1
|
McGovern DJ, Ly A, Ecton KL, Huynh DT, Prévost ED, Gonzalez SC, McNulty CJ, Rau AR, Hentges ST, Daigle TL, Tasic B, Baratta MV, Root DH. Ventral tegmental area glutamate neurons mediate nonassociative consequences of stress. Mol Psychiatry 2024; 29:1671-1682. [PMID: 36437312 PMCID: PMC10375863 DOI: 10.1038/s41380-022-01858-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 10/26/2022] [Accepted: 10/27/2022] [Indexed: 11/29/2022]
Abstract
Exposure to trauma is a risk factor for the development of a number of mood disorders, and may enhance vulnerability to future adverse life events. Recent data demonstrate that ventral tegmental area (VTA) neurons expressing the vesicular glutamate transporter 2 (VGluT2) signal and causally contribute to behaviors that involve aversive or threatening stimuli. However, it is unknown whether VTA VGluT2 neurons regulate transsituational outcomes of stress and whether these neurons are sensitive to stressor controllability. This work adapted an operant mouse paradigm to examine the impact of stressor controllability on VTA VGluT2 neuron function as well as the role of VTA VGluT2 neurons in mediating transsituational stressor outcomes. Uncontrollable (inescapable) stress, but not physically identical controllable (escapable) stress, produced social avoidance and exaggerated fear in male mice. Uncontrollable stress in females led to exploratory avoidance of a novel brightly lit environment. Both controllable and uncontrollable stressors increased VTA VGluT2 neuronal activity, and chemogenetic silencing of VTA VGluT2 neurons prevented the behavioral sequelae of uncontrollable stress in male and female mice. Further, we show that stress activates multiple genetically-distinct subtypes of VTA VGluT2 neurons, especially those that are VGluT2+VGaT+, as well as lateral habenula neurons receiving synaptic input from VTA VGluT2 neurons. Our results provide causal evidence that mice can be used for identifying stressor controllability circuitry and that VTA VGluT2 neurons contribute to transsituational stressor outcomes, such as social avoidance, exaggerated fear, or anxiety-like behavior that are observed within trauma-related disorders.
Collapse
Affiliation(s)
- Dillon J McGovern
- Department of Psychology and Neuroscience, University of Colorado Boulder, 2860 Wilderness Pl, Boulder, 80301, CO, US
| | - Annie Ly
- Department of Psychology and Neuroscience, University of Colorado Boulder, 2860 Wilderness Pl, Boulder, 80301, CO, US
| | - Koy L Ecton
- Department of Psychology and Neuroscience, University of Colorado Boulder, 2860 Wilderness Pl, Boulder, 80301, CO, US
| | - David T Huynh
- Department of Psychology and Neuroscience, University of Colorado Boulder, 2860 Wilderness Pl, Boulder, 80301, CO, US
| | - Emily D Prévost
- Department of Psychology and Neuroscience, University of Colorado Boulder, 2860 Wilderness Pl, Boulder, 80301, CO, US
| | - Shamira C Gonzalez
- Department of Psychology and Neuroscience, University of Colorado Boulder, 2860 Wilderness Pl, Boulder, 80301, CO, US
| | - Connor J McNulty
- Department of Psychology and Neuroscience, University of Colorado Boulder, 2860 Wilderness Pl, Boulder, 80301, CO, US
| | - Andrew R Rau
- Department of Biomedical Sciences, Colorado State University, 1617 Campus Delivery, Fort Collins, 80523, CO, US
- Center for Structural and Functional Neuroscience, Division of Biological Sciences, University of Montana, Missoula, 59812, MT, US
| | - Shane T Hentges
- Department of Biomedical Sciences, Colorado State University, 1617 Campus Delivery, Fort Collins, 80523, CO, US
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, 99164, WA, US
| | - Tanya L Daigle
- Allen Institute for Brain Science, 615 Westlake. Avenue North, Seattle, 98109, WA, US
| | - Bosiljka Tasic
- Allen Institute for Brain Science, 615 Westlake. Avenue North, Seattle, 98109, WA, US
| | - Michael V Baratta
- Department of Psychology and Neuroscience, University of Colorado Boulder, 2860 Wilderness Pl, Boulder, 80301, CO, US.
