1
|
Orban Z, Gill MJ. Differential rearing alters Fos in the accumbens core and ventral palidum following reinstatement of cocaine seeking in male Sprague-Dawley rats. Pharmacol Biochem Behav 2024; 243:173837. [PMID: 39053857 DOI: 10.1016/j.pbb.2024.173837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 07/16/2024] [Accepted: 07/22/2024] [Indexed: 07/27/2024]
Abstract
Rearing rats in environmental enrichment produces a protective effect when exposed to stimulants, as enriched rats display attenuated cocaine seeking during reinstatement. However, less is known about what changes in the brain are responsible for this protective effect. The current study investigated differences in Fos protein expression following reinstatement of cocaine seeking in differentially reared rats. Rats were reared in either enriched (EC) or impoverished (IC) conditions for 30 days, after which rats self-administered cocaine in 2-h sessions. Following self-administration, rats underwent extinction and cue-induced or cocaine-primed reinstatement of cocaine seeking, brains were extracted, and Fos immunohistochemistry was performed. IC rats sought cocaine significantly more than EC rats during cue-induced reinstatement, and cocaine seeking was positively correlated with Fos expression in the nucleus accumbens core and ventral pallidum. IC rats displayed greater Fos expression than EC rats in the accumbens and ventral pallidum, suggesting a role of these areas in the enrichment-induced protective effect.
Collapse
Affiliation(s)
- Z Orban
- Department of Psychology and Neuroscience, North Central College, 30 N Brainard St, Naperville, IL 60540, United States of America
| | - M J Gill
- Department of Psychology and Neuroscience, North Central College, 30 N Brainard St, Naperville, IL 60540, United States of America.
| |
Collapse
|
2
|
Karimi-Haghighi S, Chavoshinezhad S, Mozafari R, Noorbakhsh F, Borhani-Haghighi A, Haghparast A. Neuroinflammatory Response in Reward-Associated Psychostimulants and Opioids: A Review. Cell Mol Neurobiol 2023; 43:649-682. [PMID: 35461410 DOI: 10.1007/s10571-022-01223-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 03/26/2022] [Indexed: 11/03/2022]
Abstract
Substance abuse is one of the significant problems in social and public health worldwide. Vast numbers of evidence illustrate that motivational and reinforcing impacts of addictive drugs are primarily attributed to their ability to change dopamine signaling in the reward circuit. However, the roles of classic neurotransmitters, especially dopamine and neuromodulators, monoamines, and neuropeptides, in reinforcing characteristics of abused drugs have been extensively investigated. It has recently been revealed that central immune signaling includes cascades of chemokines and proinflammatory cytokines released by neurons and glia via downstream intracellular signaling pathways that play a crucial role in mediating rewarding behavioral effects of drugs. More interestingly, inflammatory responses in the central nervous system modulate the mesolimbic dopamine signaling and glutamate-dependent currents induced by addictive drugs. This review summarized researches in the alterations of inflammatory responses accompanied by rewarding and reinforcing properties of addictive drugs, including cocaine, methamphetamine, and opioids that were evaluated by conditioned place preference and self-administration procedures as highly common behavioral tests to investigate the motivational and reinforcing impacts of addictive drugs. The neuroinflammatory responses affect the rewarding properties of psychostimulants and opioids.
Collapse
Affiliation(s)
- Saeideh Karimi-Haghighi
- Clinical Neurology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.,Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, P.O. Box: 19615-1178, Tehran, Iran
| | - Sara Chavoshinezhad
- Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Roghayeh Mozafari
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, P.O. Box: 19615-1178, Tehran, Iran
| | - Farshid Noorbakhsh
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Shefa Neuroscience Research Center, Khatam Alanbia Hospital, Tehran, Iran
| | | | - Abbas Haghparast
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, P.O. Box: 19615-1178, Tehran, Iran.
