1
|
Abdel Rady MM, Osman AM, Abo Elfadl GM, Ahmed HM, Sayed S, Abdallah AO, Ali WN. Effects of intravenous single-bolus lidocaine infusion versus intravenous single-bolus magnesium sulfate infusion on postoperative pain, emotional status, and quality of life in patients undergoing spine fusion surgery: a randomized study. Minerva Anestesiol 2024; 90:397-408. [PMID: 38771164 DOI: 10.23736/s0375-9393.24.17868-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
BACKGROUND We assessed the efficiency of intravenous adjuvants in decreasing opioid intake and pain scores after spine fusion surgery. METHODS This study included 120 patients aged 18-60 listed for spine fusion surgery under general anesthesia. Patients were randomly assigned to four groups: Group (Lidocaine): received IV lidocaine 4 mg/kg in 50 mL volume over 30 min. Group (Magnesium): received IV magnesium sulfate 30mg/kg in 50 mL volume over 30 min. Group (combined Lidocaine and Magnesium): received IV lidocaine 4 mg/kg in 50 mL volume over 30 min.+IV magnesium sulfate 30mg/kg in 50 mL volume over 30 min. Group (Control): received IV saline 50 mL. The time to the first request analgesia, the postoperative pain score, total analgesic use, patient satisfaction, anxiety, depression, mental state, quality of life, and side effects were measured. RESULTS The combined group had more extended time for the first analgesic request and fewer rescue analgesia doses than the other groups. NRS scores at rest or movement were statistically significantly lower in the lidocaine group and the combined group compared to the control group (P1, P3<0.05) at almost all times. This combination reduces anxiety and depression and improves overall health up to three months after a single infusion. The combined group had higher patient satisfaction. CONCLUSIONS A synergistic effect of a combination of lidocaine and magnesium sulfate on perioperative pain was found. It reduces analgesic consumption, depression, and anxiety and improves overall health up to three months after a single infusion dose.
Collapse
Affiliation(s)
- Marwa M Abdel Rady
- Faculty of Medicine, New Valley University, Kharga, Egypt -
- Department of Anesthesia and Intensive Care, Assiut University Hospital, Assiut, Egypt -
| | - Ayman M Osman
- Department of Anesthesia and Intensive Care, Assiut University Hospital, Assiut, Egypt
| | - Ghada M Abo Elfadl
- Department of Anesthesia and Intensive Care, Assiut University Hospital, Assiut, Egypt
| | - Haitham M Ahmed
- Department of Anesthesia and Intensive Care, Assiut University Hospital, Assiut, Egypt
| | - Sherif Sayed
- Department of Anesthesia and Intensive Care, Assiut University Hospital, Assiut, Egypt
| | - Ahmed O Abdallah
- Department of Anesthesia and Intensive Care, Assiut University Hospital, Assiut, Egypt
| | - Wesam N Ali
- Department of Anesthesia and Intensive Care, Assiut University Hospital, Assiut, Egypt
| |
Collapse
|
2
|
He J, Zhu Y, Wu C, Wu J, Chen Y, Yuan M, Cheng Z, Zeng L, Ji X. Transcranial ultrasound neuromodulation facilitates isoflurane-induced general anesthesia recovery and improves cognition in mice. ULTRASONICS 2023; 135:107132. [PMID: 37604030 DOI: 10.1016/j.ultras.2023.107132] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 06/13/2023] [Accepted: 08/05/2023] [Indexed: 08/23/2023]
Abstract
Delayed arousal and cognitive dysfunction are common, especially in older patients after general anesthesia (GA). Elevating central nervous system serotonin (5-HT) levels can promote recovery from GA and increase synaptic plasticity to improve cognition. Ultrasound neuromodulation has become a noninvasive physical intervention therapy with high spatial resolution and penetration depth, which can modulate neuronal excitability to treat psychiatric and neurodegenerative diseases. This study aims to use ultrasound to noninvasively modulate the brain 5-HT levels of mice to promote recovery from GA and improve cognition in mice. The dorsal raphe nucleus (DRN) of mice during GA was stimulated by the 1.1 MHz ultrasound with a negative pressure of 356 kPa, and the liquid chromatography coupled tandem mass spectrometry (LC-MS/MS) method was used to measure the DRN 5-HT concentrations. The mice's recovery time from GA was assessed, and the cognition was evaluated through spontaneous alternation Y-maze and novel object recognition (NOR) tests. After ultrasound stimulation, the mice's DRN 5-HT levels were significantly increased (control: 554.0 ± 103.2 ng/g, anesthesia + US: 664.2 ± 84.1 ng/g, *p = 0.0389); the GA recovery time (return of the righting reflex (RORR) emergence latency time) of mice was significantly reduced (anesthesia: 331.6 ± 70 s, anesthesia + US: 223.2 ± 67.7 s, *p = 0.0215); the spontaneous rotation behavior score of mice was significantly increased (anesthesia: 59.46 ± 5.26 %, anesthesia + US: 68.55 ± 5.24 %; *p = 0.0126); the recognition index was significantly increased (anesthesia: 55.02 ± 6.23 %, anesthesia + US: 78.52 ± 12.21 %; ***p = 0.0009). This study indicates that ultrasound stimulation of DRN increases serotonin levels, accelerates recovery from anesthesia, and improves cognition, which could be an important strategy for treating delayed arousal, postoperative delirium, or even lasting cognitive dysfunction after GA.
Collapse
Affiliation(s)
- Jiaru He
- State Key Laboratory of Precision Electronic Manufacturing Technology and Equipment, Guangdong University of Technology, Guangzhou 510006, China
| | - Yiyue Zhu
- State Key Laboratory of Precision Electronic Manufacturing Technology and Equipment, Guangdong University of Technology, Guangzhou 510006, China
| | - Canwen Wu
- State Key Laboratory of Precision Electronic Manufacturing Technology and Equipment, Guangdong University of Technology, Guangzhou 510006, China
| | - Junwei Wu
- State Key Laboratory of Precision Electronic Manufacturing Technology and Equipment, Guangdong University of Technology, Guangzhou 510006, China
| | - Yan Chen
- State Key Laboratory of Precision Electronic Manufacturing Technology and Equipment, Guangdong University of Technology, Guangzhou 510006, China
| | - Maodan Yuan
- State Key Laboratory of Precision Electronic Manufacturing Technology and Equipment, Guangdong University of Technology, Guangzhou 510006, China
| | - Zhongwen Cheng
- State Key Laboratory of Precision Electronic Manufacturing Technology and Equipment, Guangdong University of Technology, Guangzhou 510006, China
| | - Lvming Zeng
- State Key Laboratory of Precision Electronic Manufacturing Technology and Equipment, Guangdong University of Technology, Guangzhou 510006, China
| | - Xuanrong Ji
- State Key Laboratory of Precision Electronic Manufacturing Technology and Equipment, Guangdong University of Technology, Guangzhou 510006, China.
| |
Collapse
|
3
|
Maheshwari K, Yalcin EK, Wang D, Mascha EJ, Rosenfeldt A, Alberts JL, Turan A, Sessler DI, Cummings III KC. Processing speed test and 30-day readmission in elderly non-cardiac surgery patients- A retrospective study. Indian J Anaesth 2023; 67:620-627. [PMID: 37601924 PMCID: PMC10436707 DOI: 10.4103/ija.ija_176_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 03/31/2023] [Accepted: 06/12/2023] [Indexed: 08/22/2023] Open
Abstract
Background and Aims Preoperative cognitive function screening can help identify high-risk patients, but resource-intensive testing limits its widespread use. A novel self-administered tablet computer-based Processing Speed Test (PST) was used to assess cognitive "executive" function in non-cardiac surgery patients, but the relationship between preoperative test scores and postoperative outcomes is unclear. The primary outcome was a composite of 30-day readmission/death. The secondary outcome was a collapsed composite of discharge to a long-term care facility/death. Exploratory outcomes were 1) time to discharge alive, 2) 1-year mortality and 3) a collapsed composite of postoperative complications. Methods This retrospective study, after approval, was conducted in elective non-cardiac surgery patients ≥65 years old. We assessed the relationship between processing speed test scores and primary/secondary outcomes using multivariable logistic regression, adjusting for potential confounding variables. Results Overall 1568 patients completed the PST, and the mean ± standard deviation test score was 33 ± 10. The higher PST score is associated with better executive function. A 10-unit increase in the test score was associated with an estimated 19% lower 30-day readmission/death odds, with an odds ratio (OR) and 95% confidence interval (CI) of 0.81 (0.68, 0.96) (P = 0.015). Similarly, 10-unit increase in test score was associated with an estimated 26% lower odds of long-term care need/death, with OR (95% CI) of 0.74 (0.61, 0.91) (P = 0.004). We also found statistically significant associations between the test scores and time to discharge alive and to 1-year mortality, however, not with a composite of postoperative complications. Conclusion Elderly non-cardiac surgery patients with better PST scores were less likely to be readmitted, need long-term care after discharge or die within 30 days. Preoperative assessment of cognitive function using a simple self-administered test is feasible and may guide perioperative care.
Collapse
Affiliation(s)
- Kamal Maheshwari
- Department of General Anesthesiology, Cleveland Clinic, Cleveland, Ohio, USA
- Outcomes Research, Cleveland Clinic, Cleveland, Ohio, USA
| | | | - Dong Wang
- Outcomes Research, Cleveland Clinic, Cleveland, Ohio, USA
- Quantitative Health Sciences, Cleveland Clinic, Cleveland, Ohio, USA
| | - Edward J. Mascha
- Outcomes Research, Cleveland Clinic, Cleveland, Ohio, USA
- Quantitative Health Sciences, Cleveland Clinic, Cleveland, Ohio, USA
| | | | - Jay L. Alberts
- Biomedical Engineering, Cleveland Clinic, Cleveland, Ohio, USA
| | - Alparslan Turan
- Department of General Anesthesiology, Cleveland Clinic, Cleveland, Ohio, USA
- Outcomes Research, Cleveland Clinic, Cleveland, Ohio, USA
| | | | | |
Collapse
|
4
|
Echeverria V, Mendoza C, Iarkov A. Nicotinic acetylcholine receptors and learning and memory deficits in Neuroinflammatory diseases. Front Neurosci 2023; 17:1179611. [PMID: 37255751 PMCID: PMC10225599 DOI: 10.3389/fnins.2023.1179611] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 04/07/2023] [Indexed: 06/01/2023] Open
Abstract
Animal survival depends on cognitive abilities such as learning and memory to adapt to environmental changes. Memory functions require an enhanced activity and connectivity of a particular arrangement of engram neurons, supported by the concerted action of neurons, glia, and vascular cells. The deterioration of the cholinergic system is a common occurrence in neurological conditions exacerbated by aging such as traumatic brain injury (TBI), posttraumatic stress disorder (PTSD), Alzheimer's disease (AD), and Parkinson's disease (PD). Cotinine is a cholinergic modulator with neuroprotective, antidepressant, anti-inflammatory, antioxidant, and memory-enhancing effects. Current evidence suggests Cotinine's beneficial effects on cognition results from the positive modulation of the α7-nicotinic acetylcholine receptors (nAChRs) and the inhibition of the toll-like receptors (TLRs). The α7nAChR affects brain functions by modulating the function of neurons, glia, endothelial, immune, and dendritic cells and regulates inhibitory and excitatory neurotransmission throughout the GABA interneurons. In addition, Cotinine acting on the α7 nAChRs and TLR reduces neuroinflammation by inhibiting the release of pro-inflammatory cytokines by the immune cells. Also, α7nAChRs stimulate signaling pathways supporting structural, biochemical, electrochemical, and cellular changes in the Central nervous system during the cognitive processes, including Neurogenesis. Here, the mechanisms of memory formation as well as potential mechanisms of action of Cotinine on memory preservation in aging and neurological diseases are discussed.
Collapse
Affiliation(s)
- Valentina Echeverria
- Facultad de Medicina y Ciencia, Universidad San Sebastián, Concepción, Chile
- Research and Development Department, Bay Pines VAHCS, Bay Pines, FL, United States
| | - Cristhian Mendoza
- Facultad de Odontologia y Ciencias de la Rehabilitacion, Universidad San Sebastián, Concepción, Chile
| | - Alex Iarkov
- Facultad de Medicina y Ciencia, Universidad San Sebastián, Concepción, Chile
| |
Collapse
|
5
|
Tamam Y, Yokuş B, Tamam C, Yüceer H, Karahan S, Em B, Tamam ŞB, Tüzün E. The Effect of Lidocaine on the Experimental Model of Streptozotocin-Induced Alzheimer's Disease. Noro Psikiyatr Ars 2023; 60:68-72. [PMID: 36911558 PMCID: PMC9999227 DOI: 10.29399/npa.28112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 03/10/2022] [Indexed: 11/15/2022] Open
Abstract
Introduction Alzheimer's disease (AD) is a neurodegenerative disease caused by the accumulation of amyloid plaques in the cerebral cortex and hippocampus. In this study, the effects of local anesthetic lidocaine on neurodegeneration markers and memory were investigated for the first time in streptozotocin-induced rat AD model. Methods Streptozotocin (STZ) was administered intracerebroventricularly (ICV) into Wistar rats to develop AD model. For lidocaine group (n=14), lidocaine (5 mg/kg) was administered intraperitoneally (IP) in addition to STZ injection. Control group animals (n=9) were treated with saline for 21 days. Morris Water Maze (MWM) test was performed to evaluate memory after the injections were completed. Also, the serum levels of TAR DNA-binding protein-43 (TDP-43), amyloid precursor protein (APP), β-secretase 1, nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), response element binding protein (CREB), c-FOS were measured using ELISA test and compared between groups. Results Lidocaine group animals showed lower escape latency and time in quadrant scores in MWM inferring better memory performance. Furthermore, lidocaine administration caused a significant decline in TDP-43 levels. However, the expression of APP and β-secretase were significantly higher in AD and lidocaine groups compared to control group. Moreover, lidocaine group markedly had higher serum NGF, BDNF, CREB, and c-FOS levels compared to those in the AD group. Conclusion In addition to neuroprotective effects in STZ-induced AD model, Lidocaine also appears to improve memory. This effect might be associated with increased levels of several growth factors and associated intracellular molecules. The therapeutic role of lidocaine in the pathophysiology of AD should be studied in the future.
