1
|
Chaklai A, Canaday P, O’Niel A, Cucinotta FA, Sloop A, Gladstone D, Pogue B, Zhang R, Sunnerberg J, Kheirollah A, Thomas CR, Hoopes PJ, Raber J. Effects of UHDR and Conventional Irradiation on Behavioral and Cognitive Performance and the Percentage of Ly6G+ CD45+ Cells in the Hippocampus. Int J Mol Sci 2023; 24:12497. [PMID: 37569869 PMCID: PMC10419899 DOI: 10.3390/ijms241512497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/02/2023] [Accepted: 08/03/2023] [Indexed: 08/13/2023] Open
Abstract
We assessed the effects of conventional and ultra-high dose rate (UHDR) electron irradiation on behavioral and cognitive performance one month following exposure and assessed whether these effects were associated with alterations in the number of immune cells in the hippocampus using flow cytometry. Two-month-old female and male C57BL/6J mice received whole-brain conventional or UHDR irradiation. UHDR mice were irradiated with 9 MeV electrons, delivered by the Linac-based/modified beam control. The mice were irradiated or sham-irradiated at Dartmouth, the following week shipped to OHSU, and behaviorally and cognitively tested between 27 and 41 days after exposure. Conventional- and UHDR-irradiated mice showed impaired novel object recognition. During fear learning, conventional- and UHDR-irradiated mice moved less during the inter-stimulus interval (ISI) and UHDR-irradiated mice also moved less during the baseline period (prior to the first tone). In irradiated mice, reduced activity levels were also seen in the home cage: conventional- and UHDR-irradiated mice moved less during the light period and UHDR-irradiated mice moved less during the dark period. Following behavioral and cognitive testing, infiltrating immune cells in the hippocampus were analyzed by flow cytometry. The percentage of Ly6G+ CD45+ cells in the hippocampus was lower in conventional- and UHDR-irradiated than sham-irradiated mice, suggesting that neutrophils might be particularly sensitive to radiation. The percentage of Ly6G+ CD45+ cells in the hippocampus was positively correlated with the time spent exploring the novel object in the object recognition test. Under the experimental conditions used, cognitive injury was comparable in conventional and UHDR mice. However, the percentage of CD45+ CD11b+ Ly6+ and CD45+ CD11b+ Ly6G- cells in the hippocampus cells in the hippocampus was altered in conventional- but not UHDR-irradiated mice and the reduced percentage of Ly6G+ CD45+ cells in the hippocampus might mediate some of the detrimental radiation-induced cognitive effects.
Collapse
Affiliation(s)
- Ariel Chaklai
- Department of Behavioral Neuroscience, Oregon Health Science University, Portland, OR 97239, USA; (A.C.); (A.O.)
| | - Pamela Canaday
- Knight Flow Cytometry Core OHSU, Portland, OR 97239, USA;
| | - Abigail O’Niel
- Department of Behavioral Neuroscience, Oregon Health Science University, Portland, OR 97239, USA; (A.C.); (A.O.)
| | - Francis A. Cucinotta
- Department of Health Physics and Diagnostic Sciences, University of Nevada, Las Vegas, NV 89154, USA;
| | - Austin Sloop
- Department of Radiation Oncology, Geisel School of Medicine, The Thayer School of Engineering, The Dartmouth Cancer Center, at Dartmouth College and the Dartmouth-Hitchcock Medical Center (DHMC), Hanover, NH 03755, USA; (A.S.); (D.G.); (J.S.); (A.K.); (P.J.H.)
| | - David Gladstone
- Department of Radiation Oncology, Geisel School of Medicine, The Thayer School of Engineering, The Dartmouth Cancer Center, at Dartmouth College and the Dartmouth-Hitchcock Medical Center (DHMC), Hanover, NH 03755, USA; (A.S.); (D.G.); (J.S.); (A.K.); (P.J.H.)
| | - Brian Pogue
- Department of Medical Physics, University of Wisconsin, Madison, WI 53705, USA;
| | - Rongxiao Zhang
- Department of Radiation Medicine, New York Medical College, Westchester Medical Center, Valhalla, NY 10595, USA;
| | - Jacob Sunnerberg
- Department of Radiation Oncology, Geisel School of Medicine, The Thayer School of Engineering, The Dartmouth Cancer Center, at Dartmouth College and the Dartmouth-Hitchcock Medical Center (DHMC), Hanover, NH 03755, USA; (A.S.); (D.G.); (J.S.); (A.K.); (P.J.H.)
