1
|
Yanagida B, Yamamoto T, Suzuki H. Amylin-like immunoreactivity in the extra-islet peptide YY-producing and glucagon-immunoreactive cells in Japanese quail pancreas. Anat Histol Embryol 2024; 53:e13074. [PMID: 38864153 DOI: 10.1111/ahe.13074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 05/21/2024] [Accepted: 05/31/2024] [Indexed: 06/13/2024]
Abstract
In this study, we investigated amylin-like substance distribution in the pancreas of Japanese quail (Coturnix japonica) using a specific anti-rat amylin serum. We detected amylin-immunoreactive cells dispersed in the pancreatic extra-islet region but not in the islet region. The synthetic rat amylin-containing serum pre-absorption abolished the staining profile. Almost all amylin-immunoreactive cells were immuno-positive for peptide YY (PYY). In addition, certain amylin-immunoreactive cells stained immuno-positive for glucagon. Amylin and PYY co-secreted from the extra-islet cells might participate in the insulin and glucagon release regulation in the pancreas and food intake modulation through the central nervous system.
Collapse
Affiliation(s)
- Bonten Yanagida
- Department of Biology, University of Teacher Education Fukuoka, Munakata, Fukuoka, Japan
| | - Toshiharu Yamamoto
- Department of Physical Therapy, Faculty of Medical Science, Nagoya Women's University, Nagoya, Aichi, Japan
- Brain Functions and Neuroscience Unit, Department of Oral Science, Graduate School of Dentistry, Kanagawa Dental University, Yokosuka, Kanagawa, Japan
| | - Hirohumi Suzuki
- Department of Biology, University of Teacher Education Fukuoka, Munakata, Fukuoka, Japan
| |
Collapse
|
2
|
Anene DO, Akter Y, Groves PJ, Horadagoda N, Liu SY, Moss A, Hutchison C, O'Shea CJ. Association of feed efficiency with organ characteristics and fatty liver haemorrhagic syndrome in laying hens. Sci Rep 2023; 13:5872. [PMID: 37041185 PMCID: PMC10090132 DOI: 10.1038/s41598-023-30007-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 02/14/2023] [Indexed: 04/13/2023] Open
Abstract
Poor feed efficiency (FE) in hens impacts body weight (BW) and may reflect suboptimal health. Fatty Liver Haemorrhagic Syndrome (FLHS) is mostly observed in laying hens and affects egg production and hen performance. The aim of this study was to investigate the relationships of FE and BW with organ characteristics, liver composition and incidence of FLHS of 150 individually housed ISA Brown hens ranked on the basis of feed conversion ratio (FCR) attained from early lay. At 45 weeks, 10 birds per FE group (HFE-High feed efficient; MFE-medium feed efficient; LFE-low feed efficient) were randomly selected and euthanized. Hen BW was positively associated with feed intake and FCR. The HFE hens had a lower abdominal fat pad and liver weight compared to LFE hens. FLHS lesion score was higher (worse) in the LFE than HFE hen group and was moderately positively associated with BW and abdominal fat pad, but strongly positively associated with liver weight. Liver pathology of LFE hens showed hepatocytes with abnormal retention of lipids causing distended cytoplasmic vacuoles compared to the HFE hens. Hens which exhibited poorer FE in early lay had heavier abdominal fat pads, heavier, fatter livers and were more prone to FLHS.
Collapse
Affiliation(s)
- Doreen Onyinye Anene
- School of Biosciences, Department of Animal Science, University of Nottingham, Sutton Bonington Campus, Loughborough, LE512RD, UK
| | - Yeasmin Akter
- School of Life and Environmental Sciences (SOLES), Faculty of Science, University of Sydney, Camden, NSW, 2570, Australia
| | - Peter John Groves
- Sydney School of Veterinary Science, Faculty of Science, Poultry Research Foundation, University of Sydney, Camden, NSW, 2570, Australia
| | - Neil Horadagoda
- Sydney School of Veterinary Science, Faculty of Science, University Veterinary Teaching Hospital Camden, The University of Sydney, Camden, NSW, 2570, Australia
| | - Sonia Yun Liu
- School of Life and Environmental Sciences (SOLES), Faculty of Science, University of Sydney, Camden, NSW, 2570, Australia
| | - Amy Moss
- School of Environmental and Rural Science, University of New England, Armidale, NSW, 82351, Australia
| | - Christine Hutchison
- School of Science, Western Sydney University, Hawkesbury Campus, Richmond, NSW, 2753, Australia
| | - Cormac John O'Shea
- School of Biosciences, Department of Animal Science, University of Nottingham, Sutton Bonington Campus, Loughborough, LE512RD, UK.
