1
|
Girotti M, Bulin SE, Carreno FR. Effects of chronic stress on cognitive function - From neurobiology to intervention. Neurobiol Stress 2024; 33:100670. [PMID: 39295772 PMCID: PMC11407068 DOI: 10.1016/j.ynstr.2024.100670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 08/30/2024] [Accepted: 09/01/2024] [Indexed: 09/21/2024] Open
Abstract
Exposure to chronic stress contributes considerably to the development of cognitive impairments in psychiatric disorders such as depression, generalized anxiety disorder (GAD), obsessive-compulsive disorder (OCD), post-traumatic stress disorder (PTSD), and addictive behavior. Unfortunately, unlike mood-related symptoms, cognitive impairments are not effectively treated by available therapies, a situation in part resulting from a still incomplete knowledge of the neurobiological substrates that underly cognitive domains and the difficulty in generating interventions that are both efficacious and safe. In this review, we will present an overview of the cognitive domains affected by stress with a specific focus on cognitive flexibility, behavioral inhibition, and working memory. We will then consider the effects of stress on neuronal correlates of cognitive function and the factors which may modulate the interaction of stress and cognition. Finally, we will discuss intervention strategies for treatment of stress-related disorders and gaps in knowledge with emerging new treatments under development. Understanding how cognitive impairment occurs during exposure to chronic stress is crucial to make progress towards the development of new and effective therapeutic approaches.
Collapse
Affiliation(s)
| | - Sarah E. Bulin
- Department of Pharmacology and Center for Biomedical Neuroscience, UT Health San Antonio, 7703 Floyd Curl Dr., San Antonio, TX, 78229, USA
| | - Flavia R. Carreno
- Department of Pharmacology and Center for Biomedical Neuroscience, UT Health San Antonio, 7703 Floyd Curl Dr., San Antonio, TX, 78229, USA
| |
Collapse
|
2
|
Grosu ȘA, Chirilă M, Rad F, Enache A, Handra CM, Ghiță I. The Effects of Four Compounds That Act on the Dopaminergic and Serotonergic Systems on Working Memory in Animal Studies; A Literature Review. Brain Sci 2023; 13:brainsci13040546. [PMID: 37190512 DOI: 10.3390/brainsci13040546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/23/2023] [Accepted: 03/23/2023] [Indexed: 03/29/2023] Open
Abstract
The dopaminergic and serotonergic systems are two of the most important neuronal pathways in the human brain. Almost all psychotropic medications impact at least one neurotransmitter system. As a result, investigating how they affect memory could yield valuable insights into potential therapeutic applications or unanticipated side effects. The aim of this literature review was to collect literature data from animal studies regarding the effects on memory of four drugs known to act on the serotonergic and dopaminergic systems. The studies included in this review were identified in the PubMed database using selection criteria from the PRISMA protocol. We analyzed 29 articles investigating one of four different dopaminergic or serotonergic compounds. Studies conducted on bromocriptine have shown that stimulating D2 receptors may enhance working memory in rodents, whereas inhibiting these receptors could have the opposite effect, reducing working memory performance. The effects of serotonin on working memory are not clearly established as studies on fluoxetine and ketanserin have yielded conflicting results. Further studies with better-designed methodologies are necessary to explore the impact of compounds that affect both the dopaminergic and serotonergic systems on working memory.
Collapse
|
3
|
Karalija N, Köhncke Y, Düzel S, Bertram L, Papenberg G, Demuth I, Lill CM, Johansson J, Riklund K, Lövdén M, Bäckman L, Nyberg L, Lindenberger U, Brandmaier AM. A common polymorphism in the dopamine transporter gene predicts working memory performance and in vivo dopamine integrity in aging. Neuroimage 2021; 245:118707. [PMID: 34742942 DOI: 10.1016/j.neuroimage.2021.118707] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 10/04/2021] [Accepted: 11/01/2021] [Indexed: 11/17/2022] Open
Abstract
Dopamine (DA) integrity is suggested as a potential cause of individual differences in working memory (WM) performance among older adults. Still, the principal dopaminergic mechanisms giving rise to WM differences remain unspecified. Here, 61 single-nucleotide polymorphisms, located in or adjacent to various dopamine-related genes, were assessed for their links to WM performance in a sample of 1313 adults aged 61-80 years from the Berlin Aging Study II. Least Absolute Shrinkage and Selection Operator (LASSO) regression was conducted to estimate associations between polymorphisms and WM. Rs40184 in the DA transporter gene, SLC6A3, showed allelic group differences in WM, with T-carriers performing better than C homozygotes (p<0.01). This finding was replicated in an independent sample from the Cognition, Brain, and Aging study (COBRA; baseline: n = 181, ages: 64-68 years; 5-year follow up: n = 129). In COBRA, in vivo DA integrity was measured with 11C-raclopride and positron emission tomography. Notably, WM as well as in vivo DA integrity was higher for rs40184 T-carriers at baseline (p<0.05 for WM and caudate and hippocampal D2-receptor availability) and at the 5-year follow-up (p<0.05 for WM and hippocampal D2 availability). Our findings indicate that individual differences in DA transporter function contribute to differences in WM performance in old age, presumably by regulating DA availability.
Collapse
Affiliation(s)
- Nina Karalija
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany; Umeå center for Functional Brain Imaging (UFBI), Umeå University, Umeå, Sweden; Department of Radiation Sciences, Diagnostic Radiology, Umeå University, Umeå, Sweden.
