1
|
Rodríguez-Giraldo M, González-Reyes RE, Ramírez-Guerrero S, Bonilla-Trilleras CE, Guardo-Maya S, Nava-Mesa MO. Astrocytes as a Therapeutic Target in Alzheimer's Disease-Comprehensive Review and Recent Developments. Int J Mol Sci 2022; 23:13630. [PMID: 36362415 PMCID: PMC9654484 DOI: 10.3390/ijms232113630] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/25/2022] [Accepted: 10/26/2022] [Indexed: 09/20/2023] Open
Abstract
Alzheimer's disease (AD) is a frequent and disabling neurodegenerative disorder, in which astrocytes participate in several pathophysiological processes including neuroinflammation, excitotoxicity, oxidative stress and lipid metabolism (along with a critical role in apolipoprotein E function). Current evidence shows that astrocytes have both neuroprotective and neurotoxic effects depending on the disease stage and microenvironmental factors. Furthermore, astrocytes appear to be affected by the presence of amyloid-beta (Aβ), with alterations in calcium levels, gliotransmission and proinflammatory activity via RAGE-NF-κB pathway. In addition, astrocytes play an important role in the metabolism of tau and clearance of Aβ through the glymphatic system. In this review, we will discuss novel pharmacological and non-pharmacological treatments focused on astrocytes as therapeutic targets for AD. These interventions include effects on anti-inflammatory/antioxidant systems, glutamate activity, lipid metabolism, neurovascular coupling and glymphatic system, calcium dysregulation, and in the release of peptides which affects glial and neuronal function. According to the AD stage, these therapies may be of benefit in either preventing or delaying the progression of the disease.
Collapse
Affiliation(s)
| | | | | | | | | | - Mauricio O. Nava-Mesa
- Grupo de Investigación en Neurociencias (NeURos), Centro de Neurociencias Neurovitae-UR, Instituto de Medicina Traslacional (IMT), Escuela de Medicina y Ciencias de la Salud, Universidad del Rosario, Bogotá 111711, Colombia
| |
Collapse
|
2
|
The Interplay between Gut Microbiota and Parkinson's Disease: Implications on Diagnosis and Treatment. Int J Mol Sci 2022; 23:ijms232012289. [PMID: 36293176 PMCID: PMC9603886 DOI: 10.3390/ijms232012289] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/05/2022] [Accepted: 10/12/2022] [Indexed: 11/05/2022] Open
Abstract
The bidirectional interaction between the gut microbiota (GM) and the Central Nervous System, the so-called gut microbiota brain axis (GMBA), deeply affects brain function and has an important impact on the development of neurodegenerative diseases. In Parkinson’s disease (PD), gastrointestinal symptoms often precede the onset of motor and non-motor manifestations, and alterations in the GM composition accompany disease pathogenesis. Several studies have been conducted to unravel the role of dysbiosis and intestinal permeability in PD onset and progression, but the therapeutic and diagnostic applications of GM modifying approaches remain to be fully elucidated. After a brief introduction on the involvement of GMBA in the disease, we present evidence for GM alterations and leaky gut in PD patients. According to these data, we then review the potential of GM-based signatures to serve as disease biomarkers and we highlight the emerging role of probiotics, prebiotics, antibiotics, dietary interventions, and fecal microbiota transplantation as supportive therapeutic approaches in PD. Finally, we analyze the mutual influence between commonly prescribed PD medications and gut-microbiota, and we offer insights on the involvement also of nasal and oral microbiota in PD pathology, thus providing a comprehensive and up-to-date overview on the role of microbial features in disease diagnosis and treatment.
Collapse
|
3
|
Pinizzotto CC, Patwardhan A, Aldarondo D, Kritzer MF. Task-specific effects of biological sex and sex hormones on object recognition memories in a 6-hydroxydopamine-lesion model of Parkinson's disease in adult male and female rats. Horm Behav 2022; 144:105206. [PMID: 35653829 DOI: 10.1016/j.yhbeh.2022.105206] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 05/19/2022] [Accepted: 05/21/2022] [Indexed: 01/13/2023]
Abstract
Many patients with Parkinson's disease (PD) experience cognitive or memory impairments with few therapeutic options available to mitigate them. This has fueled interest in determining how factors including sex and sex hormones modulate higher order function in this disease. The objective of this study was to use the Novel Object Recognition (NOR) and Object-in-Place (OiP) paradigms to compare the effects of a bilateral neostriatal 6-hydroxydopamine (6-OHDA) lesion model of PD in gonadally intact male and female rats, in orchidectomized male rats and in orchidectomized males supplemented with 17β-estradiol or testosterone propionate on measures of recognition memory similar to those at risk in PD. These studies showed that 6-ODHA lesions impaired discrimination in both tasks in males but not females. Further, 6-OHDA lesions disrupted NOR performance similarly in all males regardless of whether they were gonadally intact, orchidectomized or hormone-supplemented. In contrast, OiP performance was disrupted in males that were orchidectomized or 6-OHDA-lesioned but was spared in orchidectomized and orchidectomized, 6-OHDA lesioned males supplemented with 17β-estradiol. The distinct effects that sex and/or sex hormones have on 6-OHDA lesion-induced NOR vs. OiP deficits identified here also differ from corresponding impacts recently described for 6-OHDA lesion-induced deficits in spatial working memory and episodic memory. Together, the collective data provide strong evidence for effects of sex and sex hormones on cognition and memory in PD as being behavioral task and behavioral domain specific. This specificity could explain why a cohesive clinical picture of endocrine impacts on higher order function in PD has remained elusive.
Collapse
Affiliation(s)
- Claudia C Pinizzotto
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, New York 11794, USA.
| | - Aishwarya Patwardhan
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, New York 11794, USA.
| | - Daniel Aldarondo
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, New York 11794, USA.
| | - Mary F Kritzer
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, New York 11794, USA.
| |
Collapse
|
4
|
Sheng S, Zhao S, Zhang F. Insights into the roles of bacterial infection and antibiotics in Parkinson’s disease. Front Cell Infect Microbiol 2022; 12:939085. [PMID: 35967873 PMCID: PMC9366083 DOI: 10.3389/fcimb.2022.939085] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 07/11/2022] [Indexed: 11/25/2022] Open
Abstract
Parkinson’s disease (PD) is one of the most common neurodegenerative disorders, which is accompanied with the classical motor symptoms and a range of non-motor symptoms. Bacterial infection affects the neuroinflammation associated with the pathology of PD and various antibiotics have also been confirmed to play an important role not only in bacterial infection, but also in the PD progression. This mini-review summarized the role of common bacterial infection in PD and introduced several antibiotics that had anti-PD effects.
Collapse
Affiliation(s)
- Shuo Sheng
- Key Laboratory of Basic Pharmacology of the Ministry of Education, Zunyi Medical University, Zunyi, China
- Joint International Research Laboratory of Ethnomedicine of the Ministry of Education, Zunyi Medical University, Zunyi, China
- Key Laboratory of Basic Pharmacology of Guizhou Province, Zunyi Medical University, Zunyi, China
| | - Shuo Zhao
- Electron Microscopy Room of School of Basic Medicine, Zunyi Medical University, Zunyi, China
| | - Feng Zhang
- Key Laboratory of Basic Pharmacology of the Ministry of Education, Zunyi Medical University, Zunyi, China
- Joint International Research Laboratory of Ethnomedicine of the Ministry of Education, Zunyi Medical University, Zunyi, China
- Key Laboratory of Basic Pharmacology of Guizhou Province, Zunyi Medical University, Zunyi, China
- Laboratory Animal Center, Zunyi Medical University, Zunyi, China
- *Correspondence: Feng Zhang,
| |
Collapse
|
5
|
The effects of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) on the cognitive and motor functions in rodents: A systematic review and meta-analysis. Neurosci Biobehav Rev 2022; 140:104792. [PMID: 35872230 DOI: 10.1016/j.neubiorev.2022.104792] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 07/16/2022] [Accepted: 07/20/2022] [Indexed: 11/24/2022]
Abstract
Memory and motor deficits are commonly identified in Parkinson's disease (PD). 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) is transformed to MPP+ via monoamine oxidase B (MAOB), which causes oxidative stress and destroys dopaminergic (DA) neurons in substantia nigra pars compacta (SNc) and is widely used to create animal models of PD. However, to-date, a comprehensive analysis of the MPTP effects on various aspects of PD does not exist. Here, we provide a systematic review and meta-analysis on the MPTP effects on memory and motor functions by analyzing 51 studies on more than one thousand animals mainly including rats and mice. The results showed that in addition to motor functions such as coordination, balance and locomotor activity, MPTP significantly affects various mnemonic processes including spatial memory, working memory, recognition memory, and associative memory compared with the control group with some differences between systemic and intra-nigral injections on spatial memory, familiar object recognition, and anxiety-like behaviors. Nevertheless, our analysis failed to find systematic relationship between MPTP injection protocol parameters reported and the extent of the induced PD symptoms that can be a cause of concern for replicability of MPTP studies.
Collapse
|
6
|
Markova EV, Knyazheva MA, Tikhonova MA, Amstislavskaya TG. Structural and functional characteristics of the hippocampus in depressive-like recipients after transplantation of in vitro caffeine-modulated immune cells. Neurosci Lett 2022; 786:136790. [PMID: 35839995 DOI: 10.1016/j.neulet.2022.136790] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 07/05/2022] [Accepted: 07/08/2022] [Indexed: 10/17/2022]
Abstract
The hippocampus is a key anatomical brain region associated with depression. On the other hand, immune cells and their releasing cytokines play an essential role in stress and depression. Noteworthy that the most of psychoactive drugs produce unidirectional effects on the cells of both nervous and immune systems. This suggests the immunotherapy for behavioral disorders based on the treatment with autologous immune cells in which functional activity was modulated ex vivo by a psychoactive drug. Here, we treated the immune cells of depressive-like mice in vitro with caffeine (100 μg per 15 × 106 cells). The effects of caffeine-treated immune cells transplantation on neuronal density, production of brain-derived neurotrophic factor (BDNF) and a number of cytokines in the hippocampus of depressive-like syngeneic animals were studied. In depressive-like recipients, an increase in the density of pyramidal neurons in CA1 and CA3 hippocampal regions, accompanied with augmented level of BDNF, decreased levels of pro-inflammatory (IL-1β, IL-6, INF-γ, and TNF-α) and increased levels of anti-inflammatory (IL-10 and IL-4) cytokines was found. The mechanisms of the revealed structural and functional alterations in the hippocampus of depressive-like recipients after transplantation of caffeine-treated immune cells are discussed.
Collapse
Affiliation(s)
- Evgeniya V Markova
- Federal State Budgetary Scientific Institution "Research Institute of Fundamental and Clinical Immunology" (RIFCI), Yadrintsevskaya st., 14, 630099 Novosibirsk, Russia.
| | - Maria A Knyazheva
- Federal State Budgetary Scientific Institution "Research Institute of Fundamental and Clinical Immunology" (RIFCI), Yadrintsevskaya st., 14, 630099 Novosibirsk, Russia
| | - Maria A Tikhonova
- Scientific Research Institute of Neurosciences and Medicine (SRINM), Timakov str., 4, 630117 Novosibirsk, Russia.
| | - Tamara G Amstislavskaya
- Scientific Research Institute of Neurosciences and Medicine (SRINM), Timakov str., 4, 630117 Novosibirsk, Russia
| |
Collapse
|
7
|
Abulseoud OA, Alasmari F, Hussein AM, Sari Y. Ceftriaxone as a Novel Therapeutic Agent for Hyperglutamatergic States: Bridging the Gap Between Preclinical Results and Clinical Translation. Front Neurosci 2022; 16:841036. [PMID: 35864981 PMCID: PMC9294323 DOI: 10.3389/fnins.2022.841036] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 06/07/2022] [Indexed: 12/02/2022] Open
Abstract
Dysregulation of glutamate homeostasis is a well-established core feature of neuropsychiatric disorders. Extracellular glutamate concentration is regulated by glutamate transporter 1 (GLT-1). The discovery of a beta-lactam antibiotic, ceftriaxone (CEF), as a safe compound with unique ability to upregulate GLT-1 sparked the interest in testing its efficacy as a novel therapeutic agent in animal models of neuropsychiatric disorders with hyperglutamatergic states. Indeed, more than 100 preclinical studies have shown the efficacy of CEF in attenuating the behavioral manifestations of various hyperglutamatergic brain disorders such as ischemic stroke, amyotrophic lateral sclerosis (ALS), seizure, Huntington’s disease, and various aspects of drug use disorders. However, despite rich and promising preclinical data, only one large-scale clinical trial testing the efficacy of CEF in patients with ALS is reported. Unfortunately, in that study, there was no significant difference in survival between placebo- and CEF-treated patients. In this review, we discussed the translational potential of preclinical efficacy of CEF based on four different parameters: (1) initiation of CEF treatment in relation to induction of the hyperglutamatergic state, (2) onset of response in preclinical models in relation to onset of GLT-1 upregulation, (3) mechanisms of action of CEF on GLT-1 expression and function, and (4) non-GLT-1-mediated mechanisms for CEF. Our detailed review of the literature brings new insights into underlying molecular mechanisms correlating the preclinical efficacy of CEF. We concluded here that CEF may be clinically effective in selected cases in acute and transient hyperglutamatergic states such as early drug withdrawal conditions.
