1
|
Bernanke A, Burnette E, Murphy J, Hernandez N, Zimmerman S, Walker QD, Wander R, Sette S, Reavis Z, Francis R, Armstrong C, Risher ML, Kuhn C. Behavior and Fos activation reveal that male and female rats differentially assess affective valence during CTA learning and expression. PLoS One 2021; 16:e0260577. [PMID: 34898621 PMCID: PMC8668140 DOI: 10.1371/journal.pone.0260577] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 11/15/2021] [Indexed: 12/02/2022] Open
Abstract
Females are more affected by psychiatric illnesses including eating disorders, depression, and post-