| | - David H Root
- Department of Psychology and Neuroscience, University of Colorado Boulder, 2860 Wilderness Pl, Boulder, 80301, CO, US.
| |
Collapse
|
2
|
Ferland JMN, Ellis RJ, Rompala G, Landry JA, Callens JE, Ly A, Frier MD, Uzamere TO, Hurd YL. Dose mediates the protracted effects of adolescent THC exposure on reward and stress reactivity in males relevant to perturbation of the basolateral amygdala transcriptome. Mol Psychiatry 2023; 28:2583-2593. [PMID: 35236956 DOI: 10.1038/s41380-022-01467-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 01/13/2022] [Accepted: 01/26/2022] [Indexed: 01/01/2023]
Abstract
Despite the belief that cannabis is relatively harmless, exposure during adolescence is associated with increased risk of developing several psychopathologies in adulthood. In addition to the high levels of use amongst teenagers, the potency of ∆-9-tetrahydrocannabinol (THC) has increased more than fourfold compared to even twenty years ago, and it is unclear whether potency influences the presentation of THC-induced behaviors. Expanded knowledge about the impact of adolescent THC exposure, especially high dose, is important to delineating neural networks and molecular mechanisms underlying psychiatric risk. Here, we observed that repeated exposure to low (1.5 mg/kg) and high (5 mg/kg) doses of THC during adolescence in male rats produced divergent effects on behavior in adulthood. Whereas low dose rats showed greater sensitivity to reward devaluation and also self-administered more heroin, high dose animals were significantly more reactive to social isolation stress. RNA sequencing of the basolateral amygdala, a region linked to reward processing and stress, revealed significant perturbations in transcripts and gene networks related to synaptic plasticity and HPA axis that were distinct to THC dose as well as stress. In silico single-cell deconvolution of the RNAseq data revealed a significant reduction of astrocyte-specific genes related to glutamate regulation in stressed high dose animals, a result paired anatomically with greater astrocyte-to-neuron ratios and hypotrophic astrocytes. These findings emphasize the importance of dose and behavioral state on the presentation of THC-related behavioral phenotypes in adulthood and dysregulation of astrocytes as an interface for the protracted effects of high dose THC and subsequent stress sensitivity.
Collapse
Affiliation(s)
- Jacqueline-Marie N Ferland
- Icahn School of Medicine at Mount Sinai, Departments of Neuroscience and Psychiatry, Addiction Institute of Mount Sinai, New York, NY, USA
| | - Randall J Ellis
- Icahn School of Medicine at Mount Sinai, Departments of Neuroscience and Psychiatry, Addiction Institute of Mount Sinai, New York, NY, USA
| | - Gregory Rompala
- Icahn School of Medicine at Mount Sinai, Departments of Neuroscience and Psychiatry, Addiction Institute of Mount Sinai, New York, NY, USA
| | - Joseph A Landry
- Icahn School of Medicine at Mount Sinai, Departments of Neuroscience and Psychiatry, Addiction Institute of Mount Sinai, New York, NY, USA
| | - James E Callens
- Icahn School of Medicine at Mount Sinai, Departments of Neuroscience and Psychiatry, Addiction Institute of Mount Sinai, New York, NY, USA
| | - Annie Ly
- Icahn School of Medicine at Mount Sinai, Departments of Neuroscience and Psychiatry, Addiction Institute of Mount Sinai, New York, NY, USA
| | - Micah D Frier
- Icahn School of Medicine at Mount Sinai, Departments of Neuroscience and Psychiatry, Addiction Institute of Mount Sinai, New York, NY, USA
| | - Teddy O Uzamere
- Icahn School of Medicine at Mount Sinai, Departments of Neuroscience and Psychiatry, Addiction Institute of Mount Sinai, New York, NY, USA
| | - Yasmin L Hurd
- Icahn School of Medicine at Mount Sinai, Departments of Neuroscience and Psychiatry, Addiction Institute of Mount Sinai, New York, NY, USA.