Collapse
Affiliation(s)
- Osama A. Abulseoud
- Department of Psychiatry and Psychology, Alex School of Medicine at Mayo Clinic, Phoenix, AZ, United States
- *Correspondence: Osama A. Abulseoud,
| | - Fawaz Alasmari
- Department of Pharmacology and Experimental Therapeutics, University of Toledo, Toledo, OH, United States
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Abdelaziz M. Hussein
- Department of Medical Physiology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Youssef Sari
- Department of Pharmacology and Experimental Therapeutics, University of Toledo, Toledo, OH, United States
- Youssef Sari,
| |
Collapse
|
8
|
Tikhonova MA, Chang HM, Singh SK, Vieau D. Editorial: Experimental and Innovative Approaches to Multi-Target Treatment of Parkinson's and Alzheimer's Diseases. Front Neurosci 2022; 16:910020. [PMID: 35651630 PMCID: PMC9150500 DOI: 10.3389/fnins.2022.910020] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 04/06/2022] [Indexed: 01/01/2023] Open
Affiliation(s)
- Maria A. Tikhonova
- Laboratory of the Experimental Models of Neurodegenerative Processes, Department of Experimental Neuroscience, Scientific Research Institute of Neurosciences and Medicine (SRINM), Novosibirsk, Russia
- *Correspondence: Maria A. Tikhonova
| | - Hung-Ming Chang
- Department of Anatomy and Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | | | - Didier Vieau
- U1172 - LilNCog - Lille Neuroscience and Cognition, Alzheimer and Tauopathies, Université de Lille, Lille, France
| |
Collapse
|
9
|
Parrella E, Del Gallo F, Porrini V, Gussago C, Benarese M, Fabene PF, Pizzi M. Age-Dependent Neuropsychiatric Symptoms in the NF-κB/c-Rel Knockout Mouse Model of Parkinson’s Disease. Front Behav Neurosci 2022; 16:831664. [PMID: 35368305 PMCID: PMC8965703 DOI: 10.3389/fnbeh.2022.831664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 01/20/2022] [Indexed: 11/16/2022] Open
Abstract
Non-motor symptoms are frequently observed in Parkinson’s disease (PD) and precede the onset of motor deficits by years. Among them, neuropsychiatric symptoms, including anxiety, depression, and apathy, are increasingly considered as a major challenge for patients with PD and their caregivers. We recently reported that mice lacking the nuclear factor-κB (NF-κB)/c-Rel protein (c-rel–/– mice) develop an age-dependent PD-like pathology and phenotype characterized by the onset of non-motor symptoms, including constipation and hyposmia, starting at 2 months of age, and motor deficits at 18 months. To assess whether c-rel–/– mice also suffer from neuropsychiatric symptoms, in this study we tested different cohorts of wild-type (wt) and c-rel–/– mice at 3, 6, 12, and 18–20 months with different behavioral tests. Mice lacking c-Rel displayed anxiety and depressive-like behavior starting in the premotor phase at 12 months, as indicated by the analysis with the open field (OF) test and the forced swim test with water wheel (FST), respectively. A deficit in the goal-oriented nesting building test was detected at 18–20 months, suggesting apathetic behavior. Taken together, these results indicate that c-rel–/– mice recapitulate the onset and the progression of PD-related neuropsychiatric symptoms. Therefore, this animal model may represent a valuable tool to study the prodromal stage of PD and for testing new therapeutic strategies to alleviate neuropsychiatric symptoms.
Collapse
Affiliation(s)
- Edoardo Parrella
- Division of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
- *Correspondence: Edoardo Parrella,
| | - Federico Del Gallo
- Section of Anatomy and Histology, Department of Neurosciences, Biomedicine and Movement Sciences, School of Medicine, University of Verona, Verona, Italy
| | - Vanessa Porrini
- Division of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Cristina Gussago
- Division of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Marina Benarese
- Division of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Paolo Francesco Fabene
- Section of Anatomy and Histology, Department of Neurosciences, Biomedicine and Movement Sciences, School of Medicine, University of Verona, Verona, Italy
| | - Marina Pizzi
- Division of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| |
Collapse
|
10
|
Shen S, Zhang C, Xu YM, Shi CH. The Role of Pathogens and Anti-Infective Agents in Parkinson's Disease, from Etiology to Therapeutic Implications. JOURNAL OF PARKINSONS DISEASE 2021; 12:27-44. [PMID: 34719435 PMCID: PMC8842782 DOI: 10.3233/jpd-212929] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Parkinson's disease is a debilitating neurodegenerative disorder whose etiology is still unclear, hampering the development of effective treatments. There is an urgent need to identify the etiology and provide further effective treatments. Recently, accumulating evidence has indicated that infection may play a role in the etiology of Parkinson's disease. The infective pathogens may act as a trigger for Parkinson's disease, the most common of which are hepatitis C virus, influenza virus, and Helicobacter pylori. In addition, gut microbiota is increasingly recognized to influence brain function through the gut-brain axis, showing an important role in the pathogenesis of Parkinson's disease. Furthermore, a series of anti-infective agents exhibit surprising neuroprotective effects via various mechanisms, such as interfering with α-synuclein aggregation, inhibiting neuroinflammation, attenuating oxidative stress, and preventing from cell death, independent of their antimicrobial effects. The pleiotropic agents affect important events in the pathogenesis of Parkinson's disease. Moreover, most of them are less toxic, clinically safe and have good blood-brain penetrability, making them hopeful candidates for the treatment of Parkinson's disease. However, the use of antibiotics and subsequent gut dysbiosis may also play a role in Parkinson's disease, making the long-term effects of anti-infective drugs worthy of further consideration and exploration. This review summarizes the current evidence for the association between infective pathogens and Parkinson's disease and subsequently explores the application prospects of anti-infective drugs in Parkinson's disease treatment, providing novel insights into the pathogenesis and treatment of Parkinson's disease.
Collapse
Affiliation(s)
- Si Shen
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
| | - Chan Zhang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China.,Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
| | - Yu-Ming Xu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China.,Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China.,Institute of Neuroscience, Zhengzhou University, Zhengzhou, Henan, China
| | - Chang-He Shi
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China.,Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China.,Institute of Neuroscience, Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
11
|
Tikhonova MA, Amstislavskaya TG, Ho YJ, Akopyan AA, Tenditnik MV, Ovsyukova MV, Bashirzade AA, Dubrovina NI, Aftanas LI. Neuroprotective Effects of Ceftriaxone Involve the Reduction of Aβ Burden and Neuroinflammatory Response in a Mouse Model of Alzheimer's Disease. Front Neurosci 2021; 15:736786. [PMID: 34658774 PMCID: PMC8511453 DOI: 10.3389/fnins.2021.736786] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 08/30/2021] [Indexed: 12/23/2022] Open
Abstract
Ceftriaxone (CEF) is a safe and multipotent antimicrobial agent that possesses neuroprotective properties. Earlier, we revealed the restoration of cognitive function in OXYS rats with signs of Alzheimer's disease (AD)-like pathology by CEF along with its modulating the expression of genes related to the system of amyloid beta (Aβ) metabolism in the brain. The aim of this study was to determine the effects of CEF on behavior, Aβ deposition, and associated neuroinflammation using another model of an early AD-like pathology induced by Aβ. Mice were injected bilaterally i.c.v. with Aβ fragment 25-35 to produce the AD model, while the CEF treatment (100 mg/kg/day, i.p., 36 days) started the next day after the surgery. The open field test, T-maze, Barnes test, IntelliCage, and passive avoidance test were used for behavioral phenotyping. Neuronal density, amyloid accumulation, and the expression of neuroinflammatory markers were measured in the frontal cortex and hippocampus. CEF exhibited beneficial effects on some cognitive features impaired by Aβ neurotoxicity including complete restoration of the fear-induced memory and learning in the passive avoidance test and improved place learning in the IntelliCage. CEF significantly attenuated amyloid deposition and neuroinflammatory response. Thus, CEF could be positioned as a potent multipurpose drug as it simultaneously targets proteostasis network and neuroinflammation, as well as glutamate excitotoxicity, oxidative pathways, and neurotrophic function as reported earlier. Together with previous reports on the positive effects of CEF in AD models, the results confirm the potential of CEF as a promising treatment against cognitive decline from the early stages of AD progression.
Collapse
Affiliation(s)
- Maria A Tikhonova
- Laboratory of the Experimental Models of Neurodegenerative Processes, Department of Experimental Neuroscience, Scientific Research Institute of Neurosciences and Medicine (SRINM), Novosibirsk, Russia
| | - Tamara G Amstislavskaya
- Laboratory of Translational Biopsychiatry, Department of Experimental Neuroscience, Scientific Research Institute of Neurosciences and Medicine (SRINM), Novosibirsk, Russia.,Department of Neuroscience, Institute of Medicine and Psychology, Novosibirsk State University, Novosibirsk, Russia
| | - Ying-Jui Ho
- Department of Psychology, Chung Shan Medical University Hospital, Chung Shan Medical University, Taichung, Taiwan
| | - Anna A Akopyan
- Laboratory of the Experimental Models of Neurodegenerative Processes, Department of Experimental Neuroscience, Scientific Research Institute of Neurosciences and Medicine (SRINM), Novosibirsk, Russia
| | - Michael V Tenditnik
- Laboratory of the Experimental Models of Neurodegenerative Processes, Department of Experimental Neuroscience, Scientific Research Institute of Neurosciences and Medicine (SRINM), Novosibirsk, Russia
| | - Marina V Ovsyukova
- Laboratory of the Experimental Models of Neurodegenerative Processes, Department of Experimental Neuroscience, Scientific Research Institute of Neurosciences and Medicine (SRINM), Novosibirsk, Russia
| | - Alim A Bashirzade
- Laboratory of Translational Biopsychiatry, Department of Experimental Neuroscience, Scientific Research Institute of Neurosciences and Medicine (SRINM), Novosibirsk, Russia.,Faculty of Life Sciences, Novosibirsk State University, Novosibirsk, Russia
| | - Nina I Dubrovina
- Laboratory of the Experimental Models of Neurodegenerative Processes, Department of Experimental Neuroscience, Scientific Research Institute of Neurosciences and Medicine (SRINM), Novosibirsk, Russia
| | - Lyubomir I Aftanas
- Department of Neuroscience, Institute of Medicine and Psychology, Novosibirsk State University, Novosibirsk, Russia.,Department of Clinical Neuroscience, Behavior and Neurotechnologies, Scientific Research Institute of Neurosciences and Medicine (SRINM), Novosibirsk, Russia
| |
Collapse
|
12
|
Valori CF, Possenti A, Brambilla L, Rossi D. Challenges and Opportunities of Targeting Astrocytes to Halt Neurodegenerative Disorders. Cells 2021; 10:cells10082019. [PMID: 34440788 PMCID: PMC8395029 DOI: 10.3390/cells10082019] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/30/2021] [Accepted: 08/03/2021] [Indexed: 12/12/2022] Open
Abstract
Neurodegenerative diseases are a heterogeneous group of disorders whose incidence is likely to duplicate in the next 30 years along with the progressive aging of the western population. Non-cell-specific therapeutics or therapeutics designed to tackle aberrant pathways within neurons failed to slow down or halt neurodegeneration. Yet, in the last few years, our knowledge of the importance of glial cells to maintain the central nervous system homeostasis in health conditions has increased exponentially, along with our awareness of their fundamental and multifaced role in pathological conditions. Among glial cells, astrocytes emerge as promising therapeutic targets in various neurodegenerative disorders. In this review, we present the latest evidence showing the astonishing level of specialization that astrocytes display to fulfill the demands of their neuronal partners as well as their plasticity upon injury. Then, we discuss the controversies that fuel the current debate on these cells. We tackle evidence of a potential beneficial effect of cell therapy, achieved by transplanting astrocytes or their precursors. Afterwards, we introduce the different strategies proposed to modulate astrocyte functions in neurodegeneration, ranging from lifestyle changes to environmental cues. Finally, we discuss the challenges and the recent advancements to develop astrocyte-specific delivery systems.
Collapse
Affiliation(s)
- Chiara F. Valori
- Molecular Neuropathology of Neurodegenerative Diseases, German Centre for Neurodegenerative Diseases (DZNE), 72076 Tübingen, Germany
- Correspondence: (C.F.V.); (D.R.); Tel.: +49-7071-9254-122 (C.F.V.); +39-0382-592064 (D.R.)
| | - Agostino Possenti
- Laboratory for Research on Neurodegenerative Disorders, Istituti Clinici Scientifici Maugeri IRCCS, 27100 Pavia, Italy; (A.P.); (L.B.)
| | - Liliana Brambilla
- Laboratory for Research on Neurodegenerative Disorders, Istituti Clinici Scientifici Maugeri IRCCS, 27100 Pavia, Italy; (A.P.); (L.B.)
| | - Daniela Rossi
- Laboratory for Research on Neurodegenerative Disorders, Istituti Clinici Scientifici Maugeri IRCCS, 27100 Pavia, Italy; (A.P.); (L.B.)
