1
|
McLaurin KA, Ott RK, Mactutus CF, Booze RM. Adolescent oral oxycodone self-administration disrupts neurobehavioral and neurocognitive development. Neuropharmacology 2024; 258:110064. [PMID: 38981578 PMCID: PMC11418068 DOI: 10.1016/j.neuropharm.2024.110064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 07/05/2024] [Accepted: 07/05/2024] [Indexed: 07/11/2024]
Abstract
Nonmedical use of prescription opioids peaks during late adolescence, a developmental period associated with the maturation of higher-order cognitive processes. To date, however, how chronic adolescent oxycodone (OXY) self-administration alters neurobehavioral (i.e., locomotion, startle reactivity) and/or neurocognitive (i.e., preattentive processes, intrasession habituation, stimulus-reinforcement learning, sustained attention) function has not yet been systematically evaluated. Hence, the rationale was built for establishing the dose-dependency of adolescent OXY self-administration on the trajectory of neurobehavioral and neurocognitive development. From postnatal day (PD) 35 to PD 105, an age in rats that corresponds to the adolescent and young adult period in humans, male and female F344/N rats received access to either oral OXY (0, 2, 5, or 10 mg/kg) or water under a two-bottle choice experimental paradigm. Independent of biological sex or dose, rodents voluntarily escalated their OXY intake across ten weeks. A longitudinal experimental design revealed prominent OXY-induced impairments in neurobehavioral development, characterized by dose-dependent increases in locomotion and sex-dependent increases in startle reactivity. Systematic manipulation of the interstimulus interval in prepulse inhibition supports an OXY-induced impairment in preattentive processes. Despite the long-term cessation of OXY intake, rodents with a history of chronic adolescent oral OXY self-administration exhibited deficits in sustained attention; albeit no alterations in stimulus-reinforcement learning were observed. Taken together, adolescent oral OXY self-administration induces selective long-term alterations in neurobehavioral and neurocognitive development enjoining the implementation of safer prescribing guidelines for this population.
Collapse
Affiliation(s)
- Kristen A McLaurin
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY, 40508, USA.
| | - Rachael K Ott
- Cognitive and Neural Science Program, Department of Psychology, Barnwell College, University of South Carolina, 1512 Pendleton Street, Columbia, SC, 29208, USA
| | - Charles F Mactutus
- Cognitive and Neural Science Program, Department of Psychology, Barnwell College, University of South Carolina, 1512 Pendleton Street, Columbia, SC, 29208, USA
| | - Rosemarie M Booze
- Cognitive and Neural Science Program, Department of Psychology, Barnwell College, University of South Carolina, 1512 Pendleton Street, Columbia, SC, 29208, USA
| |
Collapse
|
2
|
Sari Y, Swiss GM, Alrashedi FA, Baeshen KA, Alshammari SA, Alsharari SD, Ali N, Alasmari AF, Alhoshani A, Alameen AA, Childers WE, Abou-Gharbia M, Alasmari F. Effects of novel beta-lactam, MC-100093, and ceftriaxone on astrocytic glutamate transporters and neuroinflammatory factors in nucleus accumbens of C57BL/6 mice exposed to escalated doses of morphine. Saudi Pharm J 2024; 32:102108. [PMID: 38868175 PMCID: PMC11166880 DOI: 10.1016/j.jsps.2024.102108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2024] Open
Abstract
Chronic exposure to opioids can lead to downregulation of astrocytic glutamate transporter 1 (GLT-1), which regulates the majority of glutamate uptake. Studies from our lab revealed that beta-lactam antibiotic, ceftriaxone, attenuated hydrocodone-induced downregulation of GLT-1 as well as cystine/glutamate antiporter (xCT) expression in central reward brain regions. In this study, we investigated the effects of escalating doses of morphine and tested the efficacy of novel synthetic non-antibiotic drug, MC-100093, and ceftriaxone in attenuating the effects of morphine exposure in the expression of GLT-1, xCT, and neuroinflammatory factors (IL-6 and TGF-β) in the nucleus accumbens (NAc). This study also investigated the effects of morphine and beta-lactams in locomotor activity, spontaneous alternation percentage (SAP) and number of entries in Y maze since opioids have effects in locomotor sensitization. Mice were exposed to moderate dose of morphine (20 mg/kg, i.p.) on days 1, 3, 5, 7, and a higher dose of morphine (150 mg/kg, i.p.) on day 9, and these mice were then behaviorally tested and euthanized on Day 10. Western blot analysis showed that exposure to morphine downregulated GLT-1 and xCT expression in the NAc, and both MC-100093 and ceftriaxone attenuated these effects. In addition, morphine exposure increased IL-6 mRNA and TGF-β mRNA expression, and MC-100093 and ceftriaxone attenuated only the effect on IL-6 mRNA expression in the NAc. Furthermore, morphine exposure induced an increase in distance travelled, and MC-100093 and ceftriaxone attenuated this effect. In addition, morphine exposure decreased the SAP and increased the number of arm entries in Y maze, however, neither MC-100093 nor ceftriaxone showed any attenuating effect. Our findings demonstrated for the first time that MC-100093 and ceftriaxone attenuated morphine-induced downregulation of GLT-1 and xCT expression, and morphine-induced increase in neuroinflammatory factor, IL-6, as well as hyperactivity. These findings revealed the beneficial therapeutic effects of MC-100093 and ceftriaxone against the effects of exposure to escalated doses of morphine.