| |
Collapse
|
3
|
Kositsyn YMHB, Volgin AD, de Abreu MS, Demin KA, Zabegalov KN, Maslov GO, Petersen EV, Kolesnikova TO, Strekalova T, Kalueff AV. Towards translational modeling of behavioral despair and its treatment in zebrafish. Behav Brain Res 2022; 430:113906. [PMID: 35489477 DOI: 10.1016/j.bbr.2022.113906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 04/03/2022] [Accepted: 04/24/2022] [Indexed: 11/26/2022]
Abstract
Depression is a widespread and severely debilitating neuropsychiatric disorder whose key clinical symptoms include low mood, anhedonia and despair (the inability or unwillingness to overcome stressors). Experimental animal models are widely used to improve our mechanistic understanding of depression pathogenesis, and to develop novel antidepressant therapies. In rodents, various experimental models of 'behavioral despair' have already been developed and rigorously validated. Complementing rodent studies, the zebrafish (Danio rerio) is emerging as a powerful model organism to assess pathobiological mechanisms of depression and other related affective disorders. Here, we critically discuss the developing potential and important translational implications of zebrafish models for studying despair and its mechanisms, and the utility of such aquatic models for antidepressant drug screening.
Collapse
Affiliation(s)
- Yuriy M H B Kositsyn
- School of Pharmacy, Southwest University, Chongqing, China; Neurobiology Program, Sirius University of Science and Technology, Sochi, Russia; Sirius University of Science and Technology, Sochi, Russia
| | - Andrew D Volgin
- Neurobiology Program, Sirius University of Science and Technology, Sochi, Russia; Sirius University of Science and Technology, Sochi, Russia
| | - Murilo S de Abreu
- Laboratory of Cell and Molecular Biology and Neurobiology, Moscow Institute of Physics and Technology, Moscow, Russia; Bioscience Institute, University of Passo Fundo, Passo Fundo, RS, Brazil; Sirius University of Science and Technology, Sochi, Russia.
| | - Konstantin A Demin
- Institute of Experimental Medicine, Almazov National Medcial Research Center, Ministry of Healthcare of Russian Federation, St. Petersburg, Russia; Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia; Granov Russian Scientific Research Center of Radiology and Surgical Technologies, Ministry of Healthcare of Russian Federation, St. Petersburg, Russia; Sirius University of Science and Technology, Sochi, Russia
| | | | - Gleb O Maslov
- Ural Federal University, Ekaterinburg, Russia; Sirius University of Science and Technology, Sochi, Russia
| | | | | | - Tatiana Strekalova
- University of Maastricht, Maastricht, Netherlands; Sirius University of Science and Technology, Sochi, Russia
| | - Allan V Kalueff
- Ural Federal University, Ekaterinburg, Russia; University of Maastricht, Maastricht, Netherlands; Sirius University of Science and Technology, Sochi, Russia.
| |
Collapse
|
4
|
Meyer HC, Sangha S, Radley JJ, LaLumiere RT, Baratta MV. Environmental certainty influences the neural systems regulating responses to threat and stress. Neurosci Biobehav Rev 2021; 131:1037-1055. [PMID: 34673111 PMCID: PMC8642312 DOI: 10.1016/j.neubiorev.2021.10.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 09/29/2021] [Accepted: 10/01/2021] [Indexed: 10/20/2022]
Abstract
Flexible calibration of threat responding in accordance with the environment is an adaptive process that allows an animal to avoid harm while also maintaining engagement of other goal-directed actions. This calibration process, referred to as threat response regulation, requires an animal to calculate the probability that a given encounter will result in a threat so they can respond accordingly. Here we review the neural correlates of two highly studied forms of threat response suppression: extinction and safety conditioning. We focus on how relative levels of certainty or uncertainty in the surrounding environment alter the acquisition and application of these processes. We also discuss evidence indicating altered threat response regulation following stress exposure, including enhanced fear conditioning, and disrupted extinction and safety conditioning. To conclude, we discuss research using an animal model of coping that examines the impact of stressor controllability on threat responding, highlighting the potential for previous experiences with control, or other forms of coping, to protect against the effects of future adversity.
