1
|
Liang C, Wei S, Ji Y, Lin J, Jiao W, Li Z, Yan F, Jing X. The role of enteric nervous system and GDNF in depression: Conversation between the brain and the gut. Neurosci Biobehav Rev 2024; 167:105931. [PMID: 39447778 DOI: 10.1016/j.neubiorev.2024.105931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 10/14/2024] [Accepted: 10/20/2024] [Indexed: 10/26/2024]
Abstract
Depression is a debilitating mental disorder that causes a persistent feeling of sadness and loss of interest. Approximately 280 million individuals worldwide suffer from depression by 2023. Despite the heavy medical and social burden imposed by depression, pathophysiology remains incompletely understood. Emerging evidence indicates various bidirectional interplay enable communication between the gut and brain. These interplays provide a link between intestinal and central nervous system as well as feedback from cortical and sensory centers to enteric activities, which also influences physiology and behavior in depression. This review aims to overview the significant role of the enteric nervous system (ENS) in the pathophysiology of depression and gut-brain axis's contribution to depressive disorders. Additionally, we explore the alterations in enteric glia cells (EGCs) and glial cell line-derived neurotrophic factor (GDNF) in depression and their involvement in neuronal support, intestinal homeostasis maintains and immune response activation. Modulating ENS function, EGCs and GDNF level could serve as novel strategies for future antidepressant therapy.
Collapse
Affiliation(s)
- Chuoyi Liang
- School of Nursing, Jinan University, Guangzhou, China
| | - Sijia Wei
- School of Nursing, Jinan University, Guangzhou, China
| | - Yelin Ji
- School of Nursing, Jinan University, Guangzhou, China
| | - Jiayi Lin
- School of Nursing, Jinan University, Guangzhou, China
| | - Wenli Jiao
- School of Nursing, Jinan University, Guangzhou, China
| | - Zhiying Li
- School of Nursing, Jinan University, Guangzhou, China
| | - Fengxia Yan
- School of Nursing, Jinan University, Guangzhou, China.
| | - Xi Jing
- School of Nursing, Jinan University, Guangzhou, China; Guangdong-Hong Kong-Macau Great Bay Area Geoscience Joint Laboratory, School of Medicine, Jinan University, Guangzhou, China.
| |
Collapse
|
2
|
Tsybko A, Eremin D, Ilchibaeva T, Khotskin N, Naumenko V. CDNF Exerts Anxiolytic, Antidepressant-like, and Procognitive Effects and Modulates Serotonin Turnover and Neuroplasticity-Related Genes. Int J Mol Sci 2024; 25:10343. [PMID: 39408672 PMCID: PMC11482483 DOI: 10.3390/ijms251910343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/17/2024] [Accepted: 09/21/2024] [Indexed: 10/19/2024] Open
Abstract
Cerebral dopamine neurotrophic factor (CDNF) is an unconventional neurotrophic factor because it does not bind to a known specific receptor on the plasma membrane and functions primarily as an unfolded protein response (UPR) regulator in the endoplasmic reticulum. Data on the effects of CDNF on nonmotor behavior and monoamine metabolism are limited. Here, we performed the intracerebroventricular injection of a recombinant CDNF protein at doses of 3, 10, and 30 μg in C57BL/6 mice. No adverse effects of the CDNF injection on feed and water consumption or locomotor activity were observed for 3 days afterwards. Decreases in body weight and sleep duration were transient. CDNF-treated animals demonstrated improved performance on the operant learning task and a substantial decrease in anxiety and behavioral despair. CDNF in all the doses enhanced serotonin (5-HT) turnover in the murine frontal cortex, hippocampus, and midbrain. This alteration was accompanied by changes in the mRNA levels of the 5-HT1A and 5-HT7 receptors and in monoamine oxidase A mRNA and protein levels. We found that CDNF dramatically increased c-Fos mRNA levels in all investigated brain areas but elevated the phosphorylated-c-Fos level only in the midbrain. Similarly, enhanced CREB phosphorylation was found in the midbrain in experimental animals. Additionally, the upregulation of a spliced transcript of XBP1 (UPR regulator) was detected in the midbrain and frontal cortex. Thus, we can hypothesize that exogenous CDNF modulates the UPR pathway and overall neuronal activation and enhances 5-HT turnover, thereby affecting learning and emotion-related behavior.