Collapse
Affiliation(s)
- Yusuf Tamam
- Dicle University, Faculy of Medicine, Department of Neurology, Diyarbakır, Turkey
| | - Beran Yokuş
- Dicle University, Faculy of Veterinary Medicine, Department of Biochemistry, Diyarbakır, Turkey
| | - Cüneyt Tamam
- Toros University, Faculty of Health Sciences, Mersin, Turkey
| | - Hande Yüceer
- İstanbul University, Aziz Sancar Institute of Experimental Medicine, Department of Neuroscience, İstanbul, Turkey
| | - Selim Karahan
- Dicle University, Faculy of Veterinary Medicine, Department of Laboratuvary Animals, Diyarbakır, Turkey
| | - Bernan Em
- University of Health Sciences, Diyarbakır Gazi Yaşargil Training and Research Hospital, Diyarbakır, Turkey
| | | | - Erdem Tüzün
- İstanbul University, Aziz Sancar Institute of Experimental Medicine, Department of Neuroscience, İstanbul, Turkey
| |
Collapse
|
6
|
Zhang M, Yin Y. Dual roles of anesthetics in postoperative cognitive dysfunction: Regulation of microglial activation through inflammatory signaling pathways. Front Immunol 2023; 14:1102312. [PMID: 36776829 PMCID: PMC9911670 DOI: 10.3389/fimmu.2023.1102312] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 01/17/2023] [Indexed: 01/28/2023] Open
Abstract
Postoperative cognitive dysfunction (POCD) is a prevalent clinical entity following surgery and is characterized by declined neurocognitive function. Neuroinflammation mediated by microglia is the essential mechanism of POCD. Anesthetics are thought to be a major contributor to the development of POCD, as they promote microglial activation and induce neuroinflammation. However, this claim remains controversial. Anesthetics can exert both anti- and pro-inflammatory effects by modulating microglial activation, suggesting that anesthetics may play dual roles in the pathogenesis of POCD. Here, we review the mechanisms by which the commonly used anesthetics regulate microglial activation via inflammatory signaling pathways, showing both anti- and pro-inflammatory properties of anesthetics, and indicating how perioperative administration of anesthetics might either relieve or worsen POCD development. The potential for anesthetics to enhance cognitive performance based on their anti-inflammatory properties is further discussed, emphasizing that the beneficial effects of anesthetics vary depending on dose, exposure time, and patients' characteristics. To minimize the incidence of POCD, we recommend considering these factors to select appropriate anesthetics.
Collapse
Affiliation(s)
- Mengxue Zhang
- Department of Anesthesiology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Yiqing Yin
- Department of Anesthesiology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| |
Collapse
|
7
|
Xu Q, Xiong J, Xu L, Wu Y, Li M, Li Q, Jiang T, Luo A, Zhang Y. CHIP Decline Is Associated With Isoflurane-Induced Neurodegeneration in Aged Mice. Front Neurosci 2022; 16:824871. [PMID: 35368262 PMCID: PMC8971621 DOI: 10.3389/fnins.2022.824871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 02/07/2022] [Indexed: 11/21/2022] Open
Abstract
Perioperative neurocognitive disorders (PND) commonly occur in elderly patients, and isoflurane could be a risk factor. During the pathogenesis of neurodegeneration, the ubiquitin–proteasome system (UPS) participates in the process of aging, which affects synaptic plasticity and synaptic function. However, whether UPS is involved in the etiology of PND is unclear. In this study, we examined the expression change of ubiquitin E3 ligase protein carboxyl-terminus of Hsc70-interacting protein (CHIP) and the function turbulence of UPS in isoflurane-exposed aged mouse to illustrate the role of UPS in PND. Neurodegenerative behavioral changes were shown in isoflurane-exposed aged mice and correlated with neuropathological changes manifested with reduced number of intersections and spine density in the cortex. Ubiquitin function was decreased while the apoptosis was activated, and CHIP protein expression decline altered synapsin expression and phosphorylation associated with the neurodegeneration in isoflurane-induced PND. Aging was the big important factor. And it remained consistent with the synapsin phosphorylation/dephosphorylation level changes in CHIP knock-down N2a cells. Per our observation, the decline in CHIP protein expression and synaptic degeneration might reveal the reason for synaptic degeneration in the underlying pathogenesis of PND caused by isoflurane.
Collapse
Affiliation(s)
- Qiaoqiao Xu
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Qiaoqiao Xu,
| | - Juan Xiong
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Li Xu
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuanyuan Wu
- Department of Anesthesiology, Wuhan Children’s Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Man Li
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qinqin Li
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tao Jiang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ailin Luo
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yi Zhang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Yi Zhang,
| |
Collapse
|
8
|
Kumagawa T, Moro N, Maeda T, Kobayashi M, Furukawa Y, Shijo K, Yoshino A. Anti-inflammatory effect of P2Y1 receptor blocker MRS2179 in a rat model of traumatic brain injury. Brain Res Bull 2022; 181:46-54. [DOI: 10.1016/j.brainresbull.2022.01.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 01/16/2022] [Accepted: 01/19/2022] [Indexed: 02/07/2023]
|
9
|
Min J, Lai Z, Wang H, Zuo Z. Preoperative environment enrichment preserved neuroligin 1 expression possibly via epigenetic regulation to reduce postoperative cognitive dysfunction in mice. CNS Neurosci Ther 2021; 28:619-629. [PMID: 34882968 PMCID: PMC8928916 DOI: 10.1111/cns.13777] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 11/17/2021] [Accepted: 11/21/2021] [Indexed: 12/16/2022] Open
Abstract
AIMS Postoperative cognitive dysfunction (POCD) is a common and significant syndrome. Our previous studies have shown that surgery reduces dendritic arborization and spine density and that environment enrichment (EE) reduces POCD. Neuroligin 1 is a postsynaptic protein involved in the formation of postsynaptic protein complex. This study was designed to determine the role of neuroligin 1 in the protection of EE against POCD and the mechanisms for EE to affect neuroligin 1 expression. METHODS Eight-week-old C57BL/6J male mice with or without EE for 3, 7, or 14 days had right carotid artery exposure under isoflurane anesthesia. An anti-neuroligin 1 antibody at 1.5 µg/mouse was injected intracerebroventricularly at one and two weeks before the surgery. Mice were subjected to the Barnes maze and fear conditioning tests from one week after the surgery. Cerebral cortex and hippocampus were harvested after surgery. RESULTS Mice with surgery had poorer performance in the Barnes maze and fear conditioning tests than control mice. EE for 2 weeks, but not EE for 3 or 7 days, improved the performance of surgery mice in these tests. Surgery reduced neuroligin 1 in the hippocampus. Preoperative EE for 2 weeks attenuated this reduction. The anti-neuroligin 1 antibody worsened the performance of mice with surgery plus EE in the Barnes maze and fear conditioning tests. Surgery increased histone deacetylase activity and decreased the acetylated histone in the hippocampus. EE attenuated these surgery effects. CONCLUSION Our results suggest that preoperative EE for 2 weeks reduces POCD. This effect may be mediated by preserving neuroligin 1 expression via attenuating surgery-induced epigenetic dysregulation in the brain.
Collapse
Affiliation(s)
- Jia Min
- Department of Anesthesiology, University of Virginia, Charlottesville, Virginia, USA.,Department of Anesthesiology, First Affiliated Hospital, Nanchang University, Nanchang, China
| | - Zhongmeng Lai
- Department of Anesthesiology, University of Virginia, Charlottesville, Virginia, USA.,Department of Anesthesiology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Hui Wang
- Department of Anesthesiology, University of Virginia, Charlottesville, Virginia, USA.,Department of Anesthesiology, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Zhiyi Zuo
- Department of Anesthesiology, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
10
|
Xu DA, DeYoung TP, Kondoleon NP, Eckenhoff RG, Eckenhoff MF. Anesthetic Effects on the Progression of Parkinson Disease in the Rat DJ-1 Model. Anesth Analg 2021; 133:1140-1151. [PMID: 34673725 DOI: 10.1213/ane.0000000000005665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND Parkinson disease is a chronic and progressive movement disorder characterized by the loss of dopaminergic neurons in the substantia nigra pars compacta (SNpc). The causes of Parkinson disease are not clear but may involve genetic susceptibilities and environmental factors. As in other neurodegenerative disorders, individuals predisposed to Parkinson disease may have an accelerated onset of symptoms following perioperative stress such as anesthesia, surgery, pain, and inflammation. We hypothesized that anesthesia alone accelerates the onset of Parkinson disease-like pathology and symptoms. METHODS A presymptomatic Parkinson rat model (the protein, DJ-1, encoded by the Park7 gene [DJ-1], PARK7 knockout) was exposed to a surgical plane of isoflurane or 20% oxygen balanced with nitrogen for 2 hours on 3 occasions between 6 and 7 months of age. Acute and long-term motor and neuropathological effects were examined from 7 to 12 months of age in male DJ-1 rats, using the ladder rung, rotarod, and novel object recognition assays, as well as the immunohistochemical localization of tyrosine hydroxylase in dopaminergic neurons in the substantia nigra and ionized calcium-binding adaptor protein-1 (Iba-1) microglial activation in the substantia nigra and hippocampus. RESULTS In the acute group, after the third anesthetic exposure at 7 months of age, the isoflurane group had a significant reduction in the density of dopaminergic neurons in the SNpc compared to controls. However, this reduction was not associated with increased microglial activation in the hippocampus or substantia nigra. With the ladder rung motor skills test, there was no effect of anesthetic exposure on the total number of foot faults or the ladder rung pattern in the acute group. The rotarod test also detected no differences before and after the third exposure in controls. For the long-term group, immunohistochemical analyses detected no differences in the density of dopaminergic neurons or microglial cells compared to unexposed DJ-1 rats from 8 to 12 months of age. The ladder rung test in the long-term group showed no differences in the total number of foot faults with time and exposure or between ladder rung patterns. The rotarod test detected no significant effect of exposure with time or between groups at any time point. The novel object recognition task in the long-term group revealed no differences in short- or long-term memory or in the number of rearings as a function of exposure. CONCLUSIONS Multiple isoflurane exposures in this rat model of Parkinson disease transiently enhanced dopaminergic neurodegeneration in the SNpc that resolved over time and had no effects on progression in this Parkinson disease-like phenotype.
Collapse
Affiliation(s)
- Daniel A Xu
- From the Department of Anesthesiology and Critical Care, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | | | | | | | | |
Collapse
|
11
|
Lai Z, Min J, Li J, Shan W, Yu W, Zuo Z. Surgery Trauma Severity but not Anesthesia Length Contributes to Postoperative Cognitive Dysfunction in Mice. J Alzheimers Dis 2021; 80:245-257. [PMID: 33523008 DOI: 10.3233/jad-201232] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Perioperative, modifiable factors contributing to perioperative neurocognitive disorders (PND) have not been clearly defined. OBJECTIVE To determine the contribution of anesthesia lengths and the degrees of surgical trauma to PND and neuroinflammation, a critical process for PND. METHODS Three-month-old C57BL/6J mice were subjected to 2 h or 6 h isoflurane anesthesia plus a 5 min or 15 min left common carotid artery exposure (surgery) in a factorial design (two factors: anesthesia with two levels and surgery with three levels). Their learning and memory were tested by Barnes maze and novel object recognition paradigms. Blood, spleen, and hippocampus were harvested for measuring interleukin (IL)-6 and IL-1β. Eighteen-month-old C57BL/6J mice (old mice) were subjected to 6 h isoflurane anesthesia or 2 h isoflurane anesthesia plus 15 min surgery and then had learning and memory tested. RESULTS Three-month-old mice with 15 min surgery (long surgery) under 2 h or 6 h anesthesia performed poorly in the learning and memory tests compared with controls. Anesthesia alone or anesthesia plus 5 min surgery did not affect mouse performance in these tests. Similarly, only mice with long surgery but not mice with other experimental conditions had increased IL-6 and IL-1β in the blood, spleen, and hippocampus and decreased spleen weights. Splenocytes were found in the hippocampus after surgery. Similarly, old mice with long surgery but not the mice with isoflurane anesthesia alone had poor performance in the Barnes maze and novel object recognition tests. CONCLUSION Surgical trauma, but not anesthesia, contributes to the development of PND and neuroinflammation. Splenocytes may modulate these processes.
Collapse
Affiliation(s)
- Zhongmeng Lai
- Department of Anesthesiology, University of Virginia, Charlottesville, VA, USA.,Department of Anesthesiology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Jia Min
- Department of Anesthesiology, University of Virginia, Charlottesville, VA, USA.,Department of Anesthesiology, First Affiliated Hospital, Nanchang University, Nanchang, Jiangxi, China
| | - Jun Li
- Department of Anesthesiology, University of Virginia, Charlottesville, VA, USA
| | - Weiran Shan
- Department of Anesthesiology, University of Virginia, Charlottesville, VA, USA
| | - Weifeng Yu
- Department of Anesthesiology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Zhiyi Zuo
- Department of Anesthesiology, University of Virginia, Charlottesville, VA, USA
| |
Collapse
|
12
|
Suo L, Wang M. Dexmedetomidine facilitates the expression of nNOS in the hippocampus to alleviate surgery-induced neuroinflammation and cognitive dysfunction in aged rats. Exp Ther Med 2021; 22:1038. [PMID: 34373724 PMCID: PMC8343769 DOI: 10.3892/etm.2021.10470] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 04/29/2021] [Indexed: 12/21/2022] Open
Abstract
Postoperative cognitive dysfunction (POCD) is a common complication in the postoperative nervous system of elderly patients. Surgery-induced hippocampal neuroinflammation is closely associated with POCD. Dexmedetomidine (DEX) is an effective α2-adrenergic receptor agonist, which can reduce inflammation and has neuroprotective effects, thereby improving postoperative cognitive dysfunction. However, the mechanism by which DEX improves POCD is currently unclear. The purpose of the present study was therefore to identify how DEX acted on POCD. Male Sprague Dawley rats with exposed carotid arteries were used to mimic POCD. Locomotor activity was accessed by the open field test and the Morris water maze was performed to estimate spatial learning, memory and cognitive flexibility. Following animal sacrifice, the hippocampus was collected and cell apoptosis was determined by terminal dexynucleotidyl transferase (TdT)-mediated dUTP nick end labeling staining. Subsequently, the expression of apoptosis-related proteins Bax, Bcl-2, cleaved caspase-3 and cleaved caspase-9 was determined by western blotting and the concentrations of TNF-α, IL-6, IL-1β and IL-10 were measured in serum using ELISA. Nitric oxide synthase and neuronal nitric oxide synthase activities in the hippocampus were also measured. The T lymphocyte subsets were analyzed by flow cytometry to evaluate the immune function in each group. Compared with the surgery group, DEX ameliorated POCD by improving cognitive dysfunctions and immune function loss, and attenuated neuroinflammation and neuronal apoptosis.
Collapse
Affiliation(s)
- Liangyuan Suo
- Department of Anesthesiology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital, Shenyang, Liaoning 110042, P.R. China
| | - Mingyu Wang
- Department of Anesthesiology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital, Shenyang, Liaoning 110042, P.R. China
| |
Collapse
|
13
|
Dendritic spine remodeling and plasticity under general anesthesia. Brain Struct Funct 2021; 226:2001-2017. [PMID: 34061250 PMCID: PMC8166894 DOI: 10.1007/s00429-021-02308-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 05/22/2021] [Indexed: 11/29/2022]
Abstract
Ever since its first use in surgery, general anesthesia has been regarded as a medical miracle enabling countless life-saving diagnostic and therapeutic interventions without pain sensation and traumatic memories. Despite several decades of research, there is a lack of understanding of how general anesthetics induce a reversible coma-like state. Emerging evidence suggests that even brief exposure to general anesthesia may have a lasting impact on mature and especially developing brains. Commonly used anesthetics have been shown to destabilize dendritic spines and induce an enhanced plasticity state, with effects on cognition, motor functions, mood, and social behavior. Herein, we review the effects of the most widely used general anesthetics on dendritic spine dynamics and discuss functional and molecular correlates with action mechanisms. We consider the impact of neurodevelopment, anatomical location of neurons, and their neurochemical profile on neuroplasticity induction, and review the putative signaling pathways. It emerges that in addition to possible adverse effects, the stimulation of synaptic remodeling with the formation of new connections by general anesthetics may present tremendous opportunities for translational research and neurorehabilitation.
