1
|
Zhang YF, Wu J, Wang Y, Johnson NL, Bhattarai JP, Li G, Wang W, Guevara C, Shoenhard H, Fuccillo MV, Wesson DW, Ma M. Ventral striatal islands of Calleja neurons bidirectionally mediate depression-like behaviors in mice. Nat Commun 2023; 14:6887. [PMID: 37898623 PMCID: PMC10613228 DOI: 10.1038/s41467-023-42662-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 10/17/2023] [Indexed: 10/30/2023] Open
Abstract
The ventral striatum is a reward center implicated in the pathophysiology of depression. It contains islands of Calleja, clusters of dopamine D3 receptor-expressing granule cells, predominantly in the olfactory tubercle (OT). These OT D3 neurons regulate self-grooming, a repetitive behavior manifested in affective disorders. Here we show that chronic restraint stress (CRS) induces robust depression-like behaviors in mice and decreases excitability of OT D3 neurons. Ablation or inhibition of these neurons leads to depression-like behaviors, whereas their activation ameliorates CRS-induced depression-like behaviors. Moreover, activation of OT D3 neurons has a rewarding effect, which diminishes when grooming is blocked. Finally, we propose a model that explains how OT D3 neurons may influence dopamine release via synaptic connections with OT spiny projection neurons (SPNs) that project to midbrain dopamine neurons. Our study reveals a crucial role of OT D3 neurons in bidirectionally mediating depression-like behaviors, suggesting a potential therapeutic target.
Collapse
Affiliation(s)
- Yun-Feng Zhang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, 100101, Beijing, China.
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, 100101, Beijing, China.
- Department of Neuroscience, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA.
| | - Jialiang Wu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, 100101, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, 100101, Beijing, China
| | - Yingqi Wang
- Department of Neuroscience, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Natalie L Johnson
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL, 32610, USA
| | - Janardhan P Bhattarai
- Department of Neuroscience, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Guanqing Li
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, 100101, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, 100101, Beijing, China
- College of Life Sciences, Hebei University, Baoding, 071002, Hebei, China
| | - Wenqiang Wang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, 100101, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, 100101, Beijing, China
- College of Life Sciences, Hebei University, Baoding, 071002, Hebei, China
| | - Camilo Guevara
- Department of Neuroscience, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Hannah Shoenhard
- Department of Neuroscience, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Marc V Fuccillo
- Department of Neuroscience, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Daniel W Wesson
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL, 32610, USA
| | - Minghong Ma
- Department of Neuroscience, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA.
| |
Collapse
|
2
|
Gutierrez-Castellanos N, Husain BFA, Dias IC, Lima SQ. Neural and behavioral plasticity across the female reproductive cycle. Trends Endocrinol Metab 2022; 33:769-785. [PMID: 36253276 DOI: 10.1016/j.tem.2022.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 09/09/2022] [Accepted: 09/22/2022] [Indexed: 11/05/2022]
Abstract
Sex is fundamental for the evolution and survival of most species. However, sex can also pose danger, because it increases the risk of predation and disease transmission, among others. Thus, in many species, cyclic fluctuations in the concentration of sex hormones coordinate sexual receptivity and attractiveness with female reproductive capacity, promoting copulation when fertilization is possible and preventing it otherwise. In recent decades, numerous studies have reported a wide variety of sex hormone-dependent plastic rearrangements across the entire brain, including areas relevant for female sexual behavior. By contrast, how sex hormone-induced plasticity alters the computations performed by such circuits, such that collectively they produce the appropriate periodic switches in female behavior, is mostly unknown. In this review, we highlight the myriad sex hormone-induced neuronal changes known so far, the full repertoire of behavioral changes across the reproductive cycle, and the few examples where the relationship between sex hormone-dependent plasticity, neural activity, and behavior has been established. We also discuss current challenges to causally link the actions of sex hormones to the modification of specific cellular pathways and behavior, focusing on rodents as a model system while drawing a comparison between rodents and humans wherever possible.
Collapse
Affiliation(s)
| | - Basma F A Husain
- Champalimaud Research, Champalimaud Foundation, Avenida Brasília, 1400-038 Lisbon, Portugal
| | - Inês C Dias
- Champalimaud Research, Champalimaud Foundation, Avenida Brasília, 1400-038 Lisbon, Portugal
| | - Susana Q Lima
- Champalimaud Research, Champalimaud Foundation, Avenida Brasília, 1400-038 Lisbon, Portugal.
| |
Collapse
|
3
|
Navarro-Moreno C, Barneo-Muñoz M, Ibáñez-Gual MV, Lanuza E, Agustín-Pavón C, Sánchez-Catalán MJ, Martínez-García F. Becoming a mother shifts the activity of the social and motivation brain networks in mice. iScience 2022; 25:104525. [PMID: 35754727 PMCID: PMC9218376 DOI: 10.1016/j.isci.2022.104525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 04/13/2022] [Accepted: 05/30/2022] [Indexed: 11/13/2022] Open
Abstract
During pregnancy hormones increase motivated pup-directed behaviors. We here analyze hormone-induced changes in brain activity, by comparing cFos-immunoreactivity in the sociosexual (SBN) and motivation brain networks (including medial preoptic area, MPO) of virgin versus late-pregnant pup-naïve female mice exposed to pups or buttons (control). Pups activate more the SBN than buttons in both late-pregnant and virgin females. By contrast, pregnancy increases pup-elicited activity in the motivation circuitry (e.g. accumbens core) but reduces button-induced activity and, consequently, button investigation. Principal components analysis supports the identity of the social and motivation brain circuits, placing the periaqueductal gray between both systems. Linear discriminant analysis of cFos-immunoreactivity in the socio-motivational brain network predicts the kind of female and stimulus better than the activity of the MPO alone; this suggests that the neuroendocrinological basis of social (e.g. maternal) behaviors conforms to a neural network model, rather than to distinct hierarchical linear pathways for different behaviors. Pups activate the sociosexual brain network of females more than nonsocial objects Pregnancy boosts motivation for pups and reduces incentive salience of buttons During pregnancy, specific circuits govern decision of caring or attacking pups The socio-motivational brain works as a network rather than a labelled-line circuit
Collapse
Affiliation(s)
- Cinta Navarro-Moreno
- Joint Research Unit on Functional Neuroanatomy (NeuroFun) - UJI. Predepartamental Unit of Medicine, Faculty of Health Sciences, Universitat Jaume I de Castelló. Campus Riu Sec. Av. Vicente Sos Baynat s/n, Castelló de la Plana 12071, Spain
| | - Manuela Barneo-Muñoz
- Joint Research Unit on Functional Neuroanatomy (NeuroFun) - UJI. Predepartamental Unit of Medicine, Faculty of Health Sciences, Universitat Jaume I de Castelló. Campus Riu Sec. Av. Vicente Sos Baynat s/n, Castelló de la Plana 12071, Spain