Collapse
Affiliation(s)
- Anton Tsybko
- The Federal Research Center, Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russia; (D.E.); (T.I.); (N.K.); (V.N.)
| | | | | | | | | |
Collapse
|
3
|
Glial Cell- Derived Neurotrophic Factor Functions as a Potential Candidate Gene in Obstructive Sleep Apnea Based on a Combination of Bioinformatics and Targeted Capture Sequencing Analyses. BIOMED RESEARCH INTERNATIONAL 2021; 2021:6656943. [PMID: 33688499 PMCID: PMC7911711 DOI: 10.1155/2021/6656943] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 01/27/2021] [Accepted: 02/10/2021] [Indexed: 02/07/2023]
Abstract
Background Obstructive sleep apnea (OSA) is a prevalent chronic disease that increases the risk of cardiovascular disease and metabolic and neuropsychiatric disorders, resulting in a considerable socioeconomic burden. The present study was aimed at identifying potential key genes influencing the mechanisms and consequences of OSA. Methods Gene expression profiles associated with OSA were obtained from the Gene Expression Omnibus (GEO) database. Differentially expressed genes (DEGs) in subcutaneous adipose tissues from patients with OSA and normal tissues were screened using R software, followed by gene ontology and pathway enrichment analyses. Subsequently, a protein-protein interaction (PPI) network was constructed and hub genes were extracted using Cytoscape plugins. The intersected core genes derived from different topological algorithms were considered hub genes, and the potential candidate gene was selected from them for further analyses of expression variations using another GEO dataset and targeted capture sequencing in 100 subjects (50 with severe OSA and 50 without OSA). Results A total of 373 DEGs were identified in OSA samples relative to normal controls, which were primarily associated with olfactory transduction and neuroactive ligand-receptor interaction. Upon analyses of nine topological algorithms and available literature, we finally focused on glial cell-derived neurotrophic factor (GDNF) as the candidate gene and validated its low expression in OSA samples. Two rare nonsynonymous variants (p.D56N and p.R93Q) were identified among the 100 cases through targeted sequencing of GDNF, which could be potentially deleterious based on pathogenicity prediction programs; however, no significant association was detected in single nucleotide polymorphisms. Conclusion The present study identified GDNF as a promising candidate gene for OSA and its two rare and potentially deleterious mutations through a combination of bioinformatics and targeted capture sequencing analyses.
