1
|
Robinson SL, Thiele TE. Somatostatin signaling modulates binge drinking behavior via the central nucleus of the amygdala. Neuropharmacology 2023; 237:109622. [PMID: 37307896 PMCID: PMC10527233 DOI: 10.1016/j.neuropharm.2023.109622] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 06/02/2023] [Accepted: 06/02/2023] [Indexed: 06/14/2023]
Abstract
Somatostatin (SST) is a neuropeptide widely expressed in the central nervous system with dense expression in limbic regions such as the extended amygdala. It has recently gained attention for playing a role in modulating alcohol use disorders and co-morbid neuropsychiatric disorders. However, the role of SST in the central nucleus of the amygdala (CeA), a key region for neuropeptide regulation of alcohol and anxiety related behaviors, in alcohol consumption has not been assessed. In this work we perform an initial examination of the interaction between the CeA SST system and binge ethanol intake. Binge intake is a dangerous pattern of excessive ethanol consumption associated with health complications and the transition into alcohol dependence. We use the Drinking in the Dark (DID) model of binge intake in C57BL/6J male and female mice to examine: 1) the impact of 3 DID cycles on CeA SST expression; 2) the effect of intra-CeA SST injection on binge-like ethanol consumption; and 3) if the SST receptor 2 or 4 (SST2R or SST4R) mediate any effect on consumption. Our results show binge-like ethanol intake decreases SST expression in the CeA, but not neighboring basolateral amygdala. We further found intra-SST CeA administration reduces binge ethanol intake. This decrease was replicated by the administration of an SST4R agonist. These effects were not sex-dependent. Overall, this work lends further support for SST playing a role in alcohol related behaviors and as a potential therapeutic target.
Collapse
Affiliation(s)
- Stacey L Robinson
- Department of Psychology & Neuroscience, The University of North Carolina, Chapel Hill, NC, 27599, USA; Bowles Center for Alcohol Studies, The University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Todd E Thiele
- Department of Psychology & Neuroscience, The University of North Carolina, Chapel Hill, NC, 27599, USA; Bowles Center for Alcohol Studies, The University of North Carolina, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
2
|
Gaskins DL, Burke AR, Sajdyk TJ, Truitt WA, Dietrich AD, Shekhar A. Role of Basolateral Amygdalar Somatostatin 2 Receptors in a Rat Model of Chronic Anxiety. Neuroscience 2021; 477:40-49. [PMID: 34487822 PMCID: PMC9744088 DOI: 10.1016/j.neuroscience.2021.08.031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 08/25/2021] [Accepted: 08/26/2021] [Indexed: 12/15/2022]
Abstract
Repeated exposure to stress has been implicated in inducing chronic anxiety states. Stress related increases in anxiety responses are likely mediated by activation of corticotropin-releasing factor receptors (CRFR) in the amygdala, particularly the basolateral amygdala (BLA). Within the BLA, acute injections of the CRFR agonist urocortin 1 (Ucn1) leads to acute anxiety, whereas repeated daily injections of subthreshold-doses of Ucn1 produces a long-lasting, persistent anxiety-like phenotype, a phenomenon referred to as Ucn1-priming. Relative gene expressions from the BLA of vehicle and Ucn1-primed rats were analyzed with quantitative RT-PCR using a predesigned panel of 82 neuroscience-related genes. Compared to vehicle-primed rats, only expression of the somatostatin receptor 2 gene (Sstr2) was significantly reduced in the BLA of Ucn1-primed rats. The contribution of Sstr2 on an anxiety phenotype was tested by injecting a Sstr2 antagonist into the BLA in un-primed rats. The Sstr2 antagonist increased anxiety-like behavior. Notably, pretreatment with Sstr2 agonist injected into the BLA blocked anxiety-inducing effects of acute Ucn1 BLA-injections and delayed anxiety expression during Ucn1-priming. However, concomitant Sstr2 agonist pretreatment during Ucn-1 priming did not prevent either the development of a chronic anxiety state or a reduction of BLA Sstr2 expression induced by priming. The data demonstrate that the persistent anxiety-like phenotype observed with Ucn1-priming in the BLA is associated with a selective reduction of Sstr2 gene expression. Although Sstr2 activation in the BLA blocks acute anxiogenic effects of stress and down-regulation of BLA Sstr2, it does not suppress the long-term consequences of prolonged exposure to stress-related challenges.