Collapse
Affiliation(s)
- Youssef Sari
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH 43614, USA
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ghadeer M.S. Swiss
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Fatin A. Alrashedi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Kholoud A. Baeshen
- Department of Forensic Sciences, College of Criminal Justice, Naif Arab University for Security Sciences, Riyadh, Saudi Arabia
| | - Sultan A. Alshammari
- Department of Forensic Sciences, College of Criminal Justice, Naif Arab University for Security Sciences, Riyadh, Saudi Arabia
| | - Shakir D. Alsharari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Nemat Ali
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Abdullah F. Alasmari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ali Alhoshani
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Alaa A. Alameen
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Wayne E. Childers
- Department of Pharmaceutical Sciences, Temple University School of Pharmacy, Philadelphia, PA 19140, USA
| | - Magid Abou-Gharbia
- Department of Pharmaceutical Sciences, Temple University School of Pharmacy, Philadelphia, PA 19140, USA
| | - Fawaz Alasmari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
3
|
Wong W, Sari Y. Effects of Hydrocodone Overdose and Ceftriaxone on Astrocytic Glutamate Transporters and Glutamate Receptors, and Associated Signaling in Nucleus Accumbens as well as Locomotor Activity in C57/BL Mice. Brain Sci 2024; 14:361. [PMID: 38672013 PMCID: PMC11048659 DOI: 10.3390/brainsci14040361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/31/2024] [Accepted: 04/03/2024] [Indexed: 04/28/2024] Open
Abstract
Chronic opioid treatments dysregulate the glutamatergic system, inducing a hyperglutamatergic state in mesocorticolimbic brain regions. This study investigated the effects of exposure to hydrocodone overdose on locomotor activity, expression of target proteins related to the glutamatergic system, signaling kinases, and neuroinflammatory factors in the nucleus accumbens. The locomotor activity of mice was measured using the Comprehensive Laboratory Animal Monitoring System (CLAMS). CLAMS data showed that exposure to hydrocodone overdose increased locomotion activity in mice. This study tested ceftriaxone, known to upregulate major glutamate transporter 1 (GLT-1), in mice exposed to an overdose of hydrocodone. Thus, ceftriaxone normalized hydrocodone-induced hyperlocomotion activity in mice. Furthermore, exposure to hydrocodone overdose downregulated GLT-1, cystine/glutamate antiporter (xCT), and extracellular signal-regulated kinase activity (p-ERK/ERK) expression in the nucleus accumbens. However, exposure to an overdose of hydrocodone increased metabotropic glutamate receptor 5 (mGluR5), neuronal nitric oxide synthase activity (p-nNOS/nNOS), and receptor for advanced glycation end products (RAGE) expression in the nucleus accumbens. Importantly, ceftriaxone treatment attenuated hydrocodone-induced upregulation of mGluR5, p-nNOS/nNOS, and RAGE, as well as hydrocodone-induced downregulation of GLT-1, xCT, and p-ERK/ERK expression. These data demonstrated that exposure to hydrocodone overdose can cause dysregulation of the glutamatergic system, neuroinflammation, hyperlocomotion activity, and the potential therapeutic role of ceftriaxone in attenuating these effects.