- Correspondence: (C.F.V.); (D.R.); Tel.: +49-7071-9254-122 (C.F.V.); +39-0382-592064 (D.R.)
| |
Collapse
|
13
|
Ceftriaxone Treatment Weakens Long-Term Synaptic Potentiation in the Hippocampus of Young Rats. Int J Mol Sci 2021; 22:ijms22168417. [PMID: 34445137 PMCID: PMC8395093 DOI: 10.3390/ijms22168417] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 07/28/2021] [Accepted: 08/02/2021] [Indexed: 12/02/2022] Open
Abstract
Disrupted glutamate clearance in the synaptic cleft leads to synaptic dysfunction and neurological diseases. Decreased glutamate removal from the synaptic cleft is known to cause excitotoxicity. Data on the physiological effects of increased glutamate clearance are contradictory. This study investigated the consequences of ceftriaxone (CTX), an enhancer of glutamate transporter 1 expression, treatment on long-term synaptic potentiation (LTP) in the hippocampus of young rats. In this study, 5-day administration of CTX (200 mg/kg) significantly weakened LTP in CA3-CA1 synapses. As shown by electrophysiological recordings, LTP attenuation was associated with weakening of N-Methyl-D-aspartate receptor (NMDAR)-dependent signaling in synapses. However, PCR analysis did not show downregulation of NMDAR subunits or changes in the expression of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) subunits. We assume that extracellular burst stimulation activates fewer synapses in CTX-treated animals because increased glutamate reuptake results in reduced spillover, and neighboring synapses do not participate in neurotransmission. Attenuation of LTP was not accompanied by noticeable behavioral changes in the CTX group, with no behavioral abnormalities observed in the open field test or Morris water maze test. Thus, our experiments show that increased glutamate clearance can impair long-term synaptic plasticity and that this phenomenon can be considered a potential side effect of CTX treatment.
Collapse
|
14
|
Li HH, Lin PJ, Wang WH, Tseng LH, Tung H, Liu WY, Lin CL, Liu CH, Liao WC, Hung CS, Ho YJ. Treatment effects of the combination of ceftriaxone and valproic acid on neuronal and behavioural functions in a rat model of epilepsy. Exp Physiol 2021; 106:1814-1828. [PMID: 34086374 DOI: 10.1113/ep089624] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 06/03/2021] [Indexed: 01/29/2023]
Abstract
NEW FINDINGS What is the central question of this study? Imbalance of activities between GABAergic and glutamatergic systems is involved in epilepsy. It is not known whether simultaneously increasing GABAergic and decreasing glutamatergic activity using valproic acid and ceftriaxone, respectively, leads to better seizure control. What is the central question of this study? Ceftriaxone suppressed seizure and cognitive deficits and restored neuronal density and the number of newborn cells in the hippocampus in a rat model of epilepsy. Combined treatment with ceftriaxone and valproic acid showed additive effects in seizure suppression. ABSTRACT The pathophysiology of epilepsy is typically considered as an imbalance between inhibitory GABA and excitatory glutamate neurotransmission. Valproic acid (Val), a GABA agonist, is one of the first-line antiepileptic drugs in the treatment of epilepsy, but it exhibits adverse effects. Ceftriaxone (CEF) elevates expression of glutamate transporter-1, enhances the reuptake of synaptic glutamate, increases the number of newborn cells and exhibits neuroprotective effects in animal studies. In this study, we evaluated effects of the combination of CEF and Val on behavioural and neuronal measures in a rat epilepsy model. Male Wistar rats were injected i.p. with pentylenetetrazol (35 mg/kg, every other day for 13 days) to induce the epilepsy model. Ceftriaxone (10 or 50 mg/kg), Val (50 or 100 mg/kg) or the combination of CEF and Val were injected daily after the fourth pentylenetetrazol injection for seven consecutive days. Epileptic rats exhibited seizure and impairments in motor and cognitive functions. Treatment with CEF and Val reduced the seizure and enhanced motor and cognitive functions in a dose-dependent manner. The combination of CEF (10 mg/kg) and Val (50 mg/kg) improved behaviours considerably. Histologically, compared with control animals, epileptic rats exhibited lower neuronal density and a reduction in hippocampal newborn cells but higher apoptosis in the basolateral amygdala, all of which were restored by the treatment with CEF, Val or the combination of CEF and Val. The study findings demonstrated that the combination of low doses of CEF and Val has beneficial effects on seizure suppression, neuroprotection and improvement in motor and cognitive functions in epilepsy.
Collapse
Affiliation(s)
- Hsin-Hua Li
- Department of Medical Research, Institute of Medicine, Chung Shan Medical University Hospital, Chung Shan Medical University, Taichung, Taiwan, Republic of China
| | - Pin-Jiun Lin
- Department of Psychology, Chung Shan Medical University Hospital, Chung Shan Medical University, Taichung, Taiwan, Republic of China
| | - Wei-Han Wang
- Department of Psychology, Kaohsiung Medical University, Kaohsiung, Taiwan, Republic of China
| | - Li-Ho Tseng
- Graduate School of Environmental Management, Tajen University, Pingtung, Taiwan, Republic of China
| | - Hsin Tung
- Division of Epilepsy, Center of Faculty Development, Neurological Institute, Taichung Veterans General Hospital, Taichung, Taiwan, Republic of China
| | - Wen-Yuan Liu
- Department of Psychology, Chung Shan Medical University Hospital, Chung Shan Medical University, Taichung, Taiwan, Republic of China
| | - Chih-Li Lin
- Department of Medical Research, Institute of Medicine, Chung Shan Medical University Hospital, Chung Shan Medical University, Taichung, Taiwan, Republic of China
| | - Chiung-Hui Liu
- Department of Anatomy, Faculty of Medicine, Chung Shan Medical University, Taichung, Taiwan, Republic of China
| | - Wen-Chieh Liao
- Department of Anatomy, Faculty of Medicine, Chung Shan Medical University, Taichung, Taiwan, Republic of China
| | - Ching-Sui Hung
- Occupational Safety and Health Office, Taipei City Hospital, Taipei, Taiwan, Republic of China
| | - Ying-Jui Ho
- Department of Psychology, Chung Shan Medical University Hospital, Chung Shan Medical University, Taichung, Taiwan, Republic of China
| |
Collapse
|
15
|
Meng X, Zhong J, Zeng C, Yung KKL, Zhang X, Wu X, Qu S. MiR-30a-5p Regulates GLT-1 Function via a PKCα-Mediated Ubiquitin Degradation Pathway in a Mouse Model of Parkinson's Disease. ACS Chem Neurosci 2021; 12:1578-1592. [PMID: 33882234 DOI: 10.1021/acschemneuro.1c00076] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Glutamate excitotoxicity is caused by dysfunctional glutamate transporters and plays an important role in the pathogenesis of Parkinson's disease (PD); however, the mechanisms that underlie the regulation of glutamate transporters in PD are still not fully elucidated. MicroRNAs(miRNA), which are abundant in astrocytes and neurons, have been reported to play key roles in regulating the translation of glutamate-transporter mRNA. In this study, we hypothesized that the miR-30a-5p contributes to the pathogenesis of PD by regulating the ubiquitin-mediated degradation of glutamate transporter 1 (GLT-1). We demonstrated that short-hairpin RNA-mediated knockdown of miR-30a-5p ameliorated motor deficits and pathological changes like astrogliosis and reactive microgliosis in a mouse model of PD (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated mice). Western blotting and immunofluorescent labeling revealed that miR-30a-5p suppressed the expression and function of GLT-1 in MPTP-treated mice and specifically in astrocytes treated with 1-methyl-4-phenylpyridinium (MPP+) (cell model of PD). Both in vitro and in vivo, we found that miR-30a-5p knockdown promoted glutamate uptake and increased GLT-1 expression by hindering GLT-1 ubiquitination and subsequent degradation in a PKCα-dependent manner. Therefore, we conclude that miR-30a-5p represents a potential therapeutic target for the treatment of PD.
Collapse
Affiliation(s)
- Xingjun Meng
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
- Central Laboratory and Department of Neurology, Shunde Hospital, Southern Medical University (The First People’s Hospital of Shunde Foshan), Foshan, Guangdong 528300, China
- Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangzhou, Guangdong 510515, China
- Key Laboratory of Mental Health of the Ministry of Education, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Jianping Zhong
- Department of Neurology, Shunde Hospital of Southern Medical University (The First People’s Hospital of Shunde Foshan), Foshan, Guangdong 528300, China
| | - Chong Zeng
- Central Laboratory and Department of Neurology, Shunde Hospital, Southern Medical University (The First People’s Hospital of Shunde Foshan), Foshan, Guangdong 528300, China
| | - Ken Kin Lam Yung
- Department of Biology, Faculty of Science, Hong Kong Baptist University, Hong Kong, China
| | - Xiuping Zhang
- Teaching Center of Experimental Medicine, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Xiaojuan Wu
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Shaogang Qu
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
- Central Laboratory and Department of Neurology, Shunde Hospital, Southern Medical University (The First People’s Hospital of Shunde Foshan), Foshan, Guangdong 528300, China
- Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangzhou, Guangdong 510515, China
- Key Laboratory of Mental Health of the Ministry of Education, Southern Medical University, Guangzhou, Guangdong 510515, China
| |
Collapse
|
16
|
Gonçalves AM, Pereira-Santos AR, Esteves AR, Cardoso SM, Empadinhas N. The Mitochondrial Ribosome: A World of Opportunities for Mitochondrial Dysfunction Toward Parkinson's Disease. Antioxid Redox Signal 2021; 34:694-711. [PMID: 32098485 DOI: 10.1089/ars.2019.7997] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Significance: Mitochondrial ribosomes (mitoribosomes) are organelles that translate mitochondrial messenger RNA in the matrix and, in mammals, have evolved to translate 13 polypeptides of the pathway that performs oxidative phosphorylation (OXPHOS). Although a number of devastating diseases result from defects in this mitochondrial translation apparatus, most are associated with genetic mutations and little is known about allelopathic defects caused by antibiotics, toxins, or nonproteinogenic amino acids. Recent Advances: The levels of mitochondrial ribosomal subunits 12S and 16S ribosomal RNA (rRNA) in cells/tissues from patients carrying mutations in these genes have been associated with alterations in mitochondrial translation efficiency and with impaired OXPHOS activities, as well as with the severity of clinical phenotypes. In recent decades, important studies revealed a prominent role of mitochondrial dysfunction in Parkinson's disease (PD); however, the involvement of mitoribosomes remains largely unknown. Critical Issues: Considering that mitoribosomal structure and function can determine the efficiency of OXPHOS and that an impaired mitochondrial respiratory chain is a common finding in PD, we argue that the mitoribosome may be key to disease onset and progression. With this review, we comprehensively integrate the available knowledge on the composition, assembly, and role of the mitoribosome in mitochondrial efficiency, reflecting on its possible involvement in the etiopathogenesis of this epidemic disease as an appealing research avenue. Future Directions: If a direct correlation between mitoribosome failure and PD pathology is demonstrated, these mitochondrial organelles will provide valuable early clinical markers and potentially attractive targets for the development of innovative PD-directed therapeutic agents.