| |
Collapse
|
3
|
Malone SG, Shaykin JD, Stairs DJ, Bardo MT. Neurobehavioral effects of environmental enrichment and drug abuse vulnerability: An updated review. Pharmacol Biochem Behav 2022; 221:173471. [PMID: 36228739 DOI: 10.1016/j.pbb.2022.173471] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 09/16/2022] [Accepted: 10/05/2022] [Indexed: 12/14/2022]
Abstract
Environmental enrichment consisting of social peers and novel objects is known to alter neurobiological functioning and have an influence on the behavioral effects of drugs of abuse in preclinical rodent models. An earlier review from our laboratory (Stairs and Bardo, 2009) provided an overview of enrichment-specific changes in addiction-like behaviors and neurobiology. The current review updates the literature in this extensive field. Key findings from this updated review indicate that enrichment produces positive outcomes in drug abuse vulnerability beyond just psychostimulants. Additionally, recent studies indicate that enrichment activates key genes involved in cell proliferation and protein synthesis in nucleus accumbens and enhances growth factors in hippocampus and neurotransmitter signaling pathways in prefrontal cortex, amygdala, and hypothalamus. Remaining gaps in the literature and future directions for environmental enrichment and drug abuse research are identified.
Collapse
Affiliation(s)
- Samantha G Malone
- Department of Psychology, University of Kentucky, BBSRB, 741 S. Limestone, Lexington, KY, USA
| | - Jakob D Shaykin
- Department of Psychology, University of Kentucky, BBSRB, 741 S. Limestone, Lexington, KY, USA
| | - Dustin J Stairs
- Department of Psychological Science, Creighton University, Hixson-Lied Science Building, 2500 California Plaza, Omaha, NE, USA
| | - Michael T Bardo
- Department of Psychology, University of Kentucky, BBSRB, 741 S. Limestone, Lexington, KY, USA.
| |
Collapse
|
4
|
Nicolas C, Hofford RS, Dugast E, Lardeux V, Belujon P, Solinas M, Bardo MT, Thiriet N. Prevention of relapse to methamphetamine self-administration by environmental enrichment: involvement of glucocorticoid receptors. Psychopharmacology (Berl) 2022; 239:1009-1018. [PMID: 33768375 DOI: 10.1007/s00213-021-05770-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 01/21/2021] [Indexed: 12/17/2022]
Abstract
RATIONALE In rodents, environmental enrichment (EE) produces both preventive and curative effects on drug addiction, and this effect is believed to depend at least in part on EE's actions on the stress system. OBJECTIVES This study investigated whether exposure to EE during abstinence reduces methamphetamine seeking after extended self-administration. In addition, we investigated whether these effects are associated with alterations in the levels of glucocorticoid receptors (GR) in the brain and whether administration of GR antagonists blocks methamphetamine relapse. METHODS We allowed rats to self-administer methamphetamine for twenty 14-h sessions. After 3 weeks of abstinence either in standard (SE) or EE conditions, we measured methamphetamine seeking in a single 3-h session. Then, we used western blot techniques to measure GR levels in several brain areas. Finally, in an independent group of rats, after methamphetamine self-administration and abstinence in SE, we administered the GR antagonist mifepristone, and we investigated methamphetamine seeking. RESULTS Exposure to EE reduced methamphetamine seeking and reversed methamphetamine-induced increases in GR levels in the ventral and dorsal hippocampus. In addition, EE decreased GR levels in the amygdala in drug-naive animals, but this effect was prevented by previous exposure to methamphetamine. Administration of mifepristone significantly decreased methamphetamine seeking. CONCLUSIONS The anti-craving effects of EE are paralleled by restoration of methamphetamine-induced dysregulation of GR in the hippocampus. These results provide support for the hypothesis that the effect of EE on methamphetamine relapse is at least in part mediated by EE's action on the brain stress system.
Collapse
Affiliation(s)
- Céline Nicolas
- Université de Poitiers, INSERM, U-1084, Laboratoire des Neurosciences Expérimentales et Cliniques, Poitiers, France
| | - Rebecca S Hofford
- Department of Psychology, University of Kentucky, Lexington, KY, 40536-0509, USA
| | - Emilie Dugast
- Université de Poitiers, INSERM, U-1084, Laboratoire des Neurosciences Expérimentales et Cliniques, Poitiers, France.,CHU de Poitiers, Poitiers, France
| | - Virginie Lardeux
- Université de Poitiers, INSERM, U-1084, Laboratoire des Neurosciences Expérimentales et Cliniques, Poitiers, France
| | - Pauline Belujon
- Université de Poitiers, INSERM, U-1084, Laboratoire des Neurosciences Expérimentales et Cliniques, Poitiers, France
| | - Marcello Solinas
- Université de Poitiers, INSERM, U-1084, Laboratoire des Neurosciences Expérimentales et Cliniques, Poitiers, France
| | - Michael T Bardo
- Department of Psychology, University of Kentucky, Lexington, KY, 40536-0509, USA
| | - Nathalie Thiriet
- Université de Poitiers, INSERM, U-1084, Laboratoire des Neurosciences Expérimentales et Cliniques, Poitiers, France.