| | - María Victoria Ibáñez-Gual
- Department of Mathematics, IMAC, School of Technology and Experimental Sciences (ESTCE), Universitat Jaume I de Castelló. Campus Riu Sec. Av. Vicente Sos Baynat s/n, Castelló de la Plana 12071, Spain
| | - Enrique Lanuza
- Joint Research Unit on Functional Neuroanatomy (NeuroFun) - UV. Department of Cell and Functional Biology and Physical Anthropology, Faculty of Biology, Universitat de València. C. Doctor Moliner 50, Burjassot 46100, Spain
| | - Carmen Agustín-Pavón
- Joint Research Unit on Functional Neuroanatomy (NeuroFun) - UV. Department of Cell and Functional Biology and Physical Anthropology, Faculty of Biology, Universitat de València. C. Doctor Moliner 50, Burjassot 46100, Spain
| | - María José Sánchez-Catalán
- Joint Research Unit on Functional Neuroanatomy (NeuroFun) - UJI. Predepartamental Unit of Medicine, Faculty of Health Sciences, Universitat Jaume I de Castelló. Campus Riu Sec. Av. Vicente Sos Baynat s/n, Castelló de la Plana 12071, Spain
| | - Fernando Martínez-García
- Joint Research Unit on Functional Neuroanatomy (NeuroFun) - UJI. Predepartamental Unit of Medicine, Faculty of Health Sciences, Universitat Jaume I de Castelló. Campus Riu Sec. Av. Vicente Sos Baynat s/n, Castelló de la Plana 12071, Spain
| |
Collapse
|
4
|
Wright KN, Johnson NL, Dossat AM, Wilson JT, Wesson DW. Reducing local synthesis of estrogen in the tubular striatum promotes attraction to same-sex odors in female mice. Horm Behav 2022; 140:105122. [PMID: 35101702 DOI: 10.1016/j.yhbeh.2022.105122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 01/14/2022] [Accepted: 01/19/2022] [Indexed: 11/17/2022]
Abstract
Brain-derived 17β-estradiol (E2) confers rapid effects on neural activity. The tubular striatum (TuS, also called the olfactory tubercle) is both capable of local E2 synthesis due to its abundant expression of aromatase and is a critical locus for odor-guided motivated behavior and odor hedonics. TuS neurons also contain mRNA for estrogen receptors α, β, and the G protein-coupled estrogen receptor. We demonstrate here that mRNA for estrogen receptors appears to be expressed upon TuS dopamine 1 receptor-expressing neurons, suggesting that E2 may play a neuromodulatory role in circuits which are important for motivated behavior. Therefore, we reasoned that E2 in the TuS may influence attraction to urinary odors which are highly attractive. Using whole-body plethysmography, we examined odor-evoked high-frequency sniffing as a measure of odor attaction. Bilateral infusion of the aromatase inhibitor letrozole into the TuS of gonadectomized female adult mice induced a resistance to habituation over successive trials in their investigatory sniffing for female mouse urinary odors, indicative of an enhanced attraction. All males displayed resistance to habituation for female urinary odors, indicative of enhanced attraction that is independent from E2 manipulation. Letrozole's effects were not due to group differences in basal respiration, nor changes in the ability to detect or discriminate between odors (both monomolecular odorants and urinary odors). Therefore, de novo E2 synthesis in the TuS impacts females' but not males' attraction to female urinary odors, suggesting a sex-specific influence of E2 in odor hedonics.
Collapse
Affiliation(s)
- Katherine N Wright
- University of Florida, Department of Pharmacology & Therapeutics, Center for Smell and Taste, Center for Addiction Research and Education, 1200 Newell Dr., Gainesville, FL 32610, USA.
| | - Natalie L Johnson
- University of Florida, Department of Pharmacology & Therapeutics, Center for Smell and Taste, Center for Addiction Research and Education, 1200 Newell Dr., Gainesville, FL 32610, USA
| | - Amanda M Dossat
- University of Florida, Department of Pharmacology & Therapeutics, Center for Smell and Taste, Center for Addiction Research and Education, 1200 Newell Dr., Gainesville, FL 32610, USA
| | - Jamie T Wilson
- University of Florida, Department of Pharmacology & Therapeutics, Center for Smell and Taste, Center for Addiction Research and Education, 1200 Newell Dr., Gainesville, FL 32610, USA
| | - Daniel W Wesson
- University of Florida, Department of Pharmacology & Therapeutics, Center for Smell and Taste, Center for Addiction Research and Education, 1200 Newell Dr., Gainesville, FL 32610, USA
| |
Collapse
|
5
|
Neural and Hormonal Basis of Opposite-Sex Preference by Chemosensory Signals. Int J Mol Sci 2021; 22:ijms22158311. [PMID: 34361077 PMCID: PMC8347621 DOI: 10.3390/ijms22158311] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 07/28/2021] [Accepted: 07/29/2021] [Indexed: 12/13/2022] Open
Abstract
In mammalian reproduction, sexually active males seek female conspecifics, while estrous females try to approach males. This sex-specific response tendency is called sexual preference. In small rodents, sexual preference cues are mainly chemosensory signals, including pheromones. In this article, we review the physiological mechanisms involved in sexual preference for opposite-sex chemosensory signals in well-studied laboratory rodents, mice, rats, and hamsters of both sexes, especially an overview of peripheral sensory receptors, and hormonal and central regulation. In the hormonal regulation section, we discuss potential rodent brain bisexuality, as it includes neural substrates controlling both masculine and feminine sexual preferences, i.e., masculine preference for female odors and the opposite. In the central regulation section, we show the substantial circuit regulating sexual preference and also the influence of sexual experience that innate attractants activate in the brain reward system to establish the learned attractant. Finally, we review the regulation of sexual preference by neuropeptides, oxytocin, vasopressin, and kisspeptin. Through this review, we clarified the contradictions and deficiencies in our current knowledge on the neuroendocrine regulation of sexual preference and sought to present problems requiring further study.
Collapse
|
6
|
Midroit M, Chalençon L, Renier N, Milton A, Thevenet M, Sacquet J, Breton M, Forest J, Noury N, Richard M, Raineteau O, Ferdenzi C, Fournel A, Wesson DW, Bensafi M, Didier A, Mandairon N. Neural processing of the reward value of pleasant odorants. Curr Biol 2021; 31:1592-1605.e9. [PMID: 33607032 DOI: 10.1016/j.cub.2021.01.066] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 01/07/2021] [Accepted: 01/19/2021] [Indexed: 02/07/2023]
Abstract
Pleasant odorants are represented in the posterior olfactory bulb (pOB) in mice. How does this hedonic information generate odor-motivated behaviors? Using optogenetics, we report here that stimulating the representation of pleasant odorants in a sensory structure, the pOB, can be rewarding, self-motivating, and is accompanied by ventral tegmental area activation. To explore the underlying neural circuitry downstream of the olfactory bulb (OB), we use 3D high-resolution imaging and optogenetics and determine that the pOB preferentially projects to the olfactory tubercle, whose increased activity is related to odorant attraction. We further show that attractive odorants act as reinforcers in dopamine-dependent place preference learning. Finally, we extend those findings to humans, who exhibit place preference learning and an increase BOLD signal in the olfactory tubercle in response to attractive odorants. Thus, strong and persistent attraction induced by some odorants is due to a direct gateway from the pOB to the reward system.