Collapse
Affiliation(s)
- Denise L Gaskins
- Stark Neurosciences Research Institute, Indiana University School of Medicine, 320 W. 15th Street, Indianapolis, IN 46202, USA; Graduate Program in Medical Neuroscience, Indiana University School of Medicine, 320 W. 15th Street, Indianapolis, IN 46202, USA
| | - Andrew R Burke
- Stark Neurosciences Research Institute, Indiana University School of Medicine, 320 W. 15th Street, Indianapolis, IN 46202, USA; Department of Anatomy Cellular Biology & Physiology, Indiana University School of Medicine, 635 Barnhill Drive, Indianapolis, IN 46202, USA
| | - Tammy J Sajdyk
- Department of Psychiatry, Indiana University School of Medicine, 355 W. 16th Street, Indianapolis, IN 46202, USA; Indiana Clinical and Translational Sciences Institute, Indiana University School of Medicine, 410 W 10th St Suite 1000, Indianapolis, IN 46202, USA; Department of Pediatrics, Division of Hematology/Oncology, Indiana University School of Medicine, 705 Riley Hospital Drive, Indianapolis, IN 46202, USA
| | - William A Truitt
- Stark Neurosciences Research Institute, Indiana University School of Medicine, 320 W. 15th Street, Indianapolis, IN 46202, USA; Department of Anatomy Cellular Biology & Physiology, Indiana University School of Medicine, 635 Barnhill Drive, Indianapolis, IN 46202, USA.
| | - Amy D Dietrich
- Stark Neurosciences Research Institute, Indiana University School of Medicine, 320 W. 15th Street, Indianapolis, IN 46202, USA; Department of Anatomy Cellular Biology & Physiology, Indiana University School of Medicine, 635 Barnhill Drive, Indianapolis, IN 46202, USA
| | - Anantha Shekhar
- Stark Neurosciences Research Institute, Indiana University School of Medicine, 320 W. 15th Street, Indianapolis, IN 46202, USA; Department of Psychiatry, Indiana University School of Medicine, 355 W. 16th Street, Indianapolis, IN 46202, USA; Indiana Clinical and Translational Sciences Institute, Indiana University School of Medicine, 410 W 10th St Suite 1000, Indianapolis, IN 46202, USA; Department of Psychiatry, University of Pittsburgh School of Medicine, 3550 Terrace Street, Suite 401, Pittsburgh, PA 15261, USA
| |
Collapse
|
3
|
Robinson SL, Thiele TE. A role for the neuropeptide somatostatin in the neurobiology of behaviors associated with substances abuse and affective disorders. Neuropharmacology 2020; 167:107983. [PMID: 32027909 DOI: 10.1016/j.neuropharm.2020.107983] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 01/07/2020] [Accepted: 01/30/2020] [Indexed: 02/06/2023]
Abstract
In recent years, neuropeptides which display potent regulatory control of stress-related behaviors have been extensively demonstrated to play a critical role in regulating behaviors associated with substance abuse and affective disorders. Somatostatin (SST) is one neuropeptide known to significantly contribute to emotionality and stress behaviors. However, the role of SST in regulating behavior has received relatively little attention relative to other stress-involved peptides, such as neuropeptide Y or corticotrophin releasing factor. This review characterizes our current understanding of the role of SST and SST-expressing cells in general in modulating several behaviors intrinsically linked to substance abuse and affective disorders, specifically: anxiety and fear; stress and depression; feeding and drinking; and circadian rhythms. We further summarize evidence of a direct role for the SST system, and specifically somatostatin receptors 2 and 4, in substance abuse disorders. This article is part of the special issue on 'Neuropeptides'.
Collapse
Affiliation(s)
- Stacey L Robinson
- Department of Psychology & Neuroscience, University of North Carolina, Chapel Hill, NC, 27599, USA; Bowles Center for Alcohol Studies, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Todd E Thiele
- Department of Psychology & Neuroscience, University of North Carolina, Chapel Hill, NC, 27599, USA; Bowles Center for Alcohol Studies, University of North Carolina, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
4
|
Hartley ND, Gaulden AD, Báldi R, Winters ND, Salimando GJ, Rosas-Vidal LE, Jameson A, Winder DG, Patel S. Dynamic remodeling of a basolateral-to-central amygdala glutamatergic circuit across fear states. Nat Neurosci 2019; 22:2000-2012. [PMID: 31712775 PMCID: PMC6884697 DOI: 10.1038/s41593-019-0528-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 10/02/2019] [Indexed: 11/09/2022]
Abstract
Acquisition and extinction of learned fear responses utilize conserved but flexible neural circuits. Here we show that acquisition of conditioned freezing behavior is associated with dynamic remodeling of relative excitatory drive from the basolateral amygdala (BLA) away from corticotropin releasing factor-expressing (CRF+) centrolateral amygdala neurons, and toward non-CRF+ (CRF-) and somatostatin-expressing (SOM+) neurons, while fear extinction training remodels this circuit back toward favoring CRF+ neurons. Importantly, BLA activity is required for this experience-dependent remodeling, while directed inhibition of the BLA-centrolateral amygdala circuit impairs both fear memory acquisition and extinction memory retrieval. Additionally, ectopic excitation of CRF+ neurons impairs fear memory acquisition and facilities extinction, whereas CRF+ neuron inhibition impairs extinction memory retrieval, supporting the notion that CRF+ neurons serve to inhibit learned freezing behavior. These data suggest that afferent-specific dynamic remodeling of relative excitatory drive to functionally distinct subcortical neuronal output populations represents an important mechanism underlying experience-dependent modification of behavioral selection.