| |
Collapse
|
5
|
The effect of adolescent social isolation on vulnerability for methamphetamine addiction behaviours in female rats. Psychopharmacology (Berl) 2022; 239:1129-1141. [PMID: 35347364 PMCID: PMC8986702 DOI: 10.1007/s00213-022-06103-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 02/22/2022] [Indexed: 11/16/2022]
Abstract
RATIONALE Stress exposure during adolescence contributes to developing a methamphetamine (METH) use disorder. However, most of the studies investigating addiction-related behaviours include only male rodents, despite METH addiction rates being higher in females. Furthermore, animal studies investigating the effects of stress on methamphetamine addiction have used only basic self-administration models which may not be sensitive to the effects of stress. OBJECTIVES This project explored whether adolescent isolation stress exposure increases the incidence of four key addiction-related behaviours in female rats. METHODS Thirty-two female rat pups were caged in groups of four or individually during adolescence from postnatal (PND) day 22, with the latter being re-socialised in groups of four on PND 43. In adulthood, rats were tested for addiction-like behaviours in a METH self-administration paradigm modelling motivation to take METH, persistence in drug-seeking behaviour when METH was not available, resistance to extinction, and propensity to reinstate after a period of withdrawal. RESULTS Adolescent social isolation resulted in lower METH intake during acquisition; however, the paradigm modelling drug-seeking when the drug was unavailable engendered intermittent METH bingeing in all rats, abolishing the group differences in intake during this phase. Adolescent social isolation also accelerated extinction of non-reinforced lever pressing, and increased stress-primed reinstatement, compared to the group-housed rats. CONCLUSIONS Adolescent social isolation stress alters various methamphetamine addiction-like behaviours in female rats.
Collapse
|
6
|
HIV-1 Tat Protein Promotes Neuroendocrine Dysfunction Concurrent with the Potentiation of Oxycodone's Psychomotor Effects in Female Mice. Viruses 2021; 13:v13050813. [PMID: 33946474 PMCID: PMC8147167 DOI: 10.3390/v13050813] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 04/23/2021] [Accepted: 04/27/2021] [Indexed: 02/06/2023] Open
Abstract
Human immunodeficiency virus (HIV) is associated with neuroendocrine dysfunction which may contribute to co-morbid stress-sensitive disorders. The hypothalamic-pituitary-adrenal (HPA) or -gonadal (HPG) axes are perturbed in up to 50% of HIV patients. The mechanisms are not known, but we have found the HIV-1 trans-activator of transcription (Tat) protein to recapitulate the clinical phenotype in male mice. We hypothesized that HPA and/or HPG dysregulation contributes to Tat-mediated interactions with oxycodone, an opioid often prescribed to HIV patients, in females. Female mice that conditionally-expressed the Tat1-86 protein [Tat(+) mice] or their counterparts that did not [Tat(-) control mice] were exposed to forced swim stress (or not) and behaviorally-assessed for motor and anxiety-like behavior. Some mice had glucocorticoid receptors (GR) or corticotropin-releasing factor receptors (CRF-R) pharmacologically inhibited. Some mice were ovariectomized (OVX). As seen previously in males, Tat elevated basal corticosterone levels and potentiated oxycodone's psychomotor activity in females. Unlike males, females did not demonstrate adrenal insufficiency and oxycodone potentiation was not regulated by GRs or CRF-Rs. Rather OVX attenuated Tat/oxycodone interactions. Either Tat or oxycodone increased anxiety-like behavior and their combination increased hypothalamic allopregnanolone. OVX increased basal hypothalamic allopregnanolone and obviated Tat or oxycodone-mediated fluctuations. Together, these data provide further evidence for Tat-mediated dysregulation of the HPA axis and reveal the importance of HPG axis regulation in females. HPA/HPG disruption may contribute vulnerability to affective and substance use disorders.