Collapse
Affiliation(s)
- Ana Mafalda Gonçalves
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,CIBB-Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal.,Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Ana Raquel Pereira-Santos
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,CIBB-Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| | - Ana Raquel Esteves
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,CIBB-Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| | - Sandra M Cardoso
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,CIBB-Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal.,Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Nuno Empadinhas
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,CIBB-Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal.,IIIUC-Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
17
|
Fachim HA, Guizzo R, Cunha AOS, Pereira AC, Anjos LC, Mortari MR, Santos WF. Ceftriaxone pretreatment confers neuroprotection in rats with acute glaucoma and reduces the score of seizures induced by pentylenotetrazole in mice. J Biochem Mol Toxicol 2020; 34:e22578. [DOI: 10.1002/jbt.22578] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 05/01/2020] [Accepted: 06/23/2020] [Indexed: 12/27/2022]
Affiliation(s)
- Helene A. Fachim
- Neurobiology and Venoms Laboratory, Department of Biology, FFCLRP University of São Paulo São Paulo Brazil
- Instituto de Neurociências e Comportamento de Ribeirão Preto—INeC Ribeirão Preto São Paulo Brazil
| | - Renato Guizzo
- Instituto de Neurociências e Comportamento de Ribeirão Preto—INeC Ribeirão Preto São Paulo Brazil
| | - Alexandra O. S. Cunha
- Neurobiology and Venoms Laboratory, Department of Biology, FFCLRP University of São Paulo São Paulo Brazil
- Instituto de Neurociências e Comportamento de Ribeirão Preto—INeC Ribeirão Preto São Paulo Brazil
| | - Adriana C. Pereira
- Neurobiology and Venoms Laboratory, Department of Biology, FFCLRP University of São Paulo São Paulo Brazil
- Instituto de Neurociências e Comportamento de Ribeirão Preto—INeC Ribeirão Preto São Paulo Brazil
| | - Lilian C. Anjos
- Neuropharmacology Laboratory, Department of Physiological Sciences University of Brasília‐UnB Brasília Brazil
| | - Márcia R. Mortari
- Neuropharmacology Laboratory, Department of Physiological Sciences University of Brasília‐UnB Brasília Brazil
| | - Wagner F. Santos
- Neurobiology and Venoms Laboratory, Department of Biology, FFCLRP University of São Paulo São Paulo Brazil
- Instituto de Neurociências e Comportamento de Ribeirão Preto—INeC Ribeirão Preto São Paulo Brazil
| |
Collapse
|
18
|
Rozhkova IN, Brusentsev EY, Igonina TN, Ragaeva DS, Petrova OM, Naprimerov VA, Tikhonova MA, Amstislavskaya TG, Amstislavsky SY. Delayed Effects of Surgery during Early Pregnancy on Brain Development in OXYS Rats. NEUROSCIENCE AND BEHAVIORAL PHYSIOLOGY 2020; 50:723-729. [DOI: 10.1007/s11055-020-00960-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 10/02/2018] [Accepted: 11/20/2018] [Indexed: 08/04/2023]
|
19
|
Smaga I, Fierro D, Mesa J, Filip M, Knackstedt LA. Molecular changes evoked by the beta-lactam antibiotic ceftriaxone across rodent models of substance use disorder and neurological disease. Neurosci Biobehav Rev 2020; 115:116-130. [PMID: 32485268 DOI: 10.1016/j.neubiorev.2020.05.016] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 05/06/2020] [Accepted: 05/26/2020] [Indexed: 02/06/2023]
Abstract
Ceftriaxone is a beta-lactam antibiotic that increases the expression of the major glutamate transporter, GLT-1. As such, ceftriaxone ameliorates symptoms across multiple rodent models of neurological diseases and substance use disorders. However, the mechanism behind GLT-1 upregulation is unknown. The present review synthesizes this literature in order to identify commonalities in molecular changes. We find that ceftriaxone (200 mg/kg for at least two days) consistently restores GLT-1 expression in multiple rodent models of neurological disease, especially when GLT-1 is decreased in the disease model. The same dose given to healthy/drug-naive rodents does not reliably upregulate GLT-1 in any brain region except the hippocampus. Increased GLT-1 expression does not consistently arise from transcriptional regulation, and is likely to be due to trafficking changes. In addition to altered transporter expression, ceftriaxone ameliorates neuropathologies (e.g. tau, amyloid beta, cell death) and aberrant protein expression associated with a number of neurological disease models. Taken together, these results indicate that ceftriaxone remains a strong candidate for treatment of multiple disorders in the clinic.
Collapse
Affiliation(s)
- Irena Smaga
- Maj Institute of Pharmacology Polish Academy of Sciences, Department of Drug Addiction Pharmacology, Smętna 12, PL, 31-343, Kraków, Poland
| | - Daniel Fierro
- Department of Psychology, University of Florida, 945 Center Dr., Gainesville, FL, 32611, USA
| | - Javier Mesa
- Department of Psychology, University of Florida, 945 Center Dr., Gainesville, FL, 32611, USA; Center for Addiction Research and Education, University of Florida, Gainesville, FL, 32611, USA
| | - Malgorzata Filip
- Maj Institute of Pharmacology Polish Academy of Sciences, Department of Drug Addiction Pharmacology, Smętna 12, PL, 31-343, Kraków, Poland
| | - Lori A Knackstedt
- Department of Psychology, University of Florida, 945 Center Dr., Gainesville, FL, 32611, USA; Center for Addiction Research and Education, University of Florida, Gainesville, FL, 32611, USA.
| |
Collapse
|
20
|
Cucinotta FA, Cacao E. Predictions of cognitive detriments from galactic cosmic ray exposures to astronauts on exploration missions. LIFE SCIENCES IN SPACE RESEARCH 2020; 25:129-135. [PMID: 32414486 DOI: 10.1016/j.lssr.2019.10.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Revised: 10/09/2019] [Accepted: 10/13/2019] [Indexed: 06/11/2023]
Abstract
For the first-time we report on predictions on cognitive detriments from galactic cosmic ray (GCR) exposures on long-duration space missions outside the protection of the Earth's magnetosphere and solid body shielding. Estimates are based on a relative risk (RR) model of the fluence response for proton and heavy ion in rodent studies using the widely used novel object recognition (NOR) test, which estimates detriments in recognition or object memory. Our recent meta-analysis showed that linear and linear-quadratic dose response models were not accurate, while exponential increasing fluence response models based on particle track structure provided good descriptions of rodent data for doses up to 1 Gy. Using detailed models of the GCR environment and particle transport in shielding and tissue, we predict the excess relative risk (ERR) for NOR detriments for several long-term space mission scenarios. Predictions suggest ERR < 0.15 for most space mission scenarios with ERR<0.1 for 1-year lunar surface missions, and about ERR~0.1 for a 1000 day Mars mission for average solar cycle conditions. We discuss possible implications of these ERR levels of cognitive performance detriments relative to other neurological challenges such as rodent models of Alzheimer's disease (AD), Parkinson's disease (PD) and traumatic brain injury (TBI). Comparisons suggest a small but potentially clinically significant risk for possible space mission scenarios.
Collapse
Affiliation(s)
- Francis A Cucinotta
- Department of Health Physics and Diagnostic Sciences, University of Nevada, Box 453037, Las Vegas, NV 89195-3037, United States.
| | - Eliedonna Cacao
- Department of Health Physics and Diagnostic Sciences, University of Nevada, Box 453037, Las Vegas, NV 89195-3037, United States
| |
Collapse
|
21
|
Hamidi N, Nozad A, Sheikhkanloui Milan H, Salari AA, Amani M. Effect of ceftriaxone on paired-pulse response and long-term potentiation of hippocampal dentate gyrus neurons in rats with Alzheimer-like disease. Life Sci 2019; 238:116969. [DOI: 10.1016/j.lfs.2019.116969] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 10/10/2019] [Accepted: 10/14/2019] [Indexed: 02/08/2023]
|
22
|
Astrocytes: Emerging Therapeutic Targets in Neurological Disorders. Trends Mol Med 2019; 25:750-759. [DOI: 10.1016/j.molmed.2019.04.010] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 04/15/2019] [Accepted: 04/24/2019] [Indexed: 12/13/2022]
|
23
|
Liu Y, Zong X, Huang J, Guan Y, Li Y, Du T, Liu K, Kang X, Dou C, Sun X, Wu R, Wen L, Zhang Y. Ginsenoside Rb1 regulates prefrontal cortical GABAergic transmission in MPTP-treated mice. Aging (Albany NY) 2019; 11:5008-5034. [PMID: 31314744 PMCID: PMC6682523 DOI: 10.18632/aging.102095] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 07/10/2019] [Indexed: 04/12/2023]
Abstract
Parkinson's disease (PD) is a common neurodegenerative disease, featured by motor deficits and non-motor symptoms such as cognitive impairment, and malfunction of gamma-aminobutyric acid (GABA) mediated inhibitory transmission plays an important role in PD pathogenesis. The ginsenoside Rb1 molecule, a major constituent of the extract from the Ginseng root, has been demonstrated to ameliorate motor deficits and prevent dopaminergic neuron death in PD. However, whether Rb1 can regulate GABAergic transmission in PD-associated deficits and its underlying mechanisms are still unclear. In this study, we explored the effects of Rb1 on the GABAergic synaptic transmission in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of PD. We demonstrated that Rb1 can bind with GABAARα1 and increase its expression in the SH-SY5Y cells and in the prefrontal cortex (PFC) of MPTP model in vitro and in vivo. Furthermore, Rb1 can promote prefrontal cortical GABA level and GABAergic transmission in MPTP-treated mice. We also revealed that Rb1 may suppress presynaptic GABABR1 to enhance GABA release and GABAA receptor-mediated inhibitory transmission. In addition, Rb1 attenuated MPTP-induced dysfunctional gait dynamic and cognitive impairment, and this neuroprotective mechanism possibly involved regulating prefrontal cortical GABAergic transmission. Thus, Rb1 may serve as a potential drug candidate for the treatment of PD.
Collapse
Affiliation(s)
- Yan Liu
- Department of Traditional Chinese Medicine, School of Medicine, Xiamen University, Xiamen 361102, China
- Key Laboratory of Neuroscience, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Xiaodan Zong
- Department of Medical Imaging, The Second Affiliated Hospital, Medical College of Shantou University, Shantou 515041, China
| | - Jie Huang
- School of Basic Medical Sciences, Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, China
| | - Yanfei Guan
- School of Basic Medical Sciences, Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, China
| | - Yuanquan Li
- School of Basic Medical Sciences, Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, China
| | - Ting Du
- Department of Traditional Chinese Medicine, School of Medicine, Xiamen University, Xiamen 361102, China
| | - Keyin Liu
- Department of Traditional Chinese Medicine, School of Medicine, Xiamen University, Xiamen 361102, China
| | - Xinpan Kang
- Department of Traditional Chinese Medicine, School of Medicine, Xiamen University, Xiamen 361102, China
| | - Chunyan Dou
- Department of Traditional Chinese Medicine, School of Medicine, Xiamen University, Xiamen 361102, China
| | - Xiangdong Sun
- School of Basic Medical Sciences, Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, China
| | - Renhua Wu
- Department of Medical Imaging, The Second Affiliated Hospital, Medical College of Shantou University, Shantou 515041, China
- Provincial Key Laboratory of Medical Molecular Imaging, Shantou 515041, China
| | - Lei Wen
- Department of Traditional Chinese Medicine, School of Medicine, Xiamen University, Xiamen 361102, China
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen 361102, China
| | - Yunlong Zhang
- Key Laboratory of Neuroscience, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, China
- Shenzhen Research Institute of Xiamen University, Shenzhen 518000, China
| |
Collapse
|
24
|
Tai CH, Bellesi M, Chen AC, Lin CL, Li HH, Lin PJ, Liao WC, Hung CS, Schwarting RK, Ho YJ. A new avenue for treating neuronal diseases: Ceftriaxone, an old antibiotic demonstrating behavioral neuronal effects. Behav Brain Res 2019; 364:149-156. [DOI: 10.1016/j.bbr.2019.02.020] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 01/14/2019] [Accepted: 02/12/2019] [Indexed: 12/27/2022]
|
25
|
Yimer EM, Hishe HZ, Tuem KB. Repurposing of the β-Lactam Antibiotic, Ceftriaxone for Neurological Disorders: A Review. Front Neurosci 2019; 13:236. [PMID: 30971875 PMCID: PMC6444273 DOI: 10.3389/fnins.2019.00236] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 02/27/2019] [Indexed: 12/12/2022] Open
Abstract
To date, there is no cure or disease-modifying agents available for most well-known neurological disorders. Current therapy is typically focused on relieving symptoms and supportive care in improving the quality of life of affected patients. Furthermore, the traditional de novo drug discovery technique is more challenging, particularly for neurological disorders. Therefore, the repurposing of existing drugs for these conditions is believed to be an efficient and dynamic approach that can substantially reduce the investments spent on drug development. Currently, there is emerging evidence that suggests the potential effect of a beta-lactam antibiotic, ceftriaxone (CEF), to alleviate the symptoms of different experimentally-induced neurological disorders: Parkinson's disease, Alzheimer's disease, amyotrophic lateral sclerosis, epileptic-seizure, brain ischemia, traumatic brain injuries, and neuropathic pain. CEF also affects the markers of oxidative status and neuroinflammation, glutamatergic systems as well as various aggregated toxic proteins involved in the pathogenesis of different neurological disorders. Moreover, it was found that CEF administration to drug dependent animal models improved the withdrawal symptoms upon drug discontinuation. Thus, this review aimed to describe the effects of CEF against multiple models of neurological illnesses, drug dependency, and withdrawal. It also emphasizes the possible mechanisms of neuroprotective actions of CEF with respective neurological maladies.
