1
|
Yarur HE, Zegers J, Vega-Quiroga I, Novoa J, Ciruela F, Andres ME, Gysling K. Functional Interplay of Type-2 Corticotrophin Releasing Factor and Dopamine Receptors in the Basolateral Amygdala-Medial Prefrontal Cortex Circuitry. Int J Neuropsychopharmacol 2020; 24:221-228. [PMID: 33125479 PMCID: PMC7968619 DOI: 10.1093/ijnp/pyaa079] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 10/09/2020] [Accepted: 10/26/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Basolateral amygdala (BLA) excitatory projections to medial prefrontal cortex (PFC) play a key role controlling stress behavior, pain, and fear. Indeed, stressful events block synaptic plasticity at the BLA-PFC circuit. The stress responses involve the action of corticotrophin releasing factor (CRF) through type 1 and type 2 CRF receptors (CRF1 and CRF2). Interestingly, it has been described that dopamine receptor 1 (D1R) and CRF peptide have a modulatory role of BLA-PFC transmission. However, the participation of CRF1 and CRF2 receptors in BLA-PFC synaptic transmission still is unclear. METHODS We used in vivo microdialysis to determine dopamine and glutamate (GLU) extracellular levels in PFC after BLA stimulation. Immunofluorescence anatomical studies in rat PFC synaptosomes devoid of postsynaptic elements were performed to determine the presence of D1R and CRF2 receptors in synaptical nerve endings. RESULTS Here, we provide direct evidence of the opposite role that CRF receptors exert over dopamine extracellular levels in the PFC. We also show that D1R colocalizes with CRF2 receptors in PFC nerve terminals. Intra-PFC infusion of antisauvagine-30, a CRF2 receptor antagonist, increased PFC GLU extracellular levels induced by BLA activation. Interestingly, the increase in GLU release observed in the presence of antisauvagine-30 was significantly reduced by incubation with SCH23390, a D1R antagonist. CONCLUSION PFC CRF2 receptor unmasks D1R effect over glutamatergic transmission of the BLA-PFC circuit. Overall, CRF2 receptor emerges as a new modulator of BLA to PFC glutamatergic transmission, thus playing a potential role in emotional disorders.
Collapse
Affiliation(s)
- H E Yarur
- Department of Cellular and Molecular Biology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - J Zegers
- Department of Cellular and Molecular Biology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - I Vega-Quiroga
- Department of Cellular and Molecular Biology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - J Novoa
- Department of Cellular and Molecular Biology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - F Ciruela
- Unitat de Farmacologia, Departament Patologia i Terapèutica Experimental, Facultat de Medicina, IDIBELL, Universitat de Barcelona, L’Hospitalet de Llobregat, Barcelona, Spain,Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain
| | - M E Andres
- Department of Cellular and Molecular Biology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - K Gysling
- Department of Cellular and Molecular Biology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile,Correspondence: Katia Gysling, PhD, Department of Cellular and Molecular Biology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, 8331150 Santiago, Chile ()
| |
Collapse
|
2
|
Brockway DF, Crowley NA. Turning the 'Tides on Neuropsychiatric Diseases: The Role of Peptides in the Prefrontal Cortex. Front Behav Neurosci 2020; 14:588400. [PMID: 33192369 PMCID: PMC7606924 DOI: 10.3389/fnbeh.2020.588400] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 09/09/2020] [Indexed: 12/15/2022] Open
Abstract
Recent advancements in technology have enabled researchers to probe the brain with the greater region, cell, and receptor specificity. These developments have allowed for a more thorough understanding of how regulation of the neurophysiology within a region is essential for maintaining healthy brain function. Stress has been shown to alter the prefrontal cortex (PFC) functioning, and evidence links functional impairments in PFC brain activity with neuropsychiatric disorders. Moreover, a growing body of literature highlights the importance of neuropeptides in the PFC to modulate neural signaling and to influence behavior. The converging evidence outlined in this review indicates that neuropeptides in the PFC are specifically impacted by stress, and are found to be dysregulated in numerous stress-related neuropsychiatric disorders including substance use disorder, major depressive disorder (MDD), posttraumatic stress disorder, and schizophrenia. This review explores how neuropeptides in the PFC function to regulate the neural activity, and how genetic and environmental factors, such as stress, lead to dysregulation in neuropeptide systems, which may ultimately contribute to the pathology of neuropsychiatric diseases.