- Department of Bioveterinary and Microbial Sciences, Technological University of the Shannon: Midlands Midwest-Athlone, Co Westmeath, N37 HD68, Ireland.
| |
Collapse
|
3
|
Wang M, Xu S, Li Y, Tang N, Chen H, Zhang S, Liu Y, Wang J, Chen D, Zhang X, Li Z. Identification, tissue distribution, and anorexigenic effect of amylin in Siberian sturgeon (Acipenser baeri). Comp Biochem Physiol A Mol Integr Physiol 2021; 263:111079. [PMID: 34534676 DOI: 10.1016/j.cbpa.2021.111079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 09/12/2021] [Accepted: 09/12/2021] [Indexed: 10/20/2022]
Abstract
Amylin is a 37-amino acid polypeptide that has been found to be involved in feeding regulation in some mammals, birds, and goldfish. We cloned amylin of Siberian sturgeon and detected its distribution pattern in 15 tissues. The expression levels in the periprandial period (pre-and post-feeding), the changes in the food intake, and the expression levels of related appetite factors after the intraperitoneal injection of amylin were detected. The expression of amylin was found to be the highest in the hypothalamus. Compared with 1 h pre-feeding, the expression levels of amylin in the hypothalamus and duodenum were increased significantly 1 h post-feeding. Compared with the control group (saline), intraperitoneal injection of 50 ng/g, 100 ng/g, and 200 ng/g of amylin significantly inhibited food intake at 1 h post injection, but not at 3 h and 6 h. The injection of 50 ng/g, 100 ng/g, and 200 ng/g amylin significantly inhibited the cumulative feed. After 1 h of 50 ng/g amylin injection, the levels of MC4R and somatostatin in the hypothalamus increased significantly, while the levels of amylin and NPY decreased significantly. The levels of CCK in the valvular intestine were increased significantly. Insulin in the duodenum was also increased significantly, but there was no significant change in ghrelin in the duodenum. These results show that amylin inhibits feeding in Siberian sturgeon by down-regulating the appetite-stimulating factor NPY and up-regulating the appetite-suppressing factors somatostatin, MC4R, CCK, and insulin. This study provides a theoretical basis for studying the feeding function and action mechanisms of amylin in Siberian sturgeon.
Collapse
Affiliation(s)
- Mei Wang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China.
| | - Shaoqi Xu
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Ya Li
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Ni Tang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Hu Chen
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Shupeng Zhang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Yanling Liu
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Jun Wang
- Key Laboratory of Sichuan Province for Fishes Conservation and Utilization in the Upper Reaches of the Yangtze River, Neijiang Normal University, Neijiang, Sichuan, China
| | - Defang Chen
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Xin Zhang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China.
| | - Zhiqiong Li
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China.