Collapse
Affiliation(s)
- Ebrahim M Yimer
- Department of Pharmacology and Toxicology, School of Pharmacy, College of Health Sciences, Mekelle University, Mekelle, Ethiopia
| | - Hailemichael Zeru Hishe
- Department of Pharmacology and Toxicology, School of Pharmacy, College of Health Sciences, Mekelle University, Mekelle, Ethiopia
| | - Kald Beshir Tuem
- Department of Pharmacology and Toxicology, School of Pharmacy, College of Health Sciences, Mekelle University, Mekelle, Ethiopia
| |
Collapse
|
26
|
Alotaibi G, Rahman S. Effects of glial glutamate transporter activator in formalin‐induced pain behaviour in mice. Eur J Pain 2018. [DOI: https://doi.org/10.1002/ejp.1343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Ghallab Alotaibi
- Department of Pharmaceutical Sciences, College of Pharmacy South Dakota State University Brookings South Dakota
| | - Shafiqur Rahman
- Department of Pharmaceutical Sciences, College of Pharmacy South Dakota State University Brookings South Dakota
| |
Collapse
|
27
|
Alotaibi G, Rahman S. Effects of glial glutamate transporter activator in formalin-induced pain behaviour in mice. Eur J Pain 2018; 23:765-783. [PMID: 30427564 DOI: 10.1002/ejp.1343] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 11/02/2018] [Accepted: 11/08/2018] [Indexed: 12/22/2022]
Abstract
BACKGROUND Nociceptive pain remains a prevalent clinical problem and often poorly responsive to the currently available analgesics. Previous studies have shown that astroglial glutamate transporter-1 (GLT-1) in the hippocampus and anterior cingulate cortex (ACC) is critically involved in pain processing and modulation. However, the role of astroglial GLT-1 in nociceptive pain involving the hippocampus and ACC remains unknown. We investigated the role of 3-[[(2-Methylphenyl) methyl]thio]-6-(2-pyridinyl)-pyridazine (LDN-212320), a GLT-1 activator, in nociceptive pain model and hippocampal-dependent behavioural tasks in mice. METHODS We evaluated the effects of LDN-212320 in formalin-induced nociceptive pain model. In addition, formalin-induced impaired hippocampal-dependent behaviours were measured using Y-maze and object recognition test. Furthermore, GLT-1 expression and extracellular signal-regulated kinase phosphorylation (pERK1/2) were measured in the hippocampus and ACC using Western blot analysis and immunohistochemistry. RESULTS The LDN-212320 (10 or 20 mg/kg, i.p) significantly attenuated formalin-evoked nociceptive behaviour. The antinociceptive effects of LDN-212320 were reversed by systemic administration of DHK (10 mg/kg, i.p), a GLT-1 antagonist. Moreover, LDN-212320 (10 or 20 mg/kg, i.p) significantly reversed formalin-induced impaired hippocampal-dependent behaviour. In addition, LDN-212320 (10 or 20 mg/kg, i.p) increased GLT-1 expressions in the hippocampus and ACC. On the other hand, LDN-212320 (20 mg/kg, i.p) significantly reduced formalin induced-ERK phosphorylation, a marker of nociception, in the hippocampus and ACC. CONCLUSION These results suggest that the GLT-1 activator LDN-212320 prevents nociceptive pain by upregulating astroglial GLT-1 expression in the hippocampus and ACC. Therefore, GLT-1 activator could be a novel drug candidate for nociceptive pain. SIGNIFICANCE The present study provides new insights and evaluates the role of GLT-1 activator in the modulation of nociceptive pain involving hippocampus and ACC. Here, we provide evidence that GLT-1 activator could be a potential therapeutic utility for the treatment of nociceptive pain.
Collapse
Affiliation(s)
- Ghallab Alotaibi
- Department of Pharmaceutical Sciences, College of Pharmacy, South Dakota State University, Brookings, South Dakota
| | - Shafiqur Rahman
- Department of Pharmaceutical Sciences, College of Pharmacy, South Dakota State University, Brookings, South Dakota
| |
Collapse
|
28
|
Crowley EK, Nolan YM, Sullivan AM. Exercise as a therapeutic intervention for motor and non-motor symptoms in Parkinson's disease: Evidence from rodent models. Prog Neurobiol 2018; 172:2-22. [PMID: 30481560 DOI: 10.1016/j.pneurobio.2018.11.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 10/25/2018] [Accepted: 11/23/2018] [Indexed: 12/11/2022]
Abstract
Parkinson's disease (PD) is characterised by degeneration of dopaminergic neurons of the nigrostriatal pathway, which leads to the cardinal motor symptoms of the disease - tremor, rigidity and postural instability. A number of non-motor symptoms are also associated with PD, including cognitive impairment, mood disturbances and dysfunction of gastrointestinal and autonomic systems. Current therapies provide symptomatic relief but do not halt the disease process, so there is an urgent need for preventative strategies. Lifestyle interventions such as aerobic exercise have shown potential to lower the risk of developing PD and to alleviate both motor and non-motor symptoms. However, there is a lack of large-scale randomised clinical trials that have employed exercise in PD patients. This review will focus on the evidence from studies on rodent models of PD, for employing exercise as an intervention for both motor and non-motor symptoms.
Collapse
Affiliation(s)
- E K Crowley
- Department of Anatomy and Neuroscience, University College Cork, Ireland
| | - Y M Nolan
- Department of Anatomy and Neuroscience, University College Cork, Ireland; APC Microbiome Institute, University College Cork, Ireland
| | - A M Sullivan
- Department of Anatomy and Neuroscience, University College Cork, Ireland; APC Microbiome Institute, University College Cork, Ireland.
| |
Collapse
|
29
|
Zhang X, Bai L, Zhang S, Zhou X, Li Y, Bai J. Trx-1 ameliorates learning and memory deficits in MPTP-induced Parkinson's disease model in mice. Free Radic Biol Med 2018; 124:380-387. [PMID: 29960099 DOI: 10.1016/j.freeradbiomed.2018.06.029] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Revised: 06/23/2018] [Accepted: 06/25/2018] [Indexed: 12/18/2022]
Abstract
Parkinson's disease (PD) is characterized by a progressive loss of dopaminergic neurons in the substantia nigra pars compacta (SNpc), characteristic motor symptoms and cognitive impairment. Thioredoxin-1 (Trx-1) is a redox protein and protects neurons from various injuries. Our previous study has shown that Trx-1 overexpression attenuates movement disorder in PD. However, whether Trx-1 ameliorates cognitive deficits in PD is still unknown. In the present study, we investigated the effects of Trx-1 on learning and memory in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD model in mice. We demonstrated that deficits in learning and memory were induced by MPTP in mice through the elevated plus-maze test. We found that the retention transfer latency time was shorten, escape latency was decreased and the number of platform crossings was increased in the Morris water maze (MWM) in Trx-1 transgenic (TG) mice when compared with wild type mice. The expressions of tyrosine hydroxylase (TH) and dopamine D1 receptor (D1R) were decreased by MPTP, which were restored in Trx-1 TG mice. The expression of N-methyl-D-aspartate receptor 2B subunit (NR2B), the levels of phosphorylation of extracellular signal-regulated kinase (ERK1/2) and cAMP-response element binding protein (CREB) in the hippocampus were decreased by MPTP, which were reversed in Trx-1 TG mice. These results suggest that Trx-1 ameliorates learning and memory deficits in MPTP-induced PD model in mice via modulating the D1R and the NMDAR-ERK1/2-CREB pathway. Trx-1 may be a therapy target for learning and memory deficits in PD.
Collapse
Affiliation(s)
- Xianwen Zhang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; Laboratory of Molecular Neurobiology, Medical Faculty, Kunming University of Science and Technology, Kunming 650500, China
| | - Liping Bai
- Laboratory of Molecular Neurobiology, Medical Faculty, Kunming University of Science and Technology, Kunming 650500, China
| | - Se Zhang
- Laboratory of Molecular Neurobiology, Medical Faculty, Kunming University of Science and Technology, Kunming 650500, China
| | - Xiaoshuang Zhou
- Laboratory of Molecular Neurobiology, Medical Faculty, Kunming University of Science and Technology, Kunming 650500, China
| | - Ye Li
- Laboratory of Molecular Neurobiology, Medical Faculty, Kunming University of Science and Technology, Kunming 650500, China.
| | - Jie Bai
- Laboratory of Molecular Neurobiology, Medical Faculty, Kunming University of Science and Technology, Kunming 650500, China.
| |
Collapse
|
30
|
Ceftriaxone Treatment for Neuronal Deficits: A Histological and MEMRI Study in a Rat Model of Dementia with Lewy Bodies. Behav Neurol 2018; 2018:4618716. [PMID: 30154934 PMCID: PMC6092970 DOI: 10.1155/2018/4618716] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 01/22/2018] [Accepted: 03/12/2018] [Indexed: 11/18/2022] Open
Abstract
Dementia with Lewy bodies (DLB) is characterized by neuronal deficits and α-synuclein inclusions in the brain. Ceftriaxone (CEF), a β-lactam antibiotic, has been suggested as a therapeutic agent in several neurodegenerative disorders for its abilities to counteract glutamate-mediated toxicity and to block α-synuclein polymerization. By using manganese-enhanced magnetic resonance imaging (MEMRI) and immunohistochemistry, we measured the effects of CEF on neuronal activity and α-synuclein accumulation in the brain in a DLB rat model. The data showed that CEF corrected neuronal density and activity in the hippocampal CA1 area, suppressed hyperactivity in the subthalamic nucleus, and reduced α-synuclein accumulation, indicating that CEF is a potential agent in the treatment of DLB.
Collapse
|
31
|
Igonina TN, Ragaeva DS, Tikhonova MA, Petrova OM, Herbeck YE, Rozhkova IN, Amstislavskaya TG, Amstislavsky SY. Neurodevelopment and behavior in neonatal OXYS rats with genetically determined accelerated senescence. Brain Res 2018; 1681:75-84. [DOI: 10.1016/j.brainres.2017.12.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 11/14/2017] [Accepted: 12/18/2017] [Indexed: 12/29/2022]
|
32
|
Novel tactics for neuroprotection in Parkinson's disease: Role of antibiotics, polyphenols and neuropeptides. Prog Neurobiol 2017; 155:120-148. [DOI: 10.1016/j.pneurobio.2015.10.004] [Citation(s) in RCA: 106] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2015] [Revised: 10/08/2015] [Accepted: 10/26/2015] [Indexed: 02/04/2023]
|
33
|
Neuroprotective effects of ceftriaxone treatment on cognitive and neuronal deficits in a rat model of accelerated senescence. Behav Brain Res 2017; 330:8-16. [DOI: 10.1016/j.bbr.2017.05.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 04/26/2017] [Accepted: 05/02/2017] [Indexed: 12/11/2022]
|
34
|
Tangeretin inhibits neurodegeneration and attenuates inflammatory responses and behavioural deficits in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced Parkinson’s disease dementia in rats. Inflammopharmacology 2017; 25:471-484. [DOI: 10.1007/s10787-017-0348-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 03/31/2017] [Indexed: 12/28/2022]
|
35
|
Hsieh MH, Meng WY, Liao WC, Weng JC, Li HH, Su HL, Lin CL, Hung CS, Ho YJ. Ceftriaxone reverses deficits of behavior and neurogenesis in an MPTP-induced rat model of Parkinson's disease dementia. Brain Res Bull 2017; 132:129-138. [PMID: 28576659 DOI: 10.1016/j.brainresbull.2017.05.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 04/22/2017] [Accepted: 05/23/2017] [Indexed: 12/29/2022]
Abstract
Hyperactivity of the glutamatergic system is involved in excitotoxicity and neurodegeneration in Parkinson's disease (PD) so that glutamatergic modulation maybe a potential therapeutic target for PD. Ceftriaxone (CEF) has been reported to increase glutamate uptake by increasing glutamate transporter expression and has been demonstrated neuroprotective effects in animal study. The aim of this study was to determine the effects of CEF on behavior and neurogenesis in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD rat model. MPTP was stereotaxically injected into the substantia nigra pars compacta (SNc) of male Wistar rats. Starting on the same day after MPTP lesioning (day 0), the rats were injected daily with either CEF or saline for 14days and underwent a T-maze test on days 8-10 and an object recognition test on days 12-14, then the brain was taken for histological evaluation on day 15. The results showed that MPTP lesioning resulted in decreased motor function, working memory, and object recognition and reduced neurogenesis in the substantial nigra and dentate gyrus of the hippocampus. These behavioral and neuronal changes were prevented by CEF treatment. To our knowledge, this is the first study showing that CEF prevents loss of neurogenesis in the brain of PD rats. CEF may therefore have clinical potential in the treatment of PD.