Collapse
|
4
|
Zhang P, Li YX, Zhang ZZ, Yang Y, Rao JX, Xia L, Li XY, Chen GH, Wang F. Astroglial Mechanisms Underlying Chronic Insomnia Disorder: A Clinical Study. Nat Sci Sleep 2020; 12:693-704. [PMID: 33117005 PMCID: PMC7549496 DOI: 10.2147/nss.s263528] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 08/27/2020] [Indexed: 12/13/2022] Open
Abstract
PURPOSE The objective of this study was to investigate whether the serum biomarkers S100 calcium binding protein B (S100B), glial fibrillary acidic protein (GFAP), brain-derived neurotrophic factor (BDNF), and glial cell line-derived neurotrophic factor (GDNF) change in patients with chronic insomnia disorder (CID), and if this is the case, whether the altered levels of these serum biomarkers are associated with poor sleep quality and cognitive decline in CID. PATIENTS AND METHODS Fifty-seven CID outpatients constituted the CID group; thirty healthy controls (HC) were also enrolled. Questionnaires, polysomnography, Chinese-Beijing Version of Montreal Cognitive Assessment (MoCA-C) and Nine Box Maze Test (NBMT) were used to assess their sleep and neuropsychological function. Serum S100B, GFAP, BDNF, and GDNF were evaluated using enzyme-linked immunosorbent assay. RESULTS The CID group had higher levels of S100B and GFAP and lower levels of BDNF and GDNF than the HC group. Spearman correlation analysis revealed that poor sleep quality, assessed by subjective and objective measures, was positively correlated with S100B level and negatively correlated with BDNF level. GFAP level correlated positively with poor subjective sleep quality. Moreover, S100B and GFAP levels correlated negatively with general cognitive function assessed using MoCA-C. GFAP level correlated positively with poor spatial working memory (SWM) in the NBMT; BDNF level was linked to poor SWM and object recognition memory (ORcM) in the NBMT. However, principal component analysis revealed that serum S100B level was positively linked to the errors in object working memories, BDNF and GDNF concentrations were negatively linked with errors in ORcM, and GFAP concentration was positively correlated with the errors in the SWM and spatial reference memories. CONCLUSION Serum S100B, GFAP, BDNF, and GDNF levels were altered in patients with CID, indicating astrocyte damage, and were associated with insomnia severity or/and cognitive dysfunction.
Collapse
Affiliation(s)
- Ping Zhang
- Department of Sleep Disorders, The Affiliated Chaohu Hospital of Anhui Medical University, Hefei 238000, People's Republic of China
| | - Ying-Xue Li
- Department of Sleep Disorders, The Affiliated Chaohu Hospital of Anhui Medical University, Hefei 238000, People's Republic of China
| | - Zhe-Zhe Zhang
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, People's Republic of China
| | - Ye Yang
- Department of Sleep Disorders, The Affiliated Chaohu Hospital of Anhui Medical University, Hefei 238000, People's Republic of China
| | - Ji-Xian Rao
- Department of Sleep Disorders, The Affiliated Chaohu Hospital of Anhui Medical University, Hefei 238000, People's Republic of China
| | - Lan Xia
- Department of Neurology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, People's Republic of China
| | - Xue-Yan Li
- Department of Sleep Disorders, The Affiliated Chaohu Hospital of Anhui Medical University, Hefei 238000, People's Republic of China
| | - Gui-Hai Chen
- Department of Sleep Disorders, The Affiliated Chaohu Hospital of Anhui Medical University, Hefei 238000, People's Republic of China
| | - Fang Wang
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, People's Republic of China
| |
Collapse
|
5
|
Tang X, Zhou C, Gao J, Duan W, Yu M, Xiao W, Zhang X, Dong H, Wang X, Zhang X. Serum BDNF and GDNF in Chinese male patients with deficit schizophrenia and their relationships with neurocognitive dysfunction. BMC Psychiatry 2019; 19:254. [PMID: 31420036 PMCID: PMC6697959 DOI: 10.1186/s12888-019-2231-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 08/06/2019] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND To measure the serum levels of brain-derived neurotrophic factor (BDNF) and glial cell line-derived neurotrophic factor (GDNF) in deficit schizophrenia (DS), in order to examine the association between these two neurotrophic factors (NFs) and cognitive performance. METHODS A total of 109 male patients [51 DS and 58 non-deficit schizophrenia (NDS)] with schizophrenia and 40 sex and age matched healthy controls (HC) participated in this study. Processing speed, attention, executive function, and working memory of all subjects were assessed by means of a battery of classical neuropsychological tests. Serum BDNF and GDNF levels were measured simultaneously using a double-antibody sandwich enzyme-linked immunosorbent assay (ELISA). RESULTS There were significant differences in the overall cognitive test scores between three groups (all p < 0.001). Serum BDNF levels were significantly lower in patients (DS and NDS) than in HC (p < 0.001). Furthermore, BDNF levels were lower in the DS compared to the NDS group, although not significantly. However, there was no difference in the GDNF levels between patients (DS and NDS) and HC. GDNF levels were positively correlated with scores of Stroop words only (r = 0.311, p = 0.033), Stroop colors only (r = 0.356, p = 0.014) and Stroop interference (r = 0.348, p = 0.016) in DS group. CONCLUSION Serum BDNF may be an unsuitable biomarker for DS, despite a significant decrease in schizophrenia patients. The different neurocognitive performance between the DS and NDS patients indicates that DS may be a separate clinical entity of schizophrenia. Finally, higher serum GDNF levels are associated with better cognitive performance in DS patients, indicating a possible neuroprotective function in DS.
