1
|
Jamal M, Takei S, Tsukamoto I, Miki T, Ohta KI, Hossain MZ, Kinoshita H. Restoration of MPTP-induced Dopamine and Tyrosine Hydroxylase Depletion in the Mouse Brain Through Ethanol and Nicotine. Neurotox Res 2025; 43:9. [PMID: 39937382 DOI: 10.1007/s12640-025-00732-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 07/27/2024] [Accepted: 01/31/2025] [Indexed: 02/13/2025]
Abstract
Dopamine (DA) has long been considered a major factor in the development of Parkinson's disease (PD). Ethanol (EtOH) and nicotine (Nic), either alone or in combination, have been shown to affect nigrostriatal dopaminergic neuronal activity. Here, we investigate whether EtOH and Nic alone or in co-exposure can restore the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced depletion of dopamine (DA), DA metabolites, and tyrosine hydroxylase (TH) in the striatum and hippocampus of C57BL/6N mice. MPTP-treated mice were treated intraperitoneally with saline (control), EtOH (1.0-3.0 g/kg), Nic (0.5-2.0 mg/kg), or a combination of EtOH and Nic. Brain samples were collected 1 h after treatment. DA and its metabolites 3,4-dihydroxyphenylacetic acid (DOPAC), 3-methoxytyramine (3-MT), and homovanillic acid (HVA) were measured by HPLC-ECD, while TH protein content and TH phosphorylation at Ser31 (pSer31 TH) were quantified by Western blot. EtOH (2.0 and 3.0 g/kg) alone reversed the effects of MPTP treatment in both studied brain regions, as evidenced by an increase in DA, DOPAC, and HVA contents, TH protein, and pSer31 TH compared to the MPTP group, indicating restorative effects on DA neurons in the MPTP model. Likewise, Nic (1.0 and 2.0 mg/kg) alone reversed MPTP treatment effects, with treated mice showing increased DA, DOPAC, and HVA contents, TH protein, and pSer31 TH compared to MPTP mice. Co-administration of EtOH (2.0 g/kg) and Nic (1.0 mg/kg) further increased DA, DOPAC and HVA tissue contents, TH protein, and pSer31 TH, indicating an additive effect. These results show that moderate to high doses of EtOH and Nic induce similar increases in brain DA and TH via TH phosphorylation activation in MPTP model mice. EtOH and Nic showed an additive effect in combination, suggesting that their co-application could be a potent therapeutic strategy for treating PD.
Collapse
Affiliation(s)
- Mostofa Jamal
- Department of Forensic Medicine, Faculty of Medicine, Kagawa University, 1750-1, Ikenobe, Miki-Cho, Kita-Gun, Kagawa, 761-0793, Japan.
| | - Sella Takei
- Department of Forensic Medicine, Faculty of Medicine, Kagawa University, 1750-1, Ikenobe, Miki-Cho, Kita-Gun, Kagawa, 761-0793, Japan
| | - Ikuko Tsukamoto
- Department of Pharmaco-Bio-Informatics, Faculty of Medicine, Kagawa University, Kita-Gun, Japan
| | - Takanori Miki
- Department of Anatomy and Neurobiology, Faculty of Medicine, Kagawa University, Kita-Gun, Japan
| | - Ken-Ichi Ohta
- Department of Anatomy and Neurobiology, Faculty of Medicine, Kagawa University, Kita-Gun, Japan
| | - Md Zakir Hossain
- Division of Intelligent Mechanical Systems Engineering, Faculty of Engineering and Design, Kagawa University, Kita-Gun, Japan
| | - Hiroshi Kinoshita
- Department of Forensic Medicine, Faculty of Medicine, Kagawa University, 1750-1, Ikenobe, Miki-Cho, Kita-Gun, Kagawa, 761-0793, Japan
| |
Collapse
|
2
|
Reed C, Phillips TJ. Does tolerance to ethanol-induced ataxia explain the sensitized response to ethanol? Front Psychiatry 2024; 15:1418490. [PMID: 39279806 PMCID: PMC11392896 DOI: 10.3389/fpsyt.2024.1418490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 07/26/2024] [Indexed: 09/18/2024] Open
Abstract