| | - Alireza Kheirollah
- Department of Radiation Oncology, Geisel School of Medicine, The Thayer School of Engineering, The Dartmouth Cancer Center, at Dartmouth College and the Dartmouth-Hitchcock Medical Center (DHMC), Hanover, NH 03755, USA; (A.S.); (D.G.); (J.S.); (A.K.); (P.J.H.)
| | - Charles R. Thomas
- Department of Radiation Oncology, Geisel School of Medicine, The Thayer School of Engineering, The Dartmouth Cancer Center, at Dartmouth College and the Dartmouth-Hitchcock Medical Center (DHMC), Hanover, NH 03755, USA; (A.S.); (D.G.); (J.S.); (A.K.); (P.J.H.)
| | - P. Jack Hoopes
- Department of Radiation Oncology, Geisel School of Medicine, The Thayer School of Engineering, The Dartmouth Cancer Center, at Dartmouth College and the Dartmouth-Hitchcock Medical Center (DHMC), Hanover, NH 03755, USA; (A.S.); (D.G.); (J.S.); (A.K.); (P.J.H.)
| | - Jacob Raber
- Department of Behavioral Neuroscience, Oregon Health Science University, Portland, OR 97239, USA; (A.C.); (A.O.)
- Departments of Neurology and Radiation Medicine, Division of Neuroscience ONPRC, Oregon Health & Science University, Portland, OR 97239, USA
| |
Collapse
|
2
|
Mechanisms involved in the neurotoxic and cognitive effects of developmental methamphetamine exposure. ACTA ACUST UNITED AC 2016; 108:131-41. [DOI: 10.1002/bdrc.21130] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
3
|
Phillips TJ, Mootz JRK, Reed C. Identification of Treatment Targets in a Genetic Mouse Model of Voluntary Methamphetamine Drinking. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2016; 126:39-85. [PMID: 27055611 DOI: 10.1016/bs.irn.2016.02.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Methamphetamine has powerful stimulant and euphoric effects that are experienced as rewarding and encourage use. Methamphetamine addiction is associated with debilitating illnesses, destroyed relationships, child neglect, violence, and crime; but after many years of research, broadly effective medications have not been identified. Individual differences that may impact not only risk for developing a methamphetamine use disorder but also affect treatment response have not been fully considered. Human studies have identified candidate genes that may be relevant, but lack of control over drug history, the common use or coabuse of multiple addictive drugs, and restrictions on the types of data that can be collected in humans are barriers to progress. To overcome some of these issues, a genetic animal model comprised of lines of mice selectively bred for high and low voluntary methamphetamine intake was developed to identify risk and protective alleles for methamphetamine consumption, and identify therapeutic targets. The mu opioid receptor gene was supported as a target for genes within a top-ranked transcription factor network associated with level of methamphetamine intake. In addition, mice that consume high levels of methamphetamine were found to possess a nonfunctional form of the trace amine-associated receptor 1 (TAAR1). The Taar1 gene is within a mouse chromosome 10 quantitative trait locus for methamphetamine consumption, and TAAR1 function determines sensitivity to aversive effects of methamphetamine that may curb intake. The genes, gene interaction partners, and protein products identified in this genetic mouse model represent treatment target candidates for methamphetamine addiction.
Collapse
Affiliation(s)
- T J Phillips
- Methamphetamine Abuse Research Center, Oregon Health & Science University, Portland, OR, United States; Veterans Affairs Portland Health Care System, Portland, OR, United States.