Collapse
Affiliation(s)
- Maëllie Midroit
- CNRS, UMR 5292, INSERM, U1028, Lyon Neuroscience Research Center, Neuroplasticity and Neuropathology of Olfactory Perception Team, Lyon 69000, France; University Lyon, Lyon, 69000, France; University Lyon 1, Villeurbanne 69000, France
| | - Laura Chalençon
- CNRS, UMR 5292, INSERM, U1028, Lyon Neuroscience Research Center, Neuroplasticity and Neuropathology of Olfactory Perception Team, Lyon 69000, France; University Lyon, Lyon, 69000, France; University Lyon 1, Villeurbanne 69000, France
| | - Nicolas Renier
- Sorbonne Universités, Paris Brain Institute, ICM, Inserm, CNRS, Paris, France
| | - Adrianna Milton
- Department of Neurosciences, Case Western Reserve University, 2109 Adelbert Road, Cleveland, OH 44106, USA
| | - Marc Thevenet
- CNRS, UMR 5292, INSERM, U1028, Lyon Neuroscience Research Center, Neuroplasticity and Neuropathology of Olfactory Perception Team, Lyon 69000, France; University Lyon, Lyon, 69000, France; University Lyon 1, Villeurbanne 69000, France
| | - Joëlle Sacquet
- CNRS, UMR 5292, INSERM, U1028, Lyon Neuroscience Research Center, Neuroplasticity and Neuropathology of Olfactory Perception Team, Lyon 69000, France; University Lyon, Lyon, 69000, France; University Lyon 1, Villeurbanne 69000, France
| | - Marine Breton
- CNRS, UMR 5292, INSERM, U1028, Lyon Neuroscience Research Center, Neuroplasticity and Neuropathology of Olfactory Perception Team, Lyon 69000, France; University Lyon, Lyon, 69000, France; University Lyon 1, Villeurbanne 69000, France
| | - Jérémy Forest
- CNRS, UMR 5292, INSERM, U1028, Lyon Neuroscience Research Center, Neuroplasticity and Neuropathology of Olfactory Perception Team, Lyon 69000, France; University Lyon, Lyon, 69000, France; University Lyon 1, Villeurbanne 69000, France
| | - Norbert Noury
- CNRS, UMR5270, Institute Nanotechnology Lyon, Biomedical Sensors Group, University of Lyon 1, Villeurbanne 69621, France
| | - Marion Richard
- CNRS, UMR 5292, INSERM, U1028, Lyon Neuroscience Research Center, Neuroplasticity and Neuropathology of Olfactory Perception Team, Lyon 69000, France; University Lyon, Lyon, 69000, France; University Lyon 1, Villeurbanne 69000, France
| | - Olivier Raineteau
- University Lyon, Université Claude Bernard Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, 69500 Bron, France
| | - Camille Ferdenzi
- CNRS, UMR 5292, INSERM, U1028, Lyon Neuroscience Research Center, Neuroplasticity and Neuropathology of Olfactory Perception Team, Lyon 69000, France; University Lyon, Lyon, 69000, France; University Lyon 1, Villeurbanne 69000, France
| | - Arnaud Fournel
- CNRS, UMR 5292, INSERM, U1028, Lyon Neuroscience Research Center, Neuroplasticity and Neuropathology of Olfactory Perception Team, Lyon 69000, France; University Lyon, Lyon, 69000, France; University Lyon 1, Villeurbanne 69000, France
| | - Daniel W Wesson
- Department of Pharmacology & Therapeutics, University of Florida, 1200 Newell Drive, Gainesville, FL 32610, USA
| | - Moustafa Bensafi
- CNRS, UMR 5292, INSERM, U1028, Lyon Neuroscience Research Center, Neuroplasticity and Neuropathology of Olfactory Perception Team, Lyon 69000, France; University Lyon, Lyon, 69000, France; University Lyon 1, Villeurbanne 69000, France
| | - Anne Didier
- CNRS, UMR 5292, INSERM, U1028, Lyon Neuroscience Research Center, Neuroplasticity and Neuropathology of Olfactory Perception Team, Lyon 69000, France; University Lyon, Lyon, 69000, France; University Lyon 1, Villeurbanne 69000, France
| | - Nathalie Mandairon
- CNRS, UMR 5292, INSERM, U1028, Lyon Neuroscience Research Center, Neuroplasticity and Neuropathology of Olfactory Perception Team, Lyon 69000, France; University Lyon, Lyon, 69000, France; University Lyon 1, Villeurbanne 69000, France.
| |
Collapse
|
7
|
Wei D, Talwar V, Lin D. Neural circuits of social behaviors: Innate yet flexible. Neuron 2021; 109:1600-1620. [PMID: 33705708 DOI: 10.1016/j.neuron.2021.02.012] [Citation(s) in RCA: 88] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 12/31/2020] [Accepted: 02/09/2021] [Indexed: 12/16/2022]
Abstract
Social behaviors, such as mating, fighting, and parenting, are fundamental for survival of any vertebrate species. All members of a species express social behaviors in a stereotypical and species-specific way without training because of developmentally hardwired neural circuits dedicated to these behaviors. Despite being innate, social behaviors are flexible. The readiness to interact with a social target or engage in specific social acts can vary widely based on reproductive state, social experience, and many other internal and external factors. Such high flexibility gives vertebrates the ability to release the relevant behavior at the right moment and toward the right target. This maximizes reproductive success while minimizing the cost and risk associated with behavioral expression. Decades of research have revealed the basic neural circuits underlying each innate social behavior. The neural mechanisms that support behavioral plasticity have also started to emerge. Here we provide an overview of these social behaviors and their underlying neural circuits and then discuss in detail recent findings regarding the neural processes that support the flexibility of innate social behaviors.
Collapse
Affiliation(s)
- Dongyu Wei
- Neuroscience Institute, New York University School of Medicine, New York, NY, USA
| | - Vaishali Talwar
- Neuroscience Institute, New York University School of Medicine, New York, NY, USA
| | - Dayu Lin
- Neuroscience Institute, New York University School of Medicine, New York, NY, USA; Department of Psychiatry, New York University School of Medicine, New York, NY, USA; Center for Neural Science, New York University, New York, NY, USA.
| |
Collapse
|
8
|
The Tubular Striatum. J Neurosci 2021; 40:7379-7386. [PMID: 32968026 DOI: 10.1523/jneurosci.1109-20.2020] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 08/10/2020] [Accepted: 08/10/2020] [Indexed: 01/10/2023] Open
Abstract
In the mid-19th century, a misconception was born, which understandably persists in the minds of many neuroscientists today. The eminent scientist Albert von Kölliker named a tubular-shaped piece of tissue found in the brains of all mammals studied to date, the tuberculum olfactorium - or what is commonly known as the olfactory tubercle (OT). In doing this, Kölliker ascribed "olfactory" functions and an "olfactory" purpose to the OT. The OT has since been classified as one of several olfactory cortices. However, further investigations of OT functions, especially over the last decade, have provided evidence for roles of the OT beyond olfaction, including in learning, motivated behaviors, and even seeking of psychoactive drugs. Indeed, research to date suggests caution in assigning the OT with a purely olfactory role. Here, I build on previous research to synthesize a model wherein the OT, which may be more appropriately termed the "tubular striatum" (TuS), is a neural system in which sensory information derived from an organism's experiences is integrated with information about its motivational states to guide affective and behavioral responses.
Collapse
|
9
|
Abstract
Gonadal hormones contribute to the sexual differentiation of brain and behavior throughout the lifespan, from initial neural patterning to "activation" of adult circuits. Sexual behavior is an ideal system in which to investigate the mechanisms underlying hormonal activation of neural circuits. Sexual behavior is a hormonally regulated, innate social behavior found across species. Although both sexes seek out and engage in sexual behavior, the specific actions involved in mating are sexually dimorphic. Thus, the neural circuits mediating sexual motivation and behavior in males and females are overlapping yet distinct. Furthermore, sexual behavior is strongly dependent on circulating gonadal hormones in both sexes. There has been significant recent progress on elucidating how gonadal hormones modulate physiological properties within sexual behavior circuits with consequences for behavior. Therefore, in this mini-review we review the neural circuits of male and female sexual motivation and behavior, from initial sensory detection of pheromones to the extended amygdala and on to medial hypothalamic nuclei and reward systems. We also discuss how gonadal hormones impact the physiology and functioning of each node within these circuits. By better understanding the myriad of ways in which gonadal hormones impact sexual behavior circuits, we can gain a richer and more complete appreciation for the neural substrates of complex behavior.