Collapse
|
14
|
Mathew AS, Gorick CM, Thim EA, Garrison WJ, Klibanov AL, Miller GW, Sheybani ND, Price RJ. Transcriptomic response of brain tissue to focused ultrasound-mediated blood-brain barrier disruption depends strongly on anesthesia. Bioeng Transl Med 2021; 6:e10198. [PMID: 34027087 PMCID: PMC8126816 DOI: 10.1002/btm2.10198] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 10/19/2020] [Accepted: 10/21/2020] [Indexed: 12/16/2022] Open
Abstract
Focused ultrasound (FUS) mediated blood-brain barrier disruption (BBBD) targets the delivery of systemically-administered therapeutics to the central nervous system. Preclinical investigations of BBBD have been performed on different anesthetic backgrounds; however, the influence of the choice of anesthetic on the molecular response to BBBD is unknown, despite its potential to critically affect interpretation of experimental therapeutic outcomes. Here, using bulk RNA sequencing, we comprehensively examined the transcriptomic response of both normal brain tissue and brain tissue exposed to FUS-induced BBBD in mice anesthetized with either isoflurane with medical air (Iso) or ketamine/dexmedetomidine (KD). In normal murine brain tissue, Iso alone elicited minimal differential gene expression (DGE) and repressed pathways associated with neuronal signaling. KD alone, however, led to massive DGE and enrichment of pathways associated with protein synthesis. In brain tissue exposed to BBBD (1 MHz, 0.5 Hz pulse repetition frequency, 0.4 MPa peak-negative pressure), we systematically evaluated the relative effects of anesthesia, microbubbles, and FUS on the transcriptome. Of particular interest, we observed that gene sets associated with sterile inflammatory responses and cell-cell junctional activity were induced by BBBD, regardless of the choice of anesthesia. Meanwhile, gene sets associated with metabolism, platelet activity, tissue repair, and signaling pathways, were differentially affected by BBBD, with a strong dependence on the anesthetic. We conclude that the underlying transcriptomic response to FUS-mediated BBBD may be powerfully influenced by anesthesia. These findings raise considerations for the translation of FUS-BBBD delivery approaches that impact, in particular, metabolism, tissue repair, and intracellular signaling.
Collapse
Affiliation(s)
- Alexander S. Mathew
- Department of Biomedical EngineeringUniversity of VirginiaCharlottesvilleVirginiaUSA
| | - Catherine M. Gorick
- Department of Biomedical EngineeringUniversity of VirginiaCharlottesvilleVirginiaUSA
| | - E. Andrew Thim
- Department of Biomedical EngineeringUniversity of VirginiaCharlottesvilleVirginiaUSA
| | - William J. Garrison
- Department of Biomedical EngineeringUniversity of VirginiaCharlottesvilleVirginiaUSA
- Department of Radiology & Medical ImagingUniversity of VirginiaCharlottesvilleVirginiaUSA
| | - Alexander L. Klibanov
- Department of Biomedical EngineeringUniversity of VirginiaCharlottesvilleVirginiaUSA
- Department of Internal Medicine, Cardiovascular DivisionUniversity of VirginiaCharlottesvilleVirginiaUSA
| | - G. Wilson Miller
- Department of Biomedical EngineeringUniversity of VirginiaCharlottesvilleVirginiaUSA
- Department of Radiology & Medical ImagingUniversity of VirginiaCharlottesvilleVirginiaUSA
| | - Natasha D. Sheybani
- Department of Biomedical EngineeringUniversity of VirginiaCharlottesvilleVirginiaUSA
| | - Richard J. Price
- Department of Biomedical EngineeringUniversity of VirginiaCharlottesvilleVirginiaUSA
- Department of Radiology & Medical ImagingUniversity of VirginiaCharlottesvilleVirginiaUSA
| |
Collapse
|
15
|
Zhang C, Xing Z, Tan M, Wu Y, Zeng W. Roflumilast Ameliorates Isoflurane-Induced Inflammation in Astrocytes via the CREB/BDNF Signaling Pathway. ACS OMEGA 2021; 6:4167-4174. [PMID: 33644540 PMCID: PMC7906587 DOI: 10.1021/acsomega.0c04799] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 12/29/2020] [Indexed: 06/12/2023]
Abstract
Background and purpose: Astrocyte-mediated neuroinflammation plays an important role in anesthetic isoflurane-induced cognitive impairment. Roflumilast, a selective inhibitor of phosphodiesterase-4 (PDE-4) used for the treatment of chronic obstructive pulmonary disease (COPD), has displayed a wide range of anti-inflammatory capacity in different types of cells and tissues. In the current study, we aimed to investigate whether roflumilast possesses a protective effect against isoflurane-induced insults in mouse primary astrocytes. Methods: Primary astrocytes were isolated from the cerebral cortices of immature rats. The production of NO was determined using DAF-FM DA staining assay. QRT-PCR and western blot were used to evaluate the expression levels of iNOS, COX-2, and BDNF in the astrocytes treated with different therapies. The gene expressions and concentrations of IL-6 and MCP-1 released by the astrocytes were detected using qRT-PCR and ELISA, respectively. The expression levels of phosphorylated CREB and PGE2 were determined using western blot and ELISA, respectively. H89 was introduced to evaluate the function of CREB. Recombinant human BDNF and ANA-12 were used to verify the role of BDNF. Results: The upregulated iNOS, excessive production of NO, IL-6, and MCP-1, and activated COX-2/PGE2 signaling pathways in the astrocytes induced by isoflurane were significantly reversed by the introduction of roflumilast, in a dose-dependent manner. Subsequently, we found that BDNF could be upregulated by roflumilast, which was verified to be related to the activation of CREB and blocked by H89 (a CREB inhibitor). In addition, the COX-2/PGE2 signaling pathway activated by isoflurane can be inactivated by recombinant human BDNF. Finally, the regulatory effect of roflumilast against the isoflurane-activated COX-2/PGE2 signaling pathway was significantly blocked by ANA-12, which is a BDNF inhibitor. Conclusion: Roflumilast might ameliorate isoflurane-induced inflammation in astrocytes via the CREB/BDNF signaling pathway.
Collapse
|
16
|
Zhu X, Yao Y, Guo M, Li J, Yang P, Xu H, Lin D. Sevoflurane increases intracellular calcium to induce mitochondrial injury and neuroapoptosis. Toxicol Lett 2021; 336:11-20. [PMID: 33171207 DOI: 10.1016/j.toxlet.2020.11.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 10/02/2020] [Accepted: 11/03/2020] [Indexed: 01/29/2023]
Abstract
Sevoflurane is commonly used in clinical anesthesia. However, some reports indicated that Sevoflurane could induce mitochondrial injury and neuroapoptosis. Although the mechanism remains unclear, evidence points to the increase of intracellular calcium after administration of Sevoflurane. Herein, we sought whether the increment of intracellular Ca2+ caused by Sevoflurane administration could induce mitochondrial injury and apoptosis in primary neurons of the hippocampus. Fluo-4-acetoxymethyl ester Ca2+ probe was used for measuring intracellular Ca2+ concentrations. LDH assay, CCK-8 assay, and Western blotting were performed to confirm Sevoflurane-induced neuroapoptosis. ROS, mPTP, and ATP production were assayed to reveal mitochondrial injury. Our results indicated that Sevoflurane increased intracellular Ca2+ and neuronal death. Sevoflurane also elevated ROS and the opening of mPTP, and decreased ATP production in neurons. The expression of cytochrome c, cleaved caspase-9, cleaved caspase-3, and the ratio of Bax/Bcl-2 were also increased. By using calcium channel blocker Nimodipine, the increase of intracellular Ca2+ was attenuated, and the death rate of neurons, the ROS and opening of mPTP, decreased ATP production, the expressions of cytochrome c, cleaved caspase-9, cleaved caspase-3 and the ratio of Bax/Bcl-2 were alleviated. Our study suggested that Sevoflurane could increase intracellular Ca2+ to induce mitochondrial injury and mitochondria-mediated neuroapoptosis in neurons.
Collapse
Affiliation(s)
- Xiaoqiu Zhu
- Department of Anesthesiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Yiyi Yao
- Department of Anesthesiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China; Department of Anesthesiology, Hunan Children's Hospital, Changsha, 410007, China
| | - Mingyan Guo
- Department of Anesthesiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Jin Li
- Department of Anesthesiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Pengfeng Yang
- Department of Ultrasound Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
| | - Hui Xu
- Department of Anesthesiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China.
| | - Daowei Lin
- Department of Anesthesiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China.
| |
Collapse
|
17
|
Huang X, Sun Y, Lin D, Wei C, Wu A. Effect of perioperative intravenous lidocaine on the incidence of short-term cognitive function after noncardiac surgery: A meta-analysis based on randomized controlled trials. Brain Behav 2020; 10:e01875. [PMID: 33044051 PMCID: PMC7749605 DOI: 10.1002/brb3.1875] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 09/03/2020] [Accepted: 09/06/2020] [Indexed: 12/16/2022] Open
Abstract
OBJECTIVES Postoperative cognitive dysfunction is a debilitating postoperative complication. The perioperative neuroprotective effect of lidocaine has conflicting results. METHODS In this qualitative review of randomized controlled clinical trials on the perioperative use of lidocaine, we report the effects of intravenous lidocaine on brain function after noncardiac surgery. Studies were identified from PubMed, MEDLINE, and Cochrane Central Register. RESULTS Of the 453 retrieved studies, 4 randomized trials were included. No significant association between the use of lidocaine postoperative cognitive states was found (risk ratio 0.67; 95% CI -0.02 to 1.36; I2 89%; p = .06). CONCLUSIONS Current evidence cannot suggest that perioperative intravenous use of lidocaine has pharmacological brain neuroprotection after noncardiac surgery. All the included studies were small-scale research, and the total number of participants was small; the results should be interpreted with caution.
Collapse
Affiliation(s)
- Xiao Huang
- Anesthesia Department of Beijing Chao-Yang Hospital, Beijing, China
| | - Yuan Sun
- Pharmacy Department of Beijing Chao-Yang Hospital, Beijing, China
| | - Dandan Lin
- Anesthesia Department of Beijing Chao-Yang Hospital, Beijing, China
| | - Changwei Wei
- Anesthesia Department of Beijing Chao-Yang Hospital, Beijing, China
| | - Anshi Wu
- Anesthesia Department of Beijing Chao-Yang Hospital, Beijing, China
| |
Collapse
|
18
|
Zhong J, Li J, Ni C, Zuo Z. Amantadine Alleviates Postoperative Cognitive Dysfunction Possibly by Preserving Neurotrophic Factor Expression and Dendritic Arborization in the Hippocampus of Old Rodents. Front Aging Neurosci 2020; 12:605330. [PMID: 33324197 PMCID: PMC7726433 DOI: 10.3389/fnagi.2020.605330] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 11/02/2020] [Indexed: 12/24/2022] Open
Abstract
Objectives Amantadine has been shown to attenuate postoperative learning and memory dysfunction in young adult rats. However, postoperative cognitive dysfunction often occurs in elderly patients. We aimed to determine whether amantadine attenuated postoperative learning and memory dysfunction and whether these effects were associated with improved dendritic arborization in old rodents. Methods Eighteen-month old male C57BL/6J mice or Fischer 344 rats were subjected to right carotid artery exposure (surgery) under isoflurane anesthesia. This age represents an early old stage in rodents. Carotid artery exposure was used to simulate commonly performed carotid endarterectomy in elderly patients. Amantadine was injected intraperitoneally at 25 μg/g once a day for 3 days with the first dose at 15 min before surgery. The animals were tested by Barnes maze and fear conditioning starting one week after the surgery. Hippocampus was harvested for Western blotting and Golgi staining. Results Surgery and anesthesia impaired the learning and memory in old mice and rats. Surgery reduced the expression of brain-derived neurotrophic factor (BDNF) and glial cell line-derived neurotrophic factor (GDNF), dendritic arborization and spine density in the hippocampus of old rats. These effects were attenuated by amantadine. The effects of amantadine were blocked by intracerebroventricular injection of anti-BDNF antibody or anti-GDNF antibody. Conclusion Surgery and anesthesia impaired learning, memory and dendritic arborization in old rodents that are age relevant to postoperative cognitive dysfunction. These effects may be attenuated by amantadine via preserving the expression of neurotrophic factors.
Collapse
Affiliation(s)
- Jing Zhong
- Department of Anesthesiology, University of Virginia, Charlottesville, VA, United States.,Department of Anesthesiology, Zhongshan Hospital Fudan University, Shanghai, China
| | - Jun Li
- Department of Anesthesiology, University of Virginia, Charlottesville, VA, United States
| | - Cheng Ni
- Department of Anesthesia, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhiyi Zuo
- Department of Anesthesiology, University of Virginia, Charlottesville, VA, United States
| |
Collapse
|
19
|
Zhong J, Li J, Miao C, Zuo Z. A Novel Individual-based Determination of Postoperative Cognitive Dysfunction in Mice. Aging Dis 2020; 11:1133-1145. [PMID: 33014528 PMCID: PMC7505260 DOI: 10.14336/ad.2019.1029] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 10/29/2019] [Indexed: 11/17/2022] Open
Abstract
Postoperative cognitive dysfunction (POCD) is a significant clinical issue. Aging is a risk factor for POCD. It is known that not every patient develops POCD. This situation shall be similar in animals. Determination of POCD is individual-based in humans but group-based in animal studies. This difference prevents effective evaluation of biomarkers and interventions for POCD in preclinical studies. The objective of this study was to determine whether individual animal could be assessed for POCD by a system similar to that for patients. Seven-week old CD1 and 18-month old C57BL/6 male mice were subjected to right carotid arterial exposure under isoflurane anesthesia. Mice were evaluated by Barnes maze and fear conditioning either post-surgery alone or both prior to surgery and post-surgery. Surgery increased the time to identify the target box in Barnes maze when tested one day or 8 days after the training sessions and reduced freezing behavior in fear conditioning test. This phenomenon occurred in 7-week old animals with and without evaluation before the surgery and in 18-month old mice evaluated before and after surgery. Based on the method and criteria used for a human whose cognition was evaluated before and after surgery to assess individual decline of cognition, 7 in 21 mice in the surgical group and 1 in 21 mice in control group of 7-week old mice had cognitive dysfunction. Among 18-month old mice, 13 in 21 mice in the surgical group and 2 in 20 mice in the control group had cognitive dysfunction. The incidence of cognitive dysfunction in mice with surgery was higher than that in control mice no matter whether young adult (P = 0.045) or old mice (P < 0.001) were considered. These results indicate that surgery induces POCD in mice. Individual animal-based assessment can be used to identify animals with POCD.