| |
Collapse
|
4
|
Zachar G, Montagnese C, Fazekas EA, Kemecsei RG, Papp SM, Dóra F, Renner É, Csillag A, Pogány Á, Dobolyi A. Brain Distribution and Sexually Dimorphic Expression of Amylin in Different Reproductive Stages of the Zebra Finch ( Taeniopygia guttata) Suggest Roles of the Neuropeptide in Song Learning and Social Behaviour. Front Neurosci 2020; 13:1401. [PMID: 32009882 PMCID: PMC6971405 DOI: 10.3389/fnins.2019.01401] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 12/12/2019] [Indexed: 11/24/2022] Open
Abstract
The expression of the recently identified neuropeptide, amylin, is restricted in rodents to the postpartum preoptic area and may play a role in the control of parental behaviours and food intake. These processes are substantially different between bird and rodent parents as birds do not lactate but often show biparental care of the offspring. To establish the presence and role of amylin in the bird brain, in the present study, we investigated the distribution of amylin in brains of adult male and female zebra finches in three different reproductive stages (i.e. paired without young, incubating eggs or provisioning nestlings) and in unpaired control birds living in same sex flocks. Amylin mRNA was identified in the hypothalamus of zebra finch by RT-PCR, which was also used to produce probes for in situ hybridisation. Subsequently, in situ hybridisation histochemistry was performed in brain sections, and the labelling signal was quantified and compared between the groups. Amylin showed a much wider brain distribution than that of rodents. A strong and, in some regions, sexually dimorphic label was found in the striatum and several brain regions of the social behavioural network in both males and females. Many regions responsible for the learning of birdsong also contained amylin-positive neurons, and some regions showed sex differences reflecting the fact that vocalisation is sexually dimorphic in the zebra finch: only males sing. Area X (Ar.X), a striatal song centre present only in males, was labelled in paired but not unpaired male. Ar.X, another song centre, the lateral part of the magnocellular nucleus of the anterior nidopallium (lMAN) also contained amylin and had higher amylin label in paired, as opposed to unpaired birds. The wider distribution of amylin in birds as compared to rodents suggests a more general role of amylin in social or other behaviours in avian species than in mammals. Alternatively, parental care in birds may be a more complex behavioural trait involving a wider set of brain regions. The sex differences in song centres, and the changes with reproductive status suggest a participation of amylin in social behaviours and related changes in the singing of males.
Collapse
Affiliation(s)
- Gergely Zachar
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| | - Catherine Montagnese
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| | - Emese A Fazekas
- MTA-ELTE Laboratory of Molecular and Systems Neurobiology, Department of Physiology and Neurobiology, Eötvös Loránd University and the Hungarian Academy of Sciences, Budapest, Hungary.,Department of Ethology, Eötvös Loránd University, Budapest, Hungary
| | - Róbert G Kemecsei
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| | - Szilvia M Papp
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| | - Fanni Dóra
- Human Brain Tissue Bank and Microdissection Laboratory, Semmelweis University, Budapest, Hungary
| | - Éva Renner
- Human Brain Tissue Bank and Microdissection Laboratory, Semmelweis University, Budapest, Hungary
| | - András Csillag
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| | - Ákos Pogány
- Department of Ethology, Eötvös Loránd University, Budapest, Hungary
| | - Arpád Dobolyi
- MTA-ELTE Laboratory of Molecular and Systems Neurobiology, Department of Physiology and Neurobiology, Eötvös Loránd University and the Hungarian Academy of Sciences, Budapest, Hungary
| |
Collapse
|
5
|
The gizzard: function, influence of diet structure and effects on nutrient availability. WORLD POULTRY SCI J 2019. [DOI: 10.1017/s0043933911000249] [Citation(s) in RCA: 258] [Impact Index Per Article: 51.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
6
|