Collapse
Affiliation(s)
- Kimberly J Jennings
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, California
| | - Luis de Lecea
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, California
| |
Collapse
|
10
|
Cansler HL, Wright KN, Stetzik LA, Wesson DW. Neurochemical organization of the ventral striatum's olfactory tubercle. J Neurochem 2020; 152:425-448. [PMID: 31755104 PMCID: PMC7042089 DOI: 10.1111/jnc.14919] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 11/08/2019] [Accepted: 11/17/2019] [Indexed: 12/11/2022]
Abstract
The ventral striatum is a collection of brain structures, including the nucleus accumbens, ventral pallidum and the olfactory tubercle (OT). While much attention has been devoted to the nucleus accumbens, a comprehensive understanding of the ventral striatum and its contributions to neurological diseases requires an appreciation for the complex neurochemical makeup of the ventral striatum's other components. This review summarizes the rich neurochemical composition of the OT, including the neurotransmitters, neuromodulators and hormones present. We also address the receptors and transporters involved in each system as well as their putative functional roles. Finally, we end with briefly reviewing select literature regarding neurochemical changes in the OT in the context of neurological disorders, specifically neurodegenerative disorders. By overviewing the vast literature on the neurochemical composition of the OT, this review will serve to aid future research into the neurobiology of the ventral striatum.
Collapse
Affiliation(s)
- Hillary L Cansler
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL, USA
- Center for Smell and Taste, University of Florida, Gainesville, FL, USA
| | - Katherine N Wright
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL, USA
- Center for Smell and Taste, University of Florida, Gainesville, FL, USA
- Center for Addiction Research and Education, University of Florida, Gainesville, FL, USA
| | - Lucas A Stetzik
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL, USA
- Center for Smell and Taste, University of Florida, Gainesville, FL, USA
| | - Daniel W Wesson
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL, USA
- Center for Smell and Taste, University of Florida, Gainesville, FL, USA
- Center for Addiction Research and Education, University of Florida, Gainesville, FL, USA
- Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, USA
| |
Collapse
|
11
|
Leppanen J, Cardi V, Sedgewick F, Treasure J, Tchanturia K. Basal ganglia volume and shape in anorexia nervosa. Appetite 2020; 144:104480. [PMID: 31586464 PMCID: PMC6891247 DOI: 10.1016/j.appet.2019.104480] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 09/07/2019] [Accepted: 10/01/2019] [Indexed: 12/04/2022]
Abstract
Background Reward-centred models have proposed that anomalies in the basal ganglia circuitry that underlies reward learning and habit formation perpetuate anorexia nervosa (AN). The present study aimed to investigate the volume and shape of key basal ganglia regions, including the bilateral caudate, putamen, nucleus accumbens (NAcc), and globus pallidus in AN. Methods The present study combined data from two existing studies resulting in a sample size of 46 women with AN and 56 age-matched healthy comparison (HC) women. Group differences in volume and shape of the regions of interest were examined. Within the AN group, the impact of eating disorder characteristics on volume and shape of the basal ganglia regions were also explored. Results The shape analyses revealed inward deformations in the left caudate, right NAcc, and bilateral ventral and internus globus pallidus, and outward deformations in the right middle and posterior globus pallidus in the AN group. Conclusions The present findings appear to fit with the theoretical models suggesting that there are alterations in the basal ganglia regions associated with habit formation and reward processing in AN. Further investigation of structural and functional connectivity of these regions in AN as well as their role in recovery would be of interest.
Collapse
Affiliation(s)
- Jenni Leppanen
- Kings' College London, Institute of Psychiatry, Psychology, and Neuroscience, Psychological Medicine, London, United Kingdom.
| | - Valentina Cardi
- Kings' College London, Institute of Psychiatry, Psychology, and Neuroscience, Psychological Medicine, London, United Kingdom
| | - Felicity Sedgewick
- University of Bristol, 35 Berkeley Square, Clifton, Bristol, United Kingdom
| | - Janet Treasure
- Kings' College London, Institute of Psychiatry, Psychology, and Neuroscience, Psychological Medicine, London, United Kingdom; South London and Maudsley NHS Foundation Trust, London, United Kingdom
| | - Kate Tchanturia
- Kings' College London, Institute of Psychiatry, Psychology, and Neuroscience, Psychological Medicine, London, United Kingdom; South London and Maudsley NHS Foundation Trust, London, United Kingdom; Illia State University, Department of Psychology, Tbilisi, Georgia
| |
Collapse
|
12
|
Centrifugal Innervation of the Olfactory Bulb: A Reappraisal. eNeuro 2019; 6:eN-NRS-0390-18. [PMID: 30740517 PMCID: PMC6366934 DOI: 10.1523/eneuro.0390-18.2019] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 01/14/2019] [Accepted: 01/19/2019] [Indexed: 12/11/2022] Open
Abstract
The inter-regional connectivity of sensory structures in the brain allows for the modulation of sensory processing in manners important for perception. In the olfactory system, odor representations in the olfactory bulb (OB) are modulated by feedback centrifugal innervation from several olfactory cortices, including the piriform cortex (PCX) and anterior olfactory nucleus (AON). Previous studies reported that an additional olfactory cortex, the olfactory tubercle (OT), also centrifugally innervates the OB and may even shape the activity of OB output neurons. In an attempt to identify the cell types of this centrifugal innervation, we performed retrograde tracing experiments in mice utilizing three unique strategies, including retrobeads, retrograde adeno-associated virus (AAV) driving a fluorescent reporter, and retrograde AAV driving Cre-expression in the Ai9-floxed transgenic reporter line. Our results replicated the standing literature and uncovered robustly labeled neurons in the ipsilateral PCX, AON, and numerous other structures known to innervate the OB. Surprisingly, consistent throughout all of our approaches, no labeled soma were observed in the OT. These findings indicate that the OT is unique among other olfactory cortices in that it does not innervate the OB, which refines our understanding of the centrifugal modulation of the OB.
Collapse
|
13
|
|
14
|
Murofushi W, Mori K, Murata K, Yamaguchi M. Functional development of olfactory tubercle domains during weaning period in mice. Sci Rep 2018; 8:13204. [PMID: 30181622 PMCID: PMC6123493 DOI: 10.1038/s41598-018-31604-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 08/21/2018] [Indexed: 02/06/2023] Open
Abstract
Mammals shift their feeding habits from mother’s milk to environmental foods postnatally. While this weaning process accompanies the acquisition of attractive behaviour toward environmental foods, the underlying neural mechanism for the acquisition is poorly understood. We previously found that adult mouse olfactory tubercle (OT), which belongs to the olfactory cortex and ventral striatum, has functional domains that represent odour-induced motivated behaviours, and that c-fos induction occurs mainly in the anteromedial domain of OT following learned odour-induced food seeking behaviour. To address the question whether the anteromedial OT domain is involved in the postnatal acquisition of food seeking behaviour, we examined OT development during weaning of mice. Whereas at postnatal day 15 (P15), all mice were attracted to lactating mothers, P21 mice were more attracted to familiar food pellets. Mapping of c-fos induction during food seeking and eating behaviours showed that while c-fos activation was observed across wide OT domains at P15, the preferential activation of c-fos in the anteromedial domain occurred at P21 and later ages. These results indicate that preferential c-fos activation in the anteromedial OT domain occurred concomitantly with the acquisition of attractive behaviour toward food, which suggests the importance of this domain in the weaning process.