Collapse
Affiliation(s)
- Ming-Hong Hsieh
- Department of Psychiatry, Chung Shan Medical University Hospital, Department of Psychiatry, School of Medicine, Chung Shan Medical University, Taichung 402, Taiwan, ROC
| | - Wan-Yun Meng
- Department of Psychology, Chung Shan Medical University Hospital, Chung Shan Medical University, Taichung 402, Taiwan, ROC
| | - Wen-Chieh Liao
- Department of Anatomy, Faculty of Medicine, Chung Shan Medical University, Department of Pediatrics, Chung Shan Medical University Hospital, Taichung 402, Taiwan, ROC
| | - Jun-Cheng Weng
- Department of Medical Imaging and Radiological Sciences, Chung Shan Medical University, Taichung 402, Taiwan, ROC
| | - Hsin-Hua Li
- Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan, ROC
| | - Hong-Lin Su
- Department of Life Sciences, Agricultural Biotechnology Center, National Chung-Hsing University, Taichung 402, Taiwan, ROC
| | - Chih-Li Lin
- Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan, ROC.
| | - Ching-Sui Hung
- Occupational Safety and Health Office, Taipei City Hospital, Taipei 10341, Taiwan, ROC.
| | - Ying-Jui Ho
- Department of Psychology, Chung Shan Medical University Hospital, Chung Shan Medical University, Taichung 402, Taiwan, ROC.
| |
Collapse
|
36
|
Ragaeva DS, Tikhonova MA, Petrova OM, Igonina TN, Rozkova IN, Brusentsev EY, Amstislavskaya TG, Amstislavsky SY. Neonatal reflexes and behavior in hypertensive rats of ISIAH strain. Physiol Behav 2017; 175:22-30. [PMID: 28341233 DOI: 10.1016/j.physbeh.2017.03.026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 02/10/2017] [Accepted: 03/19/2017] [Indexed: 02/08/2023]
Abstract
Hypertension is one of the most common diseases in humans, and there is a special concern on the consequences of maternal hypertensive conditions for the health of newborns. An inherited stress-induced arterial hypertension (ISIAH) rat strain has been selected but only a few studies have addressed behavior in these rats. Body weight, neurodevelopmental reflexes, and neuronal density in the hippocampus were compared in ISIAH and normotensive WAG rats during their suckling period. Systolic and diastolic blood pressure (SBP, DBP), adult rat performance in the open field (OF), elevated plus maze (EPM), and novel object recognition (NOR) tests were evaluated at the age of 12-14weeks old. Body weight in pups did not differ significantly during the suckling period, while adult ISIAH rats were heavier than age-matched WAG rats and possessed the increased SBP and DBP. ISIAH pups were developmentally more advanced than WAG as indicated by grasp reflex and negative geotaxis reaction scores. This was associated with higher neuronal density in CA1 and CA3 hippocampal areas in ISIAH pups on postnatal day 6 as compared to WAG rats. Adult ISIAH rats demonstrated an increased locomotor and exploratory activity in the OF and EPM tests as well as low levels of anxiety. The NOR test revealed no significant difference in recognition but confirmed higher exploratory activity in ISIAH rats compared to WAG rats. The results indicate that hypertensive ISIAH rats feature accelerated development during their suckling period, and as adults, they are more active and less anxious than normotensive WAG rats.
Collapse
Affiliation(s)
- Diana S Ragaeva
- Federal State Budgetary Scientific Institution "Federal Research Center Institute of Cytology and Genetics", Novosibirsk 630090, Russia
| | - Maria A Tikhonova
- Federal State Budgetary Scientific Institution "Federal Research Center Institute of Cytology and Genetics", Novosibirsk 630090, Russia; Federal State Budgetary Scientific Institution "Scientific Research Institute of Physiology and Basic Medicine", Novosibirsk 630117, Russia; Novosibirsk State University, Novosibirsk 630090, Russia
| | - Olga M Petrova
- Federal State Budgetary Scientific Institution "Federal Research Center Institute of Cytology and Genetics", Novosibirsk 630090, Russia; Novosibirsk State University, Novosibirsk 630090, Russia
| | - Tatjana N Igonina
- Federal State Budgetary Scientific Institution "Federal Research Center Institute of Cytology and Genetics", Novosibirsk 630090, Russia
| | - Irina N Rozkova
- Federal State Budgetary Scientific Institution "Federal Research Center Institute of Cytology and Genetics", Novosibirsk 630090, Russia
| | - Eugeny Yu Brusentsev
- Federal State Budgetary Scientific Institution "Federal Research Center Institute of Cytology and Genetics", Novosibirsk 630090, Russia
| | - Tamara G Amstislavskaya
- Federal State Budgetary Scientific Institution "Federal Research Center Institute of Cytology and Genetics", Novosibirsk 630090, Russia; Federal State Budgetary Scientific Institution "Scientific Research Institute of Physiology and Basic Medicine", Novosibirsk 630117, Russia; Novosibirsk State University, Novosibirsk 630090, Russia
| | - Sergey Ya Amstislavsky
- Federal State Budgetary Scientific Institution "Federal Research Center Institute of Cytology and Genetics", Novosibirsk 630090, Russia.
| |
Collapse
|
37
|
Kaur B, Prakash A. Ceftriaxone attenuates glutamate-mediated neuro-inflammation and restores BDNF in MPTP model of Parkinson's disease in rats. ACTA ACUST UNITED AC 2017; 24:71-79. [PMID: 28245954 DOI: 10.1016/j.pathophys.2017.02.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 01/31/2017] [Accepted: 02/03/2017] [Indexed: 01/01/2023]
Abstract
The present study is designed to investigate the role of glutamate transporter in neuroprotection of ceftriaxone against MPTP induced PD animal model. Young male Wistar rats were subjected to intra-nigral administration of MPTP for the induction of Parkinson's disease. Glutamate modulators like ceftriaxone (CFX), Memantine (MEM) and Dihydrokainate (DHK) were administered to MPTP-lesioned rats. Different behavioral alterations were assessed in between the study period. Animals were sacrificed immediately after behavioral session, and different biochemical parameters were measured. Intranigral administration of MPTP showed significant impairment of motor behavior and marked increase in inflammatory mediators and oxidative stress parameters in rats. In addition, MPTP also produced significant decrease in brain-derived neurotrophic factor (BDNF) in striatum of rats. However, chronic administration of ceftriaxone (200mg/kg) has shown significant improvement in motor behavioral deficits and oxidative damage. In addition, Ceftriaxone also attenuated the marked increase of NFκB, TNF-α and IL-1β in MPTP treated rats thus, conferring its neuro-inflammatory property. Further, Ceftriaxone significantly restored the decreased activity of BDNF in striatum of MPTP treated rats. Moreover, pre-treatment of memantine (20mg/kg) with sub-therapeutic dose of ceftriaxone (100mg/kg) potentiated the protective effect of ceftriaxone. Furthermore, intra-nigral injection of DHK (200 nmol) with lower dose of ceftriaxone (100mg/kg) reversed the protective effect of ceftriaxone in MPTP treated rats. The present study concluded that ceftriaxone produce beneficial effect against MPTP induced PD like symptoms rats through glutamatergic pathways.
Collapse
Affiliation(s)
- Baninder Kaur
- Department of Pharmacology, ISF College of Pharmacy, Moga 142001, Punjab, India
| | - Atish Prakash
- Department of Pharmacology, ISF College of Pharmacy, Moga 142001, Punjab, India; Division of CNS Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
38
|
Regulation of glutamate transporter trafficking by Nedd4-2 in a Parkinson's disease model. Cell Death Dis 2017; 8:e2574. [PMID: 28151476 PMCID: PMC5386455 DOI: 10.1038/cddis.2016.454] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 11/05/2016] [Accepted: 12/07/2016] [Indexed: 01/06/2023]
Abstract
Glutamate transporters play a key role in glutamate clearance and protect the central nervous system from glutamate excitotoxicity. Dysfunctional glutamate transporters contribute to the pathogenesis of Parkinson's disease (PD); however, the mechanisms that underlie the regulation of glutamate transporters in PD are still not well characterized. Here we report that Nedd4-2 mediates the ubiquitination of glutamate transporters in 1-methyl-4- phenylpyridinium (MPP+)-treated astrocytes and in the midbrain of 1-methyl-4-phenyl-1,2,3,6- tetrahydropyridine (MPTP)-constructed PD model mice. Nedd4-2-mediated ubiquitination induces abnormal glutamate transporter trafficking between the membrane and cytoplasm and consequently decreases the expression and function of glutamate transporters in the membrane. Conversely, Nedd4-2 knockdown decreases glutamate transporter ubiquitination, promotes glutamate uptake and increases glutamate transporter expression in vitro and in vivo. We report for the first time that Nedd4-2 knockdown ameliorates movement disorders in PD mice and increases tyrosine hydroxylase expression in the midbrain and striatum of PD mice; Nedd4-2 knockdown also attenuates astrogliosis and reactive microgliosis in the MPTP model that may be associated with glutamate excitotoxicity. Furthermore, the SGK/PKC pathway is regulated downstream of Nedd4-2 in MPTP-treated mice. These findings indicate that Nedd4-2 may serve as a potential therapeutic target for the treatment of PD.
Collapse
|
39
|
Kim H, Oh JY, Choi SL, Nam YJ, Jo A, Kwon A, Shin EY, Kim EG, Kim HK. Down-regulation of p21-activated serine/threonine kinase 1 is involved in loss of mesencephalic dopamine neurons. Mol Brain 2016; 9:45. [PMID: 27121078 PMCID: PMC4848805 DOI: 10.1186/s13041-016-0230-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 04/21/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Although the roles of p21-activated serine/threonine kinase 1 (PAK1) have been reported in some neurodegenerative diseases, details regarding neurodegeneration are still limited. Hence, we tried to determine the role of PAK1 and molecular mechanisms of neuronal death involved in neurodegeneration. RESULTS Expression of a dominant-negative form of PAK1 (PAK1(H83,86L, K229R), PAK1-DN) decreased the cell viability and increased cell death induced by oxidative stress. Indeed, oxidative stress decreased the phosphorylation of PAK1 in neuroblastoma cells, cultured dopamine (DA) neurons, or rat midbrains. PAK1-DN reduced the level of Bcl-2 protein, through an ubiquitin/proteasome-dependent mechanism. The level of Bcl-2 may be regulated by PAK1-ERK signaling and/or PAK1, directly. Conversely, expression of an active form of PAK1 (PAK1(T423E), PAK1-CA) could recover both loss of DA neurons in the substantia nigra (SN) and behavioral defects in a 6-OHDA-induced hemiparkinsonian rat model. CONCLUSIONS Our data suggest that the oxidative stress-induced down-regulation of PAK1 activity could be involved in the loss of mesencephalic DA neurons through modulation of neuronal death, suggesting a novel role of PAK1 as a molecular determinant and mechanisms in the pathogenesis of Parkinson's disease.
Collapse
Affiliation(s)
- Hwanhee Kim
- Department of Medicine and Microbiology, College of Medicine, Signaling Disorder Research Center, Chungbuk National University, Cheongju, 28644, The Republic of Korea
| | - Jun-Young Oh
- Department of Medicine and Microbiology, College of Medicine, Signaling Disorder Research Center, Chungbuk National University, Cheongju, 28644, The Republic of Korea
| | - Sun-Lim Choi
- Department of Medicine and Microbiology, College of Medicine, Signaling Disorder Research Center, Chungbuk National University, Cheongju, 28644, The Republic of Korea
| | - Yeon-Ju Nam
- Department of Medicine and Microbiology, College of Medicine, Signaling Disorder Research Center, Chungbuk National University, Cheongju, 28644, The Republic of Korea
| | - Anna Jo
- Department of Medicine and Microbiology, College of Medicine, Signaling Disorder Research Center, Chungbuk National University, Cheongju, 28644, The Republic of Korea
| | - Ara Kwon
- Department of Medicine and Microbiology, College of Medicine, Signaling Disorder Research Center, Chungbuk National University, Cheongju, 28644, The Republic of Korea
| | - Eun-Young Shin
- Department of Medicine and Biochemistry, College of Medicine, Signaling Disorder Research Center, Chungbuk National University, Cheongju, 28644, The Republic of Korea
| | - Eung-Gook Kim
- Department of Medicine and Biochemistry, College of Medicine, Signaling Disorder Research Center, Chungbuk National University, Cheongju, 28644, The Republic of Korea
| | - Hyong Kyu Kim
- Department of Medicine and Microbiology, College of Medicine, Signaling Disorder Research Center, Chungbuk National University, Cheongju, 28644, The Republic of Korea. .,Department of Medicine and Microbiology, College of Medicine, Chungbuk National University, Chungdae-ro 1, Seowon-gu, Cheongju, 28644, The Republic of Korea.
| |
Collapse
|
40
|
Asakawa T, Fang H, Sugiyama K, Nozaki T, Hong Z, Yang Y, Hua F, Ding G, Chao D, Fenoy AJ, Villarreal SJ, Onoe H, Suzuki K, Mori N, Namba H, Xia Y. Animal behavioral assessments in current research of Parkinson's disease. Neurosci Biobehav Rev 2016; 65:63-94. [PMID: 27026638 DOI: 10.1016/j.neubiorev.2016.03.016] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 03/22/2016] [Accepted: 03/22/2016] [Indexed: 12/21/2022]
Abstract
Parkinson's disease (PD), a neurodegenerative disorder, is traditionally classified as a movement disorder. Patients typically suffer from many motor dysfunctions. Presently, clinicians and scientists recognize that many non-motor symptoms are associated with PD. There is an increasing interest in both motor and non-motor symptoms in clinical studies on PD patients and laboratory research on animal models that imitate the pathophysiologic features and symptoms of PD patients. Therefore, appropriate behavioral assessments are extremely crucial for correctly understanding the mechanisms of PD and accurately evaluating the efficacy and safety of novel therapies. This article systematically reviews the behavioral assessments, for both motor and non-motor symptoms, in various animal models involved in current PD research. We addressed the strengths and weaknesses of these behavioral tests and their appropriate applications. Moreover, we discussed potential mechanisms behind these behavioral tests and cautioned readers against potential experimental bias. Since most of the behavioral assessments currently used for non-motor symptoms are not particularly designed for animals with PD, it is of the utmost importance to greatly improve experimental design and evaluation in PD research with animal models. Indeed, it is essential to develop specific assessments for non-motor symptoms in PD animals based on their characteristics. We concluded with a prospective view for behavioral assessments with real-time assessment with mobile internet and wearable device in future PD research.