Collapse
Affiliation(s)
| | - Youssef Sari
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, The University of Toledo, Toledo, OH 43614, USA;
| |
Collapse
|
4
|
Kibaly C, Alderete JA, Liu SH, Nasef HS, Law PY, Evans CJ, Cahill CM. Oxycodone in the Opioid Epidemic: High 'Liking', 'Wanting', and Abuse Liability. Cell Mol Neurobiol 2021; 41:899-926. [PMID: 33245509 PMCID: PMC8155122 DOI: 10.1007/s10571-020-01013-y] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 11/17/2020] [Indexed: 12/13/2022]
Abstract
It is estimated that nearly a third of people who abuse drugs started with prescription opioid medicines. Approximately, 11.5 million Americans used prescription drugs recreationally in 2016, and in 2018, 46,802 Americans died as the result of an opioid overdose, including prescription opioids, heroin, and illicitly manufactured fentanyl (National Institutes on Drug Abuse (2020) Opioid Overdose Crisis. https://www.drugabuse.gov/drugs-abuse/opioids/opioid-overdose-crisis . Accessed 06 June 2020). Yet physicians will continue to prescribe oral opioids for moderate-to-severe pain in the absence of alternative therapeutics, underscoring the importance in understanding how drug choice can influence detrimental outcomes. One of the opioid prescription medications that led to this crisis is oxycodone, where misuse of this drug has been rampant. Being one of the most highly prescribed opioid medications for treating moderate-to-severe pain as reflected in the skyrocketed increase in retail sales of 866% between 1997 and 2007, oxycodone was initially suggested to be less addictive than morphine. The false-claimed non-addictive formulation of oxycodone, OxyContin, further contributed to the opioid crisis. Abuse was often carried out by crushing the pills for immediate burst release, typically by nasal insufflation, or by liquefying the pills for intravenous injection. Here, we review oxycodone pharmacology and abuse liability as well as present the hypothesis that oxycodone may exhibit a unique pharmacology that contributes to its high likability and abuse susceptibility. We will discuss various mechanisms that likely contribute to the high abuse rate of oxycodone including clinical drug likability, pharmacokinetics, pharmacodynamics, differences in its actions within mesolimbic reward circuity compared to other opioids, and the possibility of differential molecular and cellular receptor interactions that contribute to its selective effects. We will also discuss marketing strategies and drug difference that likely contributes to the oxycodone opioid use disorders and addiction.
Collapse
Affiliation(s)
- Cherkaouia Kibaly
- Department of Psychiatry and Biobehavioral Sciences, Jane & Terry Semel Institute for Neuroscience and Human Behavior, Shirley and Stefan Hatos Center for Neuropharmacology, University of California, Los Angeles, CA, USA.
| | - Jacob A Alderete
- Department of Psychiatry and Biobehavioral Sciences, Jane & Terry Semel Institute for Neuroscience and Human Behavior, Shirley and Stefan Hatos Center for Neuropharmacology, University of California, Los Angeles, CA, USA
| | - Steven H Liu
- Department of Psychiatry and Biobehavioral Sciences, Jane & Terry Semel Institute for Neuroscience and Human Behavior, Shirley and Stefan Hatos Center for Neuropharmacology, University of California, Los Angeles, CA, USA
| | - Hazem S Nasef
- Department of Psychiatry and Biobehavioral Sciences, Jane & Terry Semel Institute for Neuroscience and Human Behavior, Shirley and Stefan Hatos Center for Neuropharmacology, University of California, Los Angeles, CA, USA
| | - Ping-Yee Law
- Department of Psychiatry and Biobehavioral Sciences, Jane & Terry Semel Institute for Neuroscience and Human Behavior, Shirley and Stefan Hatos Center for Neuropharmacology, University of California, Los Angeles, CA, USA
| | - Christopher J Evans
- Department of Psychiatry and Biobehavioral Sciences, Jane & Terry Semel Institute for Neuroscience and Human Behavior, Shirley and Stefan Hatos Center for Neuropharmacology, University of California, Los Angeles, CA, USA
| | - Catherine M Cahill
- Department of Psychiatry and Biobehavioral Sciences, Jane & Terry Semel Institute for Neuroscience and Human Behavior, Shirley and Stefan Hatos Center for Neuropharmacology, University of California, Los Angeles, CA, USA.
| |
Collapse
|
5
|
Emery MA, Akil H. Endogenous Opioids at the Intersection of Opioid Addiction, Pain, and Depression: The Search for a Precision Medicine Approach. Annu Rev Neurosci 2020; 43:355-374. [PMID: 32109184 PMCID: PMC7646290 DOI: 10.1146/annurev-neuro-110719-095912] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Opioid addiction and overdose are at record levels in the United States. This is driven, in part, by their widespread prescription for the treatment of pain, which also increased opportunity for diversion by sensation-seeking users. Despite considerable research on the neurobiology of addiction, treatment options for opioid abuse remain limited. Mood disorders, particularly depression, are often comorbid with both pain disorders and opioid abuse. The endogenous opioid system, a complex neuromodulatory system, sits at the neurobiological convergence point of these three comorbid disease states. We review evidence for dysregulation of the endogenous opioid system as a mechanism for the development of opioid addiction and/or mood disorder. Specifically, individual differences in opioid system function may underlie differences in vulnerability to opioid addiction and mood disorders. We also review novel research, which promises to provide more detailed understanding of individual differences in endogenous opioid neurobiology and its contribution to opioid addiction susceptibility.