Collapse
Affiliation(s)
- Jing Zhong
- 1Department of Anesthesiology, University of Virginia, Charlottesville, Virginia, USA.,2Department of Anesthesiology, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jun Li
- 1Department of Anesthesiology, University of Virginia, Charlottesville, Virginia, USA
| | - Changhong Miao
- 2Department of Anesthesiology, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zhiyi Zuo
- 1Department of Anesthesiology, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
20
|
Histone Deacetylases May Mediate Surgery-Induced Impairment of Learning, Memory, and Dendritic Development. Mol Neurobiol 2020; 57:3702-3711. [PMID: 32564283 DOI: 10.1007/s12035-020-01987-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Accepted: 06/10/2020] [Indexed: 10/24/2022]
Abstract
Postoperative cognitive dysfunction (POCD) affects millions of patients each year in the USA and has been recognized as a significant complication after surgery. Epigenetic regulation of learning and memory has been shown. For example, an increase of histone deacetylases (HDACs), especially HDAC2, which epigenetically regulates gene expression, impairs learning and memory. However, the epigenetic contribution to the development of POCD is not known. Also, the effects of living situation on POCD have not been investigated. Here, we showed that mice that lived alone before the surgery and lived in a group after the surgery and mice that lived in a group before surgery and lived alone after surgery had impairment of learning and memory compared with the corresponding control mice without surgery. Surgery increased the activity of HDACs including HDAC2 but not HDAC1 and decreased brain-derived neurotrophic factor (BDNF), dendritic arborization, and spine density in the hippocampus. Suberanilohydroxamic acid (SAHA), a relatively specific inhibitor of HDAC2, attenuated these surgery effects. SAHA did not change BDNF expression, dendritic arborization, and spine density in mice without surgery. Surgery also reduced the activity of nuclear histone acetyltransferases (HATs). This effect was not affected by SAHA. Our results suggest that surgery activates HDACs, which then reduces BDNF and dendritic arborization to develop POCD. Thus, epigenetic change contributes to the occurrence of POCD.
Collapse
|
21
|
Lin D, Zhu X, Li J, Yao Y, Guo M, Xu H. Ulinastatin alleviates mitochondrial damage and cell apoptosis induced by isoflurane in human neuroglioma H4 cells. Hum Exp Toxicol 2020; 39:1417-1425. [PMID: 32441136 DOI: 10.1177/0960327120926242] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Isoflurane has been demonstrated to induce mitochondrial damage and cell apoptosis. The isoflurane-induced inflammation may be an important reason for this phenomenon. Studies have shown that ulinastatin (UTI) has an anti-inflammatory effect. Our aim was to investigate whether UTI could attenuate isoflurane-induced mitochondrial damage and cell apoptosis by inhibiting inflammation. Human neuroglioma H4 cells were exposed to isoflurane with or without UTI. The ratio of cell apoptosis was evaluated by flow cytometry. β-Amyloid (Aβ) peptide and cleaved caspase 3 expression were evaluated by Western blot analysis. The concentrations of tumor necrosis factor α (TNF-α) and interleukin 1β (IL-1β) were detected by sandwich enzyme-linked immunosorbent assays. Mitochondrial structural changes were detected by transmission electron microscopy. Mitochondrial membrane potential (Δψm) was determined by 5,5',6,6'-Tetrachloro-1,1',3,3'-tetraethyl-imidacarbocyanine iodide (JC-1). The activity of the mitochondrial electron transport chain (ETC) complexes I, II, III, and IV was determined by assay kits. UTI attenuated the TNF-α and IL-1β release induced by isoflurane. UTI could also reduce mitochondrial structure damage, mitigate the decrease in Δψm, and improve ETC complexes dysfunction. Furthermore, it decreased cell apoptosis induced by isoflurane in H4 cells. UTI had no effect on isoflurane-induced Aβ expression. UTI may mitigate isoflurane-induced mitochondrial damage and cytotoxicity by inhibiting inflammation.
Collapse
Affiliation(s)
- D Lin
- Department of Anesthesiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - X Zhu
- Department of Anesthesiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - J Li
- Department of Anesthesiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Y Yao
- Department of Anesthesiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - M Guo
- Department of Anesthesiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - H Xu
- Department of Anesthesiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
22
|
Li X, Run X, Wei Z, Zeng K, Liang Z, Huang F, Ke D, Wang Q, Wang JZ, Liu R, Zhang B, Wang X. Intranasal Insulin Prevents Anesthesia-induced Cognitive Impairments in Aged Mice. Curr Alzheimer Res 2020; 16:8-18. [PMID: 30381076 DOI: 10.2174/1567205015666181031145045] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 09/16/2018] [Accepted: 10/15/2018] [Indexed: 11/22/2022]
Abstract
BACKGROUND Preclinical and clinical evidence suggests that elderly individuals are at increased risk of cognitive decline after general anesthesia. General anesthesia is also believed to be a risk factor for Postoperative Cognitive Dysfunction (POCD) and Alzheimer's Disease (AD). Intranasal administration of insulin, which delivers the drug directly into the brain, improves memory and cognition in both animal studies and small clinical trials. However, how insulin treatment improves cognitive function is poorly understood. METHODS Aged mice were pretreated with intranasal insulin or saline before anesthesia. Propofol was added intraperitoneally to the mice from 7th day of insulin/saline treatment, and general anesthesia was induced and maintained for 2 hours/day for 5 consecutive days. Mice were evaluated at 26th day when the mice were continued on insulin or saline administration for another 15 days. RESULTS We found that intranasal insulin treatment prevented anesthesia-induced cognitive impairments, as measured by novel object recognition test and contextual-dependent fear conditioning test. Insulin treatment also increased the expression level of Post-synaptic Density Protein 95 (PSD95), as well as upregulated Microtubule-associated Protein-2 (MAP-2) in the dentate gyrus of the hippocampus. Furthermore, we found that insulin treatment restored insulin signaling disturbed by anesthesia via activating PI3K/PDK1/AKT pathway, and attenuated anesthesia-induced hyperphosphorylation of tau at multiple AD-associated sites. We found the attenuation of tau hyperphosphorylation occurred by increasing the level of GSK3β phosphorylated at Ser9, which leads to inactivation of GSK-3β. CONCLUSION Intranasal insulin administration might be a promising therapy to prevent anesthesiainduced cognitive deficit in elderly individuals.
Collapse
Affiliation(s)
- Xing Li
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xiaoqin Run
- Department of Vascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhen Wei
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Kuan Zeng
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zhihou Liang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fang Huang
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Dan Ke
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Qun Wang
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jian-Zhi Wang
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.,Co-innovation Center of Neuroregeneration, Nantong University, Nantong, JS 226001, China
| | - Rong Liu
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Bin Zhang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - Xiaochuan Wang
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.,Co-innovation Center of Neuroregeneration, Nantong University, Nantong, JS 226001, China
| |
Collapse
|
23
|
Wen C, Xie T, Pan K, Deng Y, Zhao Z, Li N, Bian J, Deng X, Zha Y. Acetate attenuates perioperative neurocognitive disorders in aged mice. Aging (Albany NY) 2020; 12:3862-3879. [PMID: 32139660 PMCID: PMC7066918 DOI: 10.18632/aging.102856] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 02/04/2020] [Indexed: 02/07/2023]
Abstract
Perioperative neurocognitive disorders are common in elderly patients who have undergone surgical procedures. Neuroinflammation induced by microglial activation is a hallmark of these neurological disorders. Acetate can suppress inflammation in the context of inflammatory diseases. We employed an exploratory laparotomy model with isoflurane anesthesia to study the effects of acetate on perioperative neurocognitive disorders in aged mice. Neurocognitive function was assessed with open-field tests and Morris water maze tests 3 or 7 days post-surgery. Acetate ameliorated the surgery-induced cognitive deficits of aged mice and inhibited the activation of IBA-1, a marker of microglial activity. Acetate also reduced expression of inflammatory proteins (tumor necrosis factor-α, interleukin-1β and interleukin-6), oxidative stress factors (NADPH oxidase 2, inducible nitric oxide synthase and reactive oxygen species), and signaling molecules (nuclear factor kappa B and mitogen-activated protein kinase) in the hippocampus. BV2 microglial cells were used to verify the anti-inflammatory effects of acetate in vitro. Acetate suppressed inflammation in lipopolysaccharide-treated BV2 microglial cells, but not when GPR43 was silenced. These results suggest that acetate may bind to GPR43, thereby inhibiting microglial activity, suppressing neuroinflammation, and preventing memory deficits. This makes acetate is a promising therapeutic for surgery-induced neurocognitive disorders and neuroinflammation.
Collapse
Affiliation(s)
- Cen Wen
- Faculty of Anesthesiology, Changhai Hospital, Navy Medical University, Shanghai 200433, China
| | - Tao Xie
- Faculty of Anesthesiology, Changhai Hospital, Navy Medical University, Shanghai 200433, China
| | - Ke Pan
- Faculty of Anesthesiology, Changhai Hospital, Navy Medical University, Shanghai 200433, China
| | - Yu Deng
- Faculty of Anesthesiology, Changhai Hospital, Navy Medical University, Shanghai 200433, China
| | - Zhijia Zhao
- Faculty of Anesthesiology, Changhai Hospital, Navy Medical University, Shanghai 200433, China
| | - Na Li
- Faculty of Anesthesiology, Changhai Hospital, Navy Medical University, Shanghai 200433, China
| | - Jinjun Bian
- Faculty of Anesthesiology, Changhai Hospital, Navy Medical University, Shanghai 200433, China
| | - Xiaoming Deng
- Faculty of Anesthesiology, Changhai Hospital, Navy Medical University, Shanghai 200433, China
| | - Yanping Zha
- Faculty of Anesthesiology, Changhai Hospital, Navy Medical University, Shanghai 200433, China
| |
Collapse
|
24
|
Liufu N, Liu L, Shen S, Jiang Z, Dong Y, Wang Y, Culley D, Crosby G, Cao M, Shen Y, Marcantonio E, Xie Z, Zhang Y. Anesthesia and surgery induce age-dependent changes in behaviors and microbiota. Aging (Albany NY) 2020; 12:1965-1986. [PMID: 31974315 PMCID: PMC7053599 DOI: 10.18632/aging.102736] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 01/02/2020] [Indexed: 12/14/2022]
Abstract
The neuropathogenesis of postoperative delirium remains mostly unknown. The gut microbiota is implicated in the pathogenesis of neurological disorders. We, therefore, set out to determine whether anesthesia/surgery causes age-dependent gut microbiota dysbiosis, changes in brain IL-6 level and mitochondrial function, leading to postoperative delirium-like behavior in mice. Female 9 or 18 months old mice received abdominal surgery under 1.4% isoflurane for two hours. The postoperative delirium-like behavior, gut microbiota, levels of brain IL-6, PSD-95 and synaptophysin, and mitochondrial function were determined by a battery of behavioral tests, 16s rRNA sequencing, ELISA, Western blot and Seahorse XFp Extracellular Flux Analyzer. Intragastric administration of Lactobacillus (10 days) and probiotic (20 days) were used to mitigate the anesthesia/surgery-induced changes. Anesthesia/surgery caused different alterations in gut microbiota, including change rate of reduction in the levels of gut lactobacillus, between the 18 and 9 months old mice. The anesthesia/surgery induced greater postoperative delirium-like behavior, increased brain IL-6 levels, decreased PSD-95 and synaptophysin levels, and mitochondrial dysfunction in 18 than 9 months old mice. Treatments with Lactobacillus and probiotic mitigated the anesthesia/surgery-induced changes. These data suggest that microbiota dysbiosis may contribute to neuropathogenesis of postoperative delirium and treatment with Lactobacillus or a probiotic could mitigate postoperative delirium.
Collapse
Affiliation(s)
- Ning Liufu
- Department of Anesthesiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong Province 510120, P. R. China
- Geriatric Anesthesia Research Unit, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Ling Liu
- Department of Anesthesiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong Province 510120, P. R. China
- Geriatric Anesthesia Research Unit, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Shiqian Shen
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Zengliang Jiang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, P. R. China
| | - Yuanlin Dong
- Geriatric Anesthesia Research Unit, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Yanyan Wang
- Geriatric Anesthesia Research Unit, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
- Department of Anesthesia, Shanghai 10th People’s Hospital, Anesthesia and Brain Research Institute, Tongji University, Shanghai 200072, P. R. China
| | - Deborah Culley
- Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Gregory Crosby
- Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Minghui Cao
- Department of Anesthesiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong Province 510120, P. R. China
| | - Yuan Shen
- Department of Psychiatry, Shanghai 10th People’s Hospital, Anesthesia and Brain Research Institute, Tongji University, Shanghai 200072, P. R. China
| | - Edward Marcantonio
- Divisions of General Medicine and Primary Care and Gerontology, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA
| | - Zhongcong Xie
- Geriatric Anesthesia Research Unit, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Yiying Zhang
- Geriatric Anesthesia Research Unit, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| |
Collapse
|
25
|
Sun XY, Zheng T, Yang X, Liu L, Gao SS, Xu HB, Song YT, Tong K, Yang L, Gao Y, Wu T, Hao JR, Lu C, Ma T, Gao C. HDAC2 hyperexpression alters hippocampal neuronal transcription and microglial activity in neuroinflammation-induced cognitive dysfunction. J Neuroinflammation 2019; 16:249. [PMID: 31796106 PMCID: PMC6889553 DOI: 10.1186/s12974-019-1640-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 11/12/2019] [Indexed: 02/08/2023] Open
Abstract
Background Inflammation can induce cognitive dysfunction in patients who undergo surgery. Previous studies have demonstrated that both acute peripheral inflammation and anaesthetic insults, especially isoflurane (ISO), are risk factors for memory impairment. Few studies are currently investigating the role of ISO under acute peri-inflammatory conditions, and it is difficult to predict whether ISO can aggravate inflammation-induced cognitive deficits. HDACs, which are essential for learning, participate in the deacetylation of lysine residues and the regulation of gene transcription. However, the cell-specific mechanism of HDACs in inflammation-induced cognitive impairment remains unknown. Methods Three-month-old C57BL/6 mice were treated with single versus combined exposure to LPS injected intraperitoneally (i.p.) to simulate acute abdominal inflammation and isoflurane to investigate the role of anaesthesia and acute peripheral inflammation in cognitive impairment. Behavioural tests, Western blotting, ELISA, immunofluorescence, qRT-PCR, and ChIP assays were performed to detect memory, the expressions of inflammatory cytokines, HDAC2, BDNF, c-Fos, acetyl-H3, microglial activity, Bdnf mRNA, c-fos mRNA, and Bdnf and c-fos transcription in the hippocampus. Results LPS, but not isoflurane, induced neuroinflammation-induced memory impairment and reduced histone acetylation by upregulating histone deacetylase 2 (HDAC2) in dorsal hippocampal CaMKII+ neurons. The hyperexpression of HDAC2 in neurons was mediated by the activation of microglia. The decreased level of histone acetylation suppressed the transcription of Bdnf and c-fos and the expressions of BDNF and c-Fos, which subsequently impaired memory. The adeno-associated virus ShHdac2, which suppresses Hdac2 after injection into the dorsal hippocampus, reversed microglial activation, hippocampal glutamatergic BDNF and c-Fos expressions, and memory deficits. Conclusions Reversing HDAC2 in hippocampal CaMKII+ neurons exert a neuroprotective effect against neuroinflammation-induced memory deficits.
