1
|
Hossain MS, Mawatari S, Honsho M, Okauchi T, Fujino T. KIT-13, a novel plasmalogen derivative, attenuates neuroinflammation and amplifies cognition. Front Cell Dev Biol 2024; 12:1443536. [PMID: 39286482 PMCID: PMC11402709 DOI: 10.3389/fcell.2024.1443536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 08/20/2024] [Indexed: 09/19/2024] Open
Abstract
Plasmalogens (Pls) are specialized phospholipids integral to brain health, whose decline due to aging and stress contributes to cognitive impairment and neuroinflammation. This study explores the potential of a novel Pls derivative, KIT-13 (1-O-octadecyl-2-arachidonoyl-sn-glycerol-3-phosphoethanolamine), in mitigating neuroinflammation and enhancing cognition. When administered to mice, KIT-13 exhibited potent memory enhancement attributed to upregulated brain-derived neurotrophic factor (BDNF), a key player in cognitive processes. In vitro experiments with neuronal cells revealed KIT-13's ability to induce robust cellular signaling, surpassing natural plasmalogens. KIT-13 also promoted neurogenesis and inhibited apoptosis of neuronal-like cells, highlighting its potential in fostering neuronal growth and plasticity. Additionally, KIT-13 treatments reduced pro-inflammatory cytokine expression and attenuated glial activation in the brain. KIT-13's superior efficacy over natural Pls positions it as a promising therapeutic candidate for neurodegenerative conditions such as Alzheimer's disease, characterized by cognitive decline and neuroinflammation. This study presents KIT-13 as an innovative approach for addressing cognitive impairment and neuroinflammatory pathologies.
Collapse
Affiliation(s)
- Md Shamim Hossain
- Division of Lipid Cell Biology, Institute of Rheological Functions of Food, Fukuoka, Japan
| | - Shiro Mawatari
- Division of Lipid Cell Biology, Institute of Rheological Functions of Food, Fukuoka, Japan
| | - Masanori Honsho
- Department of Neuroinflammation and Brain Fatigue Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Tatsuo Okauchi
- Department of Applied Chemistry, Kyushu Institute of Technology, Fukuoka, Japan
| | - Takehiko Fujino
- Division of Lipid Cell Biology, Institute of Rheological Functions of Food, Fukuoka, Japan
| |
Collapse
|
2
|
Wu Y, Wang J, Deng Y, Angelov B, Fujino T, Hossain MS, Angelova A. Lipid and Transcriptional Regulation in a Parkinson's Disease Mouse Model by Intranasal Vesicular and Hexosomal Plasmalogen-Based Nanomedicines. Adv Healthc Mater 2024; 13:e2304588. [PMID: 38386974 PMCID: PMC11468381 DOI: 10.1002/adhm.202304588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 02/05/2024] [Indexed: 02/24/2024]
Abstract
Plasmalogens (vinyl-ether phospholipids) are an emergent class of lipid drugs against various diseases involving neuro-inflammation, oxidative stress, mitochondrial dysfunction, and altered lipid metabolism. They can activate neurotrophic and neuroprotective signaling pathways but low bioavailabilities limit their efficiency in curing neurodegeneration. Here, liquid crystalline lipid nanoparticles (LNPs) are created for the protection and non-invasive intranasal delivery of purified scallop-derived plasmalogens. The in vivo results with a transgenic mouse Parkinson's disease (PD) model (characterized by motor impairments and α-synuclein deposition) demonstrate the crucial importance of LNP composition, which determines the self-assembled nanostructure type. Vesicle and hexosome nanostructures (characterized by small-angle X-ray scattering) display different efficacy of the nanomedicine-mediated recovery of motor function, lipid balance, and transcriptional regulation (e.g., reduced neuro-inflammation and PD pathogenic gene expression). Intranasal vesicular and hexosomal plasmalogen-based LNP treatment leads to improvement of the behavioral PD symptoms and downregulation of the Il6, Il33, and Tnfa genes. Moreover, RNA-sequencing and lipidomic analyses establish a dramatic effect of hexosomal nanomedicines on PD amelioration, lipid metabolism, and the type and number of responsive transcripts that may be implicated in neuroregeneration.