Liu L, Yi J, Ray WK, Vu LT, Helm RF, Siegel PB, Cline MA, Gilbert ER. Fasting differentially alters the hypothalamic proteome of chickens from lines with the propensity to be anorexic or obese. Nutr Diabetes 2019; 9:13. [PMID: 30931934 PMCID: PMC6443654 DOI: 10.1038/s41387-019-0081-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 02/27/2019] [Accepted: 03/12/2019] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND The hypothalamus is the ultimate modulator of appetite and energy balance and therefore sensitive to changes in nutritional state. Chicks from lines selected for low (LWS) and high (HWS) body weight are hypophagic and compulsive eaters, respectively, and differ in their propensity to become obese and in their hypothalamic mRNA response to fasting. METHODS As fasting-induced changes in hypothalamic proteins are unknown, we investigated the hypothalamic proteomes of 5-day old LWS and HWS chicks in the fed and fasted states using a label-free liquid chromatography-tandem mass spectrometry (LC-MS/MS) approach. RESULTS A total of 744 proteins were identified in the chicken hypothalamus, and 268 differentially abundant proteins were identified among four pairwise comparisons. Ninety-five proteins were associated with the response to fasting in HWS chicks, and 23 proteins were associated with the response to fasting in LWS chicks. Fasting-responsive proteins in HWS chicks were significantly enriched in ATP metabolic processes, glyoxylate/dicarboxylate metabolism, and ribosome function. There was no enrichment for any pathways in LWS chicks in response to fasting. In the fasted and fed states, 159 and 119 proteins differed between HWS and LWS, respectively. Oxidative phosphorylation, citric acid cycle, and carbon metabolism were the main pathways associated with differences between the two lines of chicks. Enzymes associated with metabolic pathways differed between HWS and LWS in both nutritional states, including fumarase, aspartate aminotransferase, mitochondrial GOT2, 3-hydroxyisobutyrate dehydrogenase, chondrogenesis associated lipocalin, sialic acid synthase, arylamine N-acetyltransferase, pineal gland isozyme NAT-3, and succinate dehydrogenase [ubiquinone] flavoprotein subunit, mitochondrial. CONCLUSIONS These results provide insights into the hypothalamic metabolic pathways that are affected by nutritional status and the regulation of appetite and eating behavior.
Collapse
Affiliation(s)
- Lingbin Liu
- College of Animal Science and Technology, Southwest University, Chongqing, P.R. China
| | - Jiaqing Yi
- Virginia Tech, Department of Animal and Poultry Sciences, Blacksburg, VA, USA
| | - W Keith Ray
- Virginia Tech, Department of Biochemistry, Blacksburg, VA, USA
| | - Lucas T Vu
- Virginia Tech, Department of Chemical Engineering, Blacksburg, VA, USA
| | - Richard F Helm
- Virginia Tech, Department of Biochemistry, Blacksburg, VA, USA
| | - Paul B Siegel
- Virginia Tech, Department of Animal and Poultry Sciences, Blacksburg, VA, USA
| | - Mark A Cline
- Virginia Tech, Department of Animal and Poultry Sciences, Blacksburg, VA, USA
| | - Elizabeth R Gilbert
- Virginia Tech, Department of Animal and Poultry Sciences, Blacksburg, VA, USA.
| |
Collapse
|
7
|
Yi J, Yuan J, Gilbert ER, Siegel PB, Cline MA. Differential expression of appetite-regulating genes in avian models of anorexia and obesity. J Neuroendocrinol 2017; 29. [PMID: 28727208 DOI: 10.1111/jne.12510] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 06/16/2017] [Accepted: 07/17/2017] [Indexed: 01/26/2023]
Abstract
Chickens from lines that have been selected for low (LWS) or high (HWS) juvenile body weight for more than 57 generations provide a unique model by which to research appetite regulation. The LWS display different severities of anorexia, whereas all HWS become obese. In the present study, we measured mRNA abundance of various factors in appetite-associated nuclei in the hypothalamus. The lateral hypothalamus (LHA), paraventricular nucleus (PVN), ventromedial hypothalamus (VMH), dorsomedial nucleus (DMN) and arcuate nucleus (ARC) were collected from 5 day-old chicks that were fasted for 180 minutes or provided with continuous access to food. Fasting increased neuropeptide Y receptor subtype 1 (NPYR1) mRNA in the LHA and c-Fos in the VMH, at the same time as decreasing c-Fos in the LHA, neuropeptide Y receptor subtype 5 and ghrelin in the PVN, and neuropeptide Y receptor subtype 2 in the ARC. Fasting increased melanocortin receptor subtype 3 (MC3R) expression in the DMN and NPY in the ARC of LWS but not HWS chicks. Expression of NPY was greater in LWS than HWS in the DMN. neuropeptide Y receptor subtype 5 mRNA was greater in LWS than HWS in the LHA, PVN and ARC. Expression of orexin was greater in LWS than HWS in the LHA. There was greater expression of NPYR1, melanocortin receptor subtype 4 and cocaine- and amphetamine-regulated transcript in HWS than LWS and mesotocin in LWS than HWS in the PVN. In the ARC, agouti-related peptide and MC3R were greater in LWS than HWS and, in the VMH, orexin receptor 2 and leptin receptor were greater in LWS than HWS. Greater mesotocin in the PVN, orexin in the LHA and ORXR2 in the VMH of LWS may contribute to their increased sympathetic tone and anorexic phenotype. The results of the present study also suggest that an increased hypothalamic anorexigenic tone in the LWS over-rides orexigenic factors such as NPY and AgRP that were more highly expressed in LWS than HWS in several nuclei.