Collapse
Affiliation(s)
- Tetsuya Asakawa
- Department of Neurosurgery, Hamamatsu University School of Medicine, Hamamatsu-city, Shizuoka, Japan; Department of Psychiatry, Hamamatsu University School of Medicine, Hamamatsu-city, Shizuoka, Japan.
| | - Huan Fang
- Department of Pharmacy, Jinshan Hospital of Fudan University, Shanghai, China
| | - Kenji Sugiyama
- Department of Neurosurgery, Hamamatsu University School of Medicine, Hamamatsu-city, Shizuoka, Japan
| | - Takao Nozaki
- Department of Neurosurgery, Hamamatsu University School of Medicine, Hamamatsu-city, Shizuoka, Japan
| | - Zhen Hong
- Department of Neurology, Huashan Hospital of Fudan University, Shanghai, China
| | - Yilin Yang
- The First People's Hospital of Changzhou, Soochow University School of Medicine, Changzhou, China
| | - Fei Hua
- The First People's Hospital of Changzhou, Soochow University School of Medicine, Changzhou, China
| | - Guanghong Ding
- Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint Function, Fudan University, Shanghai, China
| | - Dongman Chao
- Department of Neurosurgery, The University of Texas McGovern Medical School,Houston, TX, USA
| | - Albert J Fenoy
- Department of Neurosurgery, The University of Texas McGovern Medical School,Houston, TX, USA
| | - Sebastian J Villarreal
- Department of Neurosurgery, The University of Texas McGovern Medical School,Houston, TX, USA
| | - Hirotaka Onoe
- Functional Probe Research Laboratory, RIKEN Center for Life Science Technologies, Kobe, Japan
| | - Katsuaki Suzuki
- Department of Psychiatry, Hamamatsu University School of Medicine, Hamamatsu-city, Shizuoka, Japan
| | - Norio Mori
- Department of Psychiatry, Hamamatsu University School of Medicine, Hamamatsu-city, Shizuoka, Japan
| | - Hiroki Namba
- Department of Neurosurgery, Hamamatsu University School of Medicine, Hamamatsu-city, Shizuoka, Japan
| | - Ying Xia
- Department of Neurosurgery, The University of Texas McGovern Medical School,Houston, TX, USA.
| |
Collapse
|
41
|
Weng JC, Tikhonova MA, Chen JH, Shen MS, Meng WY, Chang YT, Chen KH, Liang KC, Hung CS, Amstislavskaya TG, Ho YJ. Ceftriaxone prevents the neurodegeneration and decreased neurogenesis seen in a Parkinson's disease rat model: An immunohistochemical and MRI study. Behav Brain Res 2016; 305:126-39. [PMID: 26940602 DOI: 10.1016/j.bbr.2016.02.034] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Revised: 02/19/2016] [Accepted: 02/26/2016] [Indexed: 02/06/2023]
Abstract
Manganese-enhanced magnetic resonance imaging (MEMRI) is a widely used technique for detecting neuronal activity in the brain of a living animal. Ceftriaxone (CEF) has been shown to have neuroprotective effects in neurodegenerative diseases. The present study was aimed at clarifying whether, in an 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced Parkinson's disease (PD) rat model, the known CEF-induced neuronal protection was accompanied by neurogenesis and decreased loss of neuronal activity. After MPTP lesioning (day 0), the rats were treated with CEF (100mg/kg/day, i.p.) or saline for 15 days. They were then injected with MnCl2 (40mg/kg, i.p.) on day 13 and underwent a brain MRI scan on day 14, then the brain was taken for histological evaluation on day 15. The results showed that MPTP lesioning resulted in decreased neuronal activity and density in the nigrostriatal dopaminergic (DAergic) system and the hippocampal CA1, CA3, and dentate gyrus (DG) areas and reduced neurogenesis in the DG, but in hyperactivity in the subthalamic nucleus (STN). These neuronal changes were prevented by CEF treatment. Positive correlations between MEMRI R1 values and neuronal density in the hippocampus were evidenced. Neuronal densities in the hippocampus and SNc were positively correlated. In addition, the R1 value of the STN showed a positive correlation with its neuronal activity but showed a negative correlation with the density of DAergic neurons in the SNc. Therefore, MEMRI R1 value may serve as a good indicator for PD severity and the effect of treatment. To our knowledge, this is the first study showing that CEF prevents loss of neuronal activity and neurogenesis in the brain of PD rats. CEF may therefore have clinical potential in the treatment of PD.
Collapse
Affiliation(s)
- Jun-Cheng Weng
- Department of Medical Imaging and Radiological Sciences, Department of Medical Imaging, Chung Shan Medical University Hospital, Chung Shan Medical University, Taichung 402, Taiwan, ROC
| | - Maria A Tikhonova
- Laboratory of Experimental Models of Neurodegenerative Processes, Federal State Budgetary Scientific Institution "Scientific Research Institute of Physiology and Basic Medicine", Novosibirsk 630117, Russia
| | - Jian-Horng Chen
- School of Physical Therapy, Chung Shan Medical University, Taichung 402, Taiwan, ROC
| | - Mei-Shiuan Shen
- Department of Psychology, Chung Shan Medical University Hospital, Chung Shan Medical University, Taichung 402, Taiwan, ROC
| | - Wan-Yun Meng
- Department of Psychology, Chung Shan Medical University Hospital, Chung Shan Medical University, Taichung 402, Taiwan, ROC
| | - Yen-Ting Chang
- Department of Psychology, Chung Shan Medical University Hospital, Chung Shan Medical University, Taichung 402, Taiwan, ROC
| | - Ke-Hsin Chen
- Department of Psychology, National Taiwan University, Taipei 10617, Taiwan, ROC
| | - Keng-Chen Liang
- Department of Psychology, National Taiwan University, Taipei 10617, Taiwan, ROC; Neurobiology and Cognitive Science Center, National Taiwan University, Taipei 10617, Taiwan, ROC
| | - Ching-Sui Hung
- Occupational Safety and Health Office, Taipei City Hospital, Taipei 10341, Taiwan, ROC.
| | - Tamara G Amstislavskaya
- Laboratory of Experimental Models of Emotional Pathology, Federal State Budgetary Scientific Institution "Scientific Research Institute of Physiology and Basic Medicine", Novosibirsk 630117, Russia.
| | - Ying-Jui Ho
- Department of Psychology, Chung Shan Medical University Hospital, Chung Shan Medical University, Taichung 402, Taiwan, ROC.
| |
Collapse
|
42
|
Pak ME, Kim YR, Kim HN, Ahn SM, Shin HK, Baek JU, Choi BT. Studies on medicinal herbs for cognitive enhancement based on the text mining of Dongeuibogam and preliminary evaluation of its effects. JOURNAL OF ETHNOPHARMACOLOGY 2016; 179:383-390. [PMID: 26773844 DOI: 10.1016/j.jep.2016.01.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Revised: 01/06/2016] [Accepted: 01/06/2016] [Indexed: 06/05/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE In literature on Korean medicine, Dongeuibogam (Treasured Mirror of Eastern Medicine), published in 1613, represents the overall results of the traditional medicines of North-East Asia based on prior medicinal literature of this region. We utilized this medicinal literature by text mining to establish a list of candidate herbs for cognitive enhancement in the elderly and then performed an evaluation of their effects. MATERIALS AND METHODS Text mining was performed for selection of candidate herbs. Cell viability was determined in HT22 hippocampal cells and immunohistochemistry and behavioral analysis was performed in a kainic acid (KA) mice model in order to observe alterations of hippocampal cells and cognition. RESULTS Twenty four herbs for cognitive enhancement in the elderly were selected by text mining of Dongeuibogam. In HT22 cells, pretreatment with 3 candidate herbs resulted in significantly reduced glutamate-induced cell death. Panax ginseng was the most neuroprotective herb against glutamate-induced cell death. In the hippocampus of a KA mice model, pretreatment with 11 candidate herbs resulted in suppression of caspase-3 expression. Treatment with 7 candidate herbs resulted in significantly enhanced expression levels of phosphorylated cAMP response element binding protein. Number of proliferated cells indicated by BrdU labeling was increased by treatment with 10 candidate herbs. Schisandra chinensis was the most effective herb against cell death and proliferation of progenitor cells and Rehmannia glutinosa in neuroprotection in the hippocampus of a KA mice model. In a KA mice model, we confirmed improved spatial and short memory by treatment with the 3 most effective candidate herbs and these recovered functions were involved in a higher number of newly formed neurons from progenitor cells in the hippocampus. CONCLUSIONS These established herbs and their combinations identified by text-mining technique and evaluation for effectiveness may have value in further experimental and clinical applications for cognitive enhancement in the elderly.
Collapse
Affiliation(s)
- Malk Eun Pak
- Department of Korean Medical Science, School of Korean Medicine, Pusan National University, Yangsan 626-870, Republic of Korea
| | - Yu Ri Kim
- Department of Korean Medical Science, School of Korean Medicine, Pusan National University, Yangsan 626-870, Republic of Korea
| | - Ha Neui Kim
- Department of Korean Medical Science, School of Korean Medicine, Pusan National University, Yangsan 626-870, Republic of Korea; Korean Medical Science Research Center for Healthy-Aging, Pusan National University, Yangsan 626-870, Republic of Korea
| | - Sung Min Ahn
- Department of Korean Medical Science, School of Korean Medicine, Pusan National University, Yangsan 626-870, Republic of Korea
| | - Hwa Kyoung Shin
- Department of Korean Medical Science, School of Korean Medicine, Pusan National University, Yangsan 626-870, Republic of Korea; Korean Medical Science Research Center for Healthy-Aging, Pusan National University, Yangsan 626-870, Republic of Korea; Division of Meridian and Structural Medicine, School of Korean Medicine, Pusan National University, Yangsan 626-870, Republic of Korea
| | - Jin Ung Baek
- Division of Humanities and Social Medicine, School of Korean Medicine, Pusan National University, Yangsan 626-870, Republic of Korea.
| | - Byung Tae Choi
- Department of Korean Medical Science, School of Korean Medicine, Pusan National University, Yangsan 626-870, Republic of Korea; Korean Medical Science Research Center for Healthy-Aging, Pusan National University, Yangsan 626-870, Republic of Korea; Division of Meridian and Structural Medicine, School of Korean Medicine, Pusan National University, Yangsan 626-870, Republic of Korea.
| |
Collapse
|
43
|
Recent Advance in the Relationship between Excitatory Amino Acid Transporters and Parkinson's Disease. Neural Plast 2016; 2016:8941327. [PMID: 26981287 PMCID: PMC4769779 DOI: 10.1155/2016/8941327] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Revised: 01/05/2016] [Accepted: 01/18/2016] [Indexed: 01/12/2023] Open
Abstract
Parkinson's disease (PD) is the most common movement disorder disease in the elderly and is characterized by degeneration of dopamine neurons and formation of Lewy bodies. Glutamate is the major excitatory neurotransmitter in the central nervous system (CNS). If glutamate is not removed promptly in the synaptic cleft, it will excessively stimulate the glutamate receptors and induce excitotoxic effects on the CNS. With lack of extracellular enzyme to decompose glutamate, glutamate uptake in the synaptic cleft is mainly achieved by the excitatory amino acid transporters (EAATs, also known as high-affinity glutamate transporters). Current studies have confirmed that decreased expression and function of EAATs appear in PD animal models. Moreover, single unilateral administration of EAATs inhibitor in the substantia nigra mimics several PD features and this is a solid evidence supporting that decreased EAATs contribute to the process of PD. Drugs or treatments promoting the expression and function of EAATs are shown to attenuate dopamine neurons death in the substantia nigra and striatum, ameliorate the behavior disorder, and improve cognitive abilities in PD animal models. EAATs are potential effective drug targets in treatment of PD and thus study of relationship between EAATs and PD has predominant medical significance currently.
Collapse
|
44
|
Zhou JJ, Zhai SY, Zhang HN, Wang YH, Pu XP. Neuroprotective effects of 3-O-demethylswertipunicoside against MPTP-induced Parkinson's disease in vivo and its antioxidant properties in vitro. Brain Res 2015. [PMID: 26210618 DOI: 10.1016/j.brainres.2015.06.051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
3-O-demethylswertipunicoside (3-ODS) has been reported to protect dopaminergic neurons against neurotoxicity induced by 1-methyl-4-phenylpyridinium (MPP(+)) in PC12 cells. Here, we investigate the neuroprotective effects in vivo and antioxidant activities in vitro of 3-ODS. In the 1-methyl-4-phenyl-1,2,3,6- tetrahydropyridine (MPTP)-treated mouse model of Parkinson's disease (PD), 3-ODS dose-dependently improved motor coordination (as shown by rotarod test), increased the contents of dopamine (DA) and its metabolites in the striatum, and increased the number of tyrosine hydroxylase (TH)-positive neurons in the substantia nigra (SN). In addition, 3-ODS also increased the spine density in hippocampal CA1 neurons. In antioxidant assays, 3-ODS showed a strong capacity in scavenging hydroxyl radical, superoxide anion and 1, 1-diphenyl-2-picrylhydrazyl (DPPH) radical in a concentration-dependent manner. Taken together, we conclude that 3-ODS attenuates the PD-related motor deficits mainly through its neuroprotective effects, growth-promoting effects on spine density, and its antioxidant activities.