Collapse
Affiliation(s)
- Yu Wu
- Université Paris‐SaclayInstitut Galien Paris‐SaclayCNRS17 Av. des SciencesOrsay91190France
| | - Jieli Wang
- Wenzhou InstituteUniversity of Chinese Academy of SciencesNo.1, Jinlian Road, Longwan DistrictWenzhouZhejiang325001China
| | - Yuru Deng
- Wenzhou InstituteUniversity of Chinese Academy of SciencesNo.1, Jinlian Road, Longwan DistrictWenzhouZhejiang325001China
| | - Borislav Angelov
- Department of Structural DynamicsExtreme Light Infrastructure ERICDolni BrezanyCZ‐25241Czech Republic
| | - Takehiko Fujino
- Institute of Rheological Functions of Food2241‐1 Kubara, Hisayama‐choKasuya‐gunFukuoka811‐2501Japan
| | - Md. Shamim Hossain
- Institute of Rheological Functions of Food2241‐1 Kubara, Hisayama‐choKasuya‐gunFukuoka811‐2501Japan
| | - Angelina Angelova
- Université Paris‐SaclayInstitut Galien Paris‐SaclayCNRS17 Av. des SciencesOrsay91190France
| |
Collapse
|
3
|
Goodenowe DB, Senanayake V. Brain ethanolamine phospholipids, neuropathology and cognition: A comparative post-mortem analysis of structurally specific plasmalogen and phosphatidyl species. Front Cell Dev Biol 2022; 10:866156. [PMID: 36092723 PMCID: PMC9451657 DOI: 10.3389/fcell.2022.866156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 07/11/2022] [Indexed: 11/21/2022] Open
Abstract
Reduced cognition in the elderly is associated with low levels of plasmalogens and high levels of lipid rafts, amyloid plaques, and neurofibrillary tangles in the temporal cortex. A systematic integrative analysis of key indices of these pathologies to determine their collective and independent contributions to cognition was performed. Levels of four phosphatidylethanolamines (PE) and four ethanolamine plasmalogens (PL) of identical sn-1 carbon length and desaturation (stearic, 18:0) and identical sn-2 fatty acid compositions of varying side chain lengths and degrees of unsaturation (oleic, 18:1; linoleic, 18:2; arachidonic, 20:4; docosahexaenoic, 22:6), flotillin-1 expression and amyloid plaque and neurofibrillary tangle densities were measured in inferior temporal cortex tissue from 100 elderly subjects (Rush University Memory and Aging Project, 88.5 ± 5.8 years old). Subjects were evenly distributed with respect to gender (52/48, F/M) and cognitive status (38/24/38, no cognitive impairment/mild cognitive impairment/Alzheimer's dementia) proximate to death. Multivariate logistic regression analyses were used to determine the relative and collective associations of the neuropathological indices with cognition. Higher levels of tangles, amyloid, or flotillin and lower levels of PL 18:0/22:6 were significantly associated with lower cognition in the base model (adjusted for age, sex, education). Multivariate analysis revealed that only PL 18:0/22:6 (β = 0.506; p < 0.00001), tangles (-0.307; p < 0.01), and flotillin (-0.2027; p < 0.05) were independently associated with reduced cognition. PL 18:0/22:6 and PE 18:0/22:6 levels were independently associated with cognition in the presence of tangles, amyloid, and flotillin, but only PL 18:0/22:6 retained its association with cognition when both PL and PE 18:0/22:6 were included in the model indicating that PE 18:0/22:6 levels were associated with PL 18:0/22:6, not cognition. Only high brain levels of PL 18:0/22:6 (>mean+1SD) was predictive of normal cognition (coef = 1.67, p < 0.05) and non-demented state (coef = -2.73, p < 0.001), whereas low levels of PL 18:0/22:6 and high levels of tangles or flotillin were predictive of dementia. The association of high brain polyunsaturated (PUFA)-PL levels with better cognition was independent of amyloid plaque, neurofibrillary tangle, PE, and flotillin-1 expression. Maintenance or augmentation of brain docosahexaenoic (DHA)-PL levels warrants further investigation as a target for preventing cognitive decline or improving cognition in the elderly, respectively.