| | - Ylva Köhncke
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany
| | - Sandra Düzel
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany
| | - Lars Bertram
- Lübeck Interdisciplinary Platform for Genome Analytics, University of Lübeck, Lübeck, Germany; Center for Lifespan Changes in Brain and Cognition, Department of Psychology, University of Oslo, Oslo, Norway
| | - Goran Papenberg
- Aging Research Center, Karolinska Institutet & Stockholm University, Solna, Sweden
| | - Ilja Demuth
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Endocrinology and Metabolism, Berlin, Germany; Charité - Universitätsmedizin Berlin, BCRT - Berlin Institute of Health Center for Regenerative Therapies, Berlin, Germany
| | - Christina M Lill
- Lübeck Interdisciplinary Platform for Genome Analytics, University of Lübeck, Lübeck, Germany; Ageing Epidemiology Research Unit, School of Public Health, Imperial College London, London, UK
| | - Jarkko Johansson
- Umeå center for Functional Brain Imaging (UFBI), Umeå University, Umeå, Sweden; Department of Radiation Sciences, Diagnostic Radiology, Umeå University, Umeå, Sweden
| | - Katrine Riklund
- Umeå center for Functional Brain Imaging (UFBI), Umeå University, Umeå, Sweden; Department of Radiation Sciences, Diagnostic Radiology, Umeå University, Umeå, Sweden
| | - Martin Lövdén
- Department of psychology, University of Gothenburg, Gothenburg, Sweden
| | - Lars Bäckman
- Aging Research Center, Karolinska Institutet & Stockholm University, Solna, Sweden
| | - Lars Nyberg
- Umeå center for Functional Brain Imaging (UFBI), Umeå University, Umeå, Sweden; Department of Radiation Sciences, Diagnostic Radiology, Umeå University, Umeå, Sweden; Department of Integrative Medical Biology, Umeå University, Umeå, Sweden
| | - Ulman Lindenberger
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany; Max Planck UCL Centre for Computational Psychiatry and Ageing Research, Berlin, Germany, and London, UK
| | - Andreas M Brandmaier
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany; Max Planck UCL Centre for Computational Psychiatry and Ageing Research, Berlin, Germany, and London, UK
| |
Collapse
|
4
|
Hatzipantelis C, Langiu M, Vandekolk TH, Pierce TL, Nithianantharajah J, Stewart GD, Langmead CJ. Translation-Focused Approaches to GPCR Drug Discovery for Cognitive Impairments Associated with Schizophrenia. ACS Pharmacol Transl Sci 2020; 3:1042-1062. [PMID: 33344888 PMCID: PMC7737210 DOI: 10.1021/acsptsci.0c00117] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Indexed: 01/07/2023]
Abstract
There are no effective therapeutics for cognitive impairments associated with schizophrenia (CIAS), which includes deficits in executive functions (working memory and cognitive flexibility) and episodic memory. Compounds that have entered clinical trials are inadequate in terms of efficacy and/or tolerability, highlighting a clear translational bottleneck and a need for a cohesive preclinical drug development strategy. In this review we propose hippocampal-prefrontal-cortical (HPC-PFC) circuitry underlying CIAS-relevant cognitive processes across mammalian species as a target source to guide the translation-focused discovery and development of novel, procognitive agents. We highlight several G protein-coupled receptors (GPCRs) enriched within HPC-PFC circuitry as therapeutic targets of interest, including noncanonical approaches (biased agonism and allosteric modulation) to conventional clinical targets, such as dopamine and muscarinic acetylcholine receptors, along with prospective novel targets, including the orphan receptors GPR52 and GPR139. We also describe the translational limitations of popular preclinical cognition tests and suggest touchscreen-based assays that probe cognitive functions reliant on HPC-PFC circuitry and reflect tests used in the clinic, as tests of greater translational relevance. Combining pharmacological and behavioral testing strategies based in HPC-PFC circuit function creates a cohesive, translation-focused approach to preclinical drug development that may improve the translational bottleneck currently hindering the development of treatments for CIAS.
Collapse
Affiliation(s)
- Cassandra
J. Hatzipantelis
- Drug
Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Monica Langiu
- Drug
Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Teresa H. Vandekolk
- Drug
Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Tracie L. Pierce
- Drug
Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Jess Nithianantharajah
- Florey
Institute of Neuroscience
and Mental Health, University of Melbourne, Parkville, Victoria 3052, Australia
| | - Gregory D. Stewart
- Drug
Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Christopher J. Langmead
- Drug
Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| |
Collapse
|
5
|
Flashman LA, McDonald BC, Ford JC, Kenny RM, Andrews KD, Saykin AJ, McAllister TW. Differential Effects of Pergolide and Bromocriptine on Working Memory Performance and Brain Activation after Mild Traumatic Brain Injury. J Neurotrauma 2020; 38:225-234. [PMID: 32635808 DOI: 10.1089/neu.2020.7087] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Dopamine D1 and D2 receptors differ with respect to patterns of regional brain distribution and behavioral effects. Pre-clinical work suggests that D1 agonists enhance working memory, but the absence of selective D1 agonists has constrained using this approach in humans. This study examines working memory performance in mild traumatic brain injury (mTBI) patients when given pergolide, a mixed D1/D2 agonist, compared with bromocriptine, a selective D2 agonist. Fifteen individuals were studied 1 month after mTBI and compared with 17 healthy controls. At separate visits, participants were administered 1.25 mg bromocriptine or 0.05 mg pergolide prior to functional magnetic resonance imaging (MRI) using a working memory task (visual-verbal n-back). Results indicated a significant group-by-drug interaction for mean performance across n-back task conditions, where the mTBI group showed better performance on pergolide relative to bromocriptine, whereas controls showed the opposite pattern. There was also a significant effect of diagnosis, where mTBI patients performed worse than controls, particularly while on bromocriptine, as shown in our prior work. Functional MRI activation during the most challenging task condition (3-back > 0-back contrast) showed a significant group-by-drug interaction, with the mTBI group showing increased activation relative to controls in working memory circuitry while on pergolide, including in the left inferior frontal gyrus. Across participants there was a positive correlation between change in activation in this region and change in performance between drug conditions. Results suggest that activation of the D1 receptor may improve working memory performance after mTBI. This has implications for the development of pharmacological strategies to treat cognitive deficits after mTBI.
Collapse
Affiliation(s)
- Laura A Flashman
- Department of Neurology, Wake Forest Medical School and Wake Forest Baptist Medical Center, Winston-Salem, North Carolina, USA
| | - Brenna C McDonald
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - James C Ford
- Department of Psychiatry, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire, USA
| | - Rachel M Kenny
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Katharine D Andrews
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Andrew J Saykin
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Thomas W McAllister
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, Indiana, USA
| |
Collapse
|
6
|
Kurzina NP, Aristova IY, Volnova AB, Gainetdinov RR. Deficit in working memory and abnormal behavioral tactics in dopamine transporter knockout rats during training in the 8-arm maze. Behav Brain Res 2020; 390:112642. [PMID: 32428629 DOI: 10.1016/j.bbr.2020.112642] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 03/30/2020] [Accepted: 04/01/2020] [Indexed: 12/27/2022]
Abstract
Understanding the role of the dopamine system in learning and memory processes is very important for uncovering central mechanisms underlying complex behavioral responses that can be impaired in patients with neuropsychiatric disorders caused by dopamine system dysfunction. One of the most useful animal models for dopaminergic dysregulation is the strain of dopamine transporter knockout (DAT-KO) rats that have no dopamine re-uptake and thus elevated extracellular dopamine levels. It is known that dopamine is involved in various cognitive processes such as learning, memory and attention. This investigation was focused on the ability of DAT-KO rats to learn and perform a behavioral task in the 8-arm radial maze test. It was found that DAT-KO rats are able to learn the behavioral task, but the level of task performance did not reach that of WT group. The behavioral tactics used by animals during training significantly differ in mutants. The behavioral tactics used by DAT-KO rats involved perseverations and resulted in worse task fulfillment in comparison to wild-type controls. The data obtained indicate that deficient dopamine reuptake results in an impairment of working memory and perseverative behavioral tactics in DAT-KO rats.