Collapse
Affiliation(s)
- Dakota F Brockway
- Neuroscience Curriculum, Pennsylvania State University, University Park, PA, United States
| | - Nicole A Crowley
- Neuroscience Curriculum, Pennsylvania State University, University Park, PA, United States.,The Department of Biology, Pennsylvania State University, University Park, PA, United States
| |
Collapse
|
3
|
Yarur HE, Vega-Quiroga I, González MP, Noches V, Thomases DR, Andrés ME, Ciruela F, Tseng KY, Gysling K. Inhibitory Control of Basolateral Amygdalar Transmission to the Prefrontal Cortex by Local Corticotrophin Type 2 Receptor. Int J Neuropsychopharmacol 2019; 23:108-116. [PMID: 31800046 PMCID: PMC7094000 DOI: 10.1093/ijnp/pyz065] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 11/01/2019] [Accepted: 12/03/2019] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Basolateral amygdalar projections to the prefrontal cortex play a key role in modulating behavioral responses to stress stimuli. Among the different neuromodulators known to impact basolateral amygdalar-prefrontal cortex transmission, the corticotrophin releasing factor (CRF) is of particular interest because of its role in modulating anxiety and stress-associated behaviors. While CRF type 1 receptor (CRFR1) has been involved in prefrontal cortex functioning, the participation of CRF type 2 receptor (CRFR2) in basolateral amygdalar-prefrontal cortex synaptic transmission remains unclear. METHODS Immunofluorescence anatomical studies using rat prefrontal cortex synaptosomes devoid of postsynaptic elements were performed in rats with intra basolateral amygdalar injection of biotinylated dextran amine. In vivo microdialysis and local field potential recordings were used to measure glutamate extracellular levels and changes in long-term potentiation in prefrontal cortex induced by basolateral amygdalar stimulation in the absence or presence of CRF receptor antagonists. RESULTS We found evidence for the presynaptic expression of CRFR2 protein and mRNA in prefrontal cortex synaptic terminals originated from basolateral amygdalar. By means of microdialysis and electrophysiological recordings in combination with an intra-prefrontal cortex infusion of the CRFR2 antagonist antisauvagine-30, we were able to determine that CRFR2 is functionally positioned to limit the strength of basolateral amygdalar transmission to the prefrontal cortex through presynaptic inhibition of glutamate release. CONCLUSIONS Our study shows for the first time to our knowledge that CRFR2 is expressed in basolateral amygdalar afferents projecting to the prefrontal cortex and exerts an inhibitory control of prefrontal cortex responses to basolateral amygdalar inputs. Thus, changes in CRFR2 signaling are likely to disrupt the functional connectivity of the basolateral amygdalar-prefrontal cortex pathway and associated behavioral responses.