Collapse
Affiliation(s)
- Xiao-Yu Sun
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China.,Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Teng Zheng
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China.,Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China.,Department of Anesthesiology, the First Affiliated Hospital of Soochow University, Suzhou, 215006, Jiangsu, China
| | - Xiu Yang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China.,Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Le Liu
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China.,Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Shen-Shen Gao
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China.,Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Han-Bing Xu
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China.,Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Yu-Tong Song
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China.,Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Kun Tong
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China.,Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Li Yang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China.,Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Ya Gao
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China.,Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Tong Wu
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China.,Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Jing-Ru Hao
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China.,Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Chen Lu
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China.,Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Tao Ma
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China.,Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Can Gao
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China. .,Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China.
| |
Collapse
|
26
|
Canet G, Pineau F, Zussy C, Hernandez C, Hunt H, Chevallier N, Perrier V, Torrent J, Belanoff JK, Meijer OC, Desrumaux C, Givalois L. Glucocorticoid receptors signaling impairment potentiates amyloid-β oligomers-induced pathology in an acute model of Alzheimer's disease. FASEB J 2019; 34:1150-1168. [PMID: 31914623 DOI: 10.1096/fj.201900723rrr] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 11/05/2019] [Accepted: 11/07/2019] [Indexed: 02/01/2023]
Abstract
Dysregulation of the hypothalamic-pituitary-adrenal (HPA) axis occurs early in Alzheimer's disease (AD), associated with elevated circulating glucocorticoids (GC) and glucocorticoid receptors (GR) signaling impairment. However, the precise role of GR in the pathophysiology of AD remains unclear. Using an acute model of AD induced by the intracerebroventricular injection of amyloid-β oligomers (oAβ), we analyzed cellular and behavioral hallmarks of AD, GR signaling pathways, processing of amyloid precursor protein, and enzymes involved in Tau phosphorylation. We focused on the prefrontal cortex (PFC), particularly rich in GR, early altered in AD and involved in HPA axis control and cognitive functions. We found that oAβ impaired cognitive and emotional behaviors, increased plasma GC levels, synaptic deficits, apoptosis and neuroinflammatory processes. Moreover, oAβ potentiated the amyloidogenic pathway and enzymes involved both in Tau hyperphosphorylation and GR activation. Treatment with a selective GR modulator (sGRm) normalized plasma GC levels and all behavioral and biochemical parameters analyzed. GR seems to occupy a central position in the pathophysiology of AD. Deregulation of the HPA axis and a feed-forward effect on PFC GR sensitivity could participate in the etiology of AD, in perturbing Aβ and Tau homeostasis. These results also reinforce the therapeutic potential of sGRm in AD.
Collapse
Affiliation(s)
- Geoffrey Canet
- Molecular Mechanisms in Neurodegenerative Dementia (MMDN) Laboratory, INSERM U1198, Team Environmental Impact in Alzheimer's Disease and Related Disorders (EiAlz), Montpellier, France.,University of Montpellier, Montpellier, France.,EPHE, Paris, France
| | - Fanny Pineau
- Molecular Mechanisms in Neurodegenerative Dementia (MMDN) Laboratory, INSERM U1198, Team Environmental Impact in Alzheimer's Disease and Related Disorders (EiAlz), Montpellier, France.,University of Montpellier, Montpellier, France.,EPHE, Paris, France
| | - Charleine Zussy
- Molecular Mechanisms in Neurodegenerative Dementia (MMDN) Laboratory, INSERM U1198, Team Environmental Impact in Alzheimer's Disease and Related Disorders (EiAlz), Montpellier, France.,University of Montpellier, Montpellier, France.,EPHE, Paris, France
| | - Célia Hernandez
- Molecular Mechanisms in Neurodegenerative Dementia (MMDN) Laboratory, INSERM U1198, Team Environmental Impact in Alzheimer's Disease and Related Disorders (EiAlz), Montpellier, France.,University of Montpellier, Montpellier, France.,EPHE, Paris, France
| | - Hazel Hunt
- Corcept Therapeutics, Menlo Park, CA, USA
| | - Nathalie Chevallier
- Molecular Mechanisms in Neurodegenerative Dementia (MMDN) Laboratory, INSERM U1198, Team Environmental Impact in Alzheimer's Disease and Related Disorders (EiAlz), Montpellier, France.,University of Montpellier, Montpellier, France.,EPHE, Paris, France
| | - Véronique Perrier
- Molecular Mechanisms in Neurodegenerative Dementia (MMDN) Laboratory, INSERM U1198, Team Environmental Impact in Alzheimer's Disease and Related Disorders (EiAlz), Montpellier, France.,University of Montpellier, Montpellier, France.,EPHE, Paris, France
| | - Joan Torrent
- Molecular Mechanisms in Neurodegenerative Dementia (MMDN) Laboratory, INSERM U1198, Team Environmental Impact in Alzheimer's Disease and Related Disorders (EiAlz), Montpellier, France.,University of Montpellier, Montpellier, France.,EPHE, Paris, France
| | | | - Onno C Meijer
- Einthoven Laboratory, Department of Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, The Netherlands
| | - Catherine Desrumaux
- Molecular Mechanisms in Neurodegenerative Dementia (MMDN) Laboratory, INSERM U1198, Team Environmental Impact in Alzheimer's Disease and Related Disorders (EiAlz), Montpellier, France.,University of Montpellier, Montpellier, France.,EPHE, Paris, France
| | - Laurent Givalois
- Molecular Mechanisms in Neurodegenerative Dementia (MMDN) Laboratory, INSERM U1198, Team Environmental Impact in Alzheimer's Disease and Related Disorders (EiAlz), Montpellier, France.,University of Montpellier, Montpellier, France.,EPHE, Paris, France
| |
Collapse
|
27
|
Yuan H, Wu G, Zhai X, Lu B, Meng B, Chen J. Melatonin and Rapamycin Attenuate Isoflurane-Induced Cognitive Impairment Through Inhibition of Neuroinflammation by Suppressing the mTOR Signaling in the Hippocampus of Aged Mice. Front Aging Neurosci 2019; 11:314. [PMID: 31803045 PMCID: PMC6877689 DOI: 10.3389/fnagi.2019.00314] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 10/31/2019] [Indexed: 12/26/2022] Open
Abstract
Melatonin exerts neuroprotective effects on isoflurane-induced cognitive impairment. However, the underlying mechanism has yet to be elucidated. The present study sought to determine if melatonin confers its beneficial effects by acting on mammalian target of rapamycin (mTOR) and attenuates the neuroinflammation in the hippocampus of aged mice. A total of 72 male C57BL/6 mice, 16-month-old, were randomly and equally divided into six groups: (1) the control group (CON); (2) the rapamycin group (RAP); (3) the melatonin group (MEL); (4) the isoflurane group (ISO); (5) the rapamycin + isoflurane group (RAP + ISO); and (6) the melatonin + isoflurane group (MEL + ISO). RAP, RAP + ISO, MEL, MEL + ISO groups received 1 mg/kg/day mTOR inhibitor rapamycin solution or 10 mg/kg/day melatonin solution, respectively, intraperitoneally at 5:00 p.m. for 14 days consecutively. Mice in the CON and ISO groups were administered an equivalent volume of saline. Subsequently, ISO, RAP + ISO, and MEL + ISO groups were exposed to inhale 2% isoflurane for 4 h; the CON, RAP, and MEL mice received only the vehicle gas. Then, the memory function and spatial learning of the mice were examined via the Morris water maze (MWM) test. mTOR expression was detected via Western blot, whereas the concentration of inflammatory cytokines tumor necrosis factor (TNF)-α, interleukin (IL)-1β, IL-6 and that of melatonin was quantified with enzyme-linked immunosorbent assay (ELISA). Melatonin and rapamycin significantly ameliorated the isoflurane-induced cognitive impairment and also led to a decrease in the melatonin levels as well as the expression levels of TNF-α, IL-1β, IL-6, and p-mTOR in the hippocampus. In conclusion, these results showed that melatonin and rapamycin attenuates mTOR expression while affecting the downstream proinflammatory cytokines. Thus, these molecular findings could be associated with an improved cognitive function in mice exposed to isoflurane.
Collapse
Affiliation(s)
- Hui Yuan
- Department of Anesthesiology, HwaMei Hospital, University of Chinese Academy of Sciences, Ningbo, China
| | - Guorong Wu
- Department of Anesthesiology, HwaMei Hospital, University of Chinese Academy of Sciences, Ningbo, China
| | - Xiaojie Zhai
- Department of Anesthesiology, HwaMei Hospital, University of Chinese Academy of Sciences, Ningbo, China
| | - Bo Lu
- Department of Anesthesiology, HwaMei Hospital, University of Chinese Academy of Sciences, Ningbo, China
| | - Bo Meng
- Department of Anesthesiology, HwaMei Hospital, University of Chinese Academy of Sciences, Ningbo, China
| | - Junping Chen
- Department of Anesthesiology, HwaMei Hospital, University of Chinese Academy of Sciences, Ningbo, China
| |
Collapse
|
28
|
Synthesis, sciatic nerve block activity evaluation and molecular docking of fluoro-substituted lidocaine analogs as local anesthetic agents. Med Chem Res 2019. [DOI: 10.1007/s00044-019-02415-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
29
|
Zhong J, Guo C, Hou W, Shen N, Miao C. Effects of MFHAS1 on cognitive impairment and dendritic pathology in the hippocampus of septic rats. Life Sci 2019; 235:116822. [PMID: 31476310 DOI: 10.1016/j.lfs.2019.116822] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 08/21/2019] [Accepted: 08/29/2019] [Indexed: 01/31/2023]
Abstract
AIMS To investigate the effects of malignant fibrous histiocytoma amplified sequence 1 (MFHAS1) on cognitive dysfunction, the expression of tumor necrosis factor-α (TNF-α), interleukin (IL)-1β and amyloid β peptide (Aβ) in the hippocampus, as well as dendritic pathology in the hippocampal CA1 region in sepsis-associated encephalopathy (SAE) rats. MAIN METHODS The rats were randomly divided into four groups: 1) control group (subjected to sham surgery), 2) control plus Mfhas1 siRNA group (rats received intracerebroventricular injection of Mfhas1 siRNA after sham surgery), 3) CLP plus control siRNA group (rats received intracerebroventricular injection of control siRNA after cecal ligation and puncture (CLP)), 4) CLP plus Mfhas1 siRNA group (rats received intracerebroventricular injection of Mfhas1 siRNA after CLP). The learning and memory capabilities of the rats were examined by means of fear conditioning and Barnes maze test. The concentration of TNF-α and IL-1β was determined by enzyme-linked immunosorbent assay. The efficiency of siRNA transfection, MFHAS1 and Aβ expression were detected by Western blotting. Total branch lengths of pyramidal dendrites of the CA1 basilar trees and spine density were determined by Golgi staining. KEY FINDINGS We observed that MFHAS1 knock-down by Mfhas1 siRNA intracerebroventricular injection could improve cognitive impairment, reduce the expression of TNF-α, IL-1β and Aβ in the hippocampus induced by CLP, and alleviate the dendritic spinal loss of the pyramidal neurons, as well as increase the dendritic branching of the CA1 basilar trees of septic rats. SIGNIFICANCE MFHAS1 knock-down can alleviate cognitive impairment, neuroinflammation and dendritic spinal loss in SAE rats.
Collapse
Affiliation(s)
- Jing Zhong
- Department of Anesthesiology, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Chenyue Guo
- Department of Anesthesiology, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Wenting Hou
- Department of Anesthesiology, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Na Shen
- Department of Otolaryngology, Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Changhong Miao
- Department of Anesthesiology, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| |
Collapse
|
30
|
Guo M, Zhu X, Xu H, Li J, Yang S, Zuo Z, Lin D. Ulinastatin attenuates isoflurane-induced cognitive dysfunction in aged rats by inhibiting neuroinflammation and β-amyloid peptide expression in the brain. Neurol Res 2019; 41:923-929. [PMID: 31311447 DOI: 10.1080/01616412.2019.1642564] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Objective: Postoperative neurocognitive disease (PNCD) in the aged is a major clinical problem with unclear mechanisms. This study was designed to explore the mechanisms for ulinastatin (UTI) to attenuate isoflurane-induced cognitive decline in Fischer-344 rats. Methods: The rats were divided into four groups: Control (0.9% saline only), Isoflurane (exposure to 1.2% isoflurane), Isoflurane-plus-UTI (exposure to 1.2% isoflurane followed by 100,000 U/kg UTI injection i.v.) and UTI-plus-isoflurane (i.v. of 100,000 U/kg UTI followed by 1.2% isoflurane exposure). After respective tests, the concentrations of tumour necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) in the brain were determined by ELISA the expression of β-amyloid peptide (Aβ) and cleaved caspase-3 were measured by Western blot. Ratio of apoptotic cells after Barnes maze challenge was assessed by TUNEL assay. Results: In both Barnes Maze training and challenge, results indicated isoflurane-impaired learning capacity, while pre-and post-treatment with UTI could attenuate this phenomenon. The ratio of apoptotic cells and the expression of cleaved caspase-3 were increased after isoflurane exposure, indicating that isoflurane could induce neuronal apoptosis, while both pre- and post-treatment with UTI could diminish these effects. Moreover, UTI inhibited the expression of TNF-α, IL-1β and Aβ induced by isoflurane in rat brain harvested at 16 h after isoflurane exposure. Conclusion: These results suggest that UTI inhibits neuronal apoptosis in rat brain by attenuating increased expression of Aβ42 and inflammatory cytokines, which may contribute to its alleviation of isoflurane-induced cognitive dysfunction in rats. Moreover, UTI pre-treatment before isoflurane exposure showed more effective than post-treatment.