Collapse
Affiliation(s)
- N P Kurzina
- Institute of Translational Biomedicine, Saint Petersburg State University, Saint Petersburg, Russia
| | - I Y Aristova
- Biological Faculty, Saint Petersburg State University, Saint Petersburg, Russia
| | - A B Volnova
- Biological Faculty, Saint Petersburg State University, Saint Petersburg, Russia; Institute of Translational Biomedicine, Saint Petersburg State University, Saint Petersburg, Russia.
| | - R R Gainetdinov
- Institute of Translational Biomedicine, Saint Petersburg State University, Saint Petersburg, Russia; Saint Petersburg State University Hospital, Saint Petersburg State University, Saint Petersburg, Russia
| |
Collapse
|
7
|
Selvaggi P, Pergola G, Gelao B, Di Carlo P, Nettis MA, Amico G, Fazio L, Rampino A, Sambataro F, Blasi G, Bertolino A. Genetic Variation of a DRD2 Co-expression Network is Associated with Changes in Prefrontal Function After D2 Receptors Stimulation. Cereb Cortex 2020; 29:1162-1173. [PMID: 29415163 DOI: 10.1093/cercor/bhy022] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 01/15/2018] [Indexed: 01/26/2023] Open
Abstract
Dopamine D2 receptors (D2Rs) contribute to the inverted U-shaped relationship between dopamine signaling and prefrontal function. Genetic networks from post-mortem human brain revealed 84 partner genes co-expressed with DRD2. Moreover, eight functional single nucleotide polymorphisms combined into a polygenic co-expression index (PCI) predicted co-expression of this DRD2 network and were associated with prefrontal function in humans. Here, we investigated the non-linear association of the PCI with behavioral and Working Memory (WM) related brain response to pharmacological D2Rs stimulation. Fifty healthy volunteers took part in a double-blind, placebo-controlled, functional MRI (fMRI) study with bromocriptine and performed the N-Back task. The PCI by drug interaction was significant on both WM behavioral scores (P = 0.046) and related prefrontal activity (all corrected P < 0.05) using a polynomial PCI model. Non-linear responses under placebo were reversed by bromocriptine administration. fMRI results on placebo were replicated in an independent sample of 50 participants who did not receive drug administration (P = 0.034). These results match earlier evidence in non-human primates and confirm the physiological relevance of this DRD2 co-expression network. Results show that in healthy subjects, different alleles evaluated as an ensemble are associated with non-linear prefrontal responses. Therefore, brain response to a dopaminergic drug may depend on a complex system of allelic patterns associated with DRD2 co-expression.
Collapse
Affiliation(s)
- Pierluigi Selvaggi
- Group of Psychiatric Neuroscience, Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari Aldo Moro, Bari, Italy.,Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Giulio Pergola
- Group of Psychiatric Neuroscience, Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari Aldo Moro, Bari, Italy
| | - Barbara Gelao
- Group of Psychiatric Neuroscience, Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari Aldo Moro, Bari, Italy
| | - Pasquale Di Carlo
- Group of Psychiatric Neuroscience, Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari Aldo Moro, Bari, Italy
| | - Maria Antonietta Nettis
- Group of Psychiatric Neuroscience, Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari Aldo Moro, Bari, Italy.,Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Graziella Amico
- Group of Psychiatric Neuroscience, Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari Aldo Moro, Bari, Italy
| | - Leonardo Fazio
- Group of Psychiatric Neuroscience, Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari Aldo Moro, Bari, Italy
| | - Antonio Rampino
- Group of Psychiatric Neuroscience, Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari Aldo Moro, Bari, Italy.,Azienda Ospedaliero-Universitaria Consorziale Policlinico, Bari, Italy
| | - Fabio Sambataro
- Department of Experimental and Clinical Medical Science, University of Udine, Udine, Italy
| | - Giuseppe Blasi
- Group of Psychiatric Neuroscience, Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari Aldo Moro, Bari, Italy.,Azienda Ospedaliero-Universitaria Consorziale Policlinico, Bari, Italy
| | - Alessandro Bertolino
- Group of Psychiatric Neuroscience, Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari Aldo Moro, Bari, Italy.,Azienda Ospedaliero-Universitaria Consorziale Policlinico, Bari, Italy
| |
Collapse
|
8
|
The D2-family receptor agonist bromocriptine but, not nicotine, reverses NMDA receptor antagonist-induced working memory deficits in the radial arm maze in mice. Neurobiol Learn Mem 2020; 168:107159. [PMID: 31911198 DOI: 10.1016/j.nlm.2020.107159] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 12/10/2019] [Accepted: 01/03/2020] [Indexed: 11/22/2022]
Abstract
Hypofunction of the NMDA receptor (NMDAr) may underlie cognitive deficits associated with schizophrenia and other psychiatric conditions including working memory (WM) impairments. Given that these deficits link closely to functional outcome, treatments remediating such deficits require identification. NMDAr hypofunction can be modeled via treatment with the antagonist MK-801. Hence, the present study determined whether cholinergic or dopaminergic agonists attenuate MK-801-induced WM deficits in mice. WM was assessed in male C57BL/6 mice trained on an automated 12-arm radial arm maze (RAM) paradigm, wherein rewards were delivered after the first but, not after subsequent entries into WM arms (8/12) and never delivered for entries into reference memory (RM) arms (4/12). Mice were then treated with MK-801 (vehicle or 0.3 mg/kg) and nicotine (vehicle, 0.03 or 0.30 mg/kg) in a cross-over design. After a 2-week washout, mice were then retested with MK-801 and the dopamine D2-family receptor agonist bromocriptine (vehicle, 3 or 10 mg/kg). In both experiments, MK-801 reduced WM span and increased RM and WM error rates. Nicotine did not attenuate these deficits. In contrast, a bromocriptine/MK-801 interaction was observed on WM error rate, where bromocriptine attenuated MK-801 induced deficits without affecting MK-801-induced RM errors. Additionally, bromocriptine produced the main effect of slowing latency to collect rewards. Hence, while NMDAr hypofunction-induced deficits in WM was unaffected by nicotine, it was remediated by treatment with the dopamine D2-family agonist bromocriptine. Future studies should determine whether selective activation of dopamine D2, D3, or D4 receptors remediate this NMDAr hypofunction-induced WM deficit.