Collapse
Affiliation(s)
- J Yi
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - J Yuan
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - E R Gilbert
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - P B Siegel
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - M A Cline
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| |
Collapse
|
8
|
Yuan J, Gilbert ER, Cline MA. The central anorexigenic mechanism of amylin in Japanese quail ( Coturnix japonica ) involves pro-opiomelanocortin, calcitonin receptor, and the arcuate nucleus of the hypothalamus. Comp Biochem Physiol A Mol Integr Physiol 2017; 210:28-34. [DOI: 10.1016/j.cbpa.2017.05.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 05/19/2017] [Accepted: 05/22/2017] [Indexed: 01/10/2023]
|
9
|
McConn BR, Cline MA, Gilbert ER. Dietary macronutrient composition and central neuropeptide Y injection affect dietary preference and hypothalamic gene expression in chicks. Nutr Neurosci 2017; 21:403-413. [PMID: 28279130 DOI: 10.1080/1028415x.2017.1296606] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
OBJECTIVE The objective of this study was to determine the influence of dietary macronutrient composition on central NPY's orexigenic effect in chicks. METHODS Day-of-hatch chicks were fed one of three diets (3000 kcal ME/kg) ad libitum from hatch: high carbohydrate (HC), high fat (HF; 30% ME derived from soybean oil), and high protein (HP; 25 vs. 22% CP). In Experiment 1, chicks received intracerebroventricular injections of 0 (vehicle), 0.2, or 2.0 nmol NPY on day 4 and food intake was recorded for 6 hours. In Experiment 2, chicks were given all three diets before and after injection. In Experiment 3, hypothalamus was collected at 1-hour post-injection for gene expression analysis. RESULTS The HC diet-fed chicks responded with a greater increase, while the chicks fed the HF diet had a lower threshold response in food intake to NPY. Neuropeptide Y dose-dependently increased food intake in chicks fed the HC and HP diets. Chicks administered 0.2 nmol NPY preferred the HC and HP diets over the HF diet. Relative quantities of hypothalamic NPYR1 and MC4R mRNA were reduced by NPY in chicks that consumed the HP and HC diets, respectively. DISCUSSION Consumption of the HC diet was associated with the most robust NPY-induced increase in food intake. Injection of NPY accentuated differences among dietary groups in hypothalamic gene expression of several appetite-associated factors, results suggesting that the NPY/agouti-related peptide and melanocortin pathways are associated with some of the diet- and NPY-induced differences observed in this study.