Collapse
Affiliation(s)
- Hector E Yarur
- Department of Cellular and Molecular Biology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Ignacio Vega-Quiroga
- Department of Cellular and Molecular Biology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Marcela P González
- Department of Cellular and Molecular Biology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Verónica Noches
- Department of Cellular and Molecular Biology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Daniel R Thomases
- Department of Anatomy and Cell Biology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - María E Andrés
- Department of Cellular and Molecular Biology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Francisco Ciruela
- Unitat de Farmacologia, Departament Patologia i Terapèutica Experimental, Facultat de Medicina, IDIBELL, Universitat de Barcelona, L’Hospitalet de Llobregat, Barcelona, Spain
| | - Kuei Y Tseng
- Department of Anatomy and Cell Biology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois,Correspondence: Katia Gysling, PhD, Department of Cellular and Molecular Biology Faculty of Biological Sciences Pontificia Universidad Católica de Chile, 8331150 Santiago, Chile (); Kuei Y. Tseng, PhD, Department of Anatomy and Cell Biology, College of Medicine, University of Illinois at Chicago, Chicago, IL, 60612, USA ()
| | - Katia Gysling
- Department of Cellular and Molecular Biology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile,Correspondence: Katia Gysling, PhD, Department of Cellular and Molecular Biology Faculty of Biological Sciences Pontificia Universidad Católica de Chile, 8331150 Santiago, Chile (); Kuei Y. Tseng, PhD, Department of Anatomy and Cell Biology, College of Medicine, University of Illinois at Chicago, Chicago, IL, 60612, USA ()
| |
Collapse
|
4
|
Corticotropin Releasing Factor Type 1 and 2 Receptor Signaling in the Medial Prefrontal Cortex Modulates Binge-Like Ethanol Consumption in C57BL/6J Mice. Brain Sci 2019; 9:brainsci9070171. [PMID: 31330967 PMCID: PMC6680756 DOI: 10.3390/brainsci9070171] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 07/15/2019] [Accepted: 07/17/2019] [Indexed: 12/13/2022] Open
Abstract
Corticotropin releasing factor (CRF) signaling via limbic CRF1 and 2 receptors (CRF1R and CRF2R, respectively) is known to modulate binge-like ethanol consumption in rodents. Though CRF signaling in the medial prefrontal cortex (mPFC) has been shown to modulate anxiety-like behavior and ethanol seeking, its role in binge ethanol intake is unknown. Here, we used “drinking-in-the-dark” (DID) procedures in male and female C57BL/6J mice to address this gap in the literature. First, the role of CRF1R and CRF2R signaling in the mPFC on ethanol consumption was evaluated through site-directed pharmacology. Next, we evaluated if CRF1R antagonist reduction of binge-intake was modulated in part through CRF2R activation by co-administration of a CRF1R and CRF2R antagonist. Intra-mPFC inhibition of CRF1R and activation of CRF2R resulted in decreased binge-like ethanol intake. Further, the inhibitory effect of the CRF1R antagonist was attenuated by co-administration of a CRF2R antagonist. We provide novel evidence that (1) inhibition of CRF1R or activation of CRF2R in the mPFC reduces binge-like ethanol intake; and (2) the effect of CRF1R antagonism may be mediated via enhanced CRF2R activation. These observations provide the first direct behavioral pharmacological evidence that CRF receptor activity in the mPFC modulates binge-like ethanol consumption.
Collapse
|
5
|
Goode TD, Maren S. Common neurocircuitry mediating drug and fear relapse in preclinical models. Psychopharmacology (Berl) 2019; 236:415-437. [PMID: 30255379 PMCID: PMC6373193 DOI: 10.1007/s00213-018-5024-3] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 09/03/2018] [Indexed: 12/21/2022]
Abstract
BACKGROUND Comorbidity of anxiety disorders, stressor- and trauma-related disorders, and substance use disorders is extremely common. Moreover, therapies that reduce pathological fear and anxiety on the one hand, and drug-seeking on the other, often prove short-lived and are susceptible to relapse. Considerable advances have been made in the study of the neurobiology of both aversive and appetitive extinction, and this work reveals shared neural circuits that contribute to both the suppression and relapse of conditioned responses associated with trauma or drug use. OBJECTIVES The goal of this review is to identify common neural circuits and mechanisms underlying relapse across domains of addiction biology and aversive learning in preclinical animal models. We focus primarily on neural circuits engaged during the expression of relapse. KEY FINDINGS After extinction, brain circuits involving the medial prefrontal cortex and hippocampus come to regulate the expression of conditioned responses by the amygdala, bed nucleus of the stria terminalis, and nucleus accumbens. During relapse, hippocampal projections to the prefrontal cortex inhibit the retrieval of extinction memories resulting in a loss of inhibitory control over fear- and drug-associated conditional responding. CONCLUSIONS The overlapping brain systems for both fear and drug memories may explain the co-occurrence of fear and drug-seeking behaviors.
