Université Rennes 1, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 6552 « Ethos », Rennes, France
- * E-mail:
| |
Collapse
|
26
|
Exposure to dim light at night during early development increases adult anxiety-like responses. Physiol Behav 2014; 133:99-106. [PMID: 24857721 DOI: 10.1016/j.physbeh.2014.05.012] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Revised: 05/02/2014] [Accepted: 05/14/2014] [Indexed: 12/22/2022]
Abstract
Early experiences produce effects that may persist throughout life. Therefore, to understand adult phenotype, it is important to investigate the role of early environmental stimuli in adult behavior and health. Artificial light at night (LAN) is an increasingly common phenomenon throughout the world. However, animals, including humans, evolved under dark night conditions. Many studies have revealed affective, immune, and metabolic alterations provoked by aberrant light exposure and subsequent circadian disruption. Pups are receptive to entraining cues from the mother and then light early during development, raising the possibility that the early life light environment may influence subsequent behavior. Thus, to investigate potential influences of early life exposure to LAN on adult phenotype, we exposed mice to dim (~5 lux; full spectrum white light) or dark (~0 lux) nights pre- and/or postnatally. After weaning at 3 weeks of age, all mice were maintained in dark nights until adulthood (9 weeks of age) when behavior was assessed. Mice exposed to dim light in early life increased anxiety-like behavior and fearful responses on the elevated plus maze and passive avoidance tests. These mice also displayed reduced growth rates, which ultimately normalized during adolescence. mRNA expression of brain derived neurotrophic factor (BDNF), a neurotrophin previously linked to early life environment and adult phenotype, was not altered in the prefrontal cortex or hippocampus by early life LAN exposure. Serum corticosterone concentrations were similar between groups at weaning, suggesting that early life LAN does not elicit a long-term physiologic stress response. Dim light exposure did not influence behavior on the open field, novel object, sucrose anhedonia, or forced swim tests. Our data highlight the potential deleterious consequences of low levels of light during early life to development and subsequent behavior. Whether these changes are due to altered maternal behavior or persistent circadian abnormalities incurred by LAN remains to be determined.
Collapse
|
27
|
Maternal behaviour and lamb survival: from neuroendocrinology to practical application. Animal 2014; 8:102-12. [DOI: 10.1017/s1751731113001614] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
28
|
Fraga MC, de Moura EG, da Silva Lima N, Lisboa PC, de Oliveira E, Silva JO, Claudio-Neto S, Filgueiras CC, Abreu-Villaça Y, Manhães AC. Anxiety-like, novelty-seeking and memory/learning behavioral traits in male Wistar rats submitted to early weaning. Physiol Behav 2014; 124:100-6. [DOI: 10.1016/j.physbeh.2013.11.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Revised: 10/25/2013] [Accepted: 11/06/2013] [Indexed: 10/26/2022]
|
29
|
Pittet F, Houdelier C, de Margerie E, Le Bot O, Richard-Yris MA, Lumineau S. Maternal styles in a precocial bird. Anim Behav 2014. [DOI: 10.1016/j.anbehav.2013.10.025] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
30
|
Costa HHV, Vilela FC, Giusti-Paiva A. Continuous central infusion of cannabinoid receptor agonist WIN 55,212-2 decreases maternal care in lactating rats: Consequences for fear conditioning in adulthood males. Behav Brain Res 2013; 257:31-8. [DOI: 10.1016/j.bbr.2013.09.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Revised: 09/04/2013] [Accepted: 09/09/2013] [Indexed: 12/11/2022]
|
31
|
Wu R, Song Z, Tai F, Wang L, Kong L, Wang J. Post-weaning living with parents during juvenile period alters locomotor activity, social and parental behaviors in mandarin voles. Behav Processes 2013; 98:78-84. [DOI: 10.1016/j.beproc.2013.05.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Revised: 04/01/2013] [Accepted: 05/10/2013] [Indexed: 11/28/2022]
|
32
|
Koizumi H, Kurabayashi N, Watanabe Y, Sanada K. Increased anxiety in offspring reared by circadian Clock mutant mice. PLoS One 2013; 8:e66021. [PMID: 23776596 PMCID: PMC3680406 DOI: 10.1371/journal.pone.0066021] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2013] [Accepted: 04/30/2013] [Indexed: 11/23/2022] Open
Abstract
The maternal care that offspring receive from their mothers early in life influences the offspring’s development of emotional behavior in adulthood. Here we found that offspring reared by circadian clock-impaired mice show elevated anxiety-related behavior. Clock mutant mice harboring a mutation in Clock, a key component of the molecular circadian clock, display altered daily patterns of nursing behavior that is fragmented during the light period, instead of long bouts of nursing behavior in wild-type mice. Adult wild-type offspring fostered by Clock mutant mice exhibit increased anxiety-related behavior. This is coupled with reduced levels of brain serotonin at postnatal day 14, whose homeostasis during the early postnatal period is critical for normal emotional behavior in adulthood. Together, disruption of the circadian clock in mothers has an adverse impact on establishing normal anxiety levels in offspring, which may increase their risk of developing anxiety disorders.