Collapse
|
7
|
Noschang C, Lampert C, Krolow R, de Almeida RMM. Social isolation at adolescence: a systematic review on behaviour related to cocaine, amphetamine and nicotine use in rats and mice. Psychopharmacology (Berl) 2021; 238:927-947. [PMID: 33606060 DOI: 10.1007/s00213-021-05777-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 01/24/2021] [Indexed: 02/07/2023]
Abstract
Adolescence is known for its high level of risk-taking, and neurobiological alterations during this period may predispose to psychoactive drug initiation and progression into more severe use patterns. Stress is a risk factor for drug consumption, and post-weaning social isolation increases drug self-administration in rodents. This review aimed to provide an overview of the effects of adolescent social isolation on cocaine, amphetamine and nicotine use-related behaviours, highlighting the specific period when animals were submitted to stress and these drugs. We wondered if there was a specific period during adolescence that isolation stress would increase drug use vulnerability. A total of 323 publications from the Scopus, Web of Science and PubMed (Medline) electronic databases were identified using the words "social isolation" and "adolescence" and "drug" or "cocaine" or "amphetamine" or "nicotine", resulting in 24 articles after analyses criteria following the PRISMA statement. The main points raised were social isolation during adolescence increased cocaine self-administration, amphetamine and nicotine locomotor activity. We did not observe a pattern of a specific moment during the adolescent period that could lead to an increased vulnerability to drug use. The precise conditions under which adolescent social stress alters drug use parameters are complex and likely depend on several factors.
Collapse
Affiliation(s)
- C Noschang
- Institute of Psychology, Laboratory of Experimental Psychology, Neuroscience and Behavior, Federal University of Rio Grande do Sul (UFRGS), 2600 Ramiro Barcelos St., Room 216, Porto Alegre, Rio Grande do Sul, 90035-003, Brazil.
- Biochemistry Department, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.
| | - C Lampert
- Institute of Psychology, Laboratory of Experimental Psychology, Neuroscience and Behavior, Federal University of Rio Grande do Sul (UFRGS), 2600 Ramiro Barcelos St., Room 216, Porto Alegre, Rio Grande do Sul, 90035-003, Brazil
- Biochemistry Department, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - R Krolow
- Biochemistry Department, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - R M M de Almeida
- Institute of Psychology, Laboratory of Experimental Psychology, Neuroscience and Behavior, Federal University of Rio Grande do Sul (UFRGS), 2600 Ramiro Barcelos St., Room 216, Porto Alegre, Rio Grande do Sul, 90035-003, Brazil
| |
Collapse
|
8
|
Housing conditions during self-administration determine motivation for cocaine in mice following chronic social defeat stress. Psychopharmacology (Berl) 2021; 238:41-54. [PMID: 32914243 PMCID: PMC8162736 DOI: 10.1007/s00213-020-05657-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 08/31/2020] [Indexed: 02/06/2023]
Abstract
RATIONALE Stress exposure has a lasting impact on motivated behavior and can exacerbate existing vulnerabilities for developing a substance use disorder. Several models have been developed to examine how stressful experiences shape drug reward. These range from locomotor sensitization and conditioned place preference to the propensity for drug self-administration or responding to drug-predictive cues. While self-administration studies are considered to have more translational relevance, most of the studies to date have been conducted in rats. Further, many self-administration studies are conducted in single-housed animals, adding the additional stressor of social isolation. OBJECTIVES We sought to establish how chronic social defeat stress (CSDS) and social housing conditions impact cocaine self-administration and cocaine-seeking behaviors in C57BL/6 mice. METHODS We assessed self-administration behavior (cocaine or saline, 0.5 mg/kg/infusion) in C57BL/6 mice subjected to 10-day CSDS or in unstressed controls. Mice were housed either in pairs or in isolation during self-administration. We compared the effect of housing on acquisition of self-administration, seeking, extinction, drug-induced reinstatement, and after re-exposure to the social stressor. RESULTS Pair-housing during self-administration revealed increased social avoidance after CSDS is associated with decreased cocaine intake. In contrast, single-housing revealed stress-sensitive cocaine intake, with increased social avoidance after CSDS associated with increased early cocaine intake. Pair-, but not single-housed mice are susceptible to drug-induced reinstatement independent of CSDS history. Stress re-exposure sensitized cocaine-seeking in stressed single-housed mice. CONCLUSIONS The social context surrounding cocaine intake can bidirectionally influence cocaine-related behaviors after psychosocial stress and should be considered when studying stress and drug cross-sensitization.