Collapse
Affiliation(s)
- Wataru Murofushi
- Department of Physiology, Graduate School of Medicine, the University of Tokyo, Tokyo, 113-0033, Japan
| | - Kensaku Mori
- Department of Physiology, Graduate School of Medicine, the University of Tokyo, Tokyo, 113-0033, Japan
| | - Koshi Murata
- Division of Brain Structure and Function, Faculty of Medical Sciences, University of Fukui, Fukui, 910-1193, Japan. .,Life Science Innovation Center, Faculty of Medical Science, University of Fukui, Fukui, 910-1193, Japan.
| | - Masahiro Yamaguchi
- Department of Physiology, Kochi Medical School, Kochi University, Kochi, 783-8505, Japan.
| |
Collapse
|
15
|
Zhang Z, Liu Q, Wen P, Zhang J, Rao X, Zhou Z, Zhang H, He X, Li J, Zhou Z, Xu X, Zhang X, Luo R, Lv G, Li H, Cao P, Wang L, Xu F. Activation of the dopaminergic pathway from VTA to the medial olfactory tubercle generates odor-preference and reward. eLife 2017; 6:25423. [PMID: 29251597 PMCID: PMC5777817 DOI: 10.7554/elife.25423] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 12/15/2017] [Indexed: 01/26/2023] Open
Abstract
Odor-preferences are usually influenced by life experiences. However, the neural circuit mechanisms remain unclear. The medial olfactory tubercle (mOT) is involved in both reward and olfaction, whereas the ventral tegmental area (VTA) dopaminergic (DAergic) neurons are considered to be engaged in reward and motivation. Here, we found that the VTA (DAergic)-mOT pathway could be activated by different types of naturalistic rewards as well as odors in DAT-cre mice. Optogenetic activation of the VTA-mOT DAergic fibers was able to elicit preferences for space, location and neutral odor, while pharmacological blockade of the dopamine receptors in the mOT fully prevented the odor-preference formation. Furthermore, inactivation of the mOT-projecting VTA DAergic neurons eliminated the previously formed odor-preference and strongly affected the Go-no go learning efficiency. In summary, our results revealed that the VTA (DAergic)-mOT pathway mediates a variety of naturalistic reward processes and different types of preferences including odor-preference in mice.
Collapse
Affiliation(s)
- Zhijian Zhang
- Center for Brain Science, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, China.,Wuhan National Laboratory for Optoelectronics, Wuhan, China
| | - Qing Liu
- Center for Brain Science, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, China
| | - Pengjie Wen
- Center for Brain Science, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, China
| | - Jiaozhen Zhang
- Center for Brain Science, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, China
| | - Xiaoping Rao
- Center for Brain Science, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, China
| | - Ziming Zhou
- College of Life Sciences, Wuhan University, Wuhan, China
| | - Hongruo Zhang
- College of Life Sciences, Wuhan University, Wuhan, China
| | - Xiaobin He
- Center for Brain Science, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, China
| | - Juan Li
- Center for Brain Science, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, China
| | - Zheng Zhou
- Shenzhen Key Lab of Neuropsychiatric Modulation and Collaborative Innovation Center for Brain Science, CAS Center for Excellence in Brain Science, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Xiaoran Xu
- College of Life Sciences, Wuhan University, Wuhan, China
| | - Xueyi Zhang
- College of Life Sciences, Wuhan University, Wuhan, China
| | - Rui Luo
- College of Life Sciences, Wuhan University, Wuhan, China
| | - Guanghui Lv
- Wuhan National Laboratory for Optoelectronics, Wuhan, China
| | - Haohong Li
- Wuhan National Laboratory for Optoelectronics, Wuhan, China
| | - Pei Cao
- Center for Brain Science, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, China
| | - Liping Wang
- Shenzhen Key Lab of Neuropsychiatric Modulation and Collaborative Innovation Center for Brain Science, CAS Center for Excellence in Brain Science, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Fuqiang Xu
- Center for Brain Science, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, China.,Wuhan National Laboratory for Optoelectronics, Wuhan, China
| |
Collapse
|
16
|
Zhang Z, Zhang H, Wen P, Zhu X, Wang L, Liu Q, Wang J, He X, Wang H, Xu F. Whole-Brain Mapping of the Inputs and Outputs of the Medial Part of the Olfactory Tubercle. Front Neural Circuits 2017; 11:52. [PMID: 28804450 PMCID: PMC5532451 DOI: 10.3389/fncir.2017.00052] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2017] [Accepted: 07/18/2017] [Indexed: 11/13/2022] Open
Abstract
The medial part of the olfactory tubercle (OT) is a brain structure located at the interface of the reward and olfactory system. It is closely related to pheromone-rewards, natural reinforcement, addiction and many other behaviors. However, the structure of the anatomic circuitry of the medial part of the OT is still unclear. In the present study, the medial part of the OT was found to be highly connected with a wide range of brain areas with the help of the pseudorabies virus tracing tool. In order to further investigate the detailed connections for specific neurons, another tracing tool – rabies virus was utilized for D1R-cre and D2R-cre mice. The D1R and D2R neurons in the medial part of the OT were both preferentially innervated by the olfactory areas, especially the piriform cortex, and both had similar direct input patterns. With the help of the adeno-associated virus labeling, it was found that the two subpopulations of neurons primarily innervate with the reward related brain regions, with slightly less axons projecting to the olfactory areas. Thus, the whole-brain input and output circuitry structures for specific types of neurons in the medial part of the OT were systematically investigated, and the results revealed many unique connecting features. This work could provide new insights for further study into the physiological functions of the medial part of the OT.
Collapse
Affiliation(s)
- Zhijian Zhang
- College of Life Science and Technology, Huazhong University of Science and TechnologyWuhan, China.,Center for Brain Science, Key Laboratory of Magnetic Resonance in Biological Systems and State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of SciencesWuhan, China.,Wuhan National Laboratory for OptoelectronicsWuhan, China
| | - Hongruo Zhang
- College of Life Sciences, Wuhan UniversityWuhan, China
| | - Pengjie Wen
- Center for Brain Science, Key Laboratory of Magnetic Resonance in Biological Systems and State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of SciencesWuhan, China
| | - Xutao Zhu
- Center for Brain Science, Key Laboratory of Magnetic Resonance in Biological Systems and State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of SciencesWuhan, China
| | - Li Wang
- Center for Brain Science, Key Laboratory of Magnetic Resonance in Biological Systems and State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of SciencesWuhan, China.,Wuhan National Laboratory for OptoelectronicsWuhan, China
| | - Qing Liu
- Center for Brain Science, Key Laboratory of Magnetic Resonance in Biological Systems and State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of SciencesWuhan, China
| | - Jie Wang
- Center for Brain Science, Key Laboratory of Magnetic Resonance in Biological Systems and State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of SciencesWuhan, China
| | - Xiaobin He
- Center for Brain Science, Key Laboratory of Magnetic Resonance in Biological Systems and State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of SciencesWuhan, China
| | - Huadong Wang
- Center for Brain Science, Key Laboratory of Magnetic Resonance in Biological Systems and State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of SciencesWuhan, China
| | - Fuqiang Xu
- Center for Brain Science, Key Laboratory of Magnetic Resonance in Biological Systems and State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of SciencesWuhan, China.,Wuhan National Laboratory for OptoelectronicsWuhan, China.,Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of SciencesShanghai, China
| |
Collapse
|
17
|
Park J, Wakabayashi KT, Szalkowski C, Bhimani RV. Heterogeneous extracellular dopamine regulation in the subregions of the olfactory tubercle. J Neurochem 2017; 142:365-377. [PMID: 28498499 DOI: 10.1111/jnc.14069] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 04/04/2017] [Accepted: 04/26/2017] [Indexed: 12/01/2022]
Abstract
Recent studies show that dense dopamine (DA) innervation from the ventral tegmental area to the olfactory tubercle (OT) may play an important role in processing multisensory information pertaining to arousal and reward, yet little is known about DA regulation in the OT. This is mainly due to the anatomical limitations of conventional methods of determining DA dynamics in small heterogeneous OT subregions located in the ventral most part of the brain. Additionally, there is increasing awareness that anteromedial and anterolateral subregions of the OT have distinct functional roles in natural and psychostimulant drug reinforcement as well as in regulating other types of behavioral responses, such as aversion. Here, we compared extracellular DA regulation (release and clearance) in three subregions (anteromedial, anterolateral, and posterior) of the OT of urethane-anesthetized rats, using in vivo fast-scan cyclic voltammetry following electrical stimulation of ventral tegmental area dopaminergic cell bodies. The neurochemical, anatomical, and pharmacological evidence confirmed that the major electrically evoked catecholamine in the OT was DA across both its anteroposterior and mediolateral extent. While both D2 autoreceptors and DA transporters play important roles in regulating DA evoked in OT subregions, DA in the anterolateral OT was regulated less by the D2 receptors when compared to other OT subregions. Comparing previous data from other DA rich ventral striatum regions, the slow DA clearance across the OT subregions may lead to a high extracellular DA concentration and contribute towards volume transmission. These differences in DA regulation in the terminals of OT subregions and other limbic structures will help us understand the neural regulatory mechanisms of DA in the OT, which may elucidate its distinct functional contribution in the ventral striatum towards mediating aversion, reward and addiction processes.