Collapse
Affiliation(s)
- Hiroko Koizumi
- Department of Biophysics and Biochemistry, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Nobuhiro Kurabayashi
- Molecular Genetics Research Laboratory, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Yuto Watanabe
- Department of Biophysics and Biochemistry, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Kamon Sanada
- Molecular Genetics Research Laboratory, Graduate School of Science, The University of Tokyo, Tokyo, Japan
- * E-mail:
| |
Collapse
|
33
|
NAGASAWA MIHO, OKABE SHOTA, MOGI KAZUTAKA, KIKUSUI TAKEFUMI. The biological perspective on mother-infant bonding: the importance of oxytocin. ACTA ACUST UNITED AC 2013. [DOI: 10.2502/janip.63.1.4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
34
|
Wu R, Song Z, Tai F, An X, Yu P, Li Y. The effect of alloparental experience and care on anxiety-like, social and parental behaviour in adult mandarin voles. Anim Behav 2013. [DOI: 10.1016/j.anbehav.2012.10.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
35
|
Rymer TL, Pillay N. Maternal care in the African striped mouse Rhabdomys pumilio: a behaviorally flexible phenotype that is modified by experience. Dev Psychobiol 2012; 55:265-74. [PMID: 22407856 DOI: 10.1002/dev.21020] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2011] [Accepted: 02/07/2012] [Indexed: 12/21/2022]
Abstract
The development of maternal care in mammals can be influenced by the type and quality of maternal care received. Using biparental striped mice Rhabdomys pumilio, we investigated whether development of maternal care is influenced by the mother during early rearing and by an adult female's experience and that of her mate. Offspring were raised in one of three treatments, by: both parents; mothers alone; and mothers separated from the father with a barrier. Since female striped mice increase their care when raising litters alone, which influences expression of parental care of their adult sons, we expected daughters to respond like sons. However, there was no treatment effect in the development of maternal care in daughters. In subsequent experiments, experienced and inexperienced females decreased care when raising their offspring with experienced but not inexperienced males. Therefore, maternal care in striped mice is modulated in response to prevailing environmental and social conditions.
Collapse
Affiliation(s)
- Tasmin L Rymer
- School of Animal, Plant and Environmental Sciences, University of the Witwatersrand, Private Bag 3, Wits 2050, South Africa
| | | |
Collapse
|
36
|
Nagasawa M, Okabe S, Mogi K, Kikusui T. Oxytocin and mutual communication in mother-infant bonding. Front Hum Neurosci 2012; 6:31. [PMID: 22375116 PMCID: PMC3289392 DOI: 10.3389/fnhum.2012.00031] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2011] [Accepted: 02/10/2012] [Indexed: 12/12/2022] Open
Abstract
Mother-infant bonding is universal to all mammalian species. In this review, we describe the manner in which reciprocal communication between the mother and infant leads to mother-infant bonding in rodents. In rats and mice, mother-infant bond formation is reinforced by various social stimuli, such as tactile stimuli and ultrasonic vocalizations (USVs) from the pups to the mother, and feeding and tactile stimulation from the mother to the pups. Some evidence suggests that mother and infant can develop a cross-modal sensory recognition of their counterpart during this bonding process. Neurochemically, oxytocin in the neural system plays a pivotal role in each side of the mother-infant bonding process, although the mechanisms underlying bond formation in the brains of infants has not yet been clarified. Impairment of mother-infant bonding, that is, deprivation of social stimuli from the mother, strongly influences offspring sociality, including maternal behavior toward their own offspring in their adulthood, implying a "non-genomic transmission of maternal environment," even in rodents. The comparative understanding of cognitive functions between mother and infants, and the biological mechanisms involved in mother-infant bonding may help us understand psychiatric disorders associated with mother-infant relationships.