Collapse
Affiliation(s)
- Travis D Goode
- Department of Psychological and Brain Sciences and Institute for Neuroscience, Texas A&M University, 301 Old Main Dr., College Station, TX, 77843-3474, USA
| | - Stephen Maren
- Department of Psychological and Brain Sciences and Institute for Neuroscience, Texas A&M University, 301 Old Main Dr., College Station, TX, 77843-3474, USA.
| |
Collapse
|
6
|
Yanovich C, Kirby ML, Michaelevski I, Yadid G, Pinhasov A. Social rank-associated stress vulnerability predisposes individuals to cocaine attraction. Sci Rep 2018; 8:1759. [PMID: 29379100 PMCID: PMC5789078 DOI: 10.1038/s41598-018-19816-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 01/03/2018] [Indexed: 12/15/2022] Open
Abstract
Studies of personality have suggested that dissimilarities in ability to cope with stressful situations results in differing tendency to develop addictive behaviors. The present study used selectively bred stress-resilient, socially-dominant (Dom) and stress-vulnerable, socially-submissive (Sub) mice to investigate the interaction between environmental stress and inbred predisposition to develop addictive behavior to cocaine. In a Conditioned Place Preference (CPP) paradigm using cocaine, Sub mice displayed an aversion to drug, whereas Dom mice displayed drug attraction. Following a 4-week regimen of Chronic Mild Stress (CMS), Sub mice in CPP displayed a marked increase (>400%) in cocaine attraction, whereas Dom mice did not differ in attraction from their non-stressed state. Examination of hippocampal gene expression revealed in Sub mice, exposure to external stimuli, stress or cocaine, increased CRH expression (>100%), which was evoked in Dom mice only by cocaine exposure. Further, stress-induced decreases in DRD1 (>60%) and DRD2 (>50%) expression in Sub mice differed markedly from a complete lack of change in Dom mice. From our findings, we propose that social stratification dictates vulnerability to stress-induced attraction that may lead to addiction via differential regulation of hippocampal response to dopaminergic input, which in turn may influence differing tendency to develop addictive behaviors.
Collapse
Affiliation(s)
- Chen Yanovich
- Department of Molecular Biology, Ariel University, Ariel, Israel
| | - Michael L Kirby
- Department of Molecular Biology, Ariel University, Ariel, Israel
| | | | - Gal Yadid
- Leslie and Susan Gonda (Goldschmied) Multidisciplinary Brain Research Center and the Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel.
| | - Albert Pinhasov
- Department of Molecular Biology, Ariel University, Ariel, Israel.
| |
Collapse
|
7
|
Bernardi RE, Broccoli L, Hirth N, Justice NJ, Deussing JM, Hansson AC, Spanagel R. Dissociable Role of Corticotropin Releasing Hormone Receptor Subtype 1 on Dopaminergic and D1 Dopaminoceptive Neurons in Cocaine Seeking Behavior. Front Behav Neurosci 2017; 11:221. [PMID: 29180955 PMCID: PMC5693884 DOI: 10.3389/fnbeh.2017.00221] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 10/24/2017] [Indexed: 11/18/2022] Open
Abstract
The ability of many drugs of abuse, including cocaine, to mediate reinforcement and drug-seeking behaviors is in part mediated by the corticotropin-releasing hormone (CRH) system, in which CRH exerts its effects partly via the CRH receptor subtype 1 (CRHR1) in extra-hypothalamic areas. In fact, CRHR1 expressed in regions of the mesolimbic dopamine (DA) system have been demonstrated to modify cocaine-induced DA release and alter cocaine-mediated behaviors. Here we examined the role of neuronal selectivity of CRHR1 within the mesolimbic system on cocaine-induced behaviors. First we used a transgenic mouse line expressing GFP under the control of the Crhr1 promoter for double fluorescence immunohistochemistry to demonstrate the cellular location of CRHR1 in both dopaminergic and D1 dopaminoceptive neurons. We then studied cocaine sensitization, self-administration, and reinstatement in inducible CRHR1 knockouts using the CreERT2/loxP in either dopamine transporter (DAT)-containing neurons (DAT-Crhr1) or dopamine receptor 1 (D1)-containing neurons (D1-Crhr1). For sensitization testing, mice received five daily injections of cocaine (15 mg/kg IP). For self-administration, mice received eight daily 2 h cocaine (0.5 mg/kg per infusion) self-administration sessions followed by extinction and reinstatement testing. There were no differences in the acute or sensitized locomotor response to cocaine in DAT-Crhr1 or D1-Crhr1 mice and their respective controls. Furthermore, both DAT-Crhr1 and D1-Crhr1 mice reliably self-administered cocaine at the level of controls. However, DAT-Crhr1 mice demonstrated a significant increase in cue-induced reinstatement relative to controls, whereas D1-Crhr1 mice demonstrated a significant decrease in cue-induced reinstatement relative to controls. These data demonstrate the involvement of CRHR1 in cue-induced reinstatement following cocaine self-administration, and implicate a bi-directional role of CRHR1 for cocaine craving.