Collapse
Affiliation(s)
- Michael A Emery
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor, Michigan 48109, USA;
| | - Huda Akil
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor, Michigan 48109, USA;
- Department of Psychiatry, University of Michigan, Ann Arbor, Michigan 48109, USA
| |
Collapse
|
6
|
Madison CA, Wellman PJ, Eitan S. Pre-exposure of adolescent mice to morphine results in stronger sensitization and reinstatement of conditioned place preference than pre-exposure to hydrocodone. J Psychopharmacol 2020; 34:771-777. [PMID: 32489137 DOI: 10.1177/0269881120926675] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Opioids are commonly prescribed to treat moderate-to-severe pain. However, their use can trigger the development of opioid use disorder. A major problem in treating opioid use disorder remains the high rate of relapse. AIM The purpose of this study was to determine whether there are differences among opioids in their ability to trigger relapse after pre-exposure during adolescence. METHODS On postnatal day 33, mice were examined for the acute locomotor response to saline, morphine, or hydrocodone (5 mg/kg). They were administered with the corresponding opioid or saline during postnatal days 34-38 (20 mg/kg) and 40-44 (40 mg/kg). On postnatal day 45, they were recorded for the development of locomotor sensitization (5 mg/kg). Starting on postnatal day 55, mice were examined for the acquisition (1, 5, 10, 20, and 40 mg/kg), extinction, and drug-induced reinstatement (1, 2.5, and 5 mg/kg) of conditioned place preference. RESULTS There were no significant differences in the acute locomotor response to morphine and hydrocodone. Morphine induced significantly stronger locomotor sensitization as compared to hydrocodone. Pre-exposure to morphine, but not hydrocodone, sensitized the acquisition of conditioned place preference. There were no significant differences in extinction rates. Mice pre-exposed to morphine reinstate conditioned place preference after priming with a 1 mg/kg dose. In contrast, higher priming doses were required for reinstatement in all other experimental groups. CONCLUSIONS Adolescent mice administered with morphine develop greater sensitization to its effects and subsequently reinstate conditioned place preference more readily than mice administered with hydrocodone. This suggests higher risk for relapse after pre-exposure to morphine during adolescence as compared to hydrocodone.
Collapse
Affiliation(s)
- Caitlin A Madison
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, USA
| | - Paul J Wellman
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, USA
| | - Shoshana Eitan
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, USA
| |
Collapse
|
7
|
|
8
|
Emery MA, Eitan S. Drug-specific differences in the ability of opioids to manage burn pain. Burns 2019; 46:503-513. [PMID: 31859093 DOI: 10.1016/j.burns.2019.03.028] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 03/04/2019] [Accepted: 03/30/2019] [Indexed: 12/17/2022]
Abstract
Burn injury pain is a significant public health problem. Burn injury treatment has improved tremendously in recent decades. However, an unintended consequence is that a larger number of patients now survive more severe injuries, and face intense pain that is very hard to treat. Although many efforts have been made to find alternative treatments, opioids remain the most effective medication available. Burn patients are frequently prescribed opioids in doses and durations that are significantly higher and longer than standard analgesic dosing guidelines. Despite this, many continue to experience unrelieved pain. They are also placed at a higher risk for developing dependence and opioid use disorder. Burn injury profoundly alters the functional state of the immune system. It also alters the expression levels of receptor, effector, and signaling molecules within the spinal cord's dorsal horn. These alterations could explain the reduced potency of opioids. However, recent studies demonstrate that different opioids signal preferentially via differential signaling pathways. This ligand-specific signaling by different opioids implies that burn injury may reduce the antinociceptive potency of opioids to different degrees, in a drug-specific manner. Indeed, recent findings hint at drug-specific differences in the ability of opioids to manage burn pain early after injury, as well as differences in their ability to prevent or treat the development of chronic and neuropathic pain. Here we review the current state of opioid treatment, as well as new findings that could potentially lead to opioid-based pain management strategies that may be significantly more effective than the current solutions.
Collapse
Affiliation(s)
- Michael A Emery
- Behavioral and Cellular Neuroscience, Department of Psychological and Brain Sciences, Texas A&M University, 4235 TAMU, College Station, TX 77843, USA; Interdisciplinary Program in Neuroscience, Texas A&M Institute for Neuroscience (TAMIN), USA
| | - Shoshana Eitan
- Behavioral and Cellular Neuroscience, Department of Psychological and Brain Sciences, Texas A&M University, 4235 TAMU, College Station, TX 77843, USA; Interdisciplinary Program in Neuroscience, Texas A&M Institute for Neuroscience (TAMIN), USA.
| |
Collapse
|
9
|
Emery MA, Eitan S. Members of the same pharmacological family are not alike: Different opioids, different consequences, hope for the opioid crisis? Prog Neuropsychopharmacol Biol Psychiatry 2019; 92:428-449. [PMID: 30790677 DOI: 10.1016/j.pnpbp.2019.02.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 02/15/2019] [Accepted: 02/15/2019] [Indexed: 01/14/2023]
Abstract
Pain management is the specialized medical practice of modulating pain perception and thus easing the suffering and improving the life quality of individuals suffering from painful conditions. Since this requires the modulation of the activity of endogenous systems involved in pain perception, and given the large role that the opioidergic system plays in pain perception, opioids are currently the most effective pain treatment available and are likely to remain relevant for the foreseeable future. This contributes to the rise in opioid use, misuse, and overdose death, which is currently characterized by public health officials in the United States as an epidemic. Historically, the majority of preclinical rodent studies were focused on morphine. This has resulted in our understanding of opioids in general being highly biased by our knowledge of morphine specifically. However, recent in vitro studies suggest that direct extrapolation of research findings from morphine to other opioids is likely to be flawed. Notably, these studies suggest that different opioid analgesics (opioid agonists) engage different downstream signaling effects within the cell, despite binding to and activating the same receptors. This recognition implies that, in contrast to the historical status quo, different opioids cannot be made equivalent by merely dose adjustment. Notably, even at equianalgesic doses, different opioids could result in different beneficial and risk outcomes. In order to foster further translational research regarding drug-specific differences among opioids, here we review basic research elucidating differences among opioids in pharmacokinetics, pharmacodynamics, their capacity for second messenger pathway activation, and their interactions with the immune system and the dopamine D2 receptors.