Collapse
Affiliation(s)
| | | | | | - Takefumi Kikusui
- Department of Animal Science and Biotechnology, Azabu University, SagamiharaKanagawa-ken, Japan
| |
Collapse
|
37
|
Ferdowsian H, Merskin D. Parallels in sources of trauma, pain, distress, and suffering in humans and nonhuman animals. J Trauma Dissociation 2012; 13:448-68. [PMID: 22651679 DOI: 10.1080/15299732.2011.652346] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
It is widely accepted that animals often experience pain and distress as a result of their use in scientific experimentation. However, unlike human suffering, the wide range of acute, recurrent, and chronic stressors and trauma on animals is rarely evaluated. In order to better understand the cumulative effects of captivity and laboratory research conditions on animals, we explore parallels between human experiences of pain and psychological distress and those of animals based on shared brain structures and physiological mechanisms. We review anatomical, physiological, and behavioral similarities between humans and other animals regarding the potential for suffering. In addition, we examine associations between research conditions and indicators of pain and distress. We include 4 case studies of common animal research protocols in order to illustrate incidental and experimental factors that can lead to animal suffering. Finally, we identify parallels between established traumatic conditions for humans and existing laboratory conditions for animals.
Collapse
Affiliation(s)
- Hope Ferdowsian
- Physician's Committee for Responsible Medicine, Department of Medicine, George Washington University, Washington, DC, USA
| | | |
Collapse
|
38
|
Schechter M, Pinhasov A, Weller A, Fride E. Blocking the postpartum mouse dam's CB1 receptors impairs maternal behavior as well as offspring development and their adult social–emotional behavior. Behav Brain Res 2012; 226:481-92. [DOI: 10.1016/j.bbr.2011.10.016] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2011] [Revised: 09/28/2011] [Accepted: 10/03/2011] [Indexed: 11/28/2022]
|
39
|
Mogi K, Nagasawa M, Kikusui T. Developmental consequences and biological significance of mother-infant bonding. Prog Neuropsychopharmacol Biol Psychiatry 2011; 35:1232-41. [PMID: 20817069 DOI: 10.1016/j.pnpbp.2010.08.024] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2010] [Revised: 08/25/2010] [Accepted: 08/26/2010] [Indexed: 10/19/2022]
Abstract
Mother-infant bonding is universal to all mammalian species. Here, we review how mutual communication between the mother and infant leads to mother-infant bonding in non-primate species. In rodents, mother-infant bond formation is reinforced by various pup stimuli, such as tactile stimuli and ultrasonic vocalizations. Evidence suggests that the oxytocin neural system plays a pivotal role in each aspect of the mother-infant bonding, although the mechanisms underlying bond formation in the brain of infants has not yet been clarified. Impairment of mother-infant bonding strongly influences offspring sociality. We describe the negative effects of mother-infant bonding deprivation on the neurobehavioral development in rodent offspring, even if weaning occurs in the later lactating period. We also discuss similar effects observed in pigs and dogs, which are usually weaned earlier than under natural conditions. The comparative understanding of the developmental consequences of mother-infant bonding and the underlying mechanisms provide insight into the biological significance of this bonding in mammals, and may help us to understand psychiatric disorders related to child abuse or childhood neglect.