Under conditions of repeated exposure to ethanol, a sensitized locomotor stimulant response develops in some strains of mice. It has been hypothesized that the sensitized response is a consequence of tolerance development to the sedative/incoordinating effects of ethanol. Conversely, ethanol-induced sensitization and tolerance may be independent effects of repeated ethanol exposure. A published study in C57BL/6J by DBA/2J recombinant inbred strains concluded that the two phenomena are not genetically related and thus perhaps mechanistically distinct. To extend evaluation beyond the genetic variance found in C57BL/6J and DBA/2J mice and examine phenotypic associations, we simultaneously measured ethanol-induced sensitization and tolerance in a genetically diverse panel of 15 standard inbred mouse strains and a genetically heterogeneous stock that was produced by the intercrossing of eight inbred mouse strains. Changes in activity counts and ataxia ratio across repeated ethanol treatments indexed sensitization and tolerance, respectively. Photocell beam breaks provided the measure of activity, and foot slip errors corrected for activity in a grid test provided a measure of coordination. The results were strain and individual dependent. The genetic correlation between magnitude of sensitization and tolerance was not significant in the panel of inbred strains, but when individual data were correlated, without regard to strain, there was a significant correlation. This relationship was also significant in the genetically heterogeneous population of mice. However, magnitude of tolerance explained only 10% of the variance in sensitization among individuals of the inbred strain population, whereas it explained 44% of the variance among individuals of the eight-strain cross. When repeated exposures to ethanol were disassociated from the test apparatus, this relationship in the eight-strain cross disappeared. Furthermore, days to peak sensitization and tolerance across days did not perfectly mirror each other. Overall, our data do not support shared genetic mechanisms in sensitization and tolerance development but suggest a partial relationship among individuals that could be related to drug-environment associations.
Collapse
Affiliation(s)
- Cheryl Reed
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, United States
- Portland Alcohol Research Center, Oregon Health & Science University, Portland, OR, United States
| | - Tamara J. Phillips
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, United States
- Portland Alcohol Research Center, Oregon Health & Science University, Portland, OR, United States
- Veterans Affairs Portland Health Care System, Portland, OR, United States
| |
Collapse
|
3
|
Ferreira SEMM, Soares LM, Lira CR, Yokoyama TS, Engi SA, Cruz FC, Leão RM. Ethanol-induced locomotor sensitization: Neuronal activation in the nucleus accumbens and medial prefrontal cortex. Neurosci Lett 2021; 749:135745. [PMID: 33610663 DOI: 10.1016/j.neulet.2021.135745] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 02/12/2021] [Accepted: 02/15/2021] [Indexed: 12/31/2022]
Abstract
Ethanol consumption may promote neuroplasticity and alterations in synapses, resulting in modifications in neuronal activity. Here, we treated male Swiss mice with ethanol (2.2 g/kg) or saline once per day for 21 consecutive days. Nine days after the last ethanol administration, they received a challenge injection of ethanol or saline, and we assessed locomotor activity. After the behavioral analysis, we evaluated neuronal activation in the medial Prefrontal Cortex (Cingulate, Prelimbic, and Infralimbic) and the Nucleus Accumbens (Shell and Core) using Fos/DAB immunohistochemistry. In another group of animals, we performed the quantitative analysis of the ARC and PSD-95 protein levels by Western blotting in the medial prefrontal cortex and nucleus accumbens brain areas. Repeated ethanol administration produced locomotor sensitization, accompanied by an increase in the nucleus accumbens shell's activation but not core. Furthermore, the ethanol pretreatment reduced ARC expression in the nucleus accumbens and medial prefrontal cortex. Our results suggest the participation of the nucleus accumbens shell in ethanol behavioral sensitization and add new pieces of evidence that neuroplasticity in synapses may contribute to the mechanism underlying this behavior.