Collapse
Affiliation(s)
- Heidi C Meyer
- Department of Psychological and Brain Sciences, Boston University, Boston, MA, 02215, USA.
| | - Susan Sangha
- Department of Psychological Sciences, Purdue University, West Lafayette, IN, 47907, USA.
| | - Jason J Radley
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, IA, 52242, USA.
| | - Ryan T LaLumiere
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, IA, 52242, USA.
| | - Michael V Baratta
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO, 80301, USA.
| |
Collapse
|
5
|
Chase HW. Computing the Uncontrollable: Insights from Computational Modelling of Learning and Choice in Depression. Curr Behav Neurosci Rep 2021. [DOI: 10.1007/s40473-021-00228-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
6
|
Abstract
Learned helplessness, the failure to escape shock induced by uncontrollable aversive events, was discovered half a century ago. Seligman and Maier (1967) theorized that animals learned that outcomes were independent of their responses-that nothing they did mattered-and that this learning undermined trying to escape. The mechanism of learned helplessness is now very well-charted biologically, and the original theory got it backward. Passivity in response to shock is not learned. It is the default, unlearned response to prolonged aversive events and it is mediated by the serotonergic activity of the dorsal raphe nucleus, which in turn inhibits escape. This passivity can be overcome by learning control, with the activity of the medial prefrontal cortex, which subserves the detection of control leading to the automatic inhibition of the dorsal raphe nucleus. So animals learn that they can control aversive events, but the passive failure to learn to escape is an unlearned reaction to prolonged aversive stimulation. In addition, alterations of the ventromedial prefrontal cortex-dorsal raphe pathway can come to subserve the expectation of control. We speculate that default passivity and the compensating detection and expectation of control may have substantial implications for how to treat depression. (PsycINFO Database Record
Collapse
Affiliation(s)
- Steven F Maier
- Department of Psychology and Neuroscience, University of Colorado
| | | |
Collapse
|
7
|
Horovitz O, Richter-Levin A, Xu L, Jing L, Richter-Levin G. Periaqueductal Grey differential modulation of Nucleus Accumbens and Basolateral Amygdala plasticity under controllable and uncontrollable stress. Sci Rep 2017; 7:487. [PMID: 28352073 PMCID: PMC5428674 DOI: 10.1038/s41598-017-00562-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 03/03/2017] [Indexed: 11/23/2022] Open
Abstract
Resilience has been conceptualized in part as a dynamic process that includes the ability to adapt to stressful conditions. As such it encompasses the extent to which neural plasticity may be promoted. The current study examined metaplasticity by referring to the “plasticity of synaptic plasticity” in a neural circuit composed of the basolateral amygdala (BLA) and the nucleus accumbens (NAcc), using behavioural stress controllability with or without preceding stimulation of the dorsal periaqueductal gray (i.e. dPAG priming). A tendency for increased plasticity in the controllable versus the uncontrollable group was found in both the BLA and NAcc. dPAG priming suppressed NAcc LTP in all groups, but it suppressed BLA LTP only in the uncontrollable group, demonstrating dissociation between either controllable and uncontrollable groups or the NAcc and BLA. Thus, metaplasticity in the dPAG-BLA-NAcc circuit regulated differentially by controllable or uncontrollable stress may underlie stress coping, and thus contribute to stress-related psychopathologies.
Collapse
Affiliation(s)
- Omer Horovitz
- Department of Psychology, University of Haifa, Haifa, Israel.
| | | | - Lin Xu
- Key Laboratory of Animal Models and Human Disease Mechanisms, and KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Disease, and Laboratory of Learning and Memory, Kunming Institute of Zoology, the Chinese Academy of Sciences, Kunming, 650223, China.,University of the Chinese Academy of Sciences, Beijing, 100049, China.,CAS Center for Excellence in Brain Science, 320 Yue Yang Road, Shanghai, 200031, China
| | - Liang Jing
- The Institute for the Study of Affective Neuroscience (ISAN), Haifa, Israel.,Key Laboratory of Animal Models and Human Disease Mechanisms, and KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Disease, and Laboratory of Learning and Memory, Kunming Institute of Zoology, the Chinese Academy of Sciences, Kunming, 650223, China
| | - Gal Richter-Levin