Collapse
|
4
|
Brousseau V, Caron P, Trottier J, Di Paolo T, Milkiewicz P, Barbier O. Liquid chromatography coupled to tandem mass spectrometry methods for the selective and sensitive determination of 24S-hydroxycholesterol, its sulfate, and/or glucuronide conjugates in plasma. JOURNAL OF MASS SPECTROMETRY : JMS 2022; 57:e4827. [PMID: 35460139 DOI: 10.1002/jms.4827] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 03/22/2022] [Accepted: 04/03/2022] [Indexed: 06/14/2023]
Abstract
24S-hydroxycholesterol (i.e., cerebrosterol, 24S-OH-Chol) is the main form of cholesterol elimination from the brain. Liquid chromatography-tandem mass spectrometry methods were developed for the quantification of the total and unesterified/unbound fractions of 24S-OH-Chol, its monosulfate, monoglucuronide, and diconjugate derivatives (24S-OH-Chol-3sulfate [3S], 24S-OH-Chol-24glucuronide [24G] and 24S-OH-Chol-3S, 24G, respectively) in human plasma. Linearity, precision, accuracy, and extraction recovery were validated within the typical physiological and pathological ranges of concentrations for each compound. The lower limit of quantifications was 2.00, 0.33, 0.26, and 0.74 ng/ml for 24S-OH-Chol, 24S-OH-Chol-24G, 24S-OH-Chol-3S, and 24-OH-Chol-3S, 24G, respectively. Extraction recovery values in total and unbound plasma fractions were also analyzed in murine and monkey plasma and varied from 73% in mouse to 113% in cynomolgus monkey. The methods could rapidly (less than 7 min) quantify individual compounds with high sensitivity, accuracy (bias ≤15%), and reproducibility (coefficient of variation [CV] ≤ 17%). Their clinical applications were validated by measuring levels of the 4 compounds in samples from 20 noncholestatic donors, 5 cholestatic patients suffering from primary biliary cirrhosis, and 10 patients suffering from biliary stenosis. Results highlight the abundance of 24S-OH-Chol in the total fraction and the abundance of 24S-OH-Chol-3S and 24G in the unbound ones. While the latter strongly accumulate in plasma fractions of cholestatic patients, levels of 24S-OH-Chol remained similar to those of healthy donors. Our results indicate that this approach is suitable for monitoring cerebrosterol and its conjugates in large-scale clinical studies.
Collapse
Affiliation(s)
- Valérie Brousseau
- Laboratory of Molecular Pharmacology, Endocrinology and Nephrology Axis, CHU de Québec Research Centre and the Faculty of Pharmacy, Laval University, Québec City, Quebec, Canada
| | - Patrick Caron
- Laboratory of Molecular Pharmacology, Endocrinology and Nephrology Axis, CHU de Québec Research Centre and the Faculty of Pharmacy, Laval University, Québec City, Quebec, Canada
| | - Jocelyn Trottier
- Laboratory of Molecular Pharmacology, Endocrinology and Nephrology Axis, CHU de Québec Research Centre and the Faculty of Pharmacy, Laval University, Québec City, Quebec, Canada
| | - Thérèse Di Paolo
- Neuroscience Research Unit, CHU de Québec Research Centre and the Faculty of Pharmacy, Laval University, Québec City, Quebec, Canada
| | - Piotr Milkiewicz
- Liver and Internal Medicine Unit, Department of Transplant and Liver Surgery, Medical University of Warsaw, Warszawa, Poland
| | - Olivier Barbier
- Laboratory of Molecular Pharmacology, Endocrinology and Nephrology Axis, CHU de Québec Research Centre and the Faculty of Pharmacy, Laval University, Québec City, Quebec, Canada
| |
Collapse
|
5
|
Smith T, Knudsen KJ, Ritchie SA. Pharmacokinetics, Mass Balance, Excretion, and Tissue Distribution of Plasmalogen Precursor PPI-1011. Front Cell Dev Biol 2022; 10:867138. [PMID: 35547803 PMCID: PMC9081329 DOI: 10.3389/fcell.2022.867138] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 03/03/2022] [Indexed: 11/19/2022] Open
Abstract
PPI-1011 is a synthetic plasmalogen precursor in development as a treatment for multiple plasmalogen-deficiency disorders. Previous work has demonstrated the ability of PPI-1011 to augment plasmalogens and its effects in vitro and in vivo, however, the precise uptake and distribution across tissues in vivo has not been investigated. The purpose of this study was to evaluate the pharmacokinetics, mass balance, and excretion of [14C]PPI-1011 following a single oral administration at 100 mg/kg in Sprague-Dawley rats. Further tissue distribution was examined using quantitative whole-body autoradiography after both single and repeat daily doses at 100 mg/kg/day. Non-compartmental analysis showed that following a single dose, PPI-1011 exhibited peak levels between 6 and 12 h but also a long half-life with mean t1/2 of 40 h. Mass balance showed that over 50% of the compound-associated radioactivity was absorbed by the body, while approximately 40% was excreted in the feces, 2.5% in the urine, and 10% in expired air within the first 24 h. Quantitative whole-body autoradiography following a single dose showed uptake to nearly all tissues, with the greatest initial uptake in the intestines, liver, and adipose tissue, which decreased time-dependently throughout 168 h post-dose. Following 15 consecutive daily doses, uptake was significantly higher across the entire body at 24 h compared to single dose and remained high out to 96 h where 75% of the initially-absorbed compound-associated radioactivity was still present. The adipose tissue remained particularly high, suggesting a possible reserve of either plasmalogens or alkyl diacylglycerols that the body can pull from for plasmalogen biosynthesis. Uptake to the brain was also definitively confirmed, proving PPI-1011’s ability to cross the blood-brain barrier. In conclusion, our results suggest that oral administration of PPI-1011 results in high uptake across the body, and that repeated dosing over time represents a viable therapeutic strategy for treating plasmalogen deficiencies.