Collapse
Affiliation(s)
- Sara Emi M M Ferreira
- Department of Bioregulation Sciences, Health Sciences Institute, Federal University of Bahia, UFBA, Brazil; Graduate Program in Pharmacy, Federal University of Bahia, UFBA, Brazil
| | - Leonardo M Soares
- Department of Bioregulation Sciences, Health Sciences Institute, Federal University of Bahia, UFBA, Brazil
| | - Clarice R Lira
- Department of Bioregulation Sciences, Health Sciences Institute, Federal University of Bahia, UFBA, Brazil; Graduate Program in Pharmacy, Federal University of Bahia, UFBA, Brazil
| | - Thais S Yokoyama
- Pharmacology Department, São Paulo Federal University, UNIFESP, Brazil
| | - Sheila A Engi
- Pharmacology Department, São Paulo Federal University, UNIFESP, Brazil
| | - Fábio C Cruz
- Pharmacology Department, São Paulo Federal University, UNIFESP, Brazil
| | - Rodrigo M Leão
- Department of Bioregulation Sciences, Health Sciences Institute, Federal University of Bahia, UFBA, Brazil; Graduate Program in Pharmacy, Federal University of Bahia, UFBA, Brazil; Pharmacology Department, Biomedical Sciences Institute, Federal University of Uberlândia, UFU, Brazil.
| |
Collapse
|
4
|
Thrul J, Gubner NR, Tice CL, Lisha NE, Ling PM. Young adults report increased pleasure from using e-cigarettes and smoking tobacco cigarettes when drinking alcohol. Addict Behav 2019; 93:135-140. [PMID: 30710807 DOI: 10.1016/j.addbeh.2019.01.011] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 01/11/2019] [Accepted: 01/14/2019] [Indexed: 10/27/2022]
Abstract
BACKGROUND Cigarettes share a high rate of co-use with alcohol, particularly among young adults. Studies have demonstrated greater perceived pleasure from smoking cigarettes when drinking alcohol. However, little is known about co-use of electronic cigarettes (e-cigs) and alcohol. The current study sought to compare extent of use and perceived pleasure from cigarettes and e-cigs when drinking alcohol. METHODS Young adult bar patrons in California cities (San Diego, Los Angeles, and San Francisco) were recruited in 2015-16 using randomized time-location sampling. Participants completed cross-sectional surveys in bars, reporting the percent of cigarette smoking/e-cig use that occurred under the influence of alcohol, and reported if pleasure from smoking cigarettes/using e-cigs changed when drinking alcohol. Analyses are limited to participants reporting current (past 30-day) use of cigarettes, e-cigs, and alcohol (N = 269; M age = 24.1; 40.1% female, 36.1% Non-Hispanic White). RESULTS Participants reported a greater percentage of cigarette smoking compared to e-cig use under the influence of alcohol (cigarettes M = 63.6%; e-cigs M = 46.7%; p < .001). Participants also reported increased pleasure both from smoking cigarettes (M = 3.9; [compared to midpoint of scale 3 - "no change"] p < .001) and using e-cigs (M = 3.3; p < .001) when drinking alcohol. The increase in pleasure was more pronounced for cigarettes compared to e-cigs (p < .001). CONCLUSIONS Drinking alcohol is associated with increases in perceived rewarding effects of both cigarettes and e-cigs and thus may increase their abuse liability. This effect may be stronger for cigarettes, which could be an important barrier to switching completely from smoking cigarettes to using e-cigs, or quitting both entirely.