- Department of Psychology, University of Haifa, Haifa, Israel.,The Institute for the Study of Affective Neuroscience (ISAN), Haifa, Israel.,Sagol Department of Neurobiology, University of Haifa, Haifa, Israel
| |
Collapse
|
8
|
Nazeri M, Shabani M, Parsania S, Golchin L, Razavinasab M, Abareghi F, Kermani M. Simultaneous impairment of passive avoidance learning and nociception in rats following chronic swim stress. Adv Biomed Res 2016; 5:93. [PMID: 27308265 PMCID: PMC4908791 DOI: 10.4103/2277-9175.183141] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Accepted: 07/23/2014] [Indexed: 01/05/2023] Open
Abstract
Background: Stress can alter response to nociception. Under certain circumstances stress enhances nociception, a phenomenon which is called stress-induced hyperalgesia (SIH). While nociception has been studied in this paradigm, possible alterations occurring in passive avoidance (PA) learning after exposing rats to this type of stress has not been studied before. Materials and Methods: In the current study, we evaluated the effect of chronic swim stress (FS) or sham swim (SS) on nociception in both spinal (tail-flick) and supraspinal (53.5°C hot-pate) levels. Furthermore, PA task was performed to see whether chronic swim stress changes PA learning or not. Mobility of rats and anxiety-like behavior were assessed using open-field test (OFT). Results: Supraspinal pain response was altered by swim stress (hot-plate test). PA learning was impaired by swim stress, rats in SS group did not show such impairments. Rats in the FS group showed increased mobility (rearing, velocity, total distant moved (TDM) and decreased anxiety-like behavior (time spent in center and grooming) compared to SS rats. Conclusions: This study demonstrated the simultaneous impairment of PA and nociception under chronic swim stress, whether this is simply a co-occurrence or not is of special interest. This finding may implicate a possible role for limbic structures, though this hypothesis should be studied by experimental lesions in different areas of rat brain to assess their possible role in the pathophysiology of SIH.
Collapse
Affiliation(s)
- Masoud Nazeri
- Department of Neuroscience, Neuroscience Research Center, Institute of Neuropharmacology, Kerman, Iran; Department of Neuroscience, Medical Students Research Committee, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Shabani
- Department of Neuroscience, Neuroscience Research Center, Institute of Neuropharmacology, Kerman, Iran
| | - Shahrnaz Parsania
- Department of Neuroscience, Neuroscience Research Center, Institute of Neuropharmacology, Kerman, Iran
| | - Leila Golchin
- Department of Neuroscience, Neuroscience Research Center, Institute of Neuropharmacology, Kerman, Iran
| | | | - Fatemeh Abareghi
- Department of Neuroscience, Medical Students Research Committee, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Moein Kermani
- Department of Neuroscience, Medical Students Research Committee, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
9
|
Landgraf D, Long J, Der-Avakian A, Streets M, Welsh DK. Dissociation of learned helplessness and fear conditioning in mice: a mouse model of depression. PLoS One 2015; 10:e0125892. [PMID: 25928892 PMCID: PMC4416012 DOI: 10.1371/journal.pone.0125892] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 03/24/2015] [Indexed: 12/31/2022] Open
Abstract
The state of being helpless is regarded as a central aspect of depression, and therefore the learned helplessness paradigm in rodents is commonly used as an animal model of depression. The term ‘learned helplessness’ refers to a deficit in escaping from an aversive situation after an animal is exposed to uncontrollable stress specifically, with a control/comparison group having been exposed to an equivalent amount of controllable stress. A key feature of learned helplessness is the transferability of helplessness to different situations, a phenomenon called ‘trans-situationality’. However, most studies in mice use learned helplessness protocols in which training and testing occur in the same environment and with the same type of stressor. Consequently, failures to escape may reflect conditioned fear of a particular environment, not a general change of the helpless state of an animal. For mice, there is no established learned helplessness protocol that includes the trans-situationality feature. Here we describe a simple and reliable learned helplessness protocol for mice, in which training and testing are carried out in different environments and with different types of stressors. We show that with our protocol approximately 50% of mice develop learned helplessness that is not attributable to fear conditioning.