Collapse
Affiliation(s)
- Xiaowei Tang
- 0000 0000 9255 8984grid.89957.3aDepartment of Geriatric Psychiatry, Affiliated Nanjing Brain Hospital, Nanjing Medical University, No. 264 Guangzhou Road, Nanjing, Jiangsu Province, 210029 People’s Republic of China ,grid.268415.cAffiliated WuTaiShan Hospital of Medical College of Yangzhou University, Yangzhou, 225003 Jiangsu China
| | - Chao Zhou
- 0000 0000 9255 8984grid.89957.3aDepartment of Geriatric Psychiatry, Affiliated Nanjing Brain Hospital, Nanjing Medical University, No. 264 Guangzhou Road, Nanjing, Jiangsu Province, 210029 People’s Republic of China
| | - Ju Gao
- grid.410642.5Shanghai Changning Mental Health Center, Shanghai, 210029 China
| | - Weiwei Duan
- 0000 0004 1797 7280grid.449428.7Jining Medical University, Jining, 272067 Shandong China
| | - Miao Yu
- 0000 0000 9255 8984grid.89957.3aDepartment of Geriatric Psychiatry, Affiliated Nanjing Brain Hospital, Nanjing Medical University, No. 264 Guangzhou Road, Nanjing, Jiangsu Province, 210029 People’s Republic of China
| | - Wenhuan Xiao
- grid.268415.cAffiliated WuTaiShan Hospital of Medical College of Yangzhou University, Yangzhou, 225003 Jiangsu China
| | - Xiaobin Zhang
- grid.268415.cAffiliated WuTaiShan Hospital of Medical College of Yangzhou University, Yangzhou, 225003 Jiangsu China
| | - Hui Dong
- grid.268415.cAffiliated WuTaiShan Hospital of Medical College of Yangzhou University, Yangzhou, 225003 Jiangsu China
| | - Xiang Wang
- 0000 0001 0379 7164grid.216417.7Medical Psychological Institute of the Second Xiangya Hospital, Central South University, Changsha, 410011 Hunan China
| | - Xiangrong Zhang
- Department of Geriatric Psychiatry, Affiliated Nanjing Brain Hospital, Nanjing Medical University, No. 264 Guangzhou Road, Nanjing, Jiangsu Province, 210029, People's Republic of China.