Collapse
|
9
|
HIV-1 Tat Dysregulates the Hypothalamic-Pituitary-Adrenal Stress Axis and Potentiates Oxycodone-Mediated Psychomotor and Anxiety-Like Behavior of Male Mice. Int J Mol Sci 2020; 21:ijms21218212. [PMID: 33153023 PMCID: PMC7662349 DOI: 10.3390/ijms21218212] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 10/28/2020] [Accepted: 10/30/2020] [Indexed: 01/31/2023] Open
Abstract
Human immunodeficiency virus (HIV) is associated with co-morbid affective and stress-sensitive neuropsychiatric disorders that may be related to dysfunction of the hypothalamic-pituitary-adrenal (HPA) stress axis. The HPA axis is perturbed in up to 46% of HIV patients, but the mechanisms are not known. The neurotoxic HIV-1 regulatory protein, trans-activator of transcription (Tat), may contribute. We hypothesized that HPA dysregulation may contribute to Tat-mediated interactions with oxycodone, a clinically-used opioid often prescribed to HIV patients. In transgenic male mice, Tat expression produced significantly higher basal corticosterone levels with adrenal insufficiency in response to a natural stressor or pharmacological blockade of HPA feedback, recapitulating the clinical phenotype. On acute exposure, HIV-1 Tat interacted with oxycodone to potentiate psychomotor and anxiety like-behavior in an open field and light-dark transition tasks, whereas repeated exposure sensitized stress-related psychomotor behavior and the HPA stress response. Pharmacological blockade of glucocorticoid receptors (GR) partially-restored the stress response and decreased oxycodone-mediated psychomotor behavior in Tat-expressing mice, implicating GR in these effects. Blocking corticotrophin-releasing factor (CRF) receptors reduced anxiety-like behavior in mice that were exposed to oxycodone. Together, these effects support the notion that Tat exposure can dysregulate the HPA axis, potentially raising vulnerability to stress-related substance use and affective disorders.
Collapse
|
10
|
Sampedro-Piquero P, Ladrón de Guevara-Miranda D, Pavón FJ, Serrano A, Suárez J, Rodríguez de Fonseca F, Santín LJ, Castilla-Ortega E. Neuroplastic and cognitive impairment in substance use disorders: a therapeutic potential of cognitive stimulation. Neurosci Biobehav Rev 2019; 106:23-48. [DOI: 10.1016/j.neubiorev.2018.11.015] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 10/15/2018] [Accepted: 11/23/2018] [Indexed: 01/08/2023]
|
11
|
Eitan S, Emery MA, Bates M, Horrax C. Opioid addiction: Who are your real friends? Neurosci Biobehav Rev 2017; 83:697-712. [DOI: 10.1016/j.neubiorev.2017.05.017] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Revised: 05/17/2017] [Accepted: 05/21/2017] [Indexed: 01/29/2023]
|
12
|
Simola N, Paci E, Serra M, Costa G, Morelli M. Modulation of Rat 50-kHz Ultrasonic Vocalizations by Glucocorticoid Signaling: Possible Relevance to Reward and Motivation. Int J Neuropsychopharmacol 2017; 21:73-83. [PMID: 29182715 PMCID: PMC5795343 DOI: 10.1093/ijnp/pyx106] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 11/13/2017] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Rats emit 50-kHz ultrasonic vocalizations (USVs) to communicate positive emotional states, and these USVs are increasingly being investigated in preclinical studies on reward and motivation. Although it is the activation of dopamine receptors that initiates the emission of 50-kHz USVs, non-dopaminergic mechanisms may modulate calling in the 50 kHz frequency band. To further elucidate these mechanisms, the present study investigated whether the pharmacological manipulation of glucocorticoid signaling influenced calling. METHODS Rats were administered corticosterone (1-5 mg/kg, s.c.), the glucocorticoid receptor antagonist mifepristone (40 or 100 mg/kg, s.c.), or the corticosterone synthesis inhibitor metyrapone (50 or 100 mg/kg, i.p.). The effects of these drugs on calling initiation and on calling recorded during nonaggressive social contacts or after the administration of amphetamine (0.25 or 1 mg/kg, i.p.) were then evaluated. RESULTS Corticosterone failed to initiate the emission of 50-kHz USVs and did not influence pro-social and amphetamine-stimulated calling. Similarly, mifepristone and metyrapone did not initiate calling. However, metyrapone suppressed pro-social calling and calling stimulated by a moderate dose (1 mg/kg, i.p.) of amphetamine. Conversely, mifepristone attenuated calling stimulated by a low (0.25 mg/kg, i.p.), but not moderate (1 mg/kg, i.p.), dose of amphetamine and had no influence on pro-social calling. CONCLUSIONS The present results demonstrate that glucocorticoid signaling modulates calling in the 50 kHz frequency band only in certain conditions and suggest that mechanisms different from the inhibition of corticosterone synthesis may participate in the suppression of calling by metyrapone.