Collapse
|
9
|
Nasehi M, Hasanvand S, Khakpai F, Zarrindast MR. The effect of CA1 dopaminergic system on amnesia induced by harmane in mice. Acta Neurol Belg 2019; 119:369-377. [PMID: 29767374 DOI: 10.1007/s13760-018-0926-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 04/16/2018] [Indexed: 12/28/2022]
Abstract
In the present study, the effects of bilateral injections of dopaminergic drugs into the hippocampal CA1 regions (intra-CA1) on harmane-induced amnesia were examined in mice. We used a single-trial step-down inhibitory avoidance task for the assessment of memory acquisition in adult male mice. Our data indicated that pre-training intra-peritoneal (i.p.) administration of harmane (12 mg/kg) impaired memory acquisition. Moreover, intra-CA1 administration of dopamine D1 receptor agonist, SKF38393 (0.25 µg/mouse), dopamine D1 receptor antagonist, SCH23390 (0.25 µg/mouse), dopamine D2 receptor agonist, quinpirole (0.125 and 0.25 µg/mouse) and dopamine D2 receptor antagonist, sulpiride (0.2 and 0.4 µg/mouse) decreased the learning of a single-trial inhibitory avoidance task. Furthermore, pre-training intra-CA1 injection of sub-threshold doses of SKF38393 (0.0625 µg/mouse) or sulpiride (0.1 µg/mouse) increased pre-training harmane (4 and 8 mg/kg, i.p.)-induced amnesia. On the other hand, pre-training intra-CA1 injection of a sub-threshold dose of SCH23390 (0.0625 µg/mouse) reversed amnesia induced by an effective dose of harmane (12 mg/kg; i.p.). In addition, Pre-training intra-CA1 injection of quinpirole (0.0625 µg/mouse) had no effect on memory impairment induced by harmane. These findings indicate the involvement of CA1 dopaminergic system on harmane-induced impairment of memory acquisition.
Collapse
|
10
|
Malikowska-Racia N, Sałat K, Nowaczyk A, Fijałkowski Ł, Popik P. Dopamine D2/D3 receptor agonists attenuate PTSD-like symptoms in mice exposed to single prolonged stress. Neuropharmacology 2019; 155:1-9. [PMID: 31085186 DOI: 10.1016/j.neuropharm.2019.05.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 04/28/2019] [Accepted: 05/09/2019] [Indexed: 01/19/2023]
Abstract
Medications that enhance dopaminergic neurotransmission can be useful in the pharmacotherapy of posttraumatic stress disorder (PTSD), which manifests as fearful memory retrieval, anxiety and depression. We examined the effects of subchronic (15 days) treatment with select dopaminergic medications, including bromocriptine, modafinil, dihydrexidine, rotigotine and pramipexole, in a mouse model of PTSD induced by single prolonged stress (mSPS). The potential antidepressant-like and anxiolytic effects of the medications were measured by the forced swim test (FST) and the elevated plus maze (EPM) test, respectively. In addition, we studied the effects of these medications on memory retrieval in an auditory fear conditioning (FC) test, on ultrasonic vocalizations (USVs) induced by restraint stress, and on spontaneous locomotor activity (SLA). We report that a single exposure to a severe and complex set of stressors several days before testing increased immobility time in the FST and freezing in the FC paradigm and reduced the time spent in the open arms of the EPM. The stressed mice also displayed increased USVs, especially the short type. While none of the tested dopamine-mimetics exhibited anxiolytic-like effects, rotigotine produced antidepressant-like activity specifically in the mSPS-exposed animals. Moreover, both rotigotine and pramipexole shortened the duration of freezing in the fear conditioning test, but only in the mSPS-exposed mice. This study supports the hypothesis that the activation of dopaminergic D2/D3 receptors may be a promising pharmacotherapy for PTSD.
Collapse
Affiliation(s)
- Natalia Malikowska-Racia
- Department of Pharmacodynamics, Chair of Pharmacodynamics, Jagiellonian University Medical College, 9 Medyczna St., 30-688, Krakow, Poland.
| | - Kinga Sałat
- Department of Pharmacodynamics, Chair of Pharmacodynamics, Jagiellonian University Medical College, 9 Medyczna St., 30-688, Krakow, Poland
| | - Alicja Nowaczyk
- Department of Organic Chemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, 2 dr. A. Jurasza St., 85-094, Bydgoszcz, Poland
| | - Łukasz Fijałkowski
- Department of Organic Chemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, 2 dr. A. Jurasza St., 85-094, Bydgoszcz, Poland
| | - Piotr Popik
- Faculty of Health Sciences, Jagiellonian University Medical College, 12 Michalowskiego St., 31-126, Krakow, Poland; Behavioral Neuroscience and Drug Development, Institute of Pharmacology, Polish Academy of Sciences, 12 Smetna St., 31-343, Krakow, Poland
| |
Collapse
|
11
|
Olivito L, De Risi M, Russo F, De Leonibus E. Effects of pharmacological inhibition of dopamine receptors on memory load capacity. Behav Brain Res 2018; 359:197-205. [PMID: 30391393 DOI: 10.1016/j.bbr.2018.10.041] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 10/30/2018] [Accepted: 10/31/2018] [Indexed: 12/26/2022]
Abstract
Memory capacity (MC) refers to the limited capacity of working memory and is defined as the number of elements that an individual can remember for a short retention interval. MC is impaired in many human pathologies, such as schizophrenia and ageing. Fronto-striatal dopamine regulates working memory, through its action on dopamine D1- and D2-like receptors. Human and rodent studies have suggested that MC is improved by D2 dopamine receptor agonists. Although D1 receptors have been crucially involved in the maintenance of working memory during delay, their role in regulating the capacity of WM remains poorly explored. In this study, we tested the effects of systemic injection of the D1-like and D2-like receptor antagonists, SCH 23390 and Haloperidol respectively, on MC in mice. For this, we used a modified version of the object recognition task, the Different/Identical Objects Task (DOT/IOT), which allows the evaluation of MC in rodents. The results showed a negative interaction between the dose of both drugs and the number of objects that could be remembered. The doses of SCH 23390 and Haloperidol that impaired novel object discrimination in the highest memory load condition were about 4 and 3 time lower, respectively, of those impairing performance in the lowest memory load condition. However, while SCH 23390 specifically impaired memory load capacity, the effects of Haloperidol were associated to impairment in exploratory behaviors. These findings may help to predict the cognitive side effects induced by Haloperidol in healthy subjects.