Collapse
|
5
|
Taksande BG, Khade SD, Aglawe MM, Gujar S, Chopde CT, Kotagale NR. Agmatine Inhibits Behavioral Sensitization to Ethanol Through Imidazoline Receptors. Alcohol Clin Exp Res 2019; 43:747-757. [DOI: 10.1111/acer.13972] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 01/29/2019] [Indexed: 12/13/2022]
Affiliation(s)
- Brijesh G. Taksande
- Department of Pharmacology Division of Neuroscience Shrimati Kishoritai Bhoyar College of Pharmacy Nagpur India
| | - Supriya D. Khade
- Department of Pharmacology Division of Neuroscience Shrimati Kishoritai Bhoyar College of Pharmacy Nagpur India
| | - Manish M. Aglawe
- Department of Pharmacology Division of Neuroscience Shrimati Kishoritai Bhoyar College of Pharmacy Nagpur India
| | - Shreyans Gujar
- Department of Pharmacology Division of Neuroscience Shrimati Kishoritai Bhoyar College of Pharmacy Nagpur India
| | - Chandrabhan T. Chopde
- Department of Pharmacology Division of Neuroscience Shrimati Kishoritai Bhoyar College of Pharmacy Nagpur India
| | - Nandkishor R. Kotagale
- Department of Pharmacology Division of Neuroscience Shrimati Kishoritai Bhoyar College of Pharmacy Nagpur India
- Government Colleges of Pharmacy Amravati India
| |
Collapse
|
6
|
Araujo CMD, Rocha AC, Araujo BMDMD, Johann ACBR, Pereira LF, Tanaka OM, Guariza Filho O, Camargo ES. Effect of acute administration of nicotine and ethanol on tooth movement in rats. Braz Oral Res 2018; 32:e96. [PMID: 30328897 DOI: 10.1590/1807-3107bor-2018.vol32.0096] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 07/04/2018] [Indexed: 12/18/2022] Open
Abstract
The aim of this study was to evaluate the effect of acute administration of nicotine and ethanol on tooth movement in rats. Two hundred rats were divided into eight groups: S: saline; N: nicotine; E: ethanol; NE: nicotine and ethanol; SM: saline with tooth movement; NM: nicotine with tooth movement; EM: ethanol with tooth movement; and NEM: nicotine and ethanol with tooth movement. All the solutions were applied for 32, 44, or 58 days, according to the subgroup. Orthodontic movement (25 cN) was initiated 30 days after solution administration in the groups with tooth movement. The rats were euthanized 2, 14, or 28 days after initiation of tooth movement. Tooth sections were stained using picrosirius and tartrate-resistant acid phosphatase (TRAP). The data were compared by ANOVA using Tukey's HSD and Games-Howell. On day 28 of tooth movement, the NEM group had a lower percentage of type I collagen compared to the SM group (p = 0.0448), and the S group had a higher number of osteoclasts/μm2 compared to the N group (p = 0.0405). Nicotine and ethanol did not affect the tooth movement rate, regardless of induction of orthodontic movement. Nicotine influenced the number of osteoclasts by decreasing their quantity when dental movement was not induced. When nicotine was associated with ethanol, it interfered in the maturation of collagen fibers during orthodontic movement.