Collapse
Affiliation(s)
- Betty R McConn
- a Department of Animal and Poultry Sciences , Virginia Polytechnic Institute and State University , Blacksburg , VA , USA
| | - Mark A Cline
- a Department of Animal and Poultry Sciences , Virginia Polytechnic Institute and State University , Blacksburg , VA , USA
| | - Elizabeth R Gilbert
- a Department of Animal and Poultry Sciences , Virginia Polytechnic Institute and State University , Blacksburg , VA , USA
| |
Collapse
|
10
|
McConn BR, Yi J, Gilbert ER, Siegel PB, Chowdhury VS, Furuse M, Cline MA. Stimulation of food intake after central administration of gonadotropin-inhibitory hormone is similar in genetically selected low and high body weight lines of chickens. Gen Comp Endocrinol 2016; 232:96-100. [PMID: 26764213 DOI: 10.1016/j.ygcen.2016.01.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Revised: 12/22/2015] [Accepted: 01/04/2016] [Indexed: 11/16/2022]
Abstract
Gonadotropin-inhibitory hormone (GnIH), first isolated from the brain of the Japanese quail (Coturnix japonica), when centrally administered exerts orexigenic effects in birds. However, the precise mechanisms mediating this effect are poorly understood and limited information is available on this effect in models of body weight dysfunction. Thus, the purpose of the present study was to investigate appetite-associated effects of GnIH in chicks from lines that have been selected for either low or high body weight, and are anorexic or become obese, respectively. Central GnIH injection increased food intake in both lines with a similar magnitude of response. There was no effect on water intake. Hypothalamic GnIH mRNA was greater in the low than high weight lines and was greater in the fasted than fed chicks. GnIH receptor mRNA was similarly expressed in both lines, and was greater in fed than fasted chicks. Thus, although selection for body weight did not alter the effect of GnIH on feeding, fasting increased GnIH mRNA in both lines implying that it is an innate hunger factor.
Collapse
Affiliation(s)
- Betty R McConn
- Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg, VA, United States
| | - Jiaqing Yi
- Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg, VA, United States
| | - Elizabeth R Gilbert
- Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg, VA, United States
| | - Paul B Siegel
- Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg, VA, United States
| | - Vishwajit S Chowdhury
- Division for Experimental Natural Science, Faculty of Arts and Science, Kyushu University, Fukuoka 819-0395, Japan
| | - Mitsuhiro Furuse
- Department of Bioresource Sciences, Faculty of Agriculture, Kyushu University, Fukuoka 812-8581, Japan
| | - Mark A Cline
- Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg, VA, United States.
| |
Collapse
|
11
|
Buzala M, Janicki B. Review: Effects of different growth rates in broiler breeder and layer hens on some productive traits. Poult Sci 2016; 95:2151-9. [PMID: 27194733 DOI: 10.3382/ps/pew173] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/05/2016] [Indexed: 12/26/2022] Open
Abstract
Genetic selection that has been carried out for several dozen years has led to significant progress in poultry production by improving productive traits and increasing the profitability of broiler breeder and layer hen production. After hatching, broilers and layers differ mainly in feed intake, growth rate, efficiency of nutrient utilization, and development of muscles and adipose tissue. A key role can be played by hormonal mechanisms of appetite control in broilers and layers. The paper discusses the consequences of different growth rates resulting from long-term genetic selection on feed intake, efficiency of nutrient utilization, and development of muscles and adipose tissue, with particular consideration of the hormonal mechanisms of appetite control in broilers and layers. The information presented in this review paper shows that it would be worth comparing these issues in a meta-analysis.
Collapse
Affiliation(s)
- M Buzala
- Department of Animal Biochemistry and Biotechnology, UTP University of Science and Technology, Mazowiecka 28, 85-084 Bydgoszcz, Poland
| | - B Janicki
- Department of Animal Biochemistry and Biotechnology, UTP University of Science and Technology, Mazowiecka 28, 85-084 Bydgoszcz, Poland
| |
Collapse
|
12
|
Yi J, Delp MS, Gilbert ER, Siegel PB, Cline MA. Anorexia is Associated with Stress-Dependent Orexigenic Responses to Exogenous Neuropeptide Y. J Neuroendocrinol 2016; 28. [PMID: 26924179 DOI: 10.1111/jne.12378] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Revised: 02/22/2016] [Accepted: 02/23/2016] [Indexed: 11/28/2022]
Abstract