Collapse
|
6
|
Plasmalogen Replacement Therapy. MEMBRANES 2021; 11:membranes11110838. [PMID: 34832067 PMCID: PMC8620983 DOI: 10.3390/membranes11110838] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 10/22/2021] [Accepted: 10/26/2021] [Indexed: 11/17/2022]
Abstract
Plasmalogens, a subclass of glycerophospholipids containing a vinyl-ether bond, are one of the major components of biological membranes. Changes in plasmalogen content and molecular species have been reported in a variety of pathological conditions ranging from inherited to metabolic and degenerative diseases. Most of these diseases have no treatment, and attempts to develop a therapy have been focusing primarily on protein/nucleic acid molecular targets. However, recent studies have shifted attention to lipids as the basis of a therapeutic strategy. In these pathological conditions, the use of plasmalogen replacement therapy (PRT) has been shown to be a successful way to restore plasmalogen levels as well as to ameliorate the disease phenotype in different clinical settings. Here, the current state of PRT will be reviewed as well as a discussion of future perspectives in PRT. It is proposed that the use of PRT provides a modern and innovative molecular medicine approach aiming at improving health outcomes in different conditions with clinically unmet needs.
Collapse
|
7
|
Paul S, Rasmiena AA, Huynh K, Smith AAT, Mellett NA, Jandeleit-Dahm K, Lancaster GI, Meikle PJ. Oral Supplementation of an Alkylglycerol Mix Comprising Different Alkyl Chains Effectively Modulates Multiple Endogenous Plasmalogen Species in Mice. Metabolites 2021; 11:metabo11050299. [PMID: 34066368 PMCID: PMC8148155 DOI: 10.3390/metabo11050299] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/26/2021] [Accepted: 05/02/2021] [Indexed: 12/12/2022] Open
Abstract
Plasmalogens or alkenylphospholipids are a sub-class of glycerophospholipids with numerous biological functions and are thought to have protective effects against metabolic disease. Dietary supplementation with alkylglycerols (AKGs) has been shown to increase endogenous plasmalogen levels, however effective modulation of different molecular plasmalogen species has not yet been demonstrated. In this study, the effects of an orally-administered AKG mix (a mixture of chimyl, batyl and selachyl alcohol at a 1:1:1 ratio) on plasma and tissue lipids, including plasmalogens, was evaluated. Mice on a Western-type diet were treated with either an AKG mix or vehicle (lecithin) for 1, 2, 4, 8 and 12 weeks. Treatment with the AKG mix significantly increased the total plasmalogen content of plasma, liver and adipose tissue as a result of elevations in multiple plasmalogen species with different alkenyl chains. Alkylphospholipids, the endogenous precursors of plasmalogens, showed a rapid and significant increase in plasma, adipose tissue, liver and skeletal muscle. A significant accumulation of alkyl-diacylglycerol and lyso-ether phospholipids was also observed in plasma and tissues. Additionally, the dynamics of plasmalogen-level changes following AKG mix supplementation differed between tissues. These findings indicate that oral supplementation with an AKG mix is capable of upregulating and maintaining stable expression of multiple molecular plasmalogen species in circulation and tissues.
Collapse
Affiliation(s)
- Sudip Paul
- Metabolomics Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC 3004, Australia; (S.P.); (A.A.R.); (K.H.); (A.A.T.S.); (N.A.M.)
- Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC 3800, Australia;
| | - Aliki A. Rasmiena
- Metabolomics Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC 3004, Australia; (S.P.); (A.A.R.); (K.H.); (A.A.T.S.); (N.A.M.)
| | - Kevin Huynh
- Metabolomics Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC 3004, Australia; (S.P.); (A.A.R.); (K.H.); (A.A.T.S.); (N.A.M.)
| | - Adam Alexander T. Smith
- Metabolomics Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC 3004, Australia; (S.P.); (A.A.R.); (K.H.); (A.A.T.S.); (N.A.M.)
| | - Natalie A. Mellett
- Metabolomics Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC 3004, Australia; (S.P.); (A.A.R.); (K.H.); (A.A.T.S.); (N.A.M.)
| | - Karin Jandeleit-Dahm
- Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC 3800, Australia;
| | - Graeme I. Lancaster
- Hematopoiesis and Leukocyte Biology Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC 3004, Australia;
| | - Peter J. Meikle
- Metabolomics Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC 3004, Australia; (S.P.); (A.A.R.); (K.H.); (A.A.T.S.); (N.A.M.)
- Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC 3800, Australia;
- Correspondence: ; Tel.: +61-3-8532-1770
| |
Collapse
|
8
|
Therapeutic Efficacy of Plasmalogens for Alzheimer's Disease, Mild Cognitive Impairment, and Parkinson's Disease in Conjunction with a New Hypothesis for the Etiology of Alzheimer's Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1299:195-212. [PMID: 33417216 DOI: 10.1007/978-3-030-60204-8_14] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
It has been reported in recent years that blood levels of plasmalogens (Pls) are decreased in various diseases. None of those reports, however, conducted any clinical trials to examine the effect of Pls on those diseases. This article describes our recent report on a therapeutic efficacy of orally administered Pls in mild cognitive impairment (MCI), mild to severe Alzheimer's disease (AD), and Parkinson's disease (PD). A 24-week, multicenter, randomized, double-blind, placebo-controlled trial was performed in patients with MCI (n = 178) and mild AD (n = 98). The study design for moderate AD (n = 57) and severe AD (n = 18) was 12-week open-labeled, and the design for patients with PD (n = 10) was 24-week open-labeled. They showed a significant improvement in cognitive function and other clinical symptoms with elevation of the blood Pls levels. No adverse events were reported. The baseline levels of plasma ethanolamine plasmalogen and erythrocyte ethanolamine plasmalogen in MCI, AD, and PD were significantly lower than those of normal aged. The degree of reduction in the blood Pls levels was in the order of MCI ≺ mild AD ≺ moderate AD ≺ severe AD ≺ PD. The findings suggest that the blood levels of Pls may be a beneficial biomarker for assessing AD severity. Based on these results, we have proposed a new hypothesis for the etiology of AD and other neuropsychiatric disorders.
Collapse
|
9
|
Dorninger F, Forss-Petter S, Wimmer I, Berger J. Plasmalogens, platelet-activating factor and beyond - Ether lipids in signaling and neurodegeneration. Neurobiol Dis 2020; 145:105061. [PMID: 32861763 PMCID: PMC7116601 DOI: 10.1016/j.nbd.2020.105061] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 08/20/2020] [Accepted: 08/22/2020] [Indexed: 12/12/2022] Open
Abstract
Glycerol-based ether lipids including ether phospholipids form a specialized branch of lipids that in mammals require peroxisomes for their biosynthesis. They are major components of biological membranes and one particular subgroup, the plasmalogens, is widely regarded as a cellular antioxidant. Their vast potential to influence signal transduction pathways is less well known. Here, we summarize the literature showing associations with essential signaling cascades for a wide variety of ether lipids, including platelet-activating factor, alkylglycerols, ether-linked lysophosphatidic acid and plasmalogen-derived polyunsaturated fatty acids. The available experimental evidence demonstrates links to several common players like protein kinase C, peroxisome proliferator-activated receptors or mitogen-activated protein kinases. Furthermore, ether lipid levels have repeatedly been connected to some of the most abundant neurological diseases, particularly Alzheimer's disease and more recently also neurodevelopmental disorders like autism. Thus, we critically discuss the potential role of these compounds in the etiology and pathophysiology of these diseases with an emphasis on signaling processes. Finally, we review the emerging interest in plasmalogens as treatment target in neurological diseases, assessing available data and highlighting future perspectives. Although many aspects of ether lipid involvement in cellular signaling identified in vitro still have to be confirmed in vivo, the compiled data show many intriguing properties and contributions of these lipids to health and disease that will trigger further research.