Collapse
Affiliation(s)
- Kazutaka Mogi
- Department of Animal Science and Biotechnology, School of Veterinary Medicine, Azabu University, 1-17-71 Fuchinobe, Chuo-ku, Sagamihara 252-5201, Japan
| | | | | |
Collapse
|
40
|
Rymer TL, Pillay N. The Influence of the Early Rearing Environment on the Development of Paternal Care in African Striped Mice. Ethology 2011. [DOI: 10.1111/j.1439-0310.2011.01873.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
41
|
Johnson NL, Carini L, Schenk ME, Stewart M, Byrnes EM. Adolescent opiate exposure in the female rat induces subtle alterations in maternal care and transgenerational effects on play behavior. Front Psychiatry 2011; 2:29. [PMID: 21713113 PMCID: PMC3112319 DOI: 10.3389/fpsyt.2011.00029] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2011] [Accepted: 05/08/2011] [Indexed: 01/25/2023] Open
Abstract
The non-medical use of prescription opiates, such as Vicodin(®) and MSContin(®), has increased dramatically over the past decade. Of particular concern is the rising popularity of these drugs in adolescent female populations. Use during this critical developmental period could have significant long-term consequences for both the female user as well as potential effects on her future offspring. To address this issue, we have begun modeling adolescent opiate exposure in female rats and have observed significant transgenerational effects despite the fact that all drugs are withdrawn several weeks prior to pregnancy. The purpose of the current set of studies was to determine whether adolescent morphine exposure modifies postpartum care. In addition, we also examined juvenile play behavior in both male and female offspring. The choice of the social play paradigm was based on previous findings demonstrating effects of both postpartum care and opioid activity on play behavior. The findings revealed subtle modifications in the maternal behavior of adolescent morphine-exposed females, primarily related to the amount of time females' spend nursing and in non-nursing contact with their young. In addition, male offspring of adolescent morphine-exposed mothers (MOR-F1) demonstrate decreased rough and tumble play behaviors, with no significant differences in general social behaviors (i.e., social grooming and social exploration). Moreover, there was a tendency toward increased rough and tumble play in MOR-F1 females, demonstrating the sex-specific nature of these effects. Given the importance of the postpartum environment on neurodevelopment, it is possible that modifications in maternal-offspring interactions, related to a history of adolescent opiate exposure, plays a role in the observed transgenerational effects. Overall, these studies indicate that the long-term consequences of adolescent opiate exposure can impact both the female and her future offspring.
Collapse
Affiliation(s)
- Nicole L Johnson
- Department of Biomedical Science, Cummings School of Veterinary Medicine, Tufts University North Grafton, MA, USA
| | | | | | | | | |
Collapse
|
42
|
Early weaning programs rats to have a dietary preference for fat and palatable foods in adulthood. Behav Processes 2011; 86:75-80. [DOI: 10.1016/j.beproc.2010.09.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2010] [Revised: 09/15/2010] [Accepted: 09/24/2010] [Indexed: 01/13/2023]
|
43
|
Oliveira LDS, da Silva LP, da Silva AI, Magalhães CP, de Souza SL, de Castro RM. Effects of early weaning on the circadian rhythm and behavioral satiety sequence in rats. Behav Processes 2011; 86:119-24. [DOI: 10.1016/j.beproc.2010.10.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2010] [Revised: 09/23/2010] [Accepted: 10/18/2010] [Indexed: 01/30/2023]
|
44
|
Cummings JA, Clemens LG, Nunez AA. Mother counts: how effects of environmental contaminants on maternal care could affect the offspring and future generations. Front Neuroendocrinol 2010; 31:440-51. [PMID: 20685293 DOI: 10.1016/j.yfrne.2010.05.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2010] [Revised: 05/20/2010] [Accepted: 05/25/2010] [Indexed: 11/15/2022]
Abstract
Various compounds of anthropogenic origin represent environmental contaminants (EC) that penetrate the food chain and are frequently detected in human milk and maternal blood at the time of delivery. These ECs can affect the development of the fetus and can be transferred to the newborn during lactation. Many studies have used animal models to study the impact of ECs on the development of the nervous system and have reported effects of early exposure on neural and neuroendocrine systems and on behavior, when the exposed animals are tested as adults. Some of these effects persist across generations and may involve epigenetic mechanisms. The majority of these studies in developmental toxicology treat the pregnant or lactating animal with ECs in order to deliver the contaminants to the developing offspring. Almost universally, the mother is viewed as a passive conduit for the ECs, and maternal behavior is rarely assessed. Here we review the literature on the effects of ECs on maternal care and find mounting evidence that important components of the care given to the offspring are affected by maternal exposure to different ECs. Some of these changes in maternal behavior appear to be secondary to changes in the behavior and/or stimulus properties of the exposed offspring, but others are likely to be direct effects of the ECs on the maternal nervous and endocrine systems. Considering the extent to which the quality of maternal care affects the development of the offspring, it becomes imperative to determine the contributions that changes in maternal behavior make to the deficits traditionally ascribed solely to direct effects of ECs on the developing organism. Given the complexity and importance of mother-infant interactions, future research on developmental toxicology must consider the effects of ECs not only on the offspring, but also on the mother and on the interactions and social bond between mother and infant.