Collapse
Affiliation(s)
- Laura Olivito
- Institute of Genetics and Biophysics (IGB), Naples and Institute of Cellular Biology and Neurobiology (IBCN), National Research Council, Monterotondo (Rome), Italy; Telethon Institute of Genetics and Medicine, Telethon Foundation, Pozzuoli (Naples), Italy
| | - Maria De Risi
- Institute of Genetics and Biophysics (IGB), Naples and Institute of Cellular Biology and Neurobiology (IBCN), National Research Council, Monterotondo (Rome), Italy; Telethon Institute of Genetics and Medicine, Telethon Foundation, Pozzuoli (Naples), Italy; PhD Program in Behavioral Neuroscience, Sapienza University of Rome, Italy
| | - Fabio Russo
- Telethon Institute of Genetics and Medicine, Telethon Foundation, Pozzuoli (Naples), Italy
| | - Elvira De Leonibus
- Institute of Genetics and Biophysics (IGB), Naples and Institute of Cellular Biology and Neurobiology (IBCN), National Research Council, Monterotondo (Rome), Italy; Telethon Institute of Genetics and Medicine, Telethon Foundation, Pozzuoli (Naples), Italy.
| |
Collapse
|
12
|
Dere E, Dere D, de Souza Silva MA, Huston JP, Zlomuzica A. Fellow travellers: Working memory and mental time travel in rodents. Behav Brain Res 2018; 352:2-7. [DOI: 10.1016/j.bbr.2017.03.026] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 03/08/2017] [Accepted: 03/13/2017] [Indexed: 10/24/2022]
|
13
|
An investigation into aripiprazole's partial D₂ agonist effects within the dorsolateral prefrontal cortex during working memory in healthy volunteers. Psychopharmacology (Berl) 2016; 233:1415-26. [PMID: 26900078 PMCID: PMC4819596 DOI: 10.1007/s00213-016-4234-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 02/03/2016] [Indexed: 11/29/2022]
Abstract
RATIONALE Working memory impairments in schizophrenia have been attributed to dysfunction of the dorsolateral prefrontal cortex (DLPFC) which in turn may be due to low DLPFC dopamine innervation. Conventional antipsychotic drugs block DLPFC D2 receptors, and this may lead to further dysfunction and working memory impairments. Aripiprazole is a D2 receptor partial agonist hypothesised to enhance PFC dopamine functioning, possibly improving working memory. OBJECTIVES We probed the implications of the partial D2 receptor agonist actions of aripiprazole within the DLPFC during working memory. Investigations were carried out in healthy volunteers to eliminate confounds of illness or medication status. Aripiprazole's prefrontal actions were compared with the D2/5-HT2A blocker risperidone to separate aripiprazole's unique prefrontal D2 agonist actions from its serotinergic and striatal D2 actions that it shares with risperidone. METHOD A double-blind, placebo-controlled, parallel design was implemented. Participants received a single dose of either 5 mg aripiprazole, 1 mg risperidone or placebo before performing the n-back task whilst undergoing fMRI scanning. RESULTS Compared with placebo, the aripiprazole group demonstrated enhanced DLPFC activation associated with a trend for improved discriminability (d') and speeded reaction times. In contrast to aripiprazole's neural effects, the risperidone group demonstrated a trend for reduced DLPFC recruitment. Unexpectedly, the risperidone group demonstrated similar effects to aripiprazole on d' and additionally had reduced errors of commission compared with placebo. CONCLUSION Aripiprazole has unique DLPFC actions attributed to its prefrontal D2 agonist action. Risperidone's serotinergic action that results in prefrontal dopamine release may have protected against any impairing effects of its prefrontal D2 blockade.
Collapse
|
14
|
Nasehi M, Meskarian M, Khakpai F, Zarrindast MR. Harmaline-induced amnesia: Possible role of the amygdala dopaminergic system. Neuroscience 2015; 312:1-9. [PMID: 26556066 DOI: 10.1016/j.neuroscience.2015.11.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Revised: 11/03/2015] [Accepted: 11/03/2015] [Indexed: 11/16/2022]
Abstract
In this study, we examined the effect of bilateral intra-basolateral amygdala (intra-BLA) microinjections of dopamine receptor agents on amnesia induced by a β-carboline alkaloid, harmaline in mice. We used a step-down method to assess memory and then, hole-board method to assess exploratory behaviors. The results showed that pre-training intra-BLA injections of dopamine D1 receptor antagonist and agonist (SCH23390 (0.5μg/mouse) and SKF38393 (0.5μg/mouse), respectively) impaired memory acquisition. In contrast, pre-training intra-BLA injections of dopamine D2 receptor antagonist and agonist (sulpiride and quinpirole, respectively) have no significant effect on memory acquisition. Pre-training intra-peritoneal (i.p.) injection of harmaline (1mg/kg) decreased memory acquisition. However, co-administration of SCH 23390 (0.01μg/mouse) with different doses of harmaline did not alter amnesia. Conversely, pre-training intra-BLA injection of SKF38393 (0.1μg/mouse), sulpiride (0.25μg/mouse) or quinpirole (0.1μg/mouse) reversed harmaline (1mg/kg, i.p.)-induced amnesia. Furthermore, all above doses of drugs had no effect on locomotor activity. In conclusion, the dopamine D1 and D2 receptors of the BLA may be involved in the impairment of memory acquisition induced by harmaline.