Collapse
Affiliation(s)
- Fabian Dorninger
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, Spitalgasse 4, Vienna 1090, Austria.
| | - Sonja Forss-Petter
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, Spitalgasse 4, Vienna 1090, Austria
| | - Isabella Wimmer
- Department of Neurology, Medical University of Vienna, Währinger Gürtel 18-20, Vienna 1090, Austria
| | - Johannes Berger
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, Spitalgasse 4, Vienna 1090, Austria.
| |
Collapse
|
10
|
Improvement of Blood Plasmalogens and Clinical Symptoms in Parkinson's Disease by Oral Administration of Ether Phospholipids: A Preliminary Report. PARKINSONS DISEASE 2020; 2020:2671070. [PMID: 32148751 PMCID: PMC7049862 DOI: 10.1155/2020/2671070] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 01/10/2020] [Accepted: 01/27/2020] [Indexed: 01/25/2023]
Abstract
Introduction. Parkinson's disease (PD) is the second most common neurodegenerative disease after Alzheimer's disease (AD). With the ageing of population, the frequency of PD is expected to increase dramatically in the coming decades. L-DOPA (1,3,4-dihydroxyalanine) is the most effective drug in the symptomatic treatment of PD. Nonmotor symptoms in PD include sleep problems, depression, and dementia, which are not adequately controlled with dopaminergic therapy. Here, we report the efficacy of oral administration of scallop-derived ether phospholipids to some nonmotor symptoms of PD.
Collapse
|
11
|
Fallatah W, Smith T, Cui W, Jayasinghe D, Di Pietro E, Ritchie SA, Braverman N. Oral administration of a synthetic vinyl-ether plasmalogen normalizes open field activity in a mouse model of rhizomelic chondrodysplasia punctata. Dis Model Mech 2020; 13:dmm.042499. [PMID: 31862688 PMCID: PMC6994958 DOI: 10.1242/dmm.042499] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 12/13/2019] [Indexed: 01/06/2023] Open
Abstract
Rhizomelic chondrodysplasia punctata (RCDP) is a rare genetic disorder caused by mutations in peroxisomal genes essential for plasmalogen biosynthesis. Plasmalogens are a class of membrane glycerophospholipids containing a vinyl-ether-linked fatty alcohol at the sn-1 position that affect functions including vesicular transport, membrane protein function and free radical scavenging. A logical rationale for the treatment of RCDP is therefore the therapeutic augmentation of plasmalogens. The objective of this work was to provide a preliminary characterization of a novel vinyl-ether synthetic plasmalogen, PPI-1040, in support of its potential utility as an oral therapeutic option for RCDP. First, wild-type mice were treated with 13C6-labeled PPI-1040, which showed that the sn-1 vinyl-ether and the sn-3 phosphoethanolamine groups remained intact during digestion and absorption. Next, a 4-week treatment of adult plasmalogen-deficient Pex7hypo/null mice with PPI-1040 showed normalization of plasmalogen levels in plasma, and variable increases in plasmalogen levels in erythrocytes and peripheral tissues (liver, small intestine, skeletal muscle and heart). Augmentation was not observed in brain, lung and kidney. Functionally, PPI-1040 treatment normalized the hyperactive behavior observed in the Pex7hypo/null mice as determined by open field test, with a significant inverse correlation between activity and plasma plasmalogen levels. Parallel treatment with an equal amount of ether plasmalogen precursor, PPI-1011, did not effectively augment plasmalogen levels or reduce hyperactivity. Our findings show, for the first time, that a synthetic vinyl-ether plasmalogen is orally bioavailable and can improve plasmalogen levels in an RCDP mouse model. Further exploration of its clinical utility is warranted. This article has an associated First Person interview with the joint first authors of the paper. Summary: This article shows, for the first time, that a synthetic vinyl-ether plasmalogen is orally bioavailable and bioactive in vivo following administration in animals.