Collapse
Affiliation(s)
- Mingyan Guo
- Department of Anesthesiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University , Guangzhou , Guangdong , China
| | - Xiaoqiu Zhu
- Department of Anesthesiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University , Guangzhou , Guangdong , China
| | - Hui Xu
- Department of Anesthesiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University , Guangzhou , Guangdong , China
| | - Jin Li
- Department of Anesthesiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University , Guangzhou , Guangdong , China
| | - Shangze Yang
- The Eighth Affiliated Hospital of Sun Yat-Sen University , Shenzhen , Guangdong , China
| | - Zhiyi Zuo
- Department of Anesthesiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University , Guangzhou , Guangdong , China.,Department of Anesthesiology, University of Virginia , Charlottesville , VA , USA
| | - Daowei Lin
- Department of Anesthesiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University , Guangzhou , Guangdong , China
| |
Collapse
|
31
|
Li J, Zhu X, Yang S, Xu H, Guo M, Yao Y, Huang Z, Lin D. Lidocaine Attenuates Cognitive Impairment After Isoflurane Anesthesia by Reducing Mitochondrial Damage. Neurochem Res 2019; 44:1703-1714. [PMID: 30989480 DOI: 10.1007/s11064-019-02799-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 04/03/2019] [Accepted: 04/10/2019] [Indexed: 10/27/2022]
Abstract
Mitochondrial dysfunction has been proposed to be one of the earliest triggering events in isoflurane-induced neuronal damage. Lidocaine has been demonstrated to attenuate the impairment of cognition in aged rats induced by isoflurane in our previous study. In this study, we hypothesized that lidocaine could attenuate isoflurane anesthesia-induced cognitive impairment by reducing mitochondrial damage. H4 human neuroglioma cells and 18-month-old male Fischer 344 rats were exposed to isoflurane or isoflurane plus lidocaine. Cognitive function was tested at 14 days after treatment by the Barnes Maze test in male Fischer 344 rats. Morphology was observed under electron microscope, and mitochondrial transmembrane potential, electron transfer chain (ETC) enzyme activity, complex-I-IV activity, immunofluorescence and flow cytometry of annexin V-FITC binding, TUNEL assay, and Western blot analyses were applied. Lidocaine attenuated cognitive impairment caused by isoflurane in aged Fischer 344 rat. Lidocaine was effective in reducing mitochondrial damage, mitigating the decrease in mitochondrial membrane potential (ΔΨm), reversing isoflurane-induced changes in complex activity in the mitochondrial electron transfer chain and inhibiting the apoptotic activities induced by isoflurane in H4 cells and Fischer 344 rats. Additionally, lidocaine suppressed the ratio of Bax (the apoptosis-promoting protein) to Bcl-2 (the apoptosis-inhibiting protein) caused by isoflurane in H4 cells. Lidocaine proved effective in attenuating isoflurane-induced POCD by reducing mitochondrial damage.
Collapse
Affiliation(s)
- Jin Li
- Department of Anesthesiology, Sun-Yat sen Memorial Hospital, Sun-Yat sen University, Guangzhou, 510120, Guangdong, China
| | - Xiaoqiu Zhu
- Department of Anesthesiology, Sun-Yat sen Memorial Hospital, Sun-Yat sen University, Guangzhou, 510120, Guangdong, China
| | - Shangze Yang
- Department of Anesthesiology, Sun-Yat sen Memorial Hospital, Sun-Yat sen University, Guangzhou, 510120, Guangdong, China
| | - Hui Xu
- Department of Anesthesiology, Sun-Yat sen Memorial Hospital, Sun-Yat sen University, Guangzhou, 510120, Guangdong, China
| | - Mingyan Guo
- Department of Anesthesiology, Sun-Yat sen Memorial Hospital, Sun-Yat sen University, Guangzhou, 510120, Guangdong, China
| | - Yiyi Yao
- Department of Anesthesiology, Sun-Yat sen Memorial Hospital, Sun-Yat sen University, Guangzhou, 510120, Guangdong, China
| | - Zhiquan Huang
- Department of Oral and Maxillofacial Surgery, Sun-Yat sen Memorial Hospital, Sun-Yat sen University, Guangzhou, 510120, Guangdong, China.
| | - Daowei Lin
- Department of Anesthesiology, Sun-Yat sen Memorial Hospital, Sun-Yat sen University, Guangzhou, 510120, Guangdong, China.
| |
Collapse
|
32
|
Zhao ZF, Du L, Gao T, Bao L, Luo Y, Yin YQ, Wang YA. Inhibition of α5 GABAA receptors has preventive but not therapeutic effects on isoflurane-induced memory impairment in aged rats. Neural Regen Res 2019; 14:1029-1036. [PMID: 30762015 PMCID: PMC6404482 DOI: 10.4103/1673-5374.250621] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The α5 subunit-containing gamma-amino butyric acid type A receptors (α5 GABAARs) are a distinct subpopulation that are specifically distributed in the mammalian hippocampus and also mediate tonic inhibitory currents in hippocampal neurons. These tonic currents can be enhanced by low-dose isoflurane, which is associated with learning and memory impairment. Inverse agonists of α5 GABAARs, such as L-655,708, are able to reverse the short-term memory deficit caused by low-dose isoflurane in young animals. However, whether these negative allosteric modulators have the same effects on aged rats remains unclear. In the present study, we mainly investigated the effects of L-655,708 on low-dose (1.3%) isoflurane-induced learning and memory impairment in elderly rats. Young (3-month-old) and aged (24-month-old) Wistar rats were randomly assigned to receive L-655,708 0.5 hour before or 23.5 hours after 1.3% isoflurane anesthesia. The Morris Water Maze tests demonstrated that L-655,708 injected before or after anesthesia could reverse the memory deficit in young rats. But in aged rats, application of L-655,708 only before anesthesia showed similar effects. Reverse transcription-polymerase chain reaction showed that low-dose isoflurane decreased the mRNA expression of α5 GABAARs in aging hippocampal neurons but increased that in young animals. These findings indicate that L-655,708 prevented but could not reverse 1.3% isoflurane-induced spatial learning and memory impairment in aged Wistar rats. All experimental procedures and protocols were approved by the Experimental Animal Ethics Committee of Academy of Military Medical Science of China (approval No. NBCDSER-IACUC-2015128) in December 2015.
Collapse
Affiliation(s)
- Zi-Fang Zhao
- Department of Anesthesiology, China-Japan Friendship Hospital, Beijing, China
| | - Lei Du
- Department of Radiology, China-Japan Friendship Hospital, Beijing, China
| | - Teng Gao
- Department of Anesthesiology, Beijing Shijitan Hospital Affiliated to Capital Medical University, Beijing, China
| | - Lin Bao
- Department of Anesthesiology, China-Japan Friendship Hospital, Beijing, China
| | - Yuan Luo
- Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Beijing, China
| | - Yi-Qing Yin
- Department of Anesthesiology, China-Japan Friendship Hospital, Beijing, China
| | - Yong-An Wang
- Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Beijing, China
| |
Collapse
|
33
|
de Abreu MS, Giacomini AC, dos Santos BE, Genario R, Marchiori NI, Rosa LGD, Kalueff AV. Effects of lidocaine on adult zebrafish behavior and brain acetylcholinesterase following peripheral and systemic administration. Neurosci Lett 2019; 692:181-186. [DOI: 10.1016/j.neulet.2018.11.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 10/28/2018] [Accepted: 11/02/2018] [Indexed: 10/27/2022]
|
34
|
Zhang BJ, Yuan CX. Effects of ADAM2 silencing on isoflurane-induced cognitive dysfunction via the P13K/Akt signaling pathway in immature rats. Biomed Pharmacother 2018; 109:217-225. [PMID: 30396079 DOI: 10.1016/j.biopha.2018.10.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 09/22/2018] [Accepted: 10/03/2018] [Indexed: 11/17/2022] Open
Abstract
Volatile anesthetics, including isoflurane, have been reported to have negative effects on cognitive dysfunction characterized by cognitive deficits following anesthesia. The aim of the current study was to investigate the effects involved with disintegrin and metallopeptidase domain 2 (ADAM2) silencing on isoflurane-induced cognitive dysfunction via the P13 K/Akt signaling pathway in immature rats. One week old healthy Sprague-Dawley (SD) rats were recruited and administered isoflurane anesthesia. The rats were then subjected to shADAM2 or wortmannin (PI3K/Akt signaling pathway inhibitor) to identify the effects of ADAM2 and the PI3K/Akt signaling pathway on the cognitive function of rats. Morris water maze and passive-avoidance tests were performed to examine the cognitive function of the rats. TUNEL staining was conducted to detect neuronal apoptosis in the hippocampal CA1 region. The obtained experimental results demonstrated that isoflurane anesthesia led to increased escape latency, reaction time, number of errors and TUNEL-positive neurons, along with a decreased latency time. In response to treatment with shADAM2, escape latency, reaction time, number of errors and TUNEL-positive cells were all noted to have decreased, in addition to elevated latency time, while contrasting trends were observed in regard to treatment with wortmannin. Taken together, the key findings of the present study revealed that shADAM2 activated the PI3K/Akt signaling pathway, resulting in elevated expressions of PI3K and Akt. Our study ultimately identified that ADAM2 silencing alleviates isoflurane-induced cognitive dysfunction by activating the P13 K/Akt signaling pathway in immature rats.
Collapse
Affiliation(s)
- Bao-Juan Zhang
- Department of Anesthesiology, Jining No.1 People's Hospital, Jining, 272011, PR China
| | - Chang-Xiu Yuan
- Department of Anesthesiology, Jining No.1 People's Hospital, Jining, 272011, PR China.
| |
Collapse
|
35
|
Wang B, Lian YJ, Su WJ, Peng W, Dong X, Liu LL, Gong H, Zhang T, Jiang CL, Wang YX. HMGB1 mediates depressive behavior induced by chronic stress through activating the kynurenine pathway. Brain Behav Immun 2018; 72:51-60. [PMID: 29195782 DOI: 10.1016/j.bbi.2017.11.017] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 11/21/2017] [Accepted: 11/22/2017] [Indexed: 12/20/2022] Open
Abstract
Our previous study has reported that the proactive secretion and role of central high mobility group box 1 (HMGB1) in lipopolysaccharide-induced depressive behavior. Here, the potential mechanism of HMGB1 mediating chronic-stress-induced depression through the kynurenine pathway (KP) was further explored both in vivo and in vitro. Depression model was established with the 4-week chronic unpredictable mild stress (CUMS). Sucrose preference and Barnes maze test were performed to reflect depressive behaviors. The ratio of kynurenine (KYN)/tryptophan (Trp) represented the enzyme activity of indoleamine-2,3-dioxygenase (IDO). Gene transcription and protein expression were assayed by real-time RT-PCR and western-blot or ELISA kit respectively. Along with depressive behaviors, HMGB1 concentrations in the hippocampus and serum substantially increased post 4-week CUMS exposure. Concurrent with the upregulated HMGB1 protein, the regulator of translocation of HMGB1, sirtuin 1 (SIRT1) concentration in the hippocampus remarkably increased. In addition to HMGB1 and SIRT1, IDO, the rate limiting enzyme of KP, was upregulated at the level of mRNA expression and enzyme activity in stressed hippocampi and LPS/HMGB1-treated hippocampal slices. The gene transcription of kynurenine monooxygenase (KMO) and kynureninase (KYNU) in the downstream of KP also increased both in vivo and in vitro. Mice treated with ethyl pyruvate (EP), the inhibitor of HMGB1 releasing, were observed with lower tendency of developing depressive behaviors and reduced activation of enzymes in KP. All of these experiments demonstrate that the role of HMGB1 on the induction of depressive behavior is mediated by KP activation.
Collapse
Affiliation(s)
- Bo Wang
- Lab of Stress Medicine, Department of Psychology and Mental Health, Second Military Medical University, Shanghai 200433, PR China
| | - Yong-Jie Lian
- Lab of Stress Medicine, Department of Psychology and Mental Health, Second Military Medical University, Shanghai 200433, PR China
| | - Wen-Jun Su
- Lab of Stress Medicine, Department of Psychology and Mental Health, Second Military Medical University, Shanghai 200433, PR China
| | - Wei Peng
- Lab of Stress Medicine, Department of Psychology and Mental Health, Second Military Medical University, Shanghai 200433, PR China; Department of Psychiatry, The 92nd Hospital of PLA, Nanping 353000, PR China
| | - Xin Dong
- School of Pharmacy, Second Military Medical University, Shanghai 200433, PR China
| | - Lin-Lin Liu
- Lab of Stress Medicine, Department of Psychology and Mental Health, Second Military Medical University, Shanghai 200433, PR China; Department of Nursing, The 474th Hospital of PLA, Urumqi 830012, PR China
| | - Hong Gong
- Lab of Stress Medicine, Department of Psychology and Mental Health, Second Military Medical University, Shanghai 200433, PR China
| | - Ting Zhang
- Department of Navy Medicine, Second Military Medical University, Shanghai 200433, PR China
| | - Chun-Lei Jiang
- Lab of Stress Medicine, Department of Psychology and Mental Health, Second Military Medical University, Shanghai 200433, PR China
| | - Yun-Xia Wang
- Lab of Stress Medicine, Department of Psychology and Mental Health, Second Military Medical University, Shanghai 200433, PR China.
| |
Collapse
|
36
|
Hong-Qiang H, Mang-Qiao S, Fen X, Shan-Shan L, Hui-Juan C, Wu-Gang H, Wen-Jun Y, Zheng-Wu P. Sirt1 mediates improvement of isoflurane-induced memory impairment following hyperbaric oxygen preconditioning in middle-aged mice. Physiol Behav 2018; 195:1-8. [PMID: 30040951 DOI: 10.1016/j.physbeh.2018.07.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 07/20/2018] [Accepted: 07/20/2018] [Indexed: 01/04/2023]
Abstract
Hyperbaric oxygen (HBO) preconditioning (PC) has been suggested as a feasible method to provide neuroprotection from postoperative cognitive dysfunction (POCD). However, whether HBO-PC can ameliorate cognitive deficits induced by isoflurane, and the possible mechanism by which it may exert its effect, has not yet been clarified. In the present study, middle-aged mice were exposed to isoflurane anesthesia (1.5 minimal alveolar concentration [MAC]) for 2 h to establish a POCD model. After HBO preconditioning, cognitive function and expression of hippocampal sirtuin 1 (Sirt1), nuclear factor erythroid 2-related factor 2 (Nrf2) and heme oxygenase 1 (HO-1) were evaluated 24 h following isoflurane treatment, in the presence or absence of Sirt1 knockdown by short hairpin RNA (shRNA). HBO preconditioning increased the expression of Sirt1, Nrf2, and HO-1 and ameliorated memory dysfunction. Meanwhile, Sirt1 knockdown inhibited the expression of Nrf2 and HO-1 and attenuated the HBO preconditioning-associated memory improvement. Our results suggest that the application of HBO preconditioning is a useful treatment for POCD, and that Sirt1 may be a potential molecular target for POCD therapy.