Collapse
Affiliation(s)
- Michael A Emery
- Behavioral and Cellular Neuroscience, Department of Psychological and Brain Sciences, Texas A&M University, 4235 TAMU, College Station, TX 77843, USA; Interdisciplinary Program in Neuroscience, Texas A&M Institute for Neuroscience (TAMIN), College Station, TX, USA
| | - Shoshana Eitan
- Behavioral and Cellular Neuroscience, Department of Psychological and Brain Sciences, Texas A&M University, 4235 TAMU, College Station, TX 77843, USA; Interdisciplinary Program in Neuroscience, Texas A&M Institute for Neuroscience (TAMIN), College Station, TX, USA.
| |
Collapse
|
10
|
Cunningham CW, Elballa WM, Vold SU. Bifunctional opioid receptor ligands as novel analgesics. Neuropharmacology 2019; 151:195-207. [PMID: 30858102 DOI: 10.1016/j.neuropharm.2019.03.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 01/30/2019] [Accepted: 03/02/2019] [Indexed: 12/12/2022]
Abstract
Prolonged treatment of chronic severe pain with opioid analgesics is frought with problematic adverse effects including tolerance, dependence, and life-threatening respiratory depression. Though these effects are mediated predominately through preferential activation of μ opioid peptide (μOP) receptors, there is an emerging appreciation that actions at κOP and δOP receptors contribute to the observed pharmacologic and behavioral profile of μOP receptor agonists and may be targeted simultaneously to afford improved analgesic effects. Recent developments have also identified the related nociceptin opioid peptide (NOP) receptor as a key modulator of the effects of μOP receptor signaling. We review here the available literature describing OP neurotransmitter systems and highlight recent drug and probe design strategies.
Collapse
Affiliation(s)
| | - Waleed M Elballa
- Department of Pharmaceutical Sciences, Concordia University Wisconsin, Mequon, WI, USA.
| | - Stephanie U Vold
- Department of Pharmaceutical Sciences, Concordia University Wisconsin, Mequon, WI, USA.
| |
Collapse
|
11
|
Cardia L, Calapai G, Quattrone D, Mondello C, Arcoraci V, Calapai F, Mannucci C, Mondello E. Preclinical and Clinical Pharmacology of Hydrocodone for Chronic Pain: A Mini Review. Front Pharmacol 2018; 9:1122. [PMID: 30327606 PMCID: PMC6174210 DOI: 10.3389/fphar.2018.01122] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 09/13/2018] [Indexed: 02/05/2023] Open
Abstract
Hydrocodone is one of the most prescribed oral analgesic drugs and it is one of the most abused drugs in general population. It is a mu-opioid agonist predominantly metabolized to the O-demethylated product hydromorphone and to the N-demethylated product norhydrocodone. The purpose of the study is to summarize the preclinical and clinical characteristics of hydrocodone. Pharmacokinetic aspect (terminal half-life, maximum serum concentration, and time to maximum serum concentration) of hydrocodone and the influence of metabolic genetic polymorphism in analgesic response to hydrocodone are also illustrated and commented. Literature on experimental preclinical pharmacology investigating analgesic activity in laboratory animals is furtherly discussed. Moreover, the authors discuss and comment on the updated data regarding safety profile and effectiveness of hydrocodone in the treatment of chronic pain. A bibliographic research was carried out (from February 01, 2018 to August 28, 2018) independently by two researchers (blinded to the authors and initially on results) in the major scientific databases and research engines of peer-reviewed literature on life sciences and biomedical topics, starting from January 1990 to August 2018. Analysis of results of clinical studies suggests that abuse-deterrent extended-release (ER) hydrocodone formulations can be effective and they are well tolerated in the treatment of chronic low back pain. Weaker is the evidence of the analgesic effectiveness of ER hydrocodone on other chronic pain syndromes and non-cancer non-neuropathic chronic pain. In these conditions, hydrocodone showed to have positive effects in non-controlled open studies and needs to be further studied to assess the real strength of results.