Collapse
Affiliation(s)
- Nicola Simola
- Department of Biomedical Sciences, Section of Neuropsychopharmacology, University of Cagliari, Cagliari, Italy,National Institute of Neuroscience, University of Cagliari, Cagliari, Italy,Correspondence: Nicola Simola, PhD, Department of Biomedical Sciences, Section of Neuropsychopharmacology, University of Cagliari, Via Ospedale, 72, 09124, Cagliari, Italy ()
| | - Elena Paci
- Department of Physiology, University of Bristol, Bristol, United Kingdom,Department of Pharmacology and Neuroscience, University of Bristol, Bristol, United Kingdom
| | - Marcello Serra
- Department of Biomedical Sciences, Section of Neuropsychopharmacology, University of Cagliari, Cagliari, Italy
| | - Giulia Costa
- Department of Biomedical Sciences, Section of Neuropsychopharmacology, University of Cagliari, Cagliari, Italy
| | - Micaela Morelli
- Department of Biomedical Sciences, Section of Neuropsychopharmacology, University of Cagliari, Cagliari, Italy,National Institute of Neuroscience, University of Cagliari, Cagliari, Italy,NCR, National Research Council of Italy, Neuroscience Institute, Cagliari, Italy
| |
Collapse
|
13
|
Hofford RS, Prendergast MA, Bardo MT. Modified single prolonged stress reduces cocaine self-administration during acquisition regardless of rearing environment. Behav Brain Res 2017; 338:143-152. [PMID: 29061385 DOI: 10.1016/j.bbr.2017.10.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 10/11/2017] [Accepted: 10/20/2017] [Indexed: 11/25/2022]
Abstract
Until recently, there were few rodent models available to study the interaction of post-traumatic stress disorder (PTSD) and drug taking. Like PTSD, single prolonged stress (SPS) produces hypothalamic-pituitary-adrenal (HPA) axis dysfunction and alters psychostimulant self-administration. Other stressors, such as isolation stress, also alter psychostimulant self-administration. However, it is currently unknown if isolation housing combined with SPS can alter the acquisition or maintenance of cocaine self-administration. The current study applied modified SPS (modSPS; two hours restraint immediately followed by cold swim stress) to rats raised in an isolation condition (Iso), enrichment condition (Enr), or standard condition (Std) to measure changes in cocaine self-administration and HPA markers. Regardless of rearing condition, rats exposed to modSPS had greater corticosterone (CORT) release and reduced cocaine self-administration during initial acquisition compared to non-stressed controls. In addition, during initial acquisition, rats that received both Iso rearing and modSPS showed a more rapid increase in cocaine self-administration across sessions compared to Enr and Std rats exposed to modSPS. Following initial acquisition, a dose response analysis showed that Iso rats were overall most sensitive to changes in cocaine unit dose; however, modSPS had no effect on the cocaine dose response curve. Further, there was no effect of either modSPS or differential rearing on expression of glucocorticoid receptor (GR) in hypothalamus, medial prefrontal cortex, amygdala, or nucleus accumbens. By using modSPS in combination with Iso housing, this study identified unique contributions of each stressor to acquisition of cocaine self-administration.
Collapse
Affiliation(s)
- Rebecca S Hofford
- Department of Psychology, University of Kentucky, Lexington, KY, 40536, USA.