Collapse
Affiliation(s)
- Nolan D Hartley
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA
| | - Andrew D Gaulden
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Rita Báldi
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Nathan D Winters
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Gregory J Salimando
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA
- Department of Molecular Physiology & Biophysics, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Luis Eduardo Rosas-Vidal
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Alexis Jameson
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA
| | - Danny G Winder
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN, USA
- Department of Molecular Physiology & Biophysics, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Sachin Patel
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, USA.
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA.
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN, USA.
- Department of Molecular Physiology & Biophysics, Vanderbilt University School of Medicine, Nashville, TN, USA.
| |
Collapse
|
5
|
Mayer D, Kahl E, Uzuneser TC, Fendt M. Role of the mesolimbic dopamine system in relief learning. Neuropsychopharmacology 2018; 43:1651-1659. [PMID: 29453443 PMCID: PMC6006155 DOI: 10.1038/s41386-018-0020-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 01/19/2018] [Accepted: 01/20/2018] [Indexed: 11/08/2022]
Abstract
The relief from an aversive event is rewarding. Since organisms are able to learn which environmental cues can cease an aversive event, relief learning helps to better cope with future aversive events. Literature data suggest that relief learning is affected in various psychopathological conditions, such as anxiety disorders. Here, we investigated the role of the mesolimbic dopamine system in relief learning. Using a relief learning procedure in Sprague Dawley rats, we applied a combination of behavioral experiments with anatomical tracing, c-Fos immunohistochemistry, and local chemogenetic and pharmacological interventions to broadly characterize the role of the mesolimbic dopamine system. The present study shows that a specific part of the mesolimbic dopamine system, the projection from the posterior medial ventral tegmental area (pmVTA) to the nucleus accumbens shell (AcbSh), is activated by aversive electric stimuli. 6-OHDA lesions of the pmVTA blocked relief learning but fear learning and safety learning were not affected. Chemogenetic silencing of the pmVTA-AcbSh projection using the DREADD approach, as well as intra-AcbSh injections of the dopamine D2/3 receptor antagonist raclopride inhibited relief learning. Taken together, the present data demonstrate that the dopaminergic pmVTA-AcbSh projection is critical for relief learning but not for similar learning phenomena. This novel finding may have clinical implications since the processing of signals predicting relief and safety is often impaired in patients suffering from anxiety disorders. Furthermore, it may help to better understand psychological conditions like non-suicidal self-injury, which are associated with pain offset relief.
Collapse
Affiliation(s)
- Dana Mayer
- Institute for Pharmacology and Toxicology, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Evelyn Kahl
- Institute for Pharmacology and Toxicology, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Taygun C Uzuneser
- Institute for Pharmacology and Toxicology, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
- Integrative Neuroscience Program, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
- Department for Psychiatry & Psychotherapy, Friedrich-Alexander University of Erlangen-Nuremberg, Erlangen, Germany
| | - Markus Fendt
- Institute for Pharmacology and Toxicology, Otto-von-Guericke University Magdeburg, Magdeburg, Germany.