Collapse
Affiliation(s)
- M Nasehi
- Cognitive and Neruroscience Research Center, CNRC, Tehran Medical Sciences Branch, Islamic Azad University, Tehran, Iran.
| | - M Meskarian
- Department of Biology, Faculty of Basic Sciences, Northern Branch, Islamic Azad University, Tehran, Iran
| | - F Khakpai
- Institute for Cognitive Science Studies (ICSS), Tehran, Iran
| | - M-R Zarrindast
- Cognitive and Neruroscience Research Center, CNRC, Tehran Medical Sciences Branch, Islamic Azad University, Tehran, Iran; Institute for Cognitive Science Studies (ICSS), Tehran, Iran; Department of Pharmacology and Iranian National Center for Addiction Studies, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; School of Cognitive Sciences, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran.
| |
Collapse
|
15
|
Young JW, Geyer MA. Developing treatments for cognitive deficits in schizophrenia: the challenge of translation. J Psychopharmacol 2015; 29:178-96. [PMID: 25516372 PMCID: PMC4670265 DOI: 10.1177/0269881114555252] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Schizophrenia is a life-long debilitating mental disorder affecting tens of millions of people worldwide. The serendipitous discovery of antipsychotics focused pharmaceutical research on developing a better antipsychotic. Our understanding of the disorder has advanced however, with the knowledge that cognitive enhancers are required for patients in order to improve their everyday lives. While antipsychotics treat psychosis, they do not enhance cognition and hence are not antischizophrenics. Developing pro-cognitive therapeutics has been extremely difficult, however, especially when no approved treatment exists. In lieu of stumbling on an efficacious treatment, developing targeted compounds can be facilitated by understanding the neural mechanisms underlying altered cognitive functioning in patients. Equally importantly, these cognitive domains will need to be measured similarly in animals and humans so that novel targets can be tested prior to conducting expensive clinical trials. To date, the limited similarity of testing across species has resulted in a translational bottleneck. In this review, we emphasize that schizophrenia is a disorder characterized by abnormal cognitive behavior. Quantifying these abnormalities using tasks having cross-species validity would enable the quantification of comparable processes in rodents. This approach would increase the likelihood that the neural substrates underlying relevant behaviors will be conserved across species. Hence, we detail cross-species tasks which can be used to test the effects of manipulations relevant to schizophrenia and putative therapeutics. Such tasks offer the hope of providing a bridge between non-clinical and clinical testing that will eventually lead to treatments developed specifically for patients with deficient cognition.
Collapse
Affiliation(s)
- JW Young
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - MA Geyer
- Research Service, VA San Diego Healthcare System, San Diego, CA, USA
| |
Collapse
|
16
|
The effect of CA1 dopaminergic system in harmaline-induced amnesia. Neuroscience 2015; 285:47-59. [DOI: 10.1016/j.neuroscience.2014.11.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Revised: 10/31/2014] [Accepted: 11/04/2014] [Indexed: 11/19/2022]
|
17
|
Olivito L, Saccone P, Perri V, Bachman JL, Fragapane P, Mele A, Huganir RL, De Leonibus E. Phosphorylation of the AMPA receptor GluA1 subunit regulates memory load capacity. Brain Struct Funct 2014; 221:591-603. [PMID: 25381005 PMCID: PMC4425615 DOI: 10.1007/s00429-014-0927-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Accepted: 10/17/2014] [Indexed: 01/13/2023]
Abstract
Memory capacity (MC) refers to the number of elements one can maintain for a short retention interval. The molecular mechanisms underlying MC are unexplored. We have recently reported that mice as well as humans have a limited MC, which is reduced by hippocampal lesions. Here, we addressed the molecular mechanisms supporting MC. GluA1 AMPA-receptors (AMPA-R) mediate the majority of fast excitatory synaptic transmission in the brain and are critically involved in memory. Phosphorylation of GluA1 at serine residues S831 and S845 is promoted by CaMKII and PKA, respectively, and regulates AMPA-R function in memory duration. We hypothesized that AMPA-R phosphorylation may also be a key plastic process for supporting MC because it occurs in a few minutes, and potentiates AMPA-R ion channel function. Here, we show that knock-in mutant mice that specifically lack both of S845 and S831 phosphorylation sites on the GluA1 subunit had reduced MC in two different behavioral tasks specifically designed to assess MC in mice. This demonstrated a causal link between AMPA-R phosphorylation and MC. We then showed that information load regulates AMPA-R phosphorylation within the hippocampus, and that an overload condition associated with impaired memory is paralleled by a lack of AMPA-R phosphorylation. Accordingly, we showed that in conditions of high load, but not of low load, the pharmacological inhibition of the NMDA–CaMKII–PKA pathways within the hippocampus prevents memory as well as associated AMPA-R phosphorylation. These data provide the first identified molecular mechanism that regulates MC.
Collapse
Affiliation(s)
- Laura Olivito
- Institute of Genetics and Biophysics, CNR, Via P. Castellino 111, 80131, Naples, Italy
| | - Paola Saccone
- Telethon Institute of Genetics and Medicine (TIGEM), Naples, Italy
| | - Valentina Perri
- Dipartimento di Biologia e Biotecnologie, Università degli Studi di Roma "La Sapienza", Rome, Italy
- Centro di Ricerca in Neurobiologia-D. Bovet, Università degli Studi di Roma "La Sapienza", Rome, Italy
| | - Julia L Bachman
- Department of Neuroscience and Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Hunterian 1001, 725 North Wolfe Street, Baltimore, MD, 21205, USA
| | - Paola Fragapane
- Istituto di Biologia e Patologia Molecolare, CNR, Rome, Italy
| | - Andrea Mele
- Dipartimento di Biologia e Biotecnologie, Università degli Studi di Roma "La Sapienza", Rome, Italy
- Centro di Ricerca in Neurobiologia-D. Bovet, Università degli Studi di Roma "La Sapienza", Rome, Italy
| | - Richard L Huganir
- Department of Neuroscience and Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Hunterian 1001, 725 North Wolfe Street, Baltimore, MD, 21205, USA
| | - Elvira De Leonibus
- Institute of Genetics and Biophysics, CNR, Via P. Castellino 111, 80131, Naples, Italy.
- Telethon Institute of Genetics and Medicine (TIGEM), Naples, Italy.
| |
Collapse
|
18
|
Wang X, Yan S, Wang A, Li Y, Zhang F. Gastrodin ameliorates memory deficits in 3,3'-iminodipropionitrile-induced rats: possible involvement of dopaminergic system. Neurochem Res 2014; 39:1458-66. [PMID: 24842556 DOI: 10.1007/s11064-014-1335-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Revised: 05/09/2014] [Accepted: 05/12/2014] [Indexed: 11/29/2022]
Abstract
3,3'-Iminodipropionitrile (IDPN), one of the nitrile derivatives, can induce neurotoxicity, and therefore cause motor dysfunction and cognitive deficits. Gastrodin is a main bioactive constituent of a Chinese herbal medicine (Gastrodia elata Blume) widely used for treating various neurological disorders and showed greatly improved mental function. This study was designed to determine whether administration of gastrodin attenuates IDPN-induced working memory deficits in Y-maze task, and to explore the underlying mechanisms. Results showed that exposure to IDPN (150 mg/kg/day, v.o.) significantly impaired working memory and that long-term gastrodin (200 mg/kg/day, v.o.) could effectively rescue these IDPN-induced memory impairments as indicated by increased spontaneous alternation in the Y-maze test. Additionally, gastrodin treatment prevented IDPN-induced reductions of dopamine (DA) and its metabolites, as well as elevation of dopamine turnover ratio (DOPAC + HVA)/DA. Gastrodin treatment also prevented alterations in dopamine D2 receptor and dopamine transporter protein levels in the rat hippocampus. Our results suggest that long-term gastrodin treatment may have potential therapeutic values for IDPN-induced cognitive impairments, which was mediated, in part, by normalizing the dopaminergic system.