Collapse
Affiliation(s)
- Dominic Landgraf
- Veterans Affairs San Diego Healthcare System, San Diego, CA, United States of America
- Department of Psychiatry & Center for Circadian Biology, University of California San Diego, La Jolla, CA, United States of America
| | - Jaimie Long
- Veterans Affairs San Diego Healthcare System, San Diego, CA, United States of America
- Department of Psychiatry & Center for Circadian Biology, University of California San Diego, La Jolla, CA, United States of America
| | - Andre Der-Avakian
- Department of Psychiatry, University of California San Diego, La Jolla, CA, United States of America
| | - Margo Streets
- Animal Phenotyping Core, University of California San Diego, La Jolla, CA, United States of America
| | - David K. Welsh
- Veterans Affairs San Diego Healthcare System, San Diego, CA, United States of America
- Department of Psychiatry & Center for Circadian Biology, University of California San Diego, La Jolla, CA, United States of America
- * E-mail:
| |
Collapse
|
10
|
Camp RM, Johnson JD. Repeated stressor exposure enhances contextual fear memory in a beta-adrenergic receptor-dependent process and increases impulsivity in a non-beta receptor-dependent fashion. Physiol Behav 2015; 150:64-8. [PMID: 25747320 DOI: 10.1016/j.physbeh.2015.03.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Revised: 02/18/2015] [Accepted: 03/04/2015] [Indexed: 01/05/2023]
Abstract
Memory formation is promoted by stress via the release of norepinephrine and stimulation of beta-adrenergic receptors (β-ARs). Previous data demonstrate that repeated stressor exposure increases norepinephrine turnover and β-AR signaling within the amygdala, which led to the hypothesis that some stress-induced behavioral changes are likely due to facilitated associative learning. To test this, Fischer rats were exposed to chronic mild stress for four days. On day 5, subjects (including non-stressed controls) were injected with the beta-blocker propranolol or vehicle prior to conditioning in an operant box (animals receive two mild foot shocks) or passive avoidance apparatus (animals received a foot shock upon entry into the dark chamber). Twenty-four hours later, subjects were returned to the operant box for measurement of freezing or returned to the passive avoidance apparatus for measurement of latency to enter the dark chamber. Subjects were also tested in an open field to assess context-independent anxiety-like behavior. Animals exposed to chronic stress showed significantly more freezing behavior in the operant box than did controls, and this exaggerated freezing was blocked by propranolol during the conditioning trial. There was no effect of stress on behavior in the open field. Unexpectedly, retention latency was significantly reduced in subjects exposed to chronic stress. These results indicate that chronic exposure to stress results in complex behavioral changes. While repeated stress appears to enhance the formation of fearful memories, it also results in behavioral responses that resemble impulsive behaviors that result in poor decision-making.
Collapse
Affiliation(s)
- Robert M Camp
- Kent State University, Biological Sciences Department, Kent, OH 44242, United States
| | - John D Johnson
- Kent State University, Biological Sciences Department, Kent, OH 44242, United States.
| |
Collapse
|
11
|
Maier SF. Behavioral control blunts reactions to contemporaneous and future adverse events: medial prefrontal cortex plasticity and a corticostriatal network. Neurobiol Stress 2015; 1:12-22. [PMID: 25506602 PMCID: PMC4260419 DOI: 10.1016/j.ynstr.2014.09.003] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2014] [Revised: 09/08/2014] [Accepted: 09/09/2014] [Indexed: 12/22/2022] Open
Abstract
It has been known for many years that the ability to exert behavioral control over an adverse event blunts the behavioral and neurochemical impact of the event. More recently, it has become clear that the experience of behavioral control over adverse events also produces enduring changes that reduce the effects of subsequent negative events, even if they are uncontrollable and quite different from the original event controlled. This review focuses on the mechanism by which control both limits the impact of the stressor being experienced and produces enduring, trans-situational "immunization". The evidence will suggest that control is detected by a corticostriatal circuit involving the ventral medial prefrontal cortex (mPFC) and the posterior dorsomedial striatum (DMS). Once control is detected, other mPFC neurons that project to stress-responsive brainstem (dorsal raphe nucleus, DRN) and limbic (amygdala) structures exert top-down inhibitory control over the activation of these structures that is produced by the adverse event. These structures, such as the DRN and amygdala, in turn regulate the proximate mediators of the behavioral and physiological responses produced by adverse events, and so control blunts these responses. Importantly, the joint occurrence of control and adverse events seems to produce enduring plastic changes in the top-down inhibitory mPFC system such that this system is now activated by later adverse events even if they are uncontrollable, thereby reducing the impact of these events. Other issues are discussed that include a) whether other processes such as safety signals and exercise, that lead to resistance/resilience, also use the mPFC circuitry or do so in other ways; b) whether control has similar effects and neural mediation in humans, and c) the relationship of this work to clinical phenomena.