Collapse
Affiliation(s)
- Rick E Bernardi
- Institute of Psychopharmacology, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Laura Broccoli
- Institute of Psychopharmacology, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Natalie Hirth
- Institute of Psychopharmacology, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Nicholas J Justice
- Institute of Molecular Medicine, University of Texas, Houston, TX, United States
| | - Jan M Deussing
- Molecular Neurogenetics, Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| | - Anita C Hansson
- Institute of Psychopharmacology, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Rainer Spanagel
- Institute of Psychopharmacology, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| |
Collapse
|
8
|
Fuenzalida J, Galaz P, Araya KA, Slater PG, Blanco EH, Campusano JM, Ciruela F, Gysling K. Dopamine D1 and corticotrophin-releasing hormone type-2α receptors assemble into functionally interacting complexes in living cells. Br J Pharmacol 2014; 171:5650-64. [PMID: 25073922 PMCID: PMC4290708 DOI: 10.1111/bph.12868] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Revised: 07/05/2014] [Accepted: 07/23/2014] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND AND PURPOSE Dopamine and corticotrophin-releasing hormone (CRH; also known as corticotrophin-releasing factor) are key neurotransmitters in the interaction between stress and addiction. Repeated treatment with cocaine potentiates glutamatergic transmission in the rat basolateral amygdala/cortex pathway through a synergistic action of D1 -like dopamine receptors and CRH type-2α receptors (CRF2 α receptors). We hypothesized that this observed synergism could be instrumented by heteromers containing the dopamine D1 receptor and CRF2 α receptor. EXPERIMENTAL APPROACH D1 /CRF2 α receptor heteromerization was demonstrated in HEK293T cells using co-immunoprecipitation, BRET and FRET assays, and by using the heteromer mobilization strategy. The ability of D1 receptors to signal through calcium, when singly expressed or co-expressed with CRF2 α receptors, was evaluated by the calcium mobilization assay. KEY RESULTS D1 /CRF2 α receptor heteromers were observed in HEK293T cells. When singly expressed, D1 receptors were mostly located at the cell surface whereas CRF2 α receptors accumulated intracellularly. Interestingly, co-expression of both receptors promoted D1 receptor intracellular and CRF2 α receptor cell surface targeting. The heteromerization of D1 /CRF2 α receptors maintained the signalling through cAMP of both receptors but switched D1 receptor signalling properties, as the heteromeric D1 receptor was able to mobilize intracellular calcium upon stimulation with a D1 receptor agonist. CONCLUSIONS AND IMPLICATIONS D1 and CRF2 α receptors are capable of heterodimerization in living cells. D1 /CRF2 α receptor heteromerization might account, at least in part, for the complex physiological interactions established between dopamine and CRH in normal and pathological conditions such as addiction, representing a new potential pharmacological target.
Collapse
Affiliation(s)
- J Fuenzalida
- Millennium Nucleus in Stress and Addiction, Department of Cellular and Molecular Biology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | | | | | | | | | | | | | | |
Collapse
|