Collapse
Affiliation(s)
- Hu Hong-Qiang
- Department of Anesthesiology, PLA No. 174 Hospital, Chenggong Hospital Affiliated to Xiamen University, Xiamen, Fujian 361003, China
| | - Shu Mang-Qiao
- Department of Psychiatry, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China; Department of Psychiatry, Changan Hospital, Xi'an 710016, China
| | - Xue Fen
- Department of Psychiatry, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Liu Shan-Shan
- Department of Anesthesiology, PLA No. 174 Hospital, Chenggong Hospital Affiliated to Xiamen University, Xiamen, Fujian 361003, China
| | - Cao Hui-Juan
- Department of Anesthesiology, PLA No. 174 Hospital, Chenggong Hospital Affiliated to Xiamen University, Xiamen, Fujian 361003, China
| | - Hou Wu-Gang
- Department of Anesthesiology, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Yan Wen-Jun
- Department of Anesthesiology, Gansu Provincial Hospital, Lanzhou 730000, China.
| | - Peng Zheng-Wu
- Department of Psychiatry, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China.
| |
Collapse
|
37
|
Absence of Neuropathology With Prolonged Isoflurane Sedation in Healthy Adult Rats. J Neurosurg Anesthesiol 2018; 29:439-447. [PMID: 27653221 DOI: 10.1097/ana.0000000000000365] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND The use of isoflurane sedation for prolonged periods in the critical care environment is increasing. However, isoflurane-mediated neurotoxicity has been widely reported. The goal of the present study was to determine whether long-term exposure to low-dose isoflurane in mechanically ventilated rodents is associated with evidence of neurodegeneration or neuroinflammation. METHODS Adult female Sprague-Dawley rats were used in this study. Experimental animals (n=11) were induced with 1.5% isoflurane, intubated, and given a neuromuscular blockade with α-cobratoxin. EEG electrodes were surgically implanted, subcutaneous precordial EKG Ag wire electrodes, and bladder, femoral artery, and femoral vein cannulas permanently placed. After these procedures, the isoflurane concentration was reduced to 0.5% and, in conjunction with the neuromuscular blockade, continued for 7 days. Arterial blood gases and chemistry were measured at 3 time points and core body temperature servoregulated and maintenance IV fluids were given during the 7 days. Experimental animals and untreated controls (n=9) were euthanized on day 7. RESULTS Immunohistochemical and cytochemical assays did not detect evidence of microgliosis, astrocytosis, neuronal apoptosis or necrosis, amyloidosis, or phosphorylated-tau accumulation. Blood glucose levels were significantly reduced on days 3/4 and 6/7 and partial pressure of oxygen was significantly reduced, but still within the normal range, on day 6/7. All other blood measurements were unchanged. CONCLUSIONS No neuropathologic changes consistent with neurotoxicity were detected in the brain after 1 week of continuous exposure to 0.5% isoflurane in healthy rats. These data suggest that even long exposures to low concentrations of isoflurane have no overt consequences on neuropathology.
Collapse
|
38
|
Wang Z, Meng S, Cao L, Chen Y, Zuo Z, Peng S. Critical role of NLRP3-caspase-1 pathway in age-dependent isoflurane-induced microglial inflammatory response and cognitive impairment. J Neuroinflammation 2018; 15:109. [PMID: 29665808 PMCID: PMC5904978 DOI: 10.1186/s12974-018-1137-1] [Citation(s) in RCA: 146] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 03/26/2018] [Indexed: 02/08/2023] Open
Abstract
Background Elderly patients are more likely to suffer from postoperative cognitive dysfunction (POCD) after surgery and anesthesia. Except for declined organ function, the particular pathogenesis of POCD in elderly patients remains unknown. This study is carried out to determine the critical role of the NOD-like receptor protein 3 (NLRP3)-caspase-1 pathway in isoflurane-induced cognitive impairment. Methods Young (6–8 months old) and aged (14 months old) healthy male C57BL/6 mice were exposed to 1.5% isoflurane for 2 h. Some mice received intraperitoneal injection of Ac-YVAD-cmk (8 mg/kg), a specific inhibitor of caspase-1, 30 min before the isoflurane exposure. Morris water maze test was carried out 1 week after the isoflurane anesthesia. Brain tissues were harvested 24 h after the isoflurane anesthesia. Western blotting was carried out to detect the expression of NLRP3, interleukin (IL)-1β, and IL-18 in the hippocampus. Mouse microglial cell line BV-2 and primary microglial cultures were primed by lipopolysaccharide for 30 min before being exposed to isoflurane. NLRP3 was downregulated by RNA interference. Results Compared to young mice, aged mice had an increased expression of NLRP3 in the hippocampus. Isoflurane induced cognitive impairment and hippocampal inflammation in aged mice but not in young mice. These effects were attenuated by Ac-YVAD-cmk pretreatment (P < 0.05). Isoflurane activated NLRP3-caspase-1 pathway and increased the secretion of IL-18 and IL-1β in cells pretreated with lipopolysaccharide but not in cells without pretreatment. Downregulation of NLRP3 attenuated the activation of NLRP3 inflammasome by isoflurane. Conclusions NLRP3 priming status in aged mouse brain may be involved in isoflurane-induced hippocampal inflammation and cognitive impairment. Electronic supplementary material The online version of this article (10.1186/s12974-018-1137-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Zhi Wang
- Department of Anesthesiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510289, Guangdong, China
| | - Shiyu Meng
- Department of Anesthesiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510289, Guangdong, China
| | - Lin Cao
- Department of Anesthesiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510289, Guangdong, China
| | - Ying Chen
- Department of Anesthesiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510289, Guangdong, China
| | - Zhiyi Zuo
- Department of Anesthesiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510289, Guangdong, China. .,Laboratory of RNA and Major Diseases of Brain and Heart, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China. .,Department of Anesthesiology, University of Virginia, Charlottesville, USA.
| | - Shuling Peng
- Department of Anesthesiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510289, Guangdong, China.
| |
Collapse
|
39
|
Isoflurane Use in the Treatment of Super-Refractory Status Epilepticus is Associated with Hippocampal Changes on MRI. Neurocrit Care 2018; 26:420-427. [PMID: 28028789 DOI: 10.1007/s12028-016-0340-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
BACKGROUND Refractory status epilepticus (RSE) is associated with high morbidity and mortality. Experts recommend aggressive management with continuous intravenous infusions or inhaled anesthetics such as isoflurane. However, there is concern that MRI changes in RSE reflect isoflurane neurotoxicity. We performed a case-control study to determine whether isoflurane is neurotoxic, based on MRI signal changes. METHODS We performed a retrospective case-control study of the incidence of MRI changes in RSE treated with and without isoflurane. Charts were reviewed for demographic and treatment information. T1, T2, and FLAIR sequences of MRIs were reviewed independently by two neuroradiologists blinded to treatment group for presence or absence of signal change or atrophy in the meninges, cortex, white matter, basal ganglia, thalamus, hippocampus, brainstem, and cerebellum. RESULTS Eight cases of RSE receiving treatment with isoflurane were identified and double-matched with 15 controls who received only intravenous anesthetics. Baseline characteristics were similar. Hippocampal signal change was observed more frequently in cases receiving isoflurane (p = 0.026). CONCLUSIONS Hippocampal signal changes were associated with isoflurane use in patients with RSE. They were also associated with number of seizure days prior to MRI and the use of multiple anesthetic agents. Similar changes have been seen as a result of RSE itself, and one cannot rule out the possibility these changes represent seizure-related effects. If isoflurane-related, these hippocampal signal changes may be the result of a direct neurotoxic effect of prolonged isoflurane use or failure of isoflurane to protect the hippocampus from seizure-induced injury despite achieving electrographic burst-suppression.
Collapse
|
40
|
Hou R, Wang H, Chen L, Qiu Y, Li S. POCD in patients receiving total knee replacement under deep vs light anesthesia: A randomized controlled trial. Brain Behav 2018; 8:e00910. [PMID: 29484267 PMCID: PMC5822567 DOI: 10.1002/brb3.910] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 10/30/2017] [Accepted: 11/21/2017] [Indexed: 12/03/2022] Open
Abstract
Objectives Clinical observation, as well as randomized controlled trials, indicated an increasing rate of postoperative cognitive dysfunction (POCD) with increasing depth of general anesthesia. However, the findings are subject to bias due to varying degree of analgesia. In this trial, we compared the rate of POCD between patients receiving light versus high anesthesia while holding analgesia comparable using nerve block. Methods Elderly patients (≧60 years) receiving elective total knee replacement were randomized to receive the surgery under general anesthesia at BIS 40-50 (LOBIS group) or BIS 55-65 (HIBIS group). The femoral nerve and the sciatic nerve were blocked under ultrasonic guidance in all patients before induction. Cognitive performance was assessed with Montreal cognitive assessment (MoCA) at the baseline and 1d, 3d, and 7d after the surgery. POCD was defined by Z score of >1.96 using cross-reference. The extubation time and recovery time were also compared. Results A total of 66 patients were randomized; 60 (n = 30 per group) completed trial as the protocol specified. POCD occurred in six patients (20%) in the LOBIS group vs. in one patient (3.3%) in the HIBIS group (Figure 3, p = .04). In all seven cases, the diagnosis of POCD was based on MoCA assessment on 1d after the surgery. Assessment in 3d and 7d after surgery did not reveal POCD in any case. Extubation time was longer in the LOBIS group (12.16 ± 2.58 vs. 5.77 ± 3.01 min in the HIBIS group (p < .001)). The time of comeback of directional ability was 13.47 ± 3.14 and 6.17 ± 3.23 min in the LOBIS and HIBIS groups, respectively (p < .001). Conclusions In elderly patients receiving a total knee replacement, lighter anesthesia could reduce the rate of POCD with complete analgesia during surgery.
Collapse
Affiliation(s)
- Ruixue Hou
- Department of AnesthesiologyShanghai General Hospital Affiliated to Shanghai Jiaotong UniversityShanghaiChina
| | - Hong Wang
- Department of AnesthesiologyShanghai General Hospital Affiliated to Shanghai Jiaotong UniversityShanghaiChina
| | - Lianhua Chen
- Department of AnesthesiologyShanghai General Hospital Affiliated to Shanghai Jiaotong UniversityShanghaiChina
| | - Yimin Qiu
- Department of AnesthesiologyShanghai General Hospital Affiliated to Shanghai Jiaotong UniversityShanghaiChina
| | - Shitong Li
- Department of AnesthesiologyShanghai General Hospital Affiliated to Shanghai Jiaotong UniversityShanghaiChina
| |
Collapse
|
41
|
Skvarc DR, Berk M, Byrne LK, Dean OM, Dodd S, Lewis M, Marriott A, Moore EM, Morris G, Page RS, Gray L. Post-Operative Cognitive Dysfunction: An exploration of the inflammatory hypothesis and novel therapies. Neurosci Biobehav Rev 2017; 84:116-133. [PMID: 29180259 DOI: 10.1016/j.neubiorev.2017.11.011] [Citation(s) in RCA: 196] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 10/16/2017] [Accepted: 11/20/2017] [Indexed: 12/11/2022]
Abstract
Post-Operative Cognitive Dysfunction (POCD) is a highly prevalent condition with significant clinical, social and financial impacts for patients and their communities. The underlying pathophysiology is becoming increasingly understood, with the role of neuroinflammation and oxidative stress secondary to surgery and anaesthesia strongly implicated. This review aims to describe the putative mechanisms by which surgery-induced inflammation produces cognitive sequelae, with a focus on identifying potential novel therapies based upon their ability to modify these pathways.
Collapse
Affiliation(s)
- David R Skvarc
- School of Psychology, Deakin University, Melbourne, Australia; Deakin University, Innovations in Mental and Physical Health and Clinical Treatment (IMPACT) Strategic Research Centre, Barwon Health, Geelong, Australia.
| | - Michael Berk
- Deakin University, Innovations in Mental and Physical Health and Clinical Treatment (IMPACT) Strategic Research Centre, Barwon Health, Geelong, Australia; Deakin University, School of Medicine, Geelong, Australia; Orygen, The National Centre of Excellence in Youth Mental Health, The Department of Psychiatry and the Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Australia.
| | - Linda K Byrne
- School of Psychology, Deakin University, Melbourne, Australia.
| | - Olivia M Dean
- Deakin University, Innovations in Mental and Physical Health and Clinical Treatment (IMPACT) Strategic Research Centre, Barwon Health, Geelong, Australia; Deakin University, School of Medicine, Geelong, Australia; Orygen, The National Centre of Excellence in Youth Mental Health, The Department of Psychiatry and the Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Australia
| | - Seetal Dodd
- Deakin University, Innovations in Mental and Physical Health and Clinical Treatment (IMPACT) Strategic Research Centre, Barwon Health, Geelong, Australia; Deakin University, School of Medicine, Geelong, Australia
| | - Matthew Lewis
- School of Psychology, Deakin University, Melbourne, Australia; Aged Psychiatry Service, Caulfield Hospital, Alfred Health, Caulfield, Australia
| | - Andrew Marriott
- Department of Anaesthesia, Perioperative Medicine & Pain Management, Barwon Health, Geelong, Australia; Deakin University, Innovations in Mental and Physical Health and Clinical Treatment (IMPACT) Strategic Research Centre, Barwon Health, Geelong, Australia; Deakin University, School of Medicine, Geelong, Australia; Orygen, The National Centre of Excellence in Youth Mental Health, The Department of Psychiatry and the Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Australia
| | - Eileen M Moore
- Department of Anaesthesia, Perioperative Medicine & Pain Management, Barwon Health, Geelong, Australia; Deakin University, Innovations in Mental and Physical Health and Clinical Treatment (IMPACT) Strategic Research Centre, Barwon Health, Geelong, Australia
| | | | - Richard S Page
- Deakin University, School of Medicine, Geelong, Australia; Department of Orthopaedics, Barwon Health, Geelong, Australia
| | - Laura Gray
- Deakin University, School of Medicine, Geelong, Australia.
| |
Collapse
|
42
|
Calcineurin/P-ERK/Egr-1 Pathway is Involved in Fear Memory Impairment after Isoflurane Exposure in Mice. Sci Rep 2017; 7:13947. [PMID: 29066839 PMCID: PMC5654981 DOI: 10.1038/s41598-017-13975-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 10/03/2017] [Indexed: 11/28/2022] Open
Abstract
Isoflurane exposure adversely influences subsequent fear memory formation in mice. Calcineurin (CaN), a phosphatase, prevents the establishment of emotional memory by dephosphorylating substrates and inhibiting the expression of learning and memory related genes. We investigated whether isoflurane impairment of fear memory formation was associated with altered CaN activity and downstream phosphorylated-extracellular signal-regulated kinases (p-ERK) and early growth response gene-1 (Egr-1) expression in hippocampus and amygdala. We also tested whether memory performance can be rescued by the CaN inhibitor FK506. Adult C57BL/6 mice were injected FK506 or vehicle after being exposed to 1.3% isoflurane or air for 1 h. After a 1 h- recovery, mice underwent classical fear conditioning (FC) training. Fear memory were tested 30 min, 48 h and 7 days after training. The activity of CaN, and expression of p-ERK and Egr-1 in hippocampus and amygdala were analyzed. Isoflurane exposure reduced mice freezing time in contextual and tone FC tests 30 min and 48 h after training. Hippocampus and amygdala from isoflurane-exposed mice had enhanced CaN activity, reduced p-ERK/ERK and Egr-1 expression. All these changes in isoflurane-exposed mice were attenuated by FK506 treatment. These results indicate calcineurin/p-ERK/Egr-1 Pathway is involved in fear memory impairment after isoflurane exposure in mice.