| |
Collapse
|
6
|
Neurotrophins and cholinergic enzyme regulated by calpain-2: New insights into neuronal apoptosis induced by polybrominated diphenyl ether-153. Toxicol Lett 2018; 291:29-38. [DOI: 10.1016/j.toxlet.2018.03.033] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 02/28/2018] [Accepted: 03/31/2018] [Indexed: 02/06/2023]
|
7
|
Azadmarzabadi E, Haghighatfard A, Mohammadi A. Low resilience to stress is associated with candidate gene expression alterations in the dopaminergic signalling pathway. Psychogeriatrics 2018; 18:190-201. [PMID: 29423959 DOI: 10.1111/psyg.12312] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 09/28/2017] [Accepted: 10/22/2017] [Indexed: 01/01/2023]
Abstract
BACKGROUND In stressful situations, a person's ability to appropriately complete tasks with minimal anxiety is known as stress resilience. Genetic variants in neuropeptide Y, Corticotropin releasing hormone receptor 1 (CRHR1), and serotonin transporter have been previously reported to be associated with low resilience, but the relationship between low resilience and the dopaminergic signalling pathway is not well understood. Here, we aimed to describe the association between comprehensive psychological characteristics and messenger RNA levels of dopamine receptor D1 (DRD1), dopamine receptor D2 (DRD2), dopamine receptor D3 (DRD3), dopamine receptor D4 (DRD4), dopamine receptor D5 (DRD5), COMT, Dopamine Beta-Hydroxylase (DBH), Tyrosine hydroxylase (TH), monoamine oxidase A (MAOM), dopa decarboxylase (DDC), dopamine transporter (DAT), serotonin transporter (5-HTT), brain-derived neurotrophic factor (BDNF) and glial cell line-derived neurotrophic factor (GDNF) genes based on peripheral blood samples from 400 subjects who react differently to major life event stressors. The blood samples were analyzed by quantitative real-time polymerase chain reaction. METHODS Four hundred Iranian individuals (age range: 17-42 years) were selected from 18 of Iran's 31 provinces. They were divided into four groups: (i) group A, persons with normal reactions to major life-event stressors; (ii) group B, persons with acute stress reactions to major life-event stressors; (iii) group C, persons with normal reactions to crises/catastrophes; and (iv) group D, persons with acute stress reactions to crises/catastrophes. Individuals were divided into groups by a senior psychiatrist based on an unstructured interview, the 21-item Depression Anxiety Stress Scale, and Connor-Davidson Resilience Scale. RESULTS We found that the upregulation of DRD1, DRD2, DRD3, DRD4, DBH, DAT, and BDNF and the downregulation of serotonin transporter, monoamine oxidase A, and COMT are associated with stress resilience, which is modulated by dopaminergic and serotonergic pathways. CONCLUSIONS Gene expression variations were not only correlated with stress resilience, but they were also associated with other psychological parameters including personality, depression, anxiety, and intelligence.
Collapse
Affiliation(s)
- Esfandiar Azadmarzabadi
- Behavioral Sciences Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Arvin Haghighatfard
- Department of Biology, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Alireza Mohammadi
- Neuroscience Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
8
|
Wiener CD, Molina ML, Moreira FP, Dos Passos MB, Jansen K, da Silva RA, de Mattos Souza LD, Oses JP. Brief psychoeducation for bipolar disorder: Evaluation of trophic factors serum levels in young adults. Psychiatry Res 2017; 257:367-371. [PMID: 28803094 DOI: 10.1016/j.psychres.2017.07.062] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Revised: 06/13/2017] [Accepted: 07/29/2017] [Indexed: 02/06/2023]
Abstract
The aim of this study was to evaluate the impact of psychoeducation in serum levels of BDNF, NGF and GDNF in young adults presenting bipolar disorder (BD). This is a randomized clinical trial including 39 young adults (18-29 years) diagnosed with BD through the Structured Clinical Interview for DSM-IV (SCID-CV). Participants were randomized in two treatment groups: usual treatment (medication) and combined intervention (medication plus psychoeducation). Depressive symptoms were assessed using the Hamilton Depression Rating Scale (HDRS) and severity of manic and hypomanic symptoms was evaluated through the Young Mania Rating Scale (YMRS). The serum levels of trophic factors were measured with an ELISA kit. In both intervention groups, there was an improvement in depressive symptoms significantly between baseline and post-intervention. In the combined intervention, GDNF serum levels increased significantly from baseline to post-intervention. However, there were no differences in BDNF and NGF serum levels. In the usual treatment group, no changes were observed in serum levels of GDNF, BDNF, and NGF the post-intervention in individuals. Our data suggests that only combined intervention was effective in improving depressive symptoms and increasing GDNF levels in a sample of young adults with bipolar disorder.