Chicken lines that have been divergently selected for either low (LWS) or high (HWS) body weight at 56 days of age for more than 57 generations have different feeding behaviours in response to a range of i.c.v. injected neurotransmitters. The LWS have different severities of anorexia, whereas the HWS become obese. Previously, we demonstrated that LWS chicks did not respond, whereas HWS chicks increased food intake, after central injection of neuropeptide Y (NPY). The present study aimed to determine the molecular mechanisms underlying the loss of orexigenic function of NPY in LWS. Chicks were divided into four groups: stressed LWS and HWS on day of hatch, and control LWS and HWS. The stressor was a combination of food deprivation and cold exposure. On day 5 post-hatch, each chick received an i.c.v. injection of vehicle or 0.2 nmol of NPY. Only the LWS stressed group did not increase food intake in response to i.c.v. NPY. Hypothalamic mRNA abundance of appetite-associated factors was measured at 1 h post-injection. Interactions of genetic line, stress and NPY treatment were observed for the mRNA abundance of agouti-related peptide (AgRP) and synaptotagmin 1 (SYT1). Intracerebroventricular injection of NPY decreased and increased AgRP and SYT1 mRNA, respectively, in the stressed LWS and increased AgRP mRNA in stressed HWS chicks. Stress was associated with increased NPY, orexin receptor 2, corticotrophin-releasing factor receptor 1, melanocortin receptor 3 (MC3R) and growth hormone secretagogue receptor expression. In conclusion, the loss of responsiveness to exogenous NPY in stressed LWS chicks may be a result of the decreased and increased hypothalamic expression of AgRP and MC3R, respectively. This may induce an intensification of anorexigenic melanocortin signalling pathways in LWS chicks that block the orexigenic effect of exogenous NPY. These results provide insights onto the anorexic condition across species, and especially for forms of inducible anorexia such as human anorexia nervosa.
Collapse
Affiliation(s)
- J Yi
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - M S Delp
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - E R Gilbert
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - P B Siegel
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - M A Cline
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| |
Collapse
|
13
|
Delayed access of low body weight-selected chicks to food at hatch is associated with up-regulated pancreatic glucagon and glucose transporter gene expression. Comp Biochem Physiol A Mol Integr Physiol 2015; 189:124-9. [DOI: 10.1016/j.cbpa.2015.08.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Revised: 07/11/2015] [Accepted: 08/02/2015] [Indexed: 11/19/2022]
|
14
|
Fed and fasted chicks from lines divergently selected for low or high body weight have differential hypothalamic appetite-associated factor mRNA expression profiles. Behav Brain Res 2015; 286:58-63. [DOI: 10.1016/j.bbr.2015.02.008] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Revised: 01/28/2015] [Accepted: 02/03/2015] [Indexed: 01/31/2023]
|
15
|
Hypothalamic differences in expression of genes involved in monoamine synthesis and signaling pathways after insulin injection in chickens from lines selected for high and low body weight. Neurogenetics 2015; 16:133-44. [PMID: 25582322 DOI: 10.1007/s10048-014-0435-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Accepted: 12/17/2014] [Indexed: 10/24/2022]
Abstract
Long-term selection for juvenile body weight from a common founder population resulted in two divergent chicken lines (low-weight selected line (LWS), high-weight selected line (HWS)) that display distinct food intake and blood glucose responses to exogenous neuropeptides and insulin. The objective of this study was to elucidate putative targets affecting food intake and energy homeostasis by sequencing hypothalamic RNA from LWS and HWS chickens after insulin injection. Ninety-day-old female LWS and HWS chickens were injected with either vehicle or insulin and hypothalamus collected at 1 h postinjection. Through RNA sequencing, a total of 361 differentially expressed genes (DEGs) were identified. There was greater expression of genes, mainly tyrosine hydroxylase (TH), L-aromatic amino acid decarboxylase (DDC), and vesicular monoamine transporter (VMAT), involved in serotonin and dopamine biosynthesis and signaling in LWS than in HWS vehicle-injected chickens. In contrast, after insulin injection, these genes were more highly expressed in HWS than in LWS. We identified 90 single nucleotide polymorphisms (SNPs) existing only in the HWS and 121 SNPs specific to LWS and 5119 SNPs close to fixation (with absolute frequency difference ≥0.9). Four were located in genes encoding enzymes associated with serotonergic and dopaminergic pathways, such as DDC, TH, and solute carrier family 18, member 2 (VMAT). These data implicate differences in biogenic amines such as serotonin and dopamine in hypothalamic physiology between the chicken lines, and these differences might be associated with polymorphisms during long-term selection. Changes in serotonergic and dopaminergic signaling pathways in response to insulin injection suggest a role in whole-body energy homeostasis.