| | - J R K Mootz
- Methamphetamine Abuse Research Center, Oregon Health & Science University, Portland, OR, United States
| | - C Reed
- Methamphetamine Abuse Research Center, Oregon Health & Science University, Portland, OR, United States
| |
Collapse
|
4
|
Zuloaga DG, Iancu OD, Weber S, Etzel D, Marzulla T, Stewart B, Allen CN, Raber J. Enhanced functional connectivity involving the ventromedial hypothalamus following methamphetamine exposure. Front Neurosci 2015; 9:326. [PMID: 26441501 PMCID: PMC4585047 DOI: 10.3389/fnins.2015.00326] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 08/31/2015] [Indexed: 11/13/2022] Open
Abstract
Methamphetamine (MA) consumption causes disruption of many biological rhythms including the sleep-wake cycle. This circadian effect is seen shortly following MA exposure and later in life following developmental MA exposure. MA phase shifts, entrains the circadian clock and can also alter the entraining effect of light by currently unknown mechanisms. We analyzed and compared immunoreactivity of the immediate early gene c-Fos, a marker of neuronal activity, to assess neuronal activation 2 h following MA exposure in the light and dark phases. We used network analyses of correlation patterns derived from global brain immunoreactivity patterns of c-Fos, to infer functional connectivity between brain regions. There were five distinct patterns of neuronal activation. In several brain areas, neuronal activation following exposure to MA was stronger in the light than the dark phase, highlighting the importance of considering circadian periods of increased effects of MA in defining experimental conditions and understanding the mechanisms underlying detrimental effects of MA exposure to brain function. Functional connectivity between the ventromedial hypothalamus (VMH) and other brain areas, including the paraventricular nucleus of the hypothalamus and basolateral and medial amygdala, was enhanced following MA exposure, suggesting a role for the VMH in the effects of MA on the brain.
Collapse
Affiliation(s)
- Damian G Zuloaga
- Department of Behavioral Neuroscience, Oregon Health & Science University Portland Portland, OR, USA ; Department of Psychology, University at Albany Albany, NY, USA
| | - Ovidiu D Iancu
- Department of Behavioral Neuroscience, Oregon Health & Science University Portland Portland, OR, USA
| | - Sydney Weber
- Department of Behavioral Neuroscience, Oregon Health & Science University Portland Portland, OR, USA
| | - Desiree Etzel
- Department of Behavioral Neuroscience, Oregon Health & Science University Portland Portland, OR, USA
| | - Tessa Marzulla
- Department of Behavioral Neuroscience, Oregon Health & Science University Portland Portland, OR, USA
| | - Blair Stewart
- Department of Behavioral Neuroscience, Oregon Health & Science University Portland Portland, OR, USA
| | - Charles N Allen
- Department of Behavioral Neuroscience, Oregon Health & Science University Portland Portland, OR, USA ; Oregon Institute of Occupational Health Sciences, Oregon Health & Science University Portland Portland, OR, USA
| | - Jacob Raber
- Department of Behavioral Neuroscience, Oregon Health & Science University Portland Portland, OR, USA ; Department of Neurology, Oregon Health & Science University Portland Portland, OR, USA ; Department of Radiation Medicine, Oregon Health & Science University Portland Portland, OR, USA ; Division of Neuroscience, ONPRC, Oregon Health & Science University Portland Portland, OR, USA
| |
Collapse
|
5
|
Zuloaga DG, Jacobskind JS, Jacosbskind JS, Raber J. Methamphetamine and the hypothalamic-pituitary-adrenal axis. Front Neurosci 2015; 9:178. [PMID: 26074755 PMCID: PMC4444766 DOI: 10.3389/fnins.2015.00178] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 05/03/2015] [Indexed: 01/22/2023] Open
Abstract
Psychostimulants such as methamphetamine (MA) induce significant alterations in the function of the hypothalamic-pituitary-adrenal (HPA) axis. These changes in HPA axis function are associated with altered stress-related behaviors and might contribute to addictive processes such as relapse. In this mini-review we discuss acute and chronic effects of MA (adult and developmental exposure) on the HPA axis, including effects on HPA axis associated genes/proteins, brain regions, and behaviors such as anxiety and depression. A better understanding of the mechanisms through which MA affects the HPA axis may lead to more effective treatment strategies for MA addiction.