Collapse
|
43
|
TREK-1 pathway mediates isoflurane-induced memory impairment in middle-aged mice. Neurobiol Learn Mem 2017; 145:199-204. [PMID: 29042297 DOI: 10.1016/j.nlm.2017.10.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 04/14/2017] [Accepted: 10/13/2017] [Indexed: 01/08/2023]
Abstract
Post-operative cognitive dysfunction (POCD) has been widely reported, especially in elderly patients. An association between POCD and inhalational anesthetics, such as isoflurane, has been suggested. The TWIK-related K+ channel-1 (TREK-1) controls several major cellular responses involved in memory formation and is believed to participate in the development of depression, cerebral ischemia and blood-brain barrier dysfunction. However, the specific role of TREK-1 in mediating anesthesia-induced POCD remains unknown. In the current study, we determined that exposure to isoflurane affected memory in middle-aged mice and altered TREK-1 expression. In addition, TREK-1 over-expression exacerbated isoflurane-induced memory impairment, while TREK-1 silence attenuated the impairment. Taken together, our data demonstrate that inhibition of TREK-1 protects mice from cognitive impairment induced by anesthesia and TREK-1 is a potential therapeutic target against memory impairment induced by volatile anesthetics.
Collapse
|
44
|
Miao H, Dong Y, Zhang Y, Zheng H, Shen Y, Crosby G, Culley DJ, Marcantonio ER, Xie Z. Anesthetic Isoflurane or Desflurane Plus Surgery Differently Affects Cognitive Function in Alzheimer's Disease Transgenic Mice. Mol Neurobiol 2017; 55:5623-5638. [PMID: 28986748 DOI: 10.1007/s12035-017-0787-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 09/22/2017] [Indexed: 02/06/2023]
Abstract
Anesthesia/surgery could be associated with cognitive impairment and Alzheimer's disease neuropathogenesis. However, whether surgery under different anesthetics has different effects on cognitive function remains largely unknown. We therefore set out to compare effects of anesthetic isoflurane or desflurane plus surgery on cognitive function and hippocampus levels of synaptic marker (postsynaptic density-95 and synaptophysin) and ATP. Five-month-old AD Transgenic (Tg) (FAD5X) and wild-type male mice received isoflurane or desflurane plus abdominal surgery. We assessed cognitive function in Barnes maze and measured hippocampus levels of postsynaptic density-95, synaptophysin, and ATP in the mice. We determined whether vitamin K2 could mitigate these anesthesia/surgery-induced changes. Isoflurane, but not desflurane, plus surgery increased escape latency and escape distance in Barnes maze probe test and reduced postsynaptic density-95, synaptophysin, and ATP levels as compared to control condition in AD Tg mice. Vitamin K2 attenuated the anesthesia/surgery-induced changes in the AD Tg mice. These findings suggest that isoflurane, but not desflurane, plus surgery might induce cognitive impairment via causing brain energy deficits. Pending confirmative studies in both animals and humans suggest desflurane could be a better choice for AD patients when surgery is needed. Moreover, vitamin K2 could treat cognitive deficiency associated with anesthesia and surgery.
Collapse
Affiliation(s)
- Huihui Miao
- Department of Anesthesia, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, People's Republic of China.,Geriatric Anesthesia Research Unit, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, 149 13th Street, Room 4310, Charlestown, MA, 02129-2060, USA
| | - Yuanlin Dong
- Geriatric Anesthesia Research Unit, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, 149 13th Street, Room 4310, Charlestown, MA, 02129-2060, USA
| | - Yiying Zhang
- Geriatric Anesthesia Research Unit, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, 149 13th Street, Room 4310, Charlestown, MA, 02129-2060, USA
| | - Hui Zheng
- Massachusetts General Hospital Biostatistics Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| | - Yuan Shen
- Department of Psychiatry, Tenth People's Hospital of Tongji University, Shanghai, 200072, People's Republic of China
| | - Gregory Crosby
- Department of Anesthesia, Brigham & Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Deborah J Culley
- Department of Anesthesia, Brigham & Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Edward R Marcantonio
- Divisions of General Medicine and Primary Care and Gerontology, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, 02215, USA
| | - Zhongcong Xie
- Geriatric Anesthesia Research Unit, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, 149 13th Street, Room 4310, Charlestown, MA, 02129-2060, USA.
| |
Collapse
|
45
|
Yang S, Gu C, Mandeville ET, Dong Y, Esposito E, Zhang Y, Yang G, Shen Y, Fu X, Lo EH, Xie Z. Anesthesia and Surgery Impair Blood-Brain Barrier and Cognitive Function in Mice. Front Immunol 2017; 8:902. [PMID: 28848542 PMCID: PMC5552714 DOI: 10.3389/fimmu.2017.00902] [Citation(s) in RCA: 146] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 07/14/2017] [Indexed: 12/14/2022] Open
Abstract
Blood–brain barrier (BBB) dysfunction, e.g., increase in BBB permeability, has been reported to contribute to cognitive impairment. However, the effects of anesthesia and surgery on BBB permeability, the underlying mechanisms, and associated cognitive function remain largely to be determined. Here, we assessed the effects of surgery (laparotomy) under 1.4% isoflurane anesthesia (anesthesia/surgery) for 2 h on BBB permeability, levels of junction proteins and cognitive function in both 9- and 18-month-old wild-type mice and 9-month-old interleukin (IL)-6 knockout mice. BBB permeability was determined by dextran tracer (immunohistochemistry imaging and spectrophotometric quantification), and protein levels were measured by Western blot and cognitive function was assessed by using both Morris water maze and Barnes maze. We found that the anesthesia/surgery increased mouse BBB permeability to 10-kDa dextran, but not to 70-kDa dextran, in an IL-6-dependent and age-associated manner. In addition, the anesthesia/surgery induced an age-associated increase in blood IL-6 level. Cognitive impairment was detected in 18-month-old, but not 9-month-old, mice after the anesthesia/surgery. Finally, the anesthesia/surgery decreased the levels of β-catenin and tight junction protein claudin, occludin and ZO-1, but not adherent junction protein VE-cadherin, E-cadherin, and p120-catenin. These data demonstrate that we have established a system to study the effects of perioperative factors, including anesthesia and surgery, on BBB and cognitive function. The results suggest that the anesthesia/surgery might induce an age-associated BBB dysfunction and cognitive impairment in mice. These findings would promote mechanistic studies of postoperative cognitive impairment, including postoperative delirium.
Collapse
Affiliation(s)
- Siming Yang
- Key Laboratory of Wound Repair and Regeneration of PLA, College of Life Sciences, General Hospital of PLA, Medical College of PLA, Beijing, China.,Geriatric Anesthesia Research Unit, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, United States
| | - Changping Gu
- Geriatric Anesthesia Research Unit, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, United States.,Department of Anesthesiology, Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Emiri T Mandeville
- Neuroprotection Research, Radiology and Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, United States
| | - Yuanlin Dong
- Geriatric Anesthesia Research Unit, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, United States
| | - Elga Esposito
- Neuroprotection Research, Radiology and Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, United States
| | - Yiying Zhang
- Geriatric Anesthesia Research Unit, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, United States
| | - Guang Yang
- Department of Anesthesiology, Perioperative Care and Pain Medicine, New York University School of Medicine, New York, NY, United States
| | - Yuan Shen
- Department of Psychiatry, Tenth People's Hospital of Tongji University, Shanghai, China
| | - Xiaobing Fu
- Key Laboratory of Wound Repair and Regeneration of PLA, College of Life Sciences, General Hospital of PLA, Medical College of PLA, Beijing, China
| | - Eng H Lo
- Neuroprotection Research, Radiology and Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, United States
| | - Zhongcong Xie
- Geriatric Anesthesia Research Unit, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, United States
| |
Collapse
|
46
|
Anesthesia, brain changes, and behavior: Insights from neural systems biology. Prog Neurobiol 2017; 153:121-160. [PMID: 28189740 DOI: 10.1016/j.pneurobio.2017.01.005] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 01/19/2017] [Accepted: 01/22/2017] [Indexed: 02/08/2023]
|
47
|
Shi C, Yi D, Li Z, Zhou Y, Cao Y, Sun Y, Chui D, Guo X. Anti-RAGE antibody attenuates isoflurane-induced cognitive dysfunction in aged rats. Behav Brain Res 2017; 322:167-176. [DOI: 10.1016/j.bbr.2017.01.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 01/05/2017] [Accepted: 01/06/2017] [Indexed: 12/21/2022]
|
48
|
Liang L, Ma Z, Dong M, Ma J, Jiang A, Sun X. Protective effects of salidroside against isoflurane-induced cognitive impairment in rats. Hum Exp Toxicol 2017; 36:1295-1302. [PMID: 28084090 DOI: 10.1177/0960327116688068] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Postoperative cognitive dysfunction, which is associated with a wide range of cognitive functions including working memory, long-term memory, information processing, attention, and cognitive flexibility, is a major clinical issue in geriatric surgical patients. The aim of the current study was to determine the protective role and possible mechanisms of salidroside against isoflurane-induced cognitive impairment. Sprague Dawley rats were randomly assigned to five groups and were treated with or without salidroside before isoflurane exposure. Open-field and fear conditioning tests were conducted to evaluate the cognitive function of the rats. Moreover, the hippocampus tissues were obtained for biochemical analysis. The results showed that the isoflurane anesthesia decreased the freezing time to context significantly at 48 h after the isoflurane exposure in the fear conditioning test. Salidroside could ameliorate isoflurane-induced cognitive dysfunction. Further analysis demonstrated salidroside markedly suppressed the release of tumor necrosis factor-α and interleukin-1β. Moreover, salidroside reversed the decreased activity of choline acetyltransferase, superoxide dismutase, glutathione peroxidase, and content of acetylcholine, as well as the increased activity of acetylcholine esterase and content of malondialdehyde in hippocampal tissue of isoflurane-exposed rats. According to the results, we concluded that that salidroside has a protective effect against isoflurane-induced cognitive dysfunction by inhibiting excessive inflammatory responses, decreasing oxidative stress, and regulating the cholinergic system.
Collapse
Affiliation(s)
- L Liang
- 1 Department of anesthesiology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, China
| | - Z Ma
- 1 Department of anesthesiology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, China
| | - M Dong
- 2 Central Sterile Supply Department, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, China
| | - J Ma
- 1 Department of anesthesiology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, China
| | - A Jiang
- 1 Department of anesthesiology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, China
| | - X Sun
- 3 Yantai Affiliated Hospital of Binzhou Medical University, Yantai, Shandong, China
| |
Collapse
|
49
|
Si Y, Zhang Y, Han L, Chen L, Xu Y, Sun F, Ji M, Yang J, Bao H. Dexmedetomidine Acts via the JAK2/STAT3 Pathway to Attenuate Isoflurane-Induced Neurocognitive Deficits in Senile Mice. PLoS One 2016; 11:e0164763. [PMID: 27768775 PMCID: PMC5074497 DOI: 10.1371/journal.pone.0164763] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 09/30/2016] [Indexed: 12/18/2022] Open
Abstract
Background Previous studies showed that isoflurane-induced cognitive deficits could be alleviated by dexmedetomidine in young animal subjects. In the current study, we examine whether dexmedetomidine could also alleviate isoflurane-induced cognitive deficits in senile animals. Methods Senile male C57BL/6 mice (20 months) received dexmedetomidine (50 μg/kg, i.p.) or vehicle 30 minutes prior to isoflurane exposure (1.3% for 4 h). Cognitive function was assessed 19 days later using a 5-day testing regimen with Morris water maze. Some subjects also received pretreatment with α2 adrenoreceptor antagonist atipamezole (250 μg/kg, i.p.), JAK2 inhibitor AG490 (15 mg/kg i.p.) or STAT3 inhibitor WP1066 (40 mg/kg i.p.) 30 minutes prior to dexmedetomidine. Results Isoflurane exposure increased and reduced the time spent in the quadrant containing the target platform in training sessions. The number of crossings over the original target quadrant was also decreased. Dexmedotomidine attenuated such effects. Effects of dexmedotomidine were reduced by pretreatment with atipamezole, AG490 and WP1066. Increased phosphorylation of JAK2 and STAT3 in the hippocampus induced by isoflurane was augmented by dexmedetomidine. Effects of dexmedetomidine on JAK2/STAT3 phosphorylation were attenuated by atipamezole, AG490 and WP1066. Isoflurane promoted neuronal apoptosis and increased the expression of cleaved caspase-3 and BAD, and reduced Bcl-2 expression. Attenuation of such effects by dexmedotomidine was partially blocked by atipamezole, AG490 and WP1066. Conclusion Dexmedetomidine could protect against isoflurane-induced spatial learning and memory impairment in senile mice by stimulating the JAK2/STAT3 signaling pathway. Such findings encourage the use of dexmedetomidine in geriatric patients receiving isoflurane anesthesia.
Collapse
Affiliation(s)
- Yanna Si
- Department of Anesthesiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yuan Zhang
- Department of Anesthesiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Liu Han
- Department of Anesthesiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Lihai Chen
- Department of Anesthesiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yajie Xu
- Department of Anesthesiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Fan Sun
- Department of Anesthesiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Muhuo Ji
- Department of Anesthesiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, China; Jiangsu Province Key Laboratory of Anesthesiology, College of Anesthesiology, Xuzhou Medical College, Xuzhou, Jiangsu, China
| | - Jianjun Yang
- Department of Anesthesiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, China; Jiangsu Province Key Laboratory of Anesthesiology, College of Anesthesiology, Xuzhou Medical College, Xuzhou, Jiangsu, China
| | - Hongguang Bao
- Department of Anesthesiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
- * E-mail:
| |
Collapse
|
50
|
Lidocaine Did Not Reduce Neuropsychological-Cognitive Decline in Patients 6 Months After Supratentorial Tumor Surgery: A Randomized, Controlled Trial. J Neurosurg Anesthesiol 2016; 28:6-13. [PMID: 26083427 DOI: 10.1097/ana.0000000000000171] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
UNLABELLED : There is equivocal evidence examining cognitive improvement in response to lidocaine during cardiac surgery; however, no study has examined its effect on postoperative neuropsychological-cognitive decline after supratentorial tumor surgery. METHODS Ninety-four patients scheduled for supratentorial craniotomy were enrolled. Patients received either a dose of lidocaine (2%) via an intravenous bolus (1.5 mg/kg) after induction followed by an infusion at a rate of 2 mg/kg/h until the end of surgery (Lidocaine group) or the same volume of normal saline. The neuropsychological-cognitive decline was evaluated using the following tests: the Mini-Mental State Examination, the Information-Memory-Concentration test, the Hamilton Rating Scale for Depression, and the Hamilton Rating Scale for Anxiety. The cerebral oxygen extraction ratio and the difference in lactic acid levels between the bulb of the jugular vein and a peripheral artery were measured. RESULTS Eighty patients completed the neuropsychological tests, with 40 patients in each group. The incidence of postoperative decline at up to 6 months in the Lidocaine group was not significantly different than that in the Normal saline group. When the 2 cognitive tests were examined independent of the other tests, there was no difference between groups at 6 months. The cerebral oxygen extraction ratio was significantly lower in the Lidocaine group after surgery (P<0.05), and the arteriovenous difference of lactic acid was lower in the Lidocaine group (P<0.05). CONCLUSIONS Intraoperative infusion of lidocaine does not significantly decrease the incidence of postoperative neuropsychological-cognitive decline in patients 6 months after supratentorial tumor surgery.
Collapse
|