Collapse
Affiliation(s)
- J A Cummings
- Molecular and Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | | | | |
Collapse
|
45
|
OZAWA M, KIKUSUI T, TAKEUCHI Y, MORI Y. Comparison of Parental Behavior and Offspring's Anxiety Behavior Using a Reciprocal F1 Hybrid Model. J Vet Med Sci 2010; 72:1589-96. [DOI: 10.1292/jvms.10-0173] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
- Makiko OZAWA
- Laboratory of Veterinary Ethology, The University of Tokyo
| | - Takefumi KIKUSUI
- Laboratory of Veterinary Ethology, The University of Tokyo
- Companion Animal Research, Azabu University
| | | | - Yuji MORI
- Laboratory of Veterinary Ethology, The University of Tokyo
| |
Collapse
|
46
|
Engert V, Joober R, Meaney MJ, Hellhammer DH, Pruessner JC. Behavioral response to methylphenidate challenge: influence of early life parental care. Dev Psychobiol 2009; 51:408-16. [PMID: 19492313 DOI: 10.1002/dev.20380] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Rat studies have shown that pups subjected to suboptimal rearing conditions exhibited permanently dysregulated dopamine activity and altered behavioral responses to dopamine stimulation. In humans, heightened stress-induced mesoaccumbens dopamine release in adults reporting low maternal care experience has been shown. We explored the relationship between quality of parental care and behavioral responsivity to reward and 20 mg of the dopamine agonist methylphenidate (MPH). Forty-three male university students accomplished a monetarily rewarded card-sorting task in a placebo controlled between-subjects study design. In participants scoring above the cut-off score for high parental care as assessed by the Parental Bonding Inventory, MPH decreased performance accuracy in the reward condition of the task. Contrarily, reward-induced performance accuracy of low care participants was enhanced with MPH. Activity measures in response to reward and MPH were uninfluenced by parental care. This is the first human study to reveal that the behavioral MPH response interacts with early life parental care experience.
Collapse
Affiliation(s)
- Veronika Engert
- Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montreal, Quebec, Canada H4H 1R3.
| | | | | | | | | |
Collapse
|
47
|
Curley JP, Jordan ER, Swaney WT, Izraelit A, Kammel S, Champagne FA. The meaning of weaning: influence of the weaning period on behavioral development in mice. Dev Neurosci 2009; 31:318-31. [PMID: 19546569 DOI: 10.1159/000216543] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2008] [Accepted: 12/29/2009] [Indexed: 01/03/2023] Open
Abstract
Maternal care during the first week postpartum has long-term consequences for offspring development in rodents. However, mother-infant interactions continue well beyond this period, with several physiological and behavioral changes occurring between days 18 and 28 PN. In the present study, we investigate the long-term effects on offspring behavior of being weaned at day 21 PN versus day 28 PN. We found that male and female offspring engage in higher initial levels of social interaction if weaned at day 28 PN, as well as sexually dimorphic changes in exploratory behavior. Females who were themselves weaned earlier also appeared to wean their own pups earlier. Sex-specific effects of weaning age were found on levels of oxytocin and vasopressin V1a receptor density in the hypothalamus, central nucleus of the amygdala and nucleus accumbens. These results indicate that altering weaning age in mice may be a useful model for investigating the development of sexual dimorphism in neurobiology and behavior.