Collapse
Affiliation(s)
- Xiaona Wang
- Institute of Physiology, Shandong University School of Medicine, Wenhua Xi Road, Jinan, 250012, Shandong, People's Republic of China
| | | | | | | | | |
Collapse
|
19
|
Gómez-Vallejo V, Vázquez N, Gona KB, Puigivila M, González M, Sebastián ES, Martin A, Llop J. Synthesis andin vivoevaluation of11C-labeled (1,7-dicarba-closo-dodecaboran-1-yl)-N-{[(2S)-1-ethylpyrrolidin-2-yl]methyl}amide. J Labelled Comp Radiopharm 2013; 57:209-14. [DOI: 10.1002/jlcr.3159] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Accepted: 10/29/2013] [Indexed: 01/02/2023]
Affiliation(s)
- Vanessa Gómez-Vallejo
- Radiochemistry Department, Molecular Imaging Unit; CIC biomaGUNE; Parque Tecnológico de Miramón; San Sebastián Guipúzcoa Spain
| | - Naiara Vázquez
- Radiochemistry Department, Molecular Imaging Unit; CIC biomaGUNE; Parque Tecnológico de Miramón; San Sebastián Guipúzcoa Spain
| | - Kiran Babu Gona
- Radiochemistry Department, Molecular Imaging Unit; CIC biomaGUNE; Parque Tecnológico de Miramón; San Sebastián Guipúzcoa Spain
| | - Maria Puigivila
- Radiochemistry Department, Molecular Imaging Unit; CIC biomaGUNE; Parque Tecnológico de Miramón; San Sebastián Guipúzcoa Spain
| | - Mikel González
- Radiochemistry Department, Molecular Imaging Unit; CIC biomaGUNE; Parque Tecnológico de Miramón; San Sebastián Guipúzcoa Spain
| | - Eneko San Sebastián
- Image Analytics Department, Molecular Imaging Unit; CIC biomaGUNE; Parque Tecnológico de Miramón; San Sebastián Guipúzcoa Spain
| | - Abraham Martin
- Molecular Imaging Unit; CIC biomaGUNE; Parque Tecnológico de Miramón; San Sebastián Guipúzcoa Spain
| | - Jordi Llop
- Radiochemistry Department, Molecular Imaging Unit; CIC biomaGUNE; Parque Tecnológico de Miramón; San Sebastián Guipúzcoa Spain
| |
Collapse
|
20
|
van Enkhuizen J, Minassian A, Young JW. Further evidence for ClockΔ19 mice as a model for bipolar disorder mania using cross-species tests of exploration and sensorimotor gating. Behav Brain Res 2013; 249:44-54. [PMID: 23623885 DOI: 10.1016/j.bbr.2013.04.023] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Revised: 04/12/2013] [Accepted: 04/16/2013] [Indexed: 02/07/2023]
Abstract
Bipolar disorder (BD) is a pervasive neuropsychiatric disorder characterized by episodes of mania and depression. The switch between mania and depression may reflect seasonal changes and certainly can be affected by alterations in sleep and circadian control. The circadian locomotor output cycles kaput (CLOCK) protein is a key component of the cellular circadian clock. Mutation of the Clock gene encoding this protein in ClockΔ19 mutant mice leads to behavioral abnormalities reminiscent of BD mania. To date, however, these mice have not been assessed in behavioral paradigms that have cross-species translational validity. In the present studies of ClockΔ19 and wildtype (WT) littermate mice, we quantified exploratory behavior and sensorimotor gating, which are abnormal in BD manic patients. We also examined the saccharin preference of these mice and their circadian control in different photoperiods. ClockΔ19 mice exhibited behavioral alterations that are consistent with BD manic patients tested in comparable tasks, including hyperactivity, increased specific exploration, and reduced sensorimotor gating. Moreover, compared to WT mice, ClockΔ19 mice exhibited a greater preference for sweetened solutions and greater sensitivity to altered photoperiod. In contrast with BD manic patients however, ClockΔ19 mice exhibited more circumscribed movements during exploration. Future studies will extend the characterization of these mice in measures with cross-species translational relevance to human testing.
Collapse
Affiliation(s)
- Jordy van Enkhuizen
- Department of Psychiatry, University of California, San Diego (UCSD), 9500 Gilman Drive MC 0804, La Jolla, CA 92093-0804, United States
| | | | | |
Collapse
|
21
|
Yee BK, Singer P. A conceptual and practical guide to the behavioural evaluation of animal models of the symptomatology and therapy of schizophrenia. Cell Tissue Res 2013; 354:221-46. [PMID: 23579553 DOI: 10.1007/s00441-013-1611-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2013] [Accepted: 03/07/2013] [Indexed: 02/08/2023]
Abstract
Schizophrenia is a chronic debilitating brain disorder characterized by a complex set of perceptual and behavioural symptoms that severely disrupt and undermine the patient's psychological well-being and quality of life. Since the exact disease mechanisms remain essentially unknown, holistic animal models are indispensable tools for any serious investigation into the neurobiology of schizophrenia, including the search for remedies, prevention of the disease and possible biological markers. This review provides some practical advice to those confronted with the task of evaluating their animal models for relevance to schizophrenia, a task that inevitably involves behavioural tests with animals. To a novice, this challenge not only is a technical one but also entails attention to interpretative issues concerning validity and translational power. Here, we attempt to offer some guidance to help overcome these obstacles by drawing on our experience of diverse animal models of schizophrenia based on genetics, strain difference, brain lesions, pharmacological induction and early life developmental manipulations. The review pays equal emphasis to the general (theoretical) considerations of experimental design and the illustration of the problems related to critical test parameters and the data analysis of selected exemplar behavioural tests. Finally, the individual differences of behavioural expression in relevant tests observed in wild-type animals might offer an alternative approach in order to explore the mechanism of schizophrenia-related behavioural dysfunction at the molecular, cellular and structural levels, all of which are of more immediate relevance to cell and tissue research.