Collapse
Affiliation(s)
- Jinwoo Park
- Department of Biotechnical and Clinical Laboratory Sciences, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, New York, USA.,Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, New York, USA.,Neuroscience Program, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, New York, USA
| | - Ken T Wakabayashi
- Department of Biotechnical and Clinical Laboratory Sciences, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, New York, USA.,Research Institute on Addictions, University at Buffalo, State University of New York, Buffalo, New York, USA
| | - Caitlin Szalkowski
- Department of Biotechnical and Clinical Laboratory Sciences, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, New York, USA
| | - Rohan V Bhimani
- Neuroscience Program, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, New York, USA
| |
Collapse
|
18
|
Yamaguchi M. Functional Sub-Circuits of the Olfactory System Viewed from the Olfactory Bulb and the Olfactory Tubercle. Front Neuroanat 2017; 11:33. [PMID: 28443001 PMCID: PMC5387040 DOI: 10.3389/fnana.2017.00033] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 03/29/2017] [Indexed: 11/13/2022] Open
Abstract
Understanding of the olfactory neural circuits has progressed beyond analysis of how odor information from the external environment is processed in the brain. While spatially-organized sub-circuits were found to exist up to the olfactory bulb (OB), the arrangement in the olfactory cortex (OC), especially in its representative piriform cortex (PC), appears diffuse and dispersed. An emerging view is that the activity of OC neurons may not simply encode odor identity but rather encode plastic odor information such as odor value. Although many studies support this notion, odor value can be either positive or negative, and the existence of sub-circuits corresponding to individual value types is not well explored. To address this question, I introduce here two olfactory areas other than the PC, OB and olfactory tubercle (OT) whose analysis may facilitate understanding of functional sub-circuits related to different odor values. Peripheral and centrifugal inputs to the OB are considered to relate to odor identity and odor value, respectively and centrifugal inputs to the OB potentially represent different odor values during different behavioral periods. The OT has spatially-segregated functional domains related to distinct motivated and hedonic behaviors. Thus, the OT provides a good starting point from which functional sub-circuits across various olfactory regions can be traced. Further analysis across wide areas of the olfactory system will likely reveal the functional sub-circuits that link odor identity with distinct odor values and direct distinct odor-induced motivated and hedonic behaviors.
Collapse
Affiliation(s)
- Masahiro Yamaguchi
- Department of Physiology, Kochi Medical School, Kochi UniversityKochi, Japan
| |
Collapse
|
19
|
Population Coding in an Innately Relevant Olfactory Area. Neuron 2017; 93:1180-1197.e7. [PMID: 28238549 DOI: 10.1016/j.neuron.2017.02.010] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 12/22/2016] [Accepted: 02/04/2017] [Indexed: 11/23/2022]
Abstract
Different olfactory cortical regions are thought to harbor distinct sensory representations, enabling each area to play a unique role in odor perception and behavior. In the piriform cortex (PCx), spatially dispersed sensory inputs evoke activity in distributed ensembles of neurons that act as substrates for odor learning. In contrast, the posterolateral cortical amygdala (plCoA) receives hardwired inputs that may link specific odor cues to innate olfactory behaviors. Here we show that despite stark differences in the patterning of plCoA and PCx inputs, odor-evoked neural ensembles in both areas are equally capable of discriminating odors, and exhibit similar odor tuning, reliability, and correlation structure. These results demonstrate that brain regions mediating odor-driven innate behaviors can, like brain areas involved in odor learning, represent odor objects using distributive population codes; these findings suggest both alternative mechanisms for the generation of innate odor-driven behaviors and additional roles for the plCoA in odor perception.
Collapse
|
20
|
Sánchez-Catalán MJ, Orrico A, Hipólito L, Zornoza T, Polache A, Lanuza E, Martínez-García F, Granero L, Agustín-Pavón C. Glutamate and Opioid Antagonists Modulate Dopamine Levels Evoked by Innately Attractive Male Chemosignals in the Nucleus Accumbens of Female Rats. Front Neuroanat 2017; 11:8. [PMID: 28280461 PMCID: PMC5322247 DOI: 10.3389/fnana.2017.00008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 02/09/2017] [Indexed: 12/04/2022] Open
Abstract
Sexual chemosignals detected by vomeronasal and olfactory systems mediate intersexual attraction in rodents, and act as a natural reinforcer to them. The mesolimbic pathway processes natural rewards, and the nucleus accumbens receives olfactory information via glutamatergic projections from the amygdala. Thus, the aim of this study was to investigate the involvement of the mesolimbic pathway in the attraction toward sexual chemosignals. Our data show that female rats with no previous experience with males or their chemosignals display an innate preference for male-soiled bedding. Focal administration of the opioid antagonist β-funaltrexamine into the posterior ventral tegmental area does not affect preference for male chemosignals. Nevertheless, exposure to male-soiled bedding elicits an increase in dopamine efflux in the nucleus accumbens shell and core, measured by microdialysis. Infusion of the opioid antagonist naltrexone in the accumbens core does not significantly affect dopamine efflux during exposure to male chemosignals, although it enhances dopamine levels 40 min after withdrawal of the stimuli. By contrast, infusion of the glutamate antagonist kynurenic acid in the accumbens shell inhibits the release of dopamine and reduces the time that females spend investigating male-soiled bedding. These data are in agreement with previous reports in male rats showing that exposure to opposite-sex odors elicits dopamine release in the accumbens, and with data in female mice showing that the behavioral preference for male chemosignals is not affected by opioidergic antagonists. We hypothesize that glutamatergic projections from the amygdala into the accumbens might be important to modulate the neurochemical and behavioral responses elicited by sexual chemosignals in rats.