Collapse
Affiliation(s)
- Cristiano Miranda de Araujo
- Pontifícia Universidade Católica do Paraná - PUC-PR, School of Life Sciences, Postgraduate Program in Dentistry - Orthodontics, Curitiba, PR, Brazil
| | - Adriana Cristina Rocha
- Pontifícia Universidade Católica do Paraná - PUC-PR, School of Life Sciences, Postgraduate Program in Dentistry - Orthodontics, Curitiba, PR, Brazil
| | | | | | - Luiz Fernando Pereira
- Pontifícia Universidade Católica do Paraná - PUC-PR, School of Life Sciences, Postgraduate Program in Dentistry - Physiology, Curitiba, PR, Brazil
| | - Orlando Motohiro Tanaka
- Pontifícia Universidade Católica do Paraná - PUC-PR, School of Life Sciences, Postgraduate Program in Dentistry - Orthodontics, Curitiba, PR, Brazil
| | - Odilon Guariza Filho
- Pontifícia Universidade Católica do Paraná - PUC-PR, School of Life Sciences, Postgraduate Program in Dentistry - Orthodontics, Curitiba, PR, Brazil
| | - Elisa Souza Camargo
- Pontifícia Universidade Católica do Paraná - PUC-PR, School of Life Sciences, Postgraduate Program in Dentistry - Orthodontics, Curitiba, PR, Brazil
| |
Collapse
|
7
|
Nona CN, Hendershot CS, Lê AD. Behavioural sensitization to alcohol: Bridging the gap between preclinical research and human models. Pharmacol Biochem Behav 2018; 173:15-26. [DOI: 10.1016/j.pbb.2018.08.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 07/31/2018] [Accepted: 08/07/2018] [Indexed: 12/28/2022]
|
8
|
Loney GC, Pautassi RM, Kapadia D, Meyer PJ. Nicotine affects ethanol-conditioned taste, but not place, aversion in a simultaneous conditioning procedure. Alcohol 2018; 71:47-55. [PMID: 30029019 DOI: 10.1016/j.alcohol.2018.02.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 02/21/2018] [Accepted: 02/26/2018] [Indexed: 12/20/2022]
Abstract
The conditioned taste aversion (CTA) induced by ethanol is a key factor limiting ethanol intake. Nicotine, a drug co-consumed with ethanol, may decrease this aversion by modulating the unconditioned effects of ethanol or by disrupting the association between ethanol and its associated cues. This study analyzed ethanol-induced CTA and conditioned place aversion (CPA) in Long-Evans rats with subchronic exposure to nicotine. The rats were treated with nicotine (0.0 or 0.4 mg/kg) three times before conditioning (on lickometer training sessions 3, 4, and 5) and across conditioning days. During the conditioning the rats were given ethanol (1.3 g/kg) preceded and followed by presentation of a taste (NaCl) and tactile (rod or hole floors) conditioned stimulus (CS+), respectively. On CS- conditioning days, the rats were given vehicle and exposed to alternative stimuli. Three CTA and CPA testing sessions were then conducted. It was found that nicotine reduced ethanol-induced CTA and enhanced locomotor activity, but did not significantly modify the magnitude of ethanol-induced CPA. The effects of nicotine on CTA were observed during both conditioning and testing sessions, and were specific to the NaCl CS+, having no effect on reactivity to water. The dissociation between the effect of nicotine on ethanol-induced CTA and CPA suggests that nicotine does not alter ethanol's motivational properties by generally increasing its positive rewarding effects, nor does it blunt all aversive-like responses to this drug. Instead, nicotine may impede ethanol-induced CTA induced by ethanol by disrupting the neural underpinnings of this specific form of associative learning.
Collapse
Affiliation(s)
- Gregory C Loney
- Department of Psychology, State University of New York at Buffalo, Buffalo, NY 14260, United States
| | - Ricardo Marcos Pautassi
- Instituto de Investigación Médica M. y M. Ferreyra (INIMEC - CONICET-UNC), Córdoba, C.P. 5000, Argentina; Facultad de Psicología, Universidad Nacional de Córdoba, Córdoba, C.P. 5000, Argentina.