| | - Mark A Prendergast
- Department of Psychology, University of Kentucky, Lexington, KY, 40536, USA
| | - Michael T Bardo
- Department of Psychology, University of Kentucky, Lexington, KY, 40536, USA
| |
Collapse
|
14
|
Hofford RS, Beckmann JS, Bardo MT. Rearing environment differentially modulates cocaine self-administration after opioid pretreatment: A behavioral economic analysis. Drug Alcohol Depend 2016; 167:89-94. [PMID: 27511893 PMCID: PMC5037017 DOI: 10.1016/j.drugalcdep.2016.07.026] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 07/25/2016] [Accepted: 07/26/2016] [Indexed: 12/15/2022]
Abstract
BACKGROUND Research has shown that previous experiences during development, especially if stressful, can alter an organism's response to opioids later in life. Given the previous literature on opioid modulation of cocaine self-administration, the current study raised rats in either an enriched condition (EC) or isolated condition (IC) and employed behavioral economics to study the effects of naltrexone and morphine on cocaine self-administration. METHODS EC and IC rats were trained to lever press for cocaine using a within-session demand procedure. This procedure measured cocaine consumption under changing cocaine price by decreasing the dose of cocaine earned throughout a session. Rats were able to self-administer cocaine on a FR1; every 10min the cocaine dose was systematically decreased (0.75-0.003mg/kg/infusion cocaine). After reaching stability on this procedure, rats were randomly pretreated with 0, 0.3, 1, or 3mg/kg naltrexone once every 3days, followed by random pretreatments of 0, 0.3, 1, or 3mg/kg morphine once every 3days. Economic demand functions were fit to each rat's cocaine consumption from each pretreatment, and appropriate mathematical parameters were extracted and analyzed. RESULTS Naltrexone decreased the essential value of cocaine in IC rats only. However, morphine decreased the essential value of cocaine and the consumption of cocaine at zero price in both EC and IC rats. CONCLUSION These results indicate that environmental experiences during development should be considered when determining the efficacy of opioid drugs, especially for the treatment of substance abuse.
Collapse
Affiliation(s)
- Rebecca S. Hofford
- Corresponding author: ; 741 S. Limestone, 448 C BBSRB, University of Kentucky, Lexington KY 40536
| | | | | |
Collapse
|
15
|
Ma YY, Wang X, Huang Y, Marie H, Nestler EJ, Schlüter OM, Dong Y. Re-silencing of silent synapses unmasks anti-relapse effects of environmental enrichment. Proc Natl Acad Sci U S A 2016; 113:5089-94. [PMID: 27091967 PMCID: PMC4983865 DOI: 10.1073/pnas.1524739113] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Environmental enrichment (EE) has long been postulated as a behavioral treatment for drug addiction based on its preventive effects in animal models: rodents experiencing prior EE exhibit increased resistance to establishing drug taking and seeking. However, the therapeutic effects of EE, namely, the effects of EE when applied after drug exposure, are often marginal and transient. Using incubation of cue-induced cocaine craving, a rat relapse model depicting progressive intensification of cocaine seeking after withdrawal from cocaine self-administration, our present study reveals that after cocaine withdrawal, in vivo circuit-specific long-term depression (LTD) unmasks the therapeutic power of EE to achieve long-lasting anti-relapse effects. Specifically, our previous results show that cocaine self-administration generates AMPA receptor (AMPAR)-silent excitatory synapses within the basolateral amygdala (BLA) to nucleus accumbens (NAc) projection, and maturation of these silent synapses via recruiting calcium-permeable (CP) AMPARs contributes to incubation of cocaine craving. Here, we show that after cocaine withdrawal and maturation of silent synapses, the BLA-to-NAc projection became highly resistant to EE. However, optogenetic LTD applied to this projection in vivo transiently re-silenced these silent synapses by removing CP-AMPARs. During this transient window, application of EE resulted in the insertion of nonCP-AMPARs, thereby remodeling the "incubated" BLA-to-NAc projection. Consequently, incubation of cocaine craving was decreased persistently. These results reveal a mechanistic basis through which the persistent anti-relapse effects of EE can be unleashed after drug withdrawal.
Collapse
Affiliation(s)
- Yao-Ying Ma
- Department of Neuroscience, University of Pittsburgh, PA 15260
| | - Xiusong Wang
- Department of Psychiatry, University of Pittsburgh, PA 15260
| | - Yanhua Huang
- Department of Psychiatry, University of Pittsburgh, PA 15260
| | - Helene Marie
- Institut de Pharmacologie Moléculaire et Cellulaire, CNRS, Université de Nice Sophia Antipolis, UMR 7275, 06250 Valbonne, France
| | - Eric J Nestler
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | | | - Yan Dong
- Department of Neuroscience, University of Pittsburgh, PA 15260; Department of Psychiatry, University of Pittsburgh, PA 15260;
| |
Collapse
|