Collapse
Affiliation(s)
- Steven F. Maier
- Department of Psychology & Neuroscience and Center for Neuroscience, University of Colorado, Boulder, CO 80309-0345, USA
| |
Collapse
|
12
|
Abstract
Exposure to an uncontrollable stressor elicits a constellation of physiological and behavioral sequel in laboratory rats that often reflect aspects of anxiety and other emotional disruptions. We review evidence suggesting that plasticity within the serotonergic dorsal raphe nucleus (DRN) is critical to the expression of uncontrollable stressor-induced anxiety. Specifically, after uncontrollable stressor exposure subsequent anxiogenic stimuli evoke greater 5-HT release in DRN terminal regions including the amygdala and striatum; and pharmacological blockade of postsynaptic 5-HT(2C) receptors in these regions prevents expression of stressor-induced anxiety. Importantly, the controllability of stress, the presence of safety signals, and a history of exercise mitigate the expression of stressor-induced anxiety. These stress-protective factors appear to involve distinct neural substrates; with stressor controllability requiring the medial prefrontal cortex, safety signals the insular cortex and exercise affecting the 5-HT system directly. Knowledge of the distinct yet converging mechanisms underlying these stress-protective factors could provide insight into novel strategies for the treatment and prevention of stress-related psychiatric disorders.
Collapse
|
13
|
de Andrade Strauss CV, Vicente MA, Zangrossi H. Activation of 5-HT1A receptors in the rat basolateral amygdala induces both anxiolytic and antipanic-like effects. Behav Brain Res 2013; 246:103-10. [DOI: 10.1016/j.bbr.2013.03.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Revised: 02/28/2013] [Accepted: 03/04/2013] [Indexed: 10/27/2022]
|
14
|
Greenwood BN, Spence KG, Crevling DM, Clark PJ, Craig WC, Fleshner M. Exercise-induced stress resistance is independent of exercise controllability and the medial prefrontal cortex. Eur J Neurosci 2012; 37:469-78. [PMID: 23121339 DOI: 10.1111/ejn.12044] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Revised: 09/26/2012] [Accepted: 09/27/2012] [Indexed: 02/06/2023]
Abstract
Exercise increases resistance against stress-related disorders such as anxiety and depression. Similarly, the perception of control is a powerful predictor of neurochemical and behavioral responses to stress, but whether the experience of choosing to exercise, and exerting control over that exercise, is a critical factor in producing exercise-induced stress resistance is unknown. The current studies investigated whether the protective effects of exercise against the anxiety- and depression-like consequences of stress are dependent on exercise controllability and a brain region implicated in the protective effects of controllable experiences, the medial prefrontal cortex. Adult male Fischer 344 rats remained sedentary, were forced to run on treadmills or motorised running wheels, or had voluntary access to wheels for 6 weeks. Three weeks after exercise onset, rats received sham surgery or excitotoxic lesions of the medial prefrontal cortex. Rats were exposed to home cage or uncontrollable tail shock treatment three weeks later. Shock-elicited fear conditioning and shuttle box escape testing occurred the next day. Both forced and voluntary wheel running, but not treadmill training, prevented the exaggerated fear conditioning and interference with escape learning produced by uncontrollable stress. Lesions of the medial prefrontal cortex failed to eliminate the protective effects of forced or voluntary wheel running. These data suggest that exercise controllability and the medial prefrontal cortex are not critical factors in conferring the protective effects of exercise against the affective consequences of stressor exposure, and imply that exercise perceived as forced may still benefit affect and mental health.
Collapse
Affiliation(s)
- Benjamin N Greenwood
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80309, USA.