| | | | - Paul J Meyer
- Department of Psychology, State University of New York at Buffalo, Buffalo, NY 14260, United States
| |
Collapse
|
9
|
Liu X, Tian L, Cui R, Ruan H, Li X. Muscarinic receptors in the nucleus accumbens shell play different roles in context-induced or morphine-challenged expression of behavioral sensitization in rats. Eur J Pharmacol 2018; 819:51-57. [PMID: 29196177 DOI: 10.1016/j.ejphar.2017.11.039] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 11/17/2017] [Accepted: 11/24/2017] [Indexed: 01/01/2023]
Abstract
Both drug-related cues and drug priming are the main factors that induce relapse of drug addiction. Previous research has reported that blockade of the muscarinic receptors could significantly depress addictive behavior, suggesting that the muscarinic receptors might be involved in drug use and relapse behavior. The nucleus accumbens (NAc), especially the shell of the NAc, where the muscarinic receptors are expressed, is critical for craving and relapse. This study investigated the effects of microinfusion of the muscarinic receptor antagonist scopolamine into the NAc shell on context- and morphine-induced expression of behavioral sensitization. Behavioral sensitization was established by exposure to 5mg/kg morphine once daily for five consecutive days. Expression of behavioral sensitization was induced by saline challenge or 5mg/kg morphine challenge. The results showed that: (a) the muscarinic receptor antagonist scopolamine (10.8μg/rat) microinjected into the NAc shell blocked expression of conditional sensitization; (b) acetylcholinesterase inhibitor huperzine-A (0.5 and 0.1μg/rat), but not scopolamine (10.8μg/rat), microinjected into the NAc shell blocked morphine-induced expression of sensitization; and (c) pre-infusion of scopolamine (10.8μg/rat) reversed the inhibitory effect of huperzine-A (0.5μg/rat) on morphine-induced sensitization. Our findings suggest that muscarinic receptors in the NAc shell play different roles in context-induced and morphine-challenged expression of behavioral sensitization.
Collapse
Affiliation(s)
- Xinhe Liu
- Beijing Key Laboratory of Learning and Cognition, Department of Psychology, Capital Normal University, Beijing, PR China
| | - Lin Tian
- Beijing Key Laboratory of Learning and Cognition, Department of Psychology, Capital Normal University, Beijing, PR China
| | - Ruisi Cui
- Beijing Key Laboratory of Learning and Cognition, Department of Psychology, Capital Normal University, Beijing, PR China
| | - Heng Ruan
- Beijing Key Laboratory of Learning and Cognition, Department of Psychology, Capital Normal University, Beijing, PR China
| | - Xinwang Li
- Beijing Key Laboratory of Learning and Cognition, Department of Psychology, Capital Normal University, Beijing, PR China.
| |
Collapse
|
10
|
De Nobrega AK, Lyons LC. Drosophila: An Emergent Model for Delineating Interactions between the Circadian Clock and Drugs of Abuse. Neural Plast 2017; 2017:4723836. [PMID: 29391952 PMCID: PMC5748135 DOI: 10.1155/2017/4723836] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 08/13/2017] [Indexed: 01/12/2023] Open
Abstract
Endogenous circadian oscillators orchestrate rhythms at the cellular, physiological, and behavioral levels across species to coordinate activity, for example, sleep/wake cycles, metabolism, and learning and memory, with predictable environmental cycles. The 21st century has seen a dramatic rise in the incidence of circadian and sleep disorders with globalization, technological advances, and the use of personal electronics. The circadian clock modulates alcohol- and drug-induced behaviors with circadian misalignment contributing to increased substance use and abuse. Invertebrate models, such as Drosophila melanogaster, have proven invaluable for the identification of genetic and molecular mechanisms underlying highly conserved processes including the circadian clock, drug tolerance, and reward systems. In this review, we highlight the contributions of Drosophila as a model system for understanding the bidirectional interactions between the circadian system and the drugs of abuse, alcohol and cocaine, and illustrate the highly conserved nature of these interactions between Drosophila and mammalian systems. Research in Drosophila provides mechanistic insights into the corresponding behaviors in higher organisms and can be used as a guide for targeted inquiries in mammals.