Collapse
Affiliation(s)
- James P Curley
- Department of Psychology, Columbia University, New York, N.Y. 10027, USA
| | | | | | | | | | | |
Collapse
|
48
|
Maternal deprivation by early weaning increases corticosterone and decreases hippocampal BDNF and neurogenesis in mice. Psychoneuroendocrinology 2009; 34:762-72. [PMID: 19167168 DOI: 10.1016/j.psyneuen.2008.12.009] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2008] [Revised: 12/05/2008] [Accepted: 12/15/2008] [Indexed: 11/21/2022]
Abstract
We previously demonstrated that early weaning increases anxiety and neuroendocrine stress responses in rats and mice. In addition, early-weaned mice show precocious myelin formation, especially in the amygdala, suggesting that these mice are vulnerable to psychological stress. In the present experiments, we examined corticosterone response after early weaning and how early weaning affects hippocampal neurotrophic factor and neurogenesis, which have been linked to depressive behavior in human and animals models. When the mice were weaned at PD14, both male and female mice showed higher corticosterone levels up to 48h after weaning. In contrast, after standard weaning, corticosterone levels returned to the baseline within 2h. Early-weaned males, but not females, had less brain-derived neurotrophic factor (BDNF) protein in the hippocampus at 3 weeks of age than standard-weaned mice. Neural stem cells were labeled with bromodeoxyuridine (BrdU) injections at 2, 3, or 5 weeks of age, and assayed at 3, 5, and 8 weeks of age, respectively. Early-weaned males had fewer BrdU immunoreactive cells in the dentate gyrus at 3, 5, and 8 weeks. In early-weaned females, fewer BrdU-positive cells were observed only at 5 weeks. Double-staining with BrdU and the neuron markers NeuN and Tuj1 demonstrated that neurogenesis was lower in early-weaned mice at 5 weeks of age. These results suggest that lack of mother-infant interaction during the late lactation period leads to an increase in corticosterone synthesis for 2 days and a decrease in BDNF synthesis in males; moreover, this lack of interaction transiently inhibits hippocampal cell proliferation and survival in both males and females, although the effects were more pronounced in males.
Collapse
|
49
|
Shoji H, Kato K. Maternal care affects the development of maternal behavior in inbred mice. Dev Psychobiol 2009; 51:345-57. [DOI: 10.1002/dev.20375] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
50
|
Abstract
Among all mammalian species, pups are highly dependent on their mother not only for nutrition, but also for physical interaction. Therefore, disruption of the mother-pup interaction changes the physiology and behaviour of pups. We review how maternal separation in the early developmental period brings about changes in the behaviour and neuronal systems of the offspring of rats and mice. Early weaning in mice results in adulthood a persistent increase in anxiety-like and aggressive behaviour. The early-weaned mice also show higher hypothalamic-pituitary-adrenal activity in response to novelty stress. Neurochemically, the early-weaned male mice, but not female mice, show precocious myelination in the amygdala, decreased brain-derived neurotrophic factor protein levels in the hippocampus and prefrontal cortex, and reduced bromodeoxyuridine immunoreactivity in the dentate gyrus. Because higher corticosterone levels are persistently observed up to 48 h when the mice are weaned on postnatal day 14, the exposure of the developing brain to higher corticosterone levels may be one of the effects of early weaning. These results suggest that deprivation of the mother-infant interaction during the late lactating period results in behavioural and neurochemical changes in adulthood and that these stress responses are sexually dimorphic (i.e. the male is more vulnerable to early weaning stress).
Collapse
Affiliation(s)
- T Kikusui
- Companion Animal Research, School of Veterinary Medicine, Azabu University, Fuchinobe, Sagamihara, Kanagawa, Japan.
| | | |
Collapse
|