Collapse
Affiliation(s)
| | | | | | - Jacob Raber
- Departments of Behavioral Neuroscience, Neurology, and Radiation Medicine, Oregon Health and Science University Portland Portland, OR, USA ; Division of Neuroscience, Oregon National Primate Research Center, Oregon Health and Science University Portland Portland, OR, USA
| |
Collapse
|
6
|
Abstract
Intrauterine methamphetamine exposure adversely affects the neurofunctional profile of exposed children, leading to a variety of higher order cognitive deficits, such as decreased attention, reduced working-memory capability, behavioral dysregulation, and spatial memory impairments (Kiblawi et al. in J Dev Behav Pediatr 34:31-37, 2013; Piper et al. in Pharmacol Biochem Behav 98:432-439 2011; Roussotte et al. in Neuroimage 54:3067-3075, 2011; Twomey et al. in Am J Orthopsychiatry 83:64-72, 2013). In animal models of developmental methamphetamine, both neuroanatomical and behavioral outcomes critically depend on the timing of methamphetamine administration. Methamphetamine exposure during the third trimester human equivalent period of brain development results in well-defined and persistent wayfinding and spatial navigation deficits in rodents (Vorhees et al. in Neurotoxicol Teratol 27:117-134, 2005, Vorhees et al. in Int J Dev Neurosci 26:599-610, 2008; Vorhees et al. in Int J Dev Neurosci 27:289-298, 2009; Williams et al. in Psychopharmacology (Berl) 168:329-338, 2003b), whereas drug delivery during the first and second trimester equivalents produces no such effect (Acuff-Smith et al. in Neurotoxicol Teratol 18:199-215, 1996; Schutova et al. in Physiol Res 58:741-750, 2009a; Slamberova et al. in Naunyn Schmiedebergs Arch Pharmacol 380:109-114, 2009, Slamberova et al. in Physiol Res 63:S547-S558, 2014b). In this review, we examine the impact of developmental methamphetamine on emerging neural circuitry, neurotransmission, receptor changes, and behavioral outcomes in animal models. The review is organized by type of effects and timing of drug exposure (prenatal only, pre- and neonatal, and neonatal only). The findings elucidate functional patterns of interconnected brain structures (e.g., frontal cortex and striatum) and neurotransmitters (e.g., dopamine and serotonin) involved in methamphetamine-induced developmental neurotoxicity.
Collapse
|
7
|
Olsen RH, Allen CN, Derkach VA, Phillips TJ, Belknap JK, Raber J. Impaired memory and reduced sensitivity to the circadian period lengthening effects of methamphetamine in mice selected for high methamphetamine consumption. Behav Brain Res 2013; 256:197-204. [PMID: 23954232 PMCID: PMC3815974 DOI: 10.1016/j.bbr.2013.08.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Revised: 08/02/2013] [Accepted: 08/06/2013] [Indexed: 01/04/2023]
Abstract
Drug abuse runs in families suggesting the involvement of genetic risk factors. Differences in addiction-related neurobiological systems, including learning and memory and circadian rhythms, may exist prior to developing addiction. We characterized the cognitive phenotypes and the free-running circadian period of mouse lines selectively bred for high methamphetamine (MA) drinking (MA high drinking or MAHDR) and low MA drinking (MA low drinking or MALDR). MA-naïve MALDR mice showed spatial memory retention while MAHDR mice did not. MA-naïve MAHDR mice had elevated hippocampal levels of the AMPA receptor subunits GluA2 (old terminology: GluR2), but not GluA1 (old terminology: GluR1). There were no line differences in the free running period (τ) when only water was available. During a 25 mg/L MA solution access period (vs water), there was an increase in τ in MALDR but not MAHDR mice, although MAHDR mice consumed significantly more MA. During a 50 mg/L MA solution access period (vs water), both lines showed an increased τ. There was a positive correlation between MA consumption and τ from baseline in MALDR, but not MAHDR, mice. Thus, a heritable proclivity for elevated MA self-administration may be associated with impairments in hippocampus-dependent memory and reduced sensitivity to effects of MA on lengthening of the circadian period.