Collapse
Affiliation(s)
- Wedad Fallatah
- Department of Human Genetics and Pediatrics, Research Institute of the McGill University Health Center and McGill University, Montreal, QC H4A3J1, Canada.,Department of Medical Genetics, King Abdul-Aziz University, Jeddah, 21589 Saudi Arabia
| | - Tara Smith
- Med-Life Discoveries LP, Saskatoon, SK S7N2X8, Canada
| | - Wei Cui
- Department of Human Genetics and Pediatrics, Research Institute of the McGill University Health Center and McGill University, Montreal, QC H4A3J1, Canada
| | | | - Erminia Di Pietro
- Department of Human Genetics and Pediatrics, Research Institute of the McGill University Health Center and McGill University, Montreal, QC H4A3J1, Canada
| | | | - Nancy Braverman
- Department of Human Genetics and Pediatrics, Research Institute of the McGill University Health Center and McGill University, Montreal, QC H4A3J1, Canada
| |
Collapse
|
12
|
Senanayake V, Goodenowe DB. Plasmalogen deficiency and neuropathology in Alzheimer's disease: Causation or coincidence? ALZHEIMERS & DEMENTIA-TRANSLATIONAL RESEARCH & CLINICAL INTERVENTIONS 2019; 5:524-532. [PMID: 31650009 PMCID: PMC6804645 DOI: 10.1016/j.trci.2019.08.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Causation of Alzheimer's disease (AD) is not well understood. It is necessary to look beyond neuropathology to identify the underlying causes of AD and many other common neurological diseases. Lipid abnormalities are well documented in the preclinical phases of many neurological diseases including AD. Here, we use AD as an example to examine the role of lipid abnormalities as an underlying cause of neurodegeneration. Role of lipids, particularly phospholipids, in the optimal function of the nervous system, impact of the aberrations of phospholipid metabolism on β-amyloid deposition and cholinergic neuronal function, epidemiological evidence on the association of phospholipids with AD, and preliminary data on the possible modulation of risk factors of AD by phospholipids are examined. Implications of these findings on diagnosis and prevention are also discussed.
Collapse
|
13
|
Paul S, Lancaster GI, Meikle PJ. WITHDRAWN: Plasmalogens: A potential therapeutic target for neurodegenerative and cardiometabolic disease. Prog Lipid Res 2019:100993. [PMID: 31442528 DOI: 10.1016/j.plipres.2019.100993] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 04/06/2019] [Accepted: 04/07/2019] [Indexed: 01/30/2023]
Affiliation(s)
- Sudip Paul
- Metabolomics Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC 3004, Australia; Faculty of Medicine, Nursing and Health Sciences, Monash University, VIC 3800, Australia
| | - Graeme I Lancaster
- Haematopoiesis and Leukocyte Biology Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC 3004, Australia; Faculty of Medicine, Nursing and Health Sciences, Monash University, VIC 3800, Australia
| | - Peter J Meikle
- Metabolomics Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC 3004, Australia; Faculty of Medicine, Nursing and Health Sciences, Monash University, VIC 3800, Australia
| |
Collapse
|
14
|
Paul S, Lancaster GI, Meikle PJ. Plasmalogens: A potential therapeutic target for neurodegenerative and cardiometabolic disease. Prog Lipid Res 2019; 74:186-195. [DOI: 10.1016/j.plipres.2019.04.003] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 04/06/2019] [Accepted: 04/07/2019] [Indexed: 01/23/2023]
|
15
|
Lötsch J, Lerch F, Djaldetti R, Tegder I, Ultsch A. Identification of disease-distinct complex biomarker patterns by means of unsupervised machine-learning using an interactive R toolbox (Umatrix). BIG DATA ANALYTICS 2018. [DOI: 10.1186/s41044-018-0032-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
|
16
|
Veyres N, Hamadjida A, Huot P. Predictive Value of Parkinsonian Primates in Pharmacologic Studies: A Comparison between the Macaque, Marmoset, and Squirrel Monkey. J Pharmacol Exp Ther 2018. [DOI: 10.1124/jpet.117.247171] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
17
|
Bourque M, Grégoire L, Di Paolo T. The plasmalogen precursor analog PPI-1011 reduces the development of L-DOPA-induced dyskinesias in de novo MPTP monkeys. Behav Brain Res 2018; 337:183-185. [PMID: 28917506 DOI: 10.1016/j.bbr.2017.09.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 09/08/2017] [Accepted: 09/13/2017] [Indexed: 11/16/2022]
Abstract
The gold standard therapy for Parkinson's disease (PD), L-3,4-dihydroxyphenylalanine (L-DOPA), induces dyskinesias in the majority of patients after years of treatment. Ethanolamine plasmalogens (PlsEtn) play critical roles in membrane structure mediated functions and as a storage depot of polyunsaturated fatty acids such as docosahexaenoic acid. We previously showed that a PlsEtn precursor PPI-1011 reduced already established L-DOPA-induced dyskinesias (LID) in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) lesioned monkeys as a PD model. We hypothesize that development of LID can be prevented with a PPI-1011 treatment in de novo MPTP-lesioned monkeys. MPTP-lesioned monkeys were treated once daily for 28days with either L-DOPA or L-DOPA+PPI-1011 (25mg/kg). The antiparkinsonian effect of L-DOPA was maintained throughout the treatment period in MPTP-lesioned monkeys treated with L-DOPA alone and L-DOPA+PPI-1011. Over the 28days of treatment, the mean dyskinesia score increased in L-DOPA-treated monkeys whereas this increase was significantly less in the L-DOPA+PPI-1011 group. This was followed by a washout period of 2 weeks of both experimental groups without treatment. Then both groups were administered once during week 7 and twice during week 8 with L-DOPA with behavioral measures recorded on treatment days. MPTP monkeys of both experimental groups administered L-DOPA in experimental week 7 showed reduced LID. During week 8, the L-DOPA group showed increased LID whereas LID remained low in the group previously treated with L-DOPA+PPI-1011. The present results suggest that PPI-1011 can prevent/delay the development of LID while maintaining the antiparkinsonian activity of L-DOPA.