Collapse
Affiliation(s)
- Aliza K. De Nobrega
- Department of Biological Science, Program in Neuroscience, Florida State University, Tallahassee, FL 32306, USA
| | - Lisa C. Lyons
- Department of Biological Science, Program in Neuroscience, Florida State University, Tallahassee, FL 32306, USA
| |
Collapse
|
11
|
Ostroumov A, Dani JA. Convergent Neuronal Plasticity and Metaplasticity Mechanisms of Stress, Nicotine, and Alcohol. Annu Rev Pharmacol Toxicol 2017; 58:547-566. [PMID: 28977763 DOI: 10.1146/annurev-pharmtox-010617-052735] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Stress and tobacco smoking are risk factors for alcoholism, but the underlying neural mechanisms are not well understood. Although stress, nicotine, and alcohol have broad, individual effects in the brain, some of their actions converge onto the same mechanisms and circuits. Stress and nicotine augment alcohol-related behaviors, in part via modulation of alcohol-evoked neuronal plasticity and metaplasticity mechanisms. Stress modulates alcohol-evoked plasticity via the release of signaling molecules that influence synaptic transmission. Nicotine also activates some of the same signaling molecules, cells, and circuits, producing a convergence of both stress and nicotine onto common plasticity mechanisms that influence alcohol self-administration. We describe several forms of alcohol-induced plasticity, including classic Hebbian plasticity at glutamatergic synapses, and we highlight less appreciated forms, such as non-Hebbian and GABAergic synaptic plasticity. Risk factors such as stress and nicotine initiate lasting neural changes that modify subsequent alcohol-induced synaptic plasticity and increase the vulnerability to alcohol addiction.
Collapse
Affiliation(s)
- Alexey Ostroumov
- Department of Neuroscience, Mahoney Institute for Neurosciences, Perelman School for Medicine, Philadelphia, Pennsylvania 19104, USA; ,
| | - John A Dani
- Department of Neuroscience, Mahoney Institute for Neurosciences, Perelman School for Medicine, Philadelphia, Pennsylvania 19104, USA; ,
| |
Collapse
|
12
|
Li MH, Underhill SM, Reed C, Phillips TJ, Amara SG, Ingram SL. Amphetamine and Methamphetamine Increase NMDAR-GluN2B Synaptic Currents in Midbrain Dopamine Neurons. Neuropsychopharmacology 2017; 42:1539-1547. [PMID: 27976681 PMCID: PMC5436114 DOI: 10.1038/npp.2016.278] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 11/29/2016] [Accepted: 12/11/2016] [Indexed: 02/07/2023]
Abstract
The psychostimulants amphetamine (AMPH) and methamphetamine (MA) are widely abused illicit drugs. Here we show that both psychostimulants acutely increase NMDA receptor (NMDAR)-mediated synaptic currents and decrease AMPA receptor (AMPAR)/NMDAR ratios in midbrain dopamine neurons. The potentiation depends on the transport of AMPH into the cell by the dopamine transporter. NMDAR-GluN2B receptor inhibitors, ifenprodil, RO 25-6981, and RO 04-5595, inhibit the potentiation without affecting basal-evoked NMDA currents, indicating that NMDAR-GluN2B receptors are activated by AMPH. A selective peptide inhibitor of AMPH-dependent trafficking of the neuronal excitatory amino acid transporter 3 (EAAT3) blocks potentiation, suggesting that EAAT3 internalization increases extracellular glutamate concentrations and activates GluN2B-containing NMDARs. Experiments with the use-dependent NMDAR blocker, MK-801, indicate that potentiated NMDARs reside on the plasma membrane and are not inserted de novo. In behavioral studies, GluN2B inhibitors reduce MA-mediated locomotor activity, without affecting basal activity. These results reveal an important interaction between dopamine and glutamatergic signaling in midbrain dopamine neurons in response to acute administration of psychostimulants.