Collapse
Affiliation(s)
- Carolina David Wiener
- Translational Science on Brain Disorders, Department of Health and Behavior, Catholic University of Pelotas, Pelotas, RS, Brazil; Department of Epidemiology, Federal University of Pelotas, Pelotas, RS, Brazil
| | - Mariane Lopez Molina
- Translational Science on Brain Disorders, Department of Health and Behavior, Catholic University of Pelotas, Pelotas, RS, Brazil; Department of Psychology, Anhanguera College of Rio Grande, RS, Brazil.
| | - Fernanda Pedrotti Moreira
- Translational Science on Brain Disorders, Department of Health and Behavior, Catholic University of Pelotas, Pelotas, RS, Brazil
| | - Miguel Bezerra Dos Passos
- Translational Science on Brain Disorders, Department of Health and Behavior, Catholic University of Pelotas, Pelotas, RS, Brazil
| | - Karen Jansen
- Translational Science on Brain Disorders, Department of Health and Behavior, Catholic University of Pelotas, Pelotas, RS, Brazil
| | - Ricardo Azevedo da Silva
- Translational Science on Brain Disorders, Department of Health and Behavior, Catholic University of Pelotas, Pelotas, RS, Brazil
| | - Luciano Dias de Mattos Souza
- Translational Science on Brain Disorders, Department of Health and Behavior, Catholic University of Pelotas, Pelotas, RS, Brazil
| | - Jean Pierre Oses
- Translational Science on Brain Disorders, Department of Health and Behavior, Catholic University of Pelotas, Pelotas, RS, Brazil; Technology Application in Neurosciences, Department of Electronic Engineering and Computing, Catholic University of Pelotas, Pelotas, RS, Brazil
| |
Collapse
|
9
|
Tsybko AS, Ilchibaeva TV, Popova NK. Role of glial cell line-derived neurotrophic factor in the pathogenesis and treatment of mood disorders. Rev Neurosci 2017; 28:219-233. [DOI: 10.1515/revneuro-2016-0063] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 11/03/2016] [Indexed: 12/31/2022]
Abstract
AbstractGlial cell line-derived neurotrophic factor (GDNF) is widely recognized as a survival factor for dopaminergic neurons, but GDNF has also been shown to promote development, differentiation, and protection of other central nervous system neurons and was thought to play an important role in various neuropsychiatric disorders. Severe mood disorders, such as primarily major depressive disorder and bipolar affective disorder, attract particular attention. These psychopathologies are characterized by structural alterations accompanied by the dysregulation of neuroprotective and neurotrophic signaling mechanisms required for the maturation, growth, and survival of neurons and glia. The main objective of this review is to summarize the recent findings and evaluate the potential role of GDNF in the pathogenesis and treatment of mood disorders. Specifically, it describes (1) the implication of GDNF in the mechanism of depression and in the effect of antidepressant drugs and mood stabilizers and (2) the interrelation between GDNF and brain neurotransmitters, playing a key role in the pathogenesis of depression. This review provides converging lines of evidence that (1) brain GDNF contributes to the mechanism underlying depressive disorders and the effect of antidepressants and mood stabilizers and (2) there is a cross-talk between GDNF and neurotransmitters representing a feedback system: GDNF-neurotransmitters and neurotransmitters-GDNF.