Collapse
Affiliation(s)
- Jun-Jun Zhou
- National Key Research Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, PR China; Department of Pharmacology, Dalian Medical University, Dalian 116044, PR China; Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University, Beijing 100191, PR China
| | - Shen-Yu Zhai
- National Key Research Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, PR China; Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University, Beijing 100191, PR China
| | - Hui-Nan Zhang
- National Key Research Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, PR China; Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University, Beijing 100191, PR China
| | - Yue-Hua Wang
- Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University, Beijing 100191, PR China; Beijing Key Laboratory of Drug Target Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, PR China
| | - Xiao-Ping Pu
- National Key Research Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, PR China; Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University, Beijing 100191, PR China.
| |
Collapse
|
45
|
Takahashi K, Foster JB, Lin CLG. Glutamate transporter EAAT2: regulation, function, and potential as a therapeutic target for neurological and psychiatric disease. Cell Mol Life Sci 2015; 72:3489-506. [PMID: 26033496 PMCID: PMC11113985 DOI: 10.1007/s00018-015-1937-8] [Citation(s) in RCA: 121] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Revised: 05/22/2015] [Accepted: 05/26/2015] [Indexed: 12/12/2022]
Abstract
Glutamate is the predominant excitatory neurotransmitter in the central nervous system. Excitatory amino acid transporter 2 (EAAT2) is primarily responsible for clearance of extracellular glutamate to prevent neuronal excitotoxicity and hyperexcitability. EAAT2 plays a critical role in regulation of synaptic activity and plasticity. In addition, EAAT2 has been implicated in the pathogenesis of many central nervous system disorders. In this review, we summarize current understanding of EAAT2, including structure, pharmacology, physiology, and functions, as well as disease relevancy, such as in stroke, Parkinson's disease, epilepsy, amyotrophic lateral sclerosis, Alzheimer's disease, major depressive disorder, and addiction. A large number of studies have demonstrated that up-regulation of EAAT2 protein provides significant beneficial effects in many disease models suggesting EAAT2 activation is a promising therapeutic approach. Several EAAT2 activators have been identified. Further understanding of EAAT2 regulatory mechanisms could improve development of drug-like compounds that spatiotemporally regulate EAAT2.
Collapse
Affiliation(s)
- Kou Takahashi
- Department of Neuroscience, The Ohio State University, 333 West 10th Avenue, Columbus, OH 43210 USA
| | - Joshua B. Foster
- Department of Neuroscience, The Ohio State University, 333 West 10th Avenue, Columbus, OH 43210 USA
| | - Chien-Liang Glenn Lin
- Department of Neuroscience, The Ohio State University, 333 West 10th Avenue, Columbus, OH 43210 USA
| |
Collapse
|
46
|
Pflibsen L, Stang KA, Sconce MD, Wilson VB, Hood RL, Meshul CK, Mitchell SH. Executive function deficits and glutamatergic protein alterations in a progressive 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mouse model of Parkinson's disease. J Neurosci Res 2015; 93:1849-64. [PMID: 26332770 DOI: 10.1002/jnr.23638] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 07/20/2015] [Accepted: 08/06/2015] [Indexed: 12/11/2022]
Abstract
Changes in executive function are at the root of most cognitive problems associated with Parkinson's disease. Because dopaminergic treatment does not necessarily alleviate deficits in executive function, it has been hypothesized that dysfunction of neurotransmitters/systems other than dopamine (DA) may be associated with this decrease in cognitive function. We have reported decreases in motor function and dopaminergic/glutamatergic biomarkers in a progressive 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) Parkinson's mouse model. Assessment of executive function and dopaminergic/glutamatergic biomarkers within the limbic circuit has not previously been explored in our model. Our results show progressive behavioral decline in a cued response task (a rodent model for frontal cortex cognitive function) with increasing weekly doses of MPTP. Although within the dorsolateral (DL) striatum mice that had been given MPTP showed a 63% and 83% loss of tyrosine hydroxylase and dopamine transporter expression, respectively, there were no changes in the nucleus accumbens or medial prefrontal cortex (mPFC). Furthermore, dopamine-1 receptor and vesicular glutamate transporter (VGLUT)-1 expression increased in the mPFC following DA loss. There were significant MPTP-induced decreases and increases in VGLUT-1 and VGLUT-2 expression, respectively, within the DL striatum. We propose that the behavioral decline following MPTP treatment may be associated with a change not only in cortical-cortical (VGLUT-1) glutamate function but also in striatal DA and glutamate (VGLUT-1/VGLUT-2) input.
Collapse
Affiliation(s)
- Lacey Pflibsen
- Research Services, VA Medical Center/Portland, Portland, Oregon
| | - Katherine A Stang
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, Oregon
| | | | - Vanessa B Wilson
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, Oregon
| | - Rebecca L Hood
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, Oregon
| | - Charles K Meshul
- Research Services, VA Medical Center/Portland, Portland, Oregon.,Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, Oregon.,Department of Pathology, Oregon Health and Science University, Portland, Oregon
| | - Suzanne H Mitchell
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, Oregon.,Department of Psychiatry, Oregon Health and Science University, Portland, Oregon
| |
Collapse
|
47
|
Huang CK, Chang YT, Amstislavskaya TG, Tikhonova MA, Lin CL, Hung CS, Lai TJ, Ho YJ. Synergistic effects of ceftriaxone and erythropoietin on neuronal and behavioral deficits in an MPTP-induced animal model of Parkinson's disease dementia. Behav Brain Res 2015; 294:198-207. [PMID: 26296668 DOI: 10.1016/j.bbr.2015.08.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Revised: 08/09/2015] [Accepted: 08/13/2015] [Indexed: 12/26/2022]
Abstract
Both ceftriaxone (CEF) and erythropoietin (EPO) show neuroprotection and cognitive improvement in neurodegenerative disease. The present study was aimed at clarifying whether combined treatment with CEF and EPO (CEF+EPO) had superior neuroprotective and behavioral effects than treatment with CEF or EPO alone in a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced Parkinson's disease (PD) rat model. The rats were injected with CEF (5 mg/kg/day), EPO (100 IU/kg/day), or CEF+EPO after MPTP lesioning and underwent the bar-test, T-maze test, and object recognition test, then the brains were taken for histological evaluation. MPTP lesioning resulted in deficits in working memory and in object recognition, but the cognitive deficits were markedly reduced or eliminated in rats treated with CEF or CEF+EPO, with the combination having a greater effect. Lesioning also caused neurodegeneration in the nigrostriatal dopaminergic system and the hippocampal CA1 area and these changes were reduced or eliminated by treatment with CEF, EPO, or CEF+EPO, with the combination having a greater effect than single treatment in the densities of DAergic terminals in the striatum and neurons in the hippocampal CA1 area. Thus, compared to treatment with CEF or EPO alone, combined treatment with CEF+EPO had a greater inhibitory effect on the lesion-induced behavioral and neuronal deficits. To our knowledge, this is the first study showing a synergistic effect of CEF and EPO on neuroprotection and improvement in cognition in a PD rat model. Combined CEF and EPO treatment may have clinical potential for the treatment of the dementia associated with PD.
Collapse
Affiliation(s)
- Chiu-Ku Huang
- Department of Pharmacy, Tainan Municipal Hospital, Tainan 701, Taiwan, ROC
| | - Yen-Ting Chang
- School of Psychology, Chung Shan Medical University, Taichung 402, Taiwan, ROC; Department of Psychiatry, Chung Shan Medical University Hospital, Chung Shan Medical University, Taichung 402, Taiwan, ROC
| | - Tamara G Amstislavskaya
- Laboratory of Experimental Models of Emotional Pathology, Scientific Research Institute of Physiology and Basic Medicine, Federal State Budgetary Scientific Institution, Novosibirsk 630117, Russia
| | - Maria A Tikhonova
- Laboratory of Experimental Models of Neurodegenerative Processes, Scientific Research Institute of Physiology and Basic Medicine, Federal State Budgetary Scientific Institution, Novosibirsk 630117, Russia
| | - Chih-Li Lin
- Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan, ROC
| | - Ching-Sui Hung
- Occupational Safety and Health Office, Taipei City Hospital, Taipei 10341, Taiwan, ROC.
| | - Te-Jen Lai
- Department of Psychiatry, Chung Shan Medical University Hospital, Chung Shan Medical University, Taichung 402, Taiwan, ROC; Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan, ROC.
| | - Ying-Jui Ho
- School of Psychology, Chung Shan Medical University, Taichung 402, Taiwan, ROC; Department of Psychiatry, Chung Shan Medical University Hospital, Chung Shan Medical University, Taichung 402, Taiwan, ROC.
| |
Collapse
|
48
|
Abstract
Parkinson's disease (PD) is an increasingly prevalent and progressively disabling neurodegenerative disease. The impact of PD on patients and their families as well as its burden on health care systems could be substantially reduced by disease-modifying therapies that slow the rate of neurodegeneration or stop the disease process. Multiple agents have been studied in clinical trials designed to assess disease modification in PD, but all have failed. Over the last 3 years, clinical trials investigating the potential of adeno-associated virus serotype 2 (AAV)-neuturin, coenzyme Q10, creatine, pramipexole, and pioglitazone reported negative findings or futility. Despite these disappointments, progress has been made by expanding our understanding of molecular pathways involved in PD to reveal new targets, and by developing novel animal models of PD for preclinical studies. Currently, at least eight ongoing clinical trials are testing the promise of isradipine, caffeine, nicotine, glutathione, AAV2-glial cell-line derived neurotrophic factor (GDNF), as well as active and passive immunization against α-synuclein (α-Syn). In this review, we summarize the clinical trials of disease-modifying therapies for PD that were published since 2013 as well as clinical trials currently in progress. We also discuss promising approaches and ongoing challenges in this area of PD research.
Collapse
Affiliation(s)
- Lorraine V Kalia
- Division of Neurology, Department of Medicine, Toronto Western Hospital, University of Toronto, Canada.,Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Canada.,Morton and Gloria Shulman Movement Disorders Clinic and the Edmond J. Safra Program in Parkinson's Disease, Toronto Western Hospital.,Toronto Western Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Suneil K Kalia
- Toronto Western Research Institute, University Health Network, Toronto, Ontario, Canada.,Division of Neurosurgery, Department of Surgery, Toronto Western Hospital, University of Toronto, Canada
| | - Anthony E Lang
- Division of Neurology, Department of Medicine, Toronto Western Hospital, University of Toronto, Canada.,Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Canada.,Morton and Gloria Shulman Movement Disorders Clinic and the Edmond J. Safra Program in Parkinson's Disease, Toronto Western Hospital.,Toronto Western Research Institute, University Health Network, Toronto, Ontario, Canada
| |
Collapse
|
49
|
Assessment of disease-related cognitive impairments using the novel object recognition (NOR) task in rodents. Behav Brain Res 2015; 285:176-93. [DOI: 10.1016/j.bbr.2014.10.025] [Citation(s) in RCA: 139] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 10/16/2014] [Accepted: 10/19/2014] [Indexed: 12/11/2022]
|
50
|
Ceftriaxone prevents and reverses behavioral and neuronal deficits in an MPTP-induced animal model of Parkinson's disease dementia. Neuropharmacology 2014; 91:43-56. [PMID: 25499022 DOI: 10.1016/j.neuropharm.2014.11.023] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2014] [Revised: 11/05/2014] [Accepted: 11/28/2014] [Indexed: 01/24/2023]
Abstract
Glutamatergic hyperactivity plays an important role in the pathophysiology of Parkinson's disease (PD). Ceftriaxone increases expression of glutamate transporter 1 (GLT-1) and affords neuroprotection. This study was aimed at clarifying whether ceftriaxone prevented, or reversed, behavioral and neuronal deficits in an 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD rat model. Male Wistar rats were injected daily with either ceftriaxone starting 5 days before or 3 days after MPTP lesioning (day 0) or saline and underwent a bar-test on days 1-7, a T-maze test on days 9-11, and an object recognition test on days 12-14, then the brains were taken for histological evaluation on day 15. Dopaminergic degeneration in the substantia nigra pars compacta and striatum was observed on days 3 and 15. Motor dysfunction in the bar test was observed on day 1, but disappeared by day 7. In addition, lesioning resulted in deficits in working memory in the T-maze test and in object recognition in the object recognition task, but these were not observed in rats treated pre- or post-lesioning with ceftriaxone. Lesioning also caused neurodegeneration in the hippocampal CA1 area and induced glutamatergic hyperactivity in the subthalamic nucleus, and both changes were suppressed by ceftriaxone. Increased GLT-1 expression and its co-localization with astrocytes were observed in the striatum and hippocampus in the ceftriaxone-treated animals. To our knowledge, this is the first study showing a relationship between ceftriaxone-induced GLT-1 expression, neuroprotection, and improved cognition in a PD rat model. Ceftriaxone may have clinical potential for the prevention and treatment of dementia associated with PD.
Collapse
|