Collapse
|
16
|
Non-invasive devices and methods for large animal monitoring using automated video processing. Ing Rech Biomed 2014. [DOI: 10.1016/j.irbm.2014.02.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
17
|
Zhang W, Sumners LH, Siegel PB, Cline MA, Gilbert ER. Quantity of glucose transporter and appetite-associated factor mRNA in various tissues after insulin injection in chickens selected for low or high body weight. Physiol Genomics 2013; 45:1084-94. [DOI: 10.1152/physiolgenomics.00102.2013] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Chickens from lines selected for low (LWS) or high (HWS) body weight differ by 10-fold in body weight at 56 days old with differences in food intake, glucose regulation, and body composition. To evaluate if there are differences in appetite-regulatory factor and glucose transporter ( GLUT) mRNA that are accentuated by hypoglycemia, blood glucose was measured, and hypothalamus, liver, pectoralis major, and abdominal fat collected at 90 days of age from female HWS and LWS chickens, and reciprocal crosses, HL and LH, at 60 min after intraperitoneal injection of insulin. Neuropeptide Y ( NPY) and receptor ( NPYR) subtypes 1 and 5 mRNA were greater in LWS compared with HWS hypothalamus ( P < 0.05), but greater in HWS than LWS in fat ( P < 0.05). Expression of NPYR2 was greater in LWS than HWS in pectoralis major ( P < 0.05). There was greater expression in HWS than LWS for GLUT1 in hypothalamus and liver ( P < 0.05), GLUT2 in fat and liver ( P < 0.05), and GLUT9 in liver ( P < 0.05). Insulin was associated with reduced blood glucose in all populations ( P < 0.05) and reduced mRNA of insulin receptor ( IR) and GLUT 2 and 3 in liver ( P < 0.05). There was heterosis for mRNA, most notably NPYR1 (−78%) and NPYR5 (−81%) in fat and GLUT2 (−70%) in liver. Results suggest that NPY and GLUTs are associated with differences in energy homeostasis in LWS and HWS. Reduced GLUT and IR mRNA after insulin injection suggest a compensatory mechanism to prevent further hypoglycemia.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg, Virginia
| | - Lindsay H. Sumners
- Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg, Virginia
| | - Paul B. Siegel
- Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg, Virginia
| | - Mark A. Cline
- Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg, Virginia
| | | |
Collapse
|
18
|
Newmyer BA, Nandar W, Webster RI, Gilbert E, Siegel PB, Cline MA. Neuropeptide Y is associated with changes in appetite-associated hypothalamic nuclei but not food intake in a hypophagic avian model. Behav Brain Res 2013; 236:327-331. [DOI: 10.1016/j.bbr.2012.08.015] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Revised: 08/03/2012] [Accepted: 08/10/2012] [Indexed: 10/28/2022]
|
19
|
Current world literature. Curr Opin Endocrinol Diabetes Obes 2011; 18:83-98. [PMID: 21178692 DOI: 10.1097/med.0b013e3283432fa7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
20
|
Svihus B. Limitations to wheat starch digestion in growing broiler chickens: a brief review. ANIMAL PRODUCTION SCIENCE 2011. [DOI: 10.1071/an10271] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Starch digestibility may be suboptimal in broilers fed pelleted wheat-based diets. In the present review, the digestion and absorption process related to starch is presented, followed by a discussion of the effect of wheat characteristics and bird-related effects. Enzyme secretion or glucose absorption and metabolism have not been shown to be limiting factors. Suboptimal starch digestibility is primarily observed when a large proportion of wheat is included in the diet, and appears to be partly associated with characteristics of the wheat such as hardness and cell wall structure, which cause starch granules to remain entrapped in the protein matrix and the cell wall of the endosperm or aleurone layer. There are indications that low starch digestibility is negatively correlated with feed intake, and that such a feed over-consumption is linked to an under-developed gizzard.
Collapse
|