Collapse
Affiliation(s)
- María-José Sánchez-Catalán
- Departament de Farmàcia, Tecnologia Farmacèutica i Parasitologia, Universitat de València València, Spain
| | - Alejandro Orrico
- Departament de Farmàcia, Tecnologia Farmacèutica i Parasitologia, Universitat de València València, Spain
| | - Lucía Hipólito
- Departament de Farmàcia, Tecnologia Farmacèutica i Parasitologia, Universitat de València València, Spain
| | - Teodoro Zornoza
- Departament de Farmàcia, Tecnologia Farmacèutica i Parasitologia, Universitat de València València, Spain
| | - Ana Polache
- Departament de Farmàcia, Tecnologia Farmacèutica i Parasitologia, Universitat de València València, Spain
| | - Enrique Lanuza
- Departament de Biologia Cel⋅lular, Biologia Funcional i Antropologia Física, Universitat de València València, Spain
| | | | - Luis Granero
- Departament de Farmàcia, Tecnologia Farmacèutica i Parasitologia, Universitat de València València, Spain
| | - Carmen Agustín-Pavón
- Departament de Biologia Cel⋅lular, Biologia Funcional i Antropologia Física, Universitat de València València, Spain
| |
Collapse
|
21
|
Xiong A, Wesson DW. Illustrated Review of the Ventral Striatum's Olfactory Tubercle. Chem Senses 2016; 41:549-55. [PMID: 27340137 DOI: 10.1093/chemse/bjw069] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Modern neuroscience often relies upon artistic renderings to illustrate key aspects of anatomy. These renderings can be in 2 or even 3 dimensions. Three-dimensional renderings are especially helpful in conceptualizing highly complex aspects of neuroanatomy which otherwise are not visually apparent in 2 dimensions or even intact biological samples themselves. Here, we provide 3 dimensional renderings of the gross- and cellular-anatomy of the rodent olfactory tubercle. Based upon standing literature and detailed investigations into rat brain specimens, we created biologically inspired illustrations of the olfactory tubercle in 3 dimensions as well as its connectivity with olfactory bulb projection neurons, the piriform cortex association fiber system, and ventral pallidum medium spiny neurons. Together, we intend for these illustrations to serve as a resource to the neuroscience community in conceptualizing and discussing this highly complex and interconnected brain system with established roles in sensory processing and motivated behaviors.
Collapse
Affiliation(s)
- Angeline Xiong
- Department of Neuroscience, Case Western Reserve University, 2109 Adelbert Road, Cleveland, OH 44106, USA
| | - Daniel W Wesson
- Department of Neuroscience, Case Western Reserve University, 2109 Adelbert Road, Cleveland, OH 44106, USA
| |
Collapse
|
22
|
The Neural Representation of Goal-Directed Actions and Outcomes in the Ventral Striatum's Olfactory Tubercle. J Neurosci 2016; 36:548-60. [PMID: 26758844 DOI: 10.1523/jneurosci.3328-15.2016] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
UNLABELLED The ventral striatum is critical for evaluating reward information and the initiation of goal-directed behaviors. The many cellular, afferent, and efferent similarities between the ventral striatum's nucleus accumbens and olfactory tubercle (OT) suggests the distributed involvement of neurons within the ventral striatopallidal complex in motivated behaviors. Although the nucleus accumbens has an established role in representing goal-directed actions and their outcomes, it is not known whether this function is localized within the nucleus accumbens or distributed also within the OT. Answering such a fundamental question will expand our understanding of the neural mechanisms underlying motivated behaviors. Here we address whether the OT encodes natural reinforcers and serves as a substrate for motivational information processing. In recordings from mice engaged in a novel water-motivated instrumental task, we report that OT neurons modulate their firing rate during initiation and progression of the instrumental licking behavior, with some activity being internally generated and preceding the first lick. We further found that as motivational drive decreases throughout a session, the activity of OT neurons is enhanced earlier relative to the behavioral action. Additionally, OT neurons discriminate the types and magnitudes of fluid reinforcers. Together, these data suggest that the processing of reward information and the orchestration of goal-directed behaviors is a global principle of the ventral striatum and have important implications for understanding the neural systems subserving addiction and mood disorders. SIGNIFICANCE STATEMENT Goal-directed behaviors are widespread among animals and underlie complex behaviors ranging from food intake, social behavior, and even pathological conditions, such as gambling and drug addiction. The ventral striatum is a neural system critical for evaluating reward information and the initiation of goal-directed behaviors. Here we show that neurons in the olfactory tubercle subregion of the ventral striatum robustly encode the onset and progression of motivated behaviors, and discriminate the type and magnitude of a reward. Our findings are novel in showing that olfactory tubercle neurons participate in such coding schemes and are in accordance with the principle that ventral striatum substructures may cooperate to guide motivated behaviors.
Collapse
|
23
|
Fortes-Marco L, Lanuza E, Martínez-García F, Agustín-Pavón C. Avoidance and contextual learning induced by a kairomone, a pheromone and a common odorant in female CD1 mice. Front Neurosci 2015; 9:336. [PMID: 26500474 PMCID: PMC4594011 DOI: 10.3389/fnins.2015.00336] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 09/07/2015] [Indexed: 01/11/2023] Open
Abstract
Chemosignals mediate both intra- and inter-specific communication in most mammals. Pheromones elicit stereotyped reactions in conspecifics, whereas kairomones provoke a reaction in an allospecific animal. For instance, predator kairomones elicit anticipated defensive responses in preys. The aim of this work was to test the behavioral responses of female mice to two chemosignals: 2-heptanone (2-HP), a putative alarm pheromone, and 2,4,5-trimethylthiazoline (TMT), a fox-derived putative kairomone, widely used to investigate fear and anxiety in rodents. The banana-like odorant isoamyl acetate (IA), unlikely to act as a chemosignal, served as a control odorant. We first presented increasing amounts of these odorants in consecutive days, in a test box in which mice could explore or avoid them. Female mice avoided the highest amounts of all three compounds, with TMT and IA eliciting avoidance at lower amounts (3.8 pmol and 0.35 μmol, respectively) than 2-HP (35 μmol). All three compounds induced minimal effects in global locomotion and immobility in this set up. Further, mice detected 3.5 pmol of TMT and IA in a habituation–dishabituation test, so avoidance of IA started well beyond the detection threshold. Finally, both TMT and IA, but not 2-HP, induced conditioned place avoidance and increased immobility in the neutral compartment during a contextual memory test. These data suggest that intense odors can induce contextual learning irrespective of their putative biological significance. Our results support that synthetic predator-related compounds (like TMT) or other intense odorants are useful to investigate the neurobiological basis of emotional behaviors in rodents. Since intense odorants unlikely to act as chemosignals can elicit similar behavioral reactions than chemosignals, we stress the importance of using behavioral measures in combination with other physiological (e.g., hormonal levels) or neural measures (e.g., immediate early gene expression) to establish the ethological significance of odorants.