Collapse
Affiliation(s)
- Anton S. Tsybko
- 1Department of Behavioral Neurogenomics, The Federal Research Center the Institute of Cytology and Genetics SB RAS, Lavrentyeva av. 10, Novosibirsk 630090, Russia
| | - Tatiana V. Ilchibaeva
- 2Department of Behavioral Neurogenomics, The Federal Research Center the Institute of Cytology and Genetics SB RAS, Novosibirsk 633090, Russia
| | - Nina K. Popova
- 2Department of Behavioral Neurogenomics, The Federal Research Center the Institute of Cytology and Genetics SB RAS, Novosibirsk 633090, Russia
| |
Collapse
|
10
|
Popova NK, Ilchibaeva TV, Naumenko VS. Neurotrophic factors (BDNF and GDNF) and the serotonergic system of the brain. BIOCHEMISTRY (MOSCOW) 2017; 82:308-317. [DOI: 10.1134/s0006297917030099] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
11
|
Ilchibaeva TV, Tsybko AS, Kozhemyakina RV, Popova NK, Naumenko VS. Glial cell line-derived neurotrophic factor in genetically defined fear-induced aggression. Eur J Neurosci 2016; 44:2467-2473. [DOI: 10.1111/ejn.13365] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 07/08/2016] [Accepted: 08/08/2016] [Indexed: 11/30/2022]
Affiliation(s)
- Tatiana V. Ilchibaeva
- Department of Behavioral Neurogenomics; Federal Research Center Institute of Cytology and Genetics; Siberian Division of the Russian Academy of Science; Lavrentyeva av. 10 Novosibirsk 630090 Russia
| | - Anton S. Tsybko
- Department of Behavioral Neurogenomics; Federal Research Center Institute of Cytology and Genetics; Siberian Division of the Russian Academy of Science; Lavrentyeva av. 10 Novosibirsk 630090 Russia
| | - Rimma V. Kozhemyakina
- Laboratory of Evolutionary Genetics; Federal Research Center Institute of Cytology and Genetics; Siberian Division of the Russian Academy of Science; Novosibirsk Russia
| | - Nina K. Popova
- Department of Behavioral Neurogenomics; Federal Research Center Institute of Cytology and Genetics; Siberian Division of the Russian Academy of Science; Lavrentyeva av. 10 Novosibirsk 630090 Russia
| | - Vladimir S. Naumenko
- Department of Behavioral Neurogenomics; Federal Research Center Institute of Cytology and Genetics; Siberian Division of the Russian Academy of Science; Lavrentyeva av. 10 Novosibirsk 630090 Russia
| |
Collapse
|
12
|
Flupirtine attenuates chronic restraint stress-induced cognitive deficits and hippocampal apoptosis in male mice. Behav Brain Res 2015; 288:1-10. [PMID: 25869780 DOI: 10.1016/j.bbr.2015.04.004] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Revised: 04/01/2015] [Accepted: 04/04/2015] [Indexed: 02/07/2023]
Abstract
Chronic restraint stress (CRS) causes hippocampal neurodegeneration and hippocampus-dependent cognitive deficits. Flupirtine represents neuroprotective effects and we have previously shown that flupirtine can protect against memory impairment induced by acute stress. The present study aimed to investigate whether flupirtine could alleviate spatial learning and memory impairment and hippocampal apoptosis induced by CRS. CRS mice were restrained in well-ventilated Plexiglass tubes for 6h daily beginning from 10:00 to 16:00 for 21 consecutive days. Mice were injected with flupirtine (10mg/kg and 25mg/kg) or vehicle (10% DMSO) 30min before restraint stress for 21 days. After stressor cessation, the spatial learning and memory, dendritic spine density, injured neurons and the levels of Bcl-2, Bax, p-Akt, p-GSK-3β, p-Erk1/2 and synaptophysin of hippocampal tissues were examined. Our results showed that flupirtine significantly prevented spatial learning and memory impairment induced by CRS in the Morris water maze. In addition, flupirtine (10mg/kg and 25mg/kg) treatment alleviated neuronal apoptosis and the reduction of dendritic spine density and synaptophysin expression in the hippocampal CA1 region of CRS mice. Furthermore, flupirtine (10mg/kg and 25mg/kg) treatment significantly decreased the expression of Bax and increased the p-Akt and p-GSK-3β, and flupirtine (25mg/kg) treatment up-regulated the p-Erk1/2 in the hippocampus of CRS mice. These results suggested that flupirtine exerted protective effects on the CRS-induced cognitive impairment and hippocampal neuronal apoptosis, which is possibly associated with the activation of Akt/GSK-3β and Erk1/2 signaling pathways.
Collapse
|