Collapse
Affiliation(s)
- Mélanie Bourque
- Neuroscience Research Unit, Centre de Recherche du CHU de Québec, CHUL, 2705 Laurier Boulevard, Quebec City, Qc, G1V 4G2, Canada; Faculty of Pharmacy, Laval University, 1050, avenue de la Médecine, Quebec City, Qc, G1V 0A6, Canada
| | - Laurent Grégoire
- Neuroscience Research Unit, Centre de Recherche du CHU de Québec, CHUL, 2705 Laurier Boulevard, Quebec City, Qc, G1V 4G2, Canada
| | - Thérèse Di Paolo
- Neuroscience Research Unit, Centre de Recherche du CHU de Québec, CHUL, 2705 Laurier Boulevard, Quebec City, Qc, G1V 4G2, Canada; Faculty of Pharmacy, Laval University, 1050, avenue de la Médecine, Quebec City, Qc, G1V 0A6, Canada.
| |
Collapse
|
18
|
Dorninger F, Forss-Petter S, Berger J. From peroxisomal disorders to common neurodegenerative diseases - the role of ether phospholipids in the nervous system. FEBS Lett 2017; 591:2761-2788. [PMID: 28796901 DOI: 10.1002/1873-3468.12788] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 07/26/2017] [Accepted: 08/07/2017] [Indexed: 01/01/2023]
Abstract
The emerging diverse roles of ether (phospho)lipids in nervous system development and function in health and disease are currently attracting growing interest. Plasmalogens, a subgroup of ether lipids, are important membrane components involved in vesicle fusion and membrane raft composition. They store polyunsaturated fatty acids and may serve as antioxidants. Ether lipid metabolites act as precursors for the formation of glycosyl-phosphatidyl-inositol anchors; others, like platelet-activating factor, are implicated in signaling functions. Consolidating the available information, we attempt to provide molecular explanations for the dramatic neurological phenotype in ether lipid-deficient human patients and mice by linking individual functional properties of ether lipids with pathological features. Furthermore, recent publications have identified altered ether lipid levels in the context of many acquired neurological disorders including Alzheimer's disease (AD) and autism. Finally, current efforts to restore ether lipids in peroxisomal disorders as well as AD are critically reviewed.
Collapse
Affiliation(s)
- Fabian Dorninger
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, Austria
| | - Sonja Forss-Petter
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, Austria
| | - Johannes Berger
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, Austria
| |
Collapse
|
19
|
Meikle PJ, Summers SA. Sphingolipids and phospholipids in insulin resistance and related metabolic disorders. Nat Rev Endocrinol 2017; 13:79-91. [PMID: 27767036 DOI: 10.1038/nrendo.2016.169] [Citation(s) in RCA: 301] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Obesity, insulin resistance, type 2 diabetes mellitus and cardiovascular disease form a metabolic disease continuum that has seen a dramatic increase in prevalence in developed and developing countries over the past two decades. Dyslipidaemia resulting from hypercaloric diets is a major contributor to the pathogenesis of metabolic disease, and lipid-lowering therapies are the main therapeutic option for this group of disorders. However, the fact that dysfunctional lipid metabolism extends far beyond cholesterol and triglycerides is becoming increasingly clear. Lipidomic studies and mouse models are helping to explain the complex interactions between diet, lipid metabolism and metabolic disease. These studies are not only improving our understanding of this complex biology, but are also identifying potential therapeutic avenues to combat this growing epidemic. This Review examines what is currently known about phospholipid and sphingolipid metabolism in the setting of obesity and how metabolic pathways are being modulated for therapeutic effect.
Collapse
Affiliation(s)
- Peter J Meikle
- Baker IDI Heart and Diabetes Institute, 75 Commercial Road, Melbourne, 3004, Australia
| | - Scott A Summers
- Department of Nutrition and Integrative Physiology, University of Utah, 201 Presidents Circle, Salt Lake City, Utah, 84112, USA
| |
Collapse
|