Collapse
Affiliation(s)
- Benjamin K Yee
- Robert Stone Dow Neurobiology Laboratories, Legacy Research Institute, 1225 NE Second Avenue, Portland, OR 97232, USA,
| | | |
Collapse
|
22
|
Subchronic Oral Bromocriptine Methanesulfonate Enhances Open Field Novelty-Induced Behavior and Spatial Memory in Male Swiss Albino Mice. NEUROSCIENCE JOURNAL 2012; 2013:948241. [PMID: 26317106 PMCID: PMC4475584 DOI: 10.1155/2013/948241] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2012] [Revised: 10/27/2012] [Accepted: 11/14/2012] [Indexed: 11/17/2022]
Abstract
This study set out to assess the neurobehavioral effects of subchronic, oral bromocriptine methanesulfonate using the open field and the Y-maze in healthy male mice. Sixty adult Swiss albino mice were assigned into three groups. Controls received normal saline, while test groups received bromocriptine methanesulfonate at 2.5 and 5 mg/kg/day, respectively, for a period of 21 days. Neurobehavioral tests were carried out on days 1 and 21 after administration. Open field assessment on day 1 after administration revealed significant increase in grooming at 2.5 and 5 mg/kg, while horizontal and vertical locomotion showed no significant changes. Day 1 also showed no significant changes in Y-maze alternation. On day 21, horizontal locomotion, rearing, and grooming were increased significantly at 2.5 and 5 mg/kg doses after administration; also, spatial memory was significantly enhanced at 2.5 mg/kg. In conclusion, the study demonstrates the ability of oral bromocriptine to affect neurobehavior in normal mice. It also suggests that there is a cumulative effect of oral bromocriptine on the behaviors studied with more changes being seen after subchronic administration rather than after a single oral dose.
Collapse
|
23
|
Hall FS, Markou A, Levin ED, Uhl GR. Mouse models for studying genetic influences on factors determining smoking cessation success in humans. Ann N Y Acad Sci 2012; 1248:39-70. [PMID: 22304675 DOI: 10.1111/j.1749-6632.2011.06415.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Humans differ in their ability to quit using addictive substances, including nicotine, the major psychoactive ingredient in tobacco. For tobacco smoking, a substantial body of evidence, largely derived from twin studies, indicates that approximately half of these individual differences in ability to quit are heritable genetic influences that likely overlap with those for other addictive substances. Both twin and molecular genetic studies support overlapping influences on nicotine addiction vulnerability and smoking cessation success, although there is little formal analysis of the twin data that support this important point. None of the current datasets provides clarity concerning which heritable factors might provide robust dimensions around which individuals differ in ability to quit smoking. One approach to this problem is to test mice with genetic variations in genes that contain human variants that alter quit success. This review considers which features of quit success should be included in a comprehensive approach to elucidate the genetics of quit success, and how those features may be modeled in mice.
Collapse
Affiliation(s)
- F Scott Hall
- Molecular Neurobiology Branch, NIH-IRP, NIDA, Baltimore, Maryland 21224, USA
| | | | | | | |
Collapse
|
24
|
Abstract
Cognitive dysfunction is a core aspect of schizophrenia that constitutes a major obstacle toward reintegration of patients into society. Although multiple cognitive deficits are evident in schizophrenia patients, no medication is currently approved for their amelioration. Although consensus clinical test batteries have been developed for the assessment of putative cognition enhancers in patients with schizophrenia, parallel animal tests remain to be validated. Having no approved treatment for cognitive symptoms means no positive control can be used to examine pharmacological predictive validity of animal models. Thus, focus has been placed on animal paradigms that have demonstrable construct validity for the cognitive domain being assessed.This review describes the growing arsenal of animal paradigms under development that have putative construct validity to cognitive domains affected in schizophrenia. We discuss (1) the construct validity of the paradigms; (2) compounds developed to investigate putative treatment targets; and (3) manipulations used to first impair task performance. Focus is placed on the paradigm design, including how the use of multivariate assessments can provide evidence that main effects of treatment are not confounded by extraneous effects.
Collapse
|
25
|
Barak S, Weiner I. Putative cognitive enhancers in preclinical models related to schizophrenia: The search for an elusive target. Pharmacol Biochem Behav 2011; 99:164-89. [DOI: 10.1016/j.pbb.2011.03.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2010] [Revised: 02/27/2011] [Accepted: 03/12/2011] [Indexed: 12/12/2022]
|
26
|
Young JW, Meves JM, Tarantino IS, Caldwell S, Geyer MA. Delayed procedural learning in α7-nicotinic acetylcholine receptor knockout mice. GENES BRAIN AND BEHAVIOR 2011; 10:720-33. [PMID: 21679297 DOI: 10.1111/j.1601-183x.2011.00711.x] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The α7-nicotinic acetylcholine receptor (nAChR) has long been a procognitive therapeutic target to treat schizophrenia. Evidence on the role of this receptor in cognition has been lacking, however, in part due to the limited availability of suitable ligands. The behavior of α7-nAChR knockout (KO) mice has been examined previously, but cognitive assessments using tests with cross-species translatability have been limited to date. Here, we assessed the cognitive performance of α7-nAChR KO and wild-type (WT) littermate mice in the attentional set-shifting task of executive functioning, the radial arm maze test of spatial working memory span capacity and the novel object recognition test of short-term memory. The reward motivation of these mutants was assessed using the progressive ratio breakpoint test. In addition, we assessed the exploratory behavior and sensorimotor gating using the behavioral pattern monitor and prepulse inhibition, respectively. α7-nAChR KO mice exhibited normal set-shifting, but impaired procedural learning (rule acquisition) in multiple paradigms. Spatial span capacity, short-term memory, motivation for food, exploration and sensorimotor gating were all comparable to WT littermates. The data presented here support the notion that this receptor is important for such procedural learning, when patterns in the environment become clear and a rule is learned. In combination with the impaired attention observed previously in these mice, this finding suggests that agonist treatments should be examined in clinical studies of attention and procedural learning, perhaps in combination with cognitive behavioral therapy.
Collapse
Affiliation(s)
- J W Young
- Department of Psychiatry, University of California San Diego, La Jolla, CA 92093-0804, USA.
| | | | | | | | | |
Collapse
|