Collapse
Affiliation(s)
- Luigi Cardia
- Anesthesia, Intensive Care and Pain Therapy, Azienda Ospedaliera Universitaria Policlinico "G. Martino" - Messina, Messina, Italy
| | - Gioacchino Calapai
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Azienda Ospedaliera Universitaria Policlinico "G. Martino" - Messina, Messina, Italy
| | - Domenico Quattrone
- Pain Therapy Unit, Grande Ospedale Metropolitano Bianchi Melacrino Morelli-Reggio Calabria, Reggio Calabria, Italy
| | - Cristina Mondello
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Azienda Ospedaliera Universitaria Policlinico "G. Martino" - Messina, Messina, Italy
| | - Vincenzo Arcoraci
- Department of Clinical and Experimental Medicine, Azienda Ospedaliera Universitaria Policlinico "G. Martino" - Messina, Messina, Italy
| | - Fabrizio Calapai
- Pharma.Ca Research Facility (Centro Studi Pharma.Ca), Messina, Italy
| | - Carmen Mannucci
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Azienda Ospedaliera Universitaria Policlinico "G. Martino" - Messina, Messina, Italy
| | - Epifanio Mondello
- Anesthesia, Intensive Care and Pain Therapy, Azienda Ospedaliera Universitaria Policlinico "G. Martino" - Messina, Messina, Italy
| |
Collapse
|
12
|
Eitan S, Emery MA, Bates M, Horrax C. Opioid addiction: Who are your real friends? Neurosci Biobehav Rev 2017; 83:697-712. [DOI: 10.1016/j.neubiorev.2017.05.017] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Revised: 05/17/2017] [Accepted: 05/21/2017] [Indexed: 01/29/2023]
|
13
|
|
14
|
|
15
|
Gaspari S, Cogliani V, Manouras L, Anderson EM, Mitsi V, Avrampou K, Carr FB, Zachariou V. RGS9-2 Modulates Responses to Oxycodone in Pain-Free and Chronic Pain States. Neuropsychopharmacology 2017; 42:1548-1556. [PMID: 28074831 PMCID: PMC5436127 DOI: 10.1038/npp.2017.4] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 11/28/2016] [Accepted: 12/23/2016] [Indexed: 12/11/2022]
Abstract
Regulator of G-protein signaling 9-2 (RGS9-2) is a striatal-enriched signal-transduction modulator known to have a critical role in the development of addiction-related behaviors following exposure to psychostimulants or opioids. RGS9-2 controls the function of several G-protein-coupled receptors, including dopamine receptor and mu opioid receptor (MOR). We previously showed that RGS9-2 complexes negatively control morphine analgesia, and promote the development of morphine tolerance. In contrast, RGS9-2 positively modulates the actions of other opioid analgesics, such as fentanyl and methadone. Here we investigate the role of RGS9-2 in regulating responses to oxycodone, an MOR agonist prescribed for the treatment of severe pain conditions that has addictive properties. Using mice lacking the Rgs9 gene (RGS9KO), we demonstrate that RGS9-2 positively regulates the rewarding effects of oxycodone in pain-free states, and in a model of neuropathic pain. Furthermore, although RGS9-2 does not affect the analgesic efficacy of oxycodone or the expression of physical withdrawal, it opposes the development of oxycodone tolerance, in both acute pain and chronic neuropathic pain models. Taken together, these data provide new information on the signal-transduction mechanisms that modulate the rewarding and analgesic actions of oxycodone.
Collapse
Affiliation(s)
- Sevasti Gaspari
- Icahn School of Medicine at Mount Sinai, Fishberg Department of Neuroscience and Friedman Brain Institute, New York, NY, USA
- University of Crete Faculty of Medicine, Department of Basic Sciences, Heraklion, Greece
| | - Valeria Cogliani
- Icahn School of Medicine at Mount Sinai, Fishberg Department of Neuroscience and Friedman Brain Institute, New York, NY, USA
| | - Lefteris Manouras
- University of Crete Faculty of Medicine, Department of Basic Sciences, Heraklion, Greece
| | - Ethan M Anderson
- Icahn School of Medicine at Mount Sinai, Fishberg Department of Neuroscience and Friedman Brain Institute, New York, NY, USA
| | - Vasiliki Mitsi
- Icahn School of Medicine at Mount Sinai, Fishberg Department of Neuroscience and Friedman Brain Institute, New York, NY, USA
| | - Kleopatra Avrampou
- Icahn School of Medicine at Mount Sinai, Fishberg Department of Neuroscience and Friedman Brain Institute, New York, NY, USA
| | - Fiona B Carr
- Icahn School of Medicine at Mount Sinai, Fishberg Department of Neuroscience and Friedman Brain Institute, New York, NY, USA
| | - Venetia Zachariou
- Icahn School of Medicine at Mount Sinai, Fishberg Department of Neuroscience and Friedman Brain Institute, New York, NY, USA
| |
Collapse
|
16
|
Emery MA, Shawn Bates M, Wellman PJ, Eitan S. Hydrocodone is More Effective than Morphine or Oxycodone in Suppressing the Development of Burn-Induced Mechanical Allodynia. PAIN MEDICINE 2017; 18:2170-2180. [DOI: 10.1093/pm/pnx050] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
|
17
|
Abstract
This paper is the thirty-eighth consecutive installment of the annual review of research concerning the endogenous opioid system. It summarizes papers published during 2015 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior, and the roles of these opioid peptides and receptors in pain and analgesia, stress and social status, tolerance and dependence, learning and memory, eating and drinking, drug abuse and alcohol, sexual activity and hormones, pregnancy, development and endocrinology, mental illness and mood, seizures and neurologic disorders, electrical-related activity and neurophysiology, general activity and locomotion, gastrointestinal, renal and hepatic functions, cardiovascular responses, respiration and thermoregulation, and immunological responses.