| | | | | | | | | | | |
Collapse
|
15
|
Fear conditioning can contribute to behavioral changes observed in a repeated stress model. Behav Brain Res 2012; 233:536-44. [DOI: 10.1016/j.bbr.2012.05.040] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Revised: 04/30/2012] [Accepted: 05/22/2012] [Indexed: 02/06/2023]
|
16
|
Strong PV, Christianson JP, Loughridge AB, Amat J, Maier SF, Fleshner M, Greenwood BN. 5-hydroxytryptamine 2C receptors in the dorsal striatum mediate stress-induced interference with negatively reinforced instrumental escape behavior. Neuroscience 2011; 197:132-44. [PMID: 21958863 DOI: 10.1016/j.neuroscience.2011.09.041] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2011] [Revised: 09/19/2011] [Accepted: 09/19/2011] [Indexed: 12/28/2022]
Abstract
Uncontrollable stress can interfere with instrumental learning and induce anxiety in humans and rodents. While evidence supports a role for serotonin (5-HT) and serotonin 2C receptors (5-HT(2C)R) in the behavioral consequences of uncontrollable stress, the specific sites of action are unknown. These experiments sought to delineate the role of 5-HT and 5-HT(2C)R in the dorsal striatum (DS) and the lateral/basolateral amygdala (BLA) in the expression of stress-induced instrumental escape deficits and exaggerated fear, as these structures are critical to instrumental learning and fear behaviors. Using in vivo microdialysis, we first demonstrated that prior uncontrollable, but not controllable, stress sensitizes extracellular 5-HT in the dorsal striatum, a result that parallels prior work in the BLA. Additionally, rats were implanted with bi-lateral cannula in either the DS or the BLA and exposed to uncontrollable tail shock stress. One day later, rats were injected with 5-HT(2C)R antagonist (SB242084) and fear and instrumental learning behaviors were assessed in a shuttle box. Separately, groups of non-stressed rats received an intra-DS or an intra-BLA injection of the 5-HT(2C)R agonist (CP809101) and behavior was observed. Intra-DS injections of the 5-HT(2C)R antagonist prior to fear/escape tests completely blocked the stress-induced interference with instrumental escape learning; a partial block was observed when injections were in the BLA. Antagonist administration in either region did not influence stress-induced fear behavior. In the absence of prior stress, intra-DS administration of the 5-HT(2C)R agonist was sufficient to interfere with escape behavior without enhancing fear, while intra-BLA administration of the 5-HT(2C)R agonist increased fear behavior but had no effect on escape learning. Results reveal a novel role of the 5-HT(2C)R in the DS in the expression of instrumental escape deficits produced by uncontrollable stress and demonstrate that the involvement of 5-HT(2C)R activation in stress-induced behaviors is regionally specific.
Collapse
Affiliation(s)
- P V Strong
- Department of Integrative Physiology, University of Colorado, Boulder, CO 80309-0354, USA
| | | | | | | | | | | | | |
Collapse
|
17
|
Christianson JP, Jennings JH, Ragole T, Flyer J, Benison AM, Barth D, Watkins L, Maier S. Safety signals mitigate the consequences of uncontrollable stress via a circuit involving the sensory insular cortex and bed nucleus of the stria terminalis. Biol Psychiatry 2011; 70:458-64. [PMID: 21684526 PMCID: PMC3159417 DOI: 10.1016/j.biopsych.2011.04.004] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2010] [Revised: 03/11/2011] [Accepted: 04/06/2011] [Indexed: 10/18/2022]
Abstract
BACKGROUND Safety signals exert a powerful buffering effect when provided during exposure to uncontrollable stressors. We evaluated the role of the sensory insular cortex (Si) and the extend amygdala in this "safety signal effect." METHODS Rats were implanted with microinjection cannula, exposed to inescapable tailshocks either with or without a safety signal, and later tested for anxiety-like behavior or neuronal Fos expression. RESULTS Exposure to the uncontrollable stressor reduced later social exploration but not when safety signals were present. Temporary inhibition of Si during stressor exposure but not during later behavioral testing blocked the safety signal effect on social exploration. The stressor induced Fos in all regions of the amygdala, but safety signals significantly reduced the number of Fos immunoreactive cells in the basolateral amygdala and ventrolateral region of the bed nucleus of the stria terminalis (BNSTlv). Inhibition of BNSTlv neuronal activity during uncontrollable stressor exposure prevented the later reduction in social exploration. Finally, safety signals reduced the time spent freezing during uncontrollable stress. CONCLUSIONS These data suggest that safety signals inhibit the neural fear or anxiety response that normally occurs during uncontrollable stressors and that inhibition of the BNSTlv is sufficient to prevent later anxiety. These data lend support to a growing body of evidence that chronic fear is mediated in the basolateral amygdala and BNSTlv and that environmental factors that modulate fear during stress will alter the long-term consequences of the stressor.
Collapse
|