Collapse
Affiliation(s)
- Lluís Fortes-Marco
- Unitat Pre-departamental de Medicina, Facultad de Ciencias de la Salud, Universitat Jaume I Castelló de la Plana, Spain ; Departament de Biologia Cel·lular, Facultat de Ciències Biològiques, Universitat de València València, Spain
| | - Enrique Lanuza
- Departament de Biologia Cel·lular, Facultat de Ciències Biològiques, Universitat de València València, Spain
| | - Fernando Martínez-García
- Unitat Pre-departamental de Medicina, Facultad de Ciencias de la Salud, Universitat Jaume I Castelló de la Plana, Spain
| | - Carmen Agustín-Pavón
- Unitat Pre-departamental de Medicina, Facultad de Ciencias de la Salud, Universitat Jaume I Castelló de la Plana, Spain
| |
Collapse
|
24
|
DREADD-Induced Silencing of the Medial Olfactory Tubercle Disrupts the Preference of Female Mice for Opposite-Sex Chemosignals(1,2,3). eNeuro 2015; 2:eN-NWR-0078-15. [PMID: 26478911 PMCID: PMC4603255 DOI: 10.1523/eneuro.0078-15.2015] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 08/21/2015] [Accepted: 08/29/2015] [Indexed: 12/15/2022] Open
Abstract
Attraction to opposite-sex pheromones during rodent courtship involves a pathway that includes inputs to the medial amygdala (Me) from the main and accessory olfactory bulbs, and projections from the Me to nuclei in the medial hypothalamus that control reproduction. However, the consideration of circuitry that attributes hedonic properties to opposite-sex odors has been lacking. The medial olfactory tubercle (mOT) has been implicated in the reinforcing effects of natural stimuli and drugs of abuse. We performed a tract-tracing study wherein estrous female mice that had received injections of the retrograde tracer, cholera toxin B, into the mOT were exposed to volatile odors from soiled bedding. Both the anterior Me and ventral tegmental area sent direct projections to the mOT, of which a significant subset was selectively activated (expressed Fos protein) by testes-intact male (but not female) volatile odors from soiled bedding. Next, the inhibitory DREADD (designer receptors exclusively activated by designer drugs) receptor hM4Di was bilaterally expressed in the mOT of female mice. Urinary preferences were then assessed after intraperitoneal injection of either saline or clozapine-N-oxide (CNO), which binds to the hM4Di receptor to hyperpolarize infected neurons. After receiving CNO, estrous females lost their preference for male over female urinary odors, whereas the ability to discriminate these odors remained intact. Male odor preference returned after vehicle treatment in counterbalanced tests. There were no deficits in locomotor activity or preference for food odors when subject mice received CNO injections prior to testing. The mOT appears to be a critical segment in the pheromone–reward pathway of female mice.
Collapse
|
25
|
Abstract
Sensory information acquires meaning to adaptively guide behaviors. Despite odors mediating a number of vital behaviors, the components of the olfactory system responsible for assigning meaning to odors remain unclear. The olfactory tubercle (OT), a ventral striatum structure that receives monosynaptic input from the olfactory bulb, is uniquely positioned to transform odor information into behaviorally relevant neural codes. No information is available, however, on the coding of odors among OT neurons in behaving animals. In recordings from mice engaged in an odor discrimination task, we report that the firing rate of OT neurons robustly and flexibly encodes the valence of conditioned odors over identity, with rewarded odors evoking greater firing rates. This coding of rewarded odors occurs before behavioral decisions and represents subsequent behavioral responses. We predict that the OT is an essential region whereby odor valence is encoded in the mammalian brain to guide goal-directed behaviors.
Collapse
|
26
|
Laminar and spatial localization of the islands of Calleja in mice. Neuroscience 2014; 287:137-43. [PMID: 25536047 DOI: 10.1016/j.neuroscience.2014.12.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Revised: 12/04/2014] [Accepted: 12/09/2014] [Indexed: 02/02/2023]
Abstract
The islands of Calleja (IC) are dense clusters of cells localized within the ventral striatum. The IC have been described as variable in both number and localization from animal-to-animal, however, a quantitative investigation of this variability is unavailable. Further, it is presently unknown whether the IC occupy select areas of the olfactory tubercle (OT), the ventral striatum structure which possesses the IC in mice. To address these questions, we examined the IC of adult C57bl/6 mice. As previously noted, we found substantial inter-hemispheric and inter-mouse variations in the total number of IC. While the IC were observed in all three cell layers of the OT, the bulk of IC occupied layer iii. The span of the IC along the anterior-posterior and medial-lateral axes of the OT was variant. Further, localizations of the IC within the OT also differed across animals. Notably, the probability of observing an IC in the medial OT was greater than that of observing one in the lateral. These data provide a fundamental characterization of both differences and similarities regarding the IC in mice and will be informative for future in vivo studies seeking to perturb and possibly record from the IC. Further, we predict that inter-animal diversity in the IC may be a mechanism for inter-animal differences in behavior, especially reward-related and motivational behaviors.
Collapse
|
27
|
6-Hydroxydopamine lesions of the anteromedial ventral striatum impair opposite-sex urinary odor preference in female mice. Behav Brain Res 2014; 274:243-7. [PMID: 25150042 DOI: 10.1016/j.bbr.2014.08.024] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Revised: 08/07/2014] [Accepted: 08/11/2014] [Indexed: 01/03/2023]
Abstract
Rodents rely upon their olfactory modality to perceive opposite-sex pheromonal odors needed to motivate courtship behaviors. Volatile and nonvolatile components of pheromonal odors are processed by the main (MOS) and accessory olfactory system (AOS), respectively, with inputs converging in the medial amygdala (Me). The Me in turn targets the mesolimbic dopamine system, including the nucleus accumbens core (AcbC) and shell (AcbSh), the ventral pallidum (VP), medial olfactory tubercle (mOT) and ventral tegmental area (VTA). We hypothesized that pheromone-induced dopamine (DA) release in the ventral striatum (particularly in the mAcb and mOT) may mediate the normal preference of female mice to investigate male pheromones. We made bilateral 6-OHDA lesions of DA fibers innervating either the mAcb alone or the mAcb+mOT in female mice and tested estrous females' preference for opposite-sex urinary odors. We found that 6-OHDA lesions of either the mAcb alone or the mAcb+mOT significantly reduced the preference of sexually naïve female mice to investigate breeding male urinary odors (volatiles as well as volatiles+nonvolatiles) vs. estrous female urinary odors. These same neurotoxic lesions had no effect on subjects' ability to discriminate between these two urinary odors, on their locomotor activity, or on their preference for consuming sucrose. The integrity of the dopaminergic innervation of the mAcb and mOT is required for female mice to prefer investigating male pheromones.
Collapse
|
28
|
Fitzgerald BJ, Richardson K, Wesson DW. Olfactory tubercle stimulation alters odor preference behavior and recruits forebrain reward and motivational centers. Front Behav Neurosci 2014; 8:81. [PMID: 24672445 PMCID: PMC3954079 DOI: 10.3389/fnbeh.2014.00081] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Accepted: 02/24/2014] [Indexed: 11/17/2022] Open
Abstract
Rodents show robust behavioral responses to odors, including strong preferences or aversions for certain odors. The neural mechanisms underlying the effects of odors on these behaviors in animals are not well understood. Here, we provide an initial proof-of-concept study into the role of the olfactory tubercle (OT), a structure with known anatomical connectivity with both brain reward and olfactory structures, in regulating odor-motivated behaviors. We implanted c57bl/6 male mice with an ipsilateral bipolar electrode into the OT to administer electric current and thereby yield gross activation of the OT. We confirmed that electrical stimulation of the OT was rewarding, with mice frequently self-administering stimulation on a fixed ratio schedule. In a separate experiment, mice were presented with either fox urine or peanut odors in a three-chamber preference test. In absence of OT stimulation, significant preference for the peanut odor chamber was observed which was abolished in the presence of OT stimulation. Perhaps providing a foundation for this modulation in behavior, we found that OT stimulation significantly increased the number of c-Fos positive neurons in not only the OT, but also in forebrain structures essential to motivated behaviors, including the nucleus accumbens and lateral septum. The present results support the notion that the OT is integral to the display of motivated behavior and possesses the capacity to modulate odor hedonics either by directly altering odor processing or perhaps by indirect actions on brain reward and motivation structures.
Collapse
Affiliation(s)
- Brynn J Fitzgerald
- Department of Neurosciences, Case Western Reserve University Cleveland, OH, USA
| | - Kara Richardson
- Department of Neurosciences, Case Western Reserve University Cleveland, OH, USA
| | - Daniel W Wesson
- Department of Neurosciences, Case Western Reserve University Cleveland, OH, USA ; Department of Biology, Case Western Reserve University Cleveland, OH, USA
| |
Collapse
|