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, Flushing, NY 11367, United States.
| |
Collapse
|
18
|
Hydrocodone, but Neither Morphine nor Oxycodone, Is Effective in Suppressing Burn-Induced Mechanical Allodynia in the Uninjured Foot Contralateral to the Burn. J Burn Care Res 2017; 38:319-326. [DOI: 10.1097/bcr.0000000000000517] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
19
|
Enga RM, Jackson A, Damaj MI, Beardsley PM. Oxycodone physical dependence and its oral self-administration in C57BL/6J mice. Eur J Pharmacol 2016; 789:75-80. [PMID: 27393461 DOI: 10.1016/j.ejphar.2016.07.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 07/01/2016] [Accepted: 07/05/2016] [Indexed: 11/30/2022]
Abstract
Abuse of prescription opioids, such as oxycodone, has markedly increased in recent decades. While oxycodone's antinociceptive effects have been detailed in several preclinical reports, surprisingly few preclinical reports have elaborated its abuse-related effects. This is particularly surprising given that oxycodone has been in clinical use since 1917. In a novel oral operant self-administration procedure, C57BL/6J mice were trained to self-administer water before introducing increasing concentrations of oxycodone (0.056-1.0mg/ml) under post-prandial conditions during daily, 3-h test sessions. As the concentration of oxycodone increased, the numbers of deliveries first increased, then decreased in an inverted U-shape fashion characteristic of the patterns of other drugs self-administered during limited access conditions. After post-prandial conditions were removed, self-administration at the highest concentration was maintained suggesting oral oxycodone served as a positive reinforcer. In other mice, using a novel regimen of physical dependence, mice were administered increasing doses of oxycodone (9.0-33.0mg/kg, s.c.) over 9 days, challenged with naloxone (0.1-10.0mg/kg, s.c.), and then observed for 30min. Naloxone dose-dependently increased the observed number of somatic signs of withdrawal, suggesting physical dependence of oxycodone was induced under this regimen. This is the first report demonstrating induction of oral operant self-administration of oxycodone and dose-dependent precipitations of oxycodone withdrawal in C57BL/6J mice. The use of oral operant self-administration as well as the novel physical dependence regimen provides useful approaches to further examine the abuse- and dependence-related effects of this highly abused prescription opioid.
Collapse
Affiliation(s)
- Rachel M Enga
- Department of Pharmacology & Toxicology, Virginia Commonwealth University, 410 N. 12th Street, Richmond, VA 23298, USA
| | - Asti Jackson
- Department of Pharmacology & Toxicology, Virginia Commonwealth University, 410 N. 12th Street, Richmond, VA 23298, USA
| | - M Imad Damaj
- Department of Pharmacology & Toxicology, Virginia Commonwealth University, 410 N. 12th Street, Richmond, VA 23298, USA; Institute for Drug and Alcohol Studies, Virginia Commonwealth University, P.O. Box 980310, Richmond, VA 23298-0310, USA
| | - Patrick M Beardsley
- Department of Pharmacology & Toxicology, Virginia Commonwealth University, 410 N. 12th Street, Richmond, VA 23298, USA; Institute for Drug and Alcohol Studies, Virginia Commonwealth University, P.O. Box 980310, Richmond, VA 23298-0310, USA; Center for Biomarker Research and Personalized Medicine, School of Pharmacy, Virginia Commonwealth University, 1112 East Clay Street, Richmond, VA 23298, USA.