Collapse
Affiliation(s)
- Reid H.J. Olsen
- Department of Behavioral Neuroscience, Oregon Health & Science University, 8131 SW Sam Jackson Park Road, Portland, OR 97239, USA
| | - Charles N. Allen
- Department of Behavioral Neuroscience, Oregon Health & Science University, 8131 SW Sam Jackson Park Road, Portland, OR 97239, USA
- Center for Research on Occupational and Environmental Toxicology, Oregon Health & Science University, 8131 SW Sam Jackson Park Road, Portland, OR 97239, USA
| | - Victor A. Derkach
- Vollum Institute, Oregon Health & Science University, 8131 SW Sam Jackson Park Road, Portland, OR 97239, USA
| | - Tamara J. Phillips
- Department of Behavioral Neuroscience, Oregon Health & Science University, 8131 SW Sam Jackson Park Road, Portland, OR 97239, USA
- Portland VA Medical Center, Oregon Health & Science University, 8131 SW Sam Jackson Park Road, Portland, OR 97239, USA
- Methamphetamine Abuse Research Center, Oregon Health & Science University, 8131 SW Sam Jackson Park Road, Portland, OR 97239, USA
| | - John K. Belknap
- Department of Behavioral Neuroscience, Oregon Health & Science University, 8131 SW Sam Jackson Park Road, Portland, OR 97239, USA
- Portland VA Medical Center, Oregon Health & Science University, 8131 SW Sam Jackson Park Road, Portland, OR 97239, USA
- Methamphetamine Abuse Research Center, Oregon Health & Science University, 8131 SW Sam Jackson Park Road, Portland, OR 97239, USA
| | - Jacob Raber
- Department of Behavioral Neuroscience, Oregon Health & Science University, 8131 SW Sam Jackson Park Road, Portland, OR 97239, USA
- Methamphetamine Abuse Research Center, Oregon Health & Science University, 8131 SW Sam Jackson Park Road, Portland, OR 97239, USA
- Department of Neurology, Oregon Health & Science University, 8131 SW Sam Jackson Park Road, Portland, OR 97239, USA
- Division of Neuroscience ONPRC, Oregon Health & Science University, 8131 SW Sam Jackson Park Road, Portland, OR 97239, USA
| |
Collapse
|
8
|
Zuloaga DG, Siegel JA, Acevedo SF, Agam M, Raber J. Developmental methamphetamine exposure results in short- and long-term alterations in hypothalamic-pituitary-adrenal-axis-associated proteins. Dev Neurosci 2013; 35:338-46. [PMID: 23860125 DOI: 10.1159/000351278] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Accepted: 04/11/2013] [Indexed: 11/19/2022] Open
Abstract
Developmental exposure to methamphetamine (MA) causes long-term behavioral and cognitive deficits. One pathway through which MA might induce these deficits is by elevating glucocorticoid levels. Glucocorticoid overexposure during brain development can lead to long-term disruptions in the hypothalamic-pituitary-adrenal (HPA) axis. These disruptions affect the regulation of stress responses and may contribute to behavioral and cognitive deficits reported following developmental MA exposure. Furthermore, alterations in proteins associated with the HPA axis, including vasopressin, oxytocin, and glucocorticoid receptors (GR), are correlated with disruptions in mood and cognition. We therefore hypothesized that early MA exposure will result in short- and long-term alterations in the expression of HPA axis-associated proteins. Male mice were treated with MA (5 mg/kg daily) or saline from postnatal day (P) 11 to P20. At P20 and P90, mice were perfused and their brains processed for vasopressin, oxytocin, and GR immunoreactivity within HPA axis-associated regions. At P20, there was a significant decrease in the number of vasopressin-immunoreactive cells and the area occupied by vasopressin immunoreactivity in the paraventricular nucleus (PVN) of MA-treated mice, but no difference in oxytocin immunoreactivity in the PVN, or GR immunoreactivity in the hippocampus or PVN. In the central nucleus of the amygdala, the area occupied by GR immunoreactivity was decreased by MA. At P90, the number of vasopressin-immunoreactive cells was still decreased, but the area occupied by vasopressin immunoreactivity no longer differed from saline controls. No effects of MA were found on oxytocin or GR immunoreactivity at P90. Thus developmental MA exposure has short- and long-term effects on vasopressin immunoreactivity and short-term effects on GR immunoreactivity.
Collapse
Affiliation(s)
- Damian G Zuloaga
- Department of Behavioral Neuroscience, Oregon Health and Science University Portland, Portland, OR 97239, USA.
| | | | | | | | | |
Collapse
|