- Center of Behavioral Brain Sciences, Otto-von-Guericke University Magdeburg, Magdeburg, Germany.
| |
Collapse
|
6
|
Ionov ID, Pushinskaya II, Roslavtseva LA, Severtsev NN. Brain sites mediating cyclosomatostatin-induced catalepsy in Wistar rats: A specific role for the nigrostriatal system and locus coeruleus. Brain Res 2018; 1691:26-33. [PMID: 29680272 DOI: 10.1016/j.brainres.2018.04.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 04/13/2018] [Accepted: 04/16/2018] [Indexed: 02/05/2023]
Abstract
A decrease in somatostatin activity is observed in the Parkinsonian brain. In recent experiments on rats, we simulated this abnormality by intracerebroventricular injections of a somatostatin antagonist, cyclosomatostatin. The treated animals displayed catalepsy, a state that resembles the extrapyramidal signs of Parkinson's disease. The neuroanatomical substrates mediating the catalepsy-inducing effect of cyclosomatostatin are unknown. To clarify this issue, we assessed here the action of cyclosomatostatin injected into the substantia nigra pars compacta (SNc), dorsal striatum (DS), locus coeruleus (LC), pedunculopontine tegmental nucleus (PPTg), and inferior colliculus (IC). The experiments were conducted with male Wistar rats of 270-290 g bw, catalepsy was evaluated by using the bar test. The injections into the PPTg and IC were without effect whereas the intra-SNc, intra-DS, and intra-LC administrations produced distinct cataleptic response. Thus, it was shown for the first time that the LC is a brain center capable of causing catalepsy. These data provide new insights into the neuroanatomical organization of the catalepsy-initiating mechanism and suggest the LC representing a potential target for therapeutic manipulations of extrapyramidal dysfunctions.
Collapse
Affiliation(s)
- Ilya D Ionov
- Centre on Theoretical Problems in Physical and Chemical Pharmacology, Russian Academy of Sciences, Moscow, Russia.
| | | | | | | |
Collapse
|
7
|
Pantazopoulos H, Wiseman JT, Markota M, Ehrenfeld L, Berretta S. Decreased Numbers of Somatostatin-Expressing Neurons in the Amygdala of Subjects With Bipolar Disorder or Schizophrenia: Relationship to Circadian Rhythms. Biol Psychiatry 2017; 81:536-547. [PMID: 27259817 PMCID: PMC5065936 DOI: 10.1016/j.biopsych.2016.04.006] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 04/05/2016] [Accepted: 04/07/2016] [Indexed: 12/20/2022]
Abstract
BACKGROUND Growing evidence points to a key role for somatostatin (SST) in schizophrenia (SZ) and bipolar disorder (BD). In the amygdala, neurons expressing SST play an important role in the regulation of anxiety, which is often comorbid in these disorders. We tested the hypothesis that SST-immunoreactive (IR) neurons are decreased in the amygdala of subjects with SZ and BD. Evidence for circadian SST expression in the amygdala and disrupted circadian rhythms and rhythmic peaks of anxiety in BD suggest a disruption of rhythmic expression of SST in this disorder. METHODS Amygdala sections from 12 SZ, 15 BD, and 15 control subjects were processed for immunocytochemistry for SST and neuropeptide Y, a neuropeptide partially coexpressed in SST-IR neurons. Total numbers (Nt) of IR neurons were measured. Time of death was used to test associations with circadian rhythms. RESULTS SST-IR neurons were decreased in the lateral amygdala nucleus in BD (Nt, p = .003) and SZ (Nt, p = .02). In normal control subjects, Nt of SST-IR neurons varied according to time of death. This pattern was altered in BD subjects, characterized by decreases of SST-IR neurons selectively in subjects with time of death corresponding to the day (6:00 am to 5:59 pm). Numbers of neuropeptide Y-IR neurons were not affected. CONCLUSIONS Decreased SST-IR neurons in the amygdala of patients with SZ and BD, interpreted here as decreased SST expression, may disrupt responses to fear and anxiety regulation in these individuals. In BD, our findings raise the possibility that morning peaks of anxiety depend on a disruption of circadian regulation of SST expression in the amygdala.
Collapse
Affiliation(s)
- Harry Pantazopoulos
- Translational Neuroscience Laboratory, Mclean Hospital, Belmont; Department of Psychiatry, Harvard Medical School, Boston, Massachusetts.
| | - Jason T Wiseman
- Translational Neuroscience Laboratory, Mclean Hospital, Belmont
| | - Matej Markota
- Translational Neuroscience Laboratory, Mclean Hospital, Belmont; Department of Psychiatry and Psychology, Mayo Clinic, Rochester, Minnesota
| | - Lucy Ehrenfeld
- Translational Neuroscience Laboratory, Mclean Hospital, Belmont
| | - Sabina Berretta
- Translational Neuroscience Laboratory, Mclean Hospital, Belmont; Department of Psychiatry, Harvard Medical School, Boston, Massachusetts; Program in Neuroscience, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|