| |
Collapse
|
20
|
Collins D, Reed B, Zhang Y, Kreek MJ. Sex differences in responsiveness to the prescription opioid oxycodone in mice. Pharmacol Biochem Behav 2016; 148:99-105. [PMID: 27316549 DOI: 10.1016/j.pbb.2016.06.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 06/12/2016] [Accepted: 06/13/2016] [Indexed: 11/29/2022]
Abstract
Over-prescription and increased nonmedical use of oxycodone has become a major concern. Despite its increased use, preclinical data concerning oxycodone's effects are still limited, especially in rodent models. To address this, we examined oxycodone's effects on place preference, locomotor activation, corticosterone levels, and thermal analgesia across a range of doses (between 0.3 and 10mg/kg) in gonadally intact, adult male and female C57BL/6J mice. Males and females showed oxycodone-induced conditioned place preference and did not show significant between-sex differences in their place preference behavior. During both CPP conditioning sessions and open field assay, locomotor activity was increased by 1, 3, and 10mg/kg oxycodone in females and by 3 and 10mg/kg oxycodone in males. Plasma corticosterone levels were higher in females (compared to males) at baseline as well as following acute oxycodone injection and open field testing. The time course of oxycodone-induced analgesia was similar in males and females, however the total antinociceptive effect (AUC0-120min) was larger in males compared to females at the highest dose tested (10mg/kg). Taken together, these data suggest that male and female mice are modestly different in their responses to oxycodone.
Collapse
Affiliation(s)
- Devon Collins
- The Laboratory of the Biology of Addictive Diseases, The Rockefeller University, 1230 York Avenue, New York, NY 10065, United States.
| | - Brian Reed
- The Laboratory of the Biology of Addictive Diseases, The Rockefeller University, 1230 York Avenue, New York, NY 10065, United States
| | - Yong Zhang
- The Laboratory of the Biology of Addictive Diseases, The Rockefeller University, 1230 York Avenue, New York, NY 10065, United States
| | - Mary Jeanne Kreek
- The Laboratory of the Biology of Addictive Diseases, The Rockefeller University, 1230 York Avenue, New York, NY 10065, United States
| |
Collapse
|
21
|
Nocifensive behavior-related laser heat-evoked component in the rostral agranular insular cortex revealed using morphine analgesia. Physiol Behav 2016; 154:129-34. [DOI: 10.1016/j.physbeh.2015.11.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Revised: 11/11/2015] [Accepted: 11/23/2015] [Indexed: 01/27/2023]
|
22
|
Emery MA, Bates MLS, Wellman PJ, Eitan S. Differential Effects of Oxycodone, Hydrocodone, and Morphine on Activation Levels of Signaling Molecules. PAIN MEDICINE 2015; 17:908-914. [PMID: 26349634 DOI: 10.1111/pme.12918] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND Opioids alter the responses of D2-like dopamine receptors (D2DRs), known to be involved in the pathology of addiction and other mental illnesses. Importantly, our recent results demonstrated that various opioids differentially modulate the behavioral responses of D2DRs. OBJECTIVE To examine the effect of various opioids on striatal activation levels of Akt and ERK1/2, as well as the signaling responses of D2DRs following opioid exposure. METHODS Mice were pre-treated with 20 mg/kg morphine, hydrocodone, oxycodone, or saline for 6 days. Twenty-four hours later, mice were injected with vehicle or a D2/D3 receptor agonist, quinpirole. Thirty minutes later, dorsal striatum was collected and analyzed using Western blot. RESULTS In morphine-pretreated animals, baseline Akt activation level was unchanged, but was reduced in response to quinpirole. In contrast, baseline Akt activation levels were reduced in mice pretreated with hydrocodone and oxycodone, but were unchanged in response to quinpirole. In mice pretreated with all opioids, baseline ERK2 activation levels were unchanged and increased in response to quinpirole. However, quinpirole-induced ERK2 activation was significantly higher than drug naïve animals only in the morphine-pretreated mice. CONCLUSIONS Various opioids differentially modulate the baseline activation levels of signaling molecules, which in turn results in ligand-selective effects on the responses to a D2/D3 dopamine receptor agonist. This demonstrates a complex interplay between opioid receptors and D2DRs, and supports the notion that various opioids carry differential risks to the dopamine reward system. This information should be considered when prescribing opioid pain medication, to balance effectiveness with minimal risk.
Collapse
Affiliation(s)
- Michael A Emery
- Department of Psychology, Behavioral and Cellular Neuroscience Program, and the Interdisciplinary Program in Neuroscience, Texas A&M Institute for Neuroscience (TAMIN), Texas A&M University, 4235 TAMU, College Station, TX, USA
| | - M L Shawn Bates
- Department of Psychology, Behavioral and Cellular Neuroscience Program, and the Interdisciplinary Program in Neuroscience, Texas A&M Institute for Neuroscience (TAMIN), Texas A&M University, 4235 TAMU, College Station, TX, USA
| | - Paul J Wellman
- Department of Psychology, Behavioral and Cellular Neuroscience Program, and the Interdisciplinary Program in Neuroscience, Texas A&M Institute for Neuroscience (TAMIN), Texas A&M University, 4235 TAMU, College Station, TX, USA
| | - Shoshana Eitan
- Department of Psychology, Behavioral and Cellular Neuroscience Program, and the Interdisciplinary Program in Neuroscience, Texas A&M Institute for Neuroscience (TAMIN), Texas A&M University, 4235 TAMU, College Station, TX, USA
| |
Collapse
|