Collapse
Affiliation(s)
- Ming-Hua Li
- Department of Neurological Surgery, Oregon Health & Science University, Portland, OR, USA
| | - Suzanne M Underhill
- National Institute of Mental Health, National Institutes of Health, Laboratory of Molecular and Cellular Neurobiology, Bethesda, MD, USA
| | - Cheryl Reed
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, USA
| | - Tamara J Phillips
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, USA
- VA Portland Health Care System, Portland, OR, USA
| | - Susan G Amara
- National Institute of Mental Health, National Institutes of Health, Laboratory of Molecular and Cellular Neurobiology, Bethesda, MD, USA
| | - Susan L Ingram
- Department of Neurological Surgery, Oregon Health & Science University, Portland, OR, USA
| |
Collapse
|
13
|
Kohut SJ. Interactions between nicotine and drugs of abuse: a review of preclinical findings. THE AMERICAN JOURNAL OF DRUG AND ALCOHOL ABUSE 2016; 43:155-170. [PMID: 27589579 DOI: 10.1080/00952990.2016.1209513] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Polysubstance abuse is common among substance-use disorder patients, and nicotine is one of the most commonly co-used substances. Epidemiological and clinical laboratory studies suggest that nicotine, when combined with other drugs of abuse, increases intake of one or both substances. This review focuses on the preclinical literature regarding nicotine's interaction with alcohol, stimulants (i.e., cocaine, amphetamines), opioids (i.e., morphine, heroin), and Δ9-tetrahydrocannabinol (THC). The current understanding of how these various classes of abused drugs may interact with nicotine on behavioral, physiological, and pharmacological indices that may be important in maintaining co-use of one or both substances in human populations are highlighted. Suggestions as to future areas of research and gaps in knowledge are offered.
Collapse
Affiliation(s)
- Stephen J Kohut
- a McLean Hospital and Department of Psychiatry, Harvard Medical School , Belmont , MA , USA
| |
Collapse
|
14
|
Heit C, Eriksson P, Thompson DC, Fritz KS, Vasiliou V. Quantification of Neural Ethanol and Acetaldehyde Using Headspace GC-MS. Alcohol Clin Exp Res 2016; 40:1825-31. [PMID: 27501276 PMCID: PMC5008984 DOI: 10.1111/acer.13156] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 06/14/2016] [Indexed: 11/27/2022]
Abstract
BACKGROUND There is controversy regarding the active agent responsible for alcohol addiction. The theory that ethanol (EtOH) itself was the agent in alcohol drinking behavior was widely accepted until acetaldehyde (AcH) was found in the brain. The importance of AcH formation in the brain is still subject to speculation due to the lack of a method to accurately assay the AcH levels directly. A highly sensitive gas chromatography mass spectrometry (GC-MS) method to reliably determine AcH concentration with certainty is needed to address whether neural AcH is indeed responsible for increased alcohol consumption. METHODS A headspace gas chromatograph coupled to selected-ion monitoring MS was utilized to develop a quantitative assay for AcH and EtOH. Our GC-MS approach was carried out using a Bruker Scion 436-GC SQ MS. RESULTS Our approach yields limits of detection of AcH in the nanomolar range and limits of quantification in the low micromolar range. Our linear calibration includes 5 concentrations with a least-square regression greater than 0.99 for both AcH and EtOH. Tissue analyses using this method revealed the capacity to quantify EtOH and AcH in blood, brain, and liver tissue from mice. CONCLUSIONS By allowing quantification of very low concentrations, this method may be used to examine the formation of EtOH metabolites, specifically AcH, in murine brain tissue in alcohol research.
Collapse
Affiliation(s)
- Claire Heit
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Colorado Denver Anschutz Medical Campus, 12850 East Montview Boulevard, Aurora, CO 80045, USA
| | - Peter Eriksson
- Department of Public Health, University of Helsinki, POB 27, 00271 Helsinki, Finland
| | - David C Thompson
- Department of Clinical Pharmacy, School of Pharmacy, University of Colorado Anschutz Medical Campus, 12850 East Montview Boulevard, Aurora, CO 80045, USA
| | - Kristofer S Fritz
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Colorado Denver Anschutz Medical Campus, 12850 East Montview Boulevard, Aurora, CO 80045, USA
| | - Vasilis Vasiliou
- Department of Environmental Health Services, Yale School of Public Health, Yale University, New Haven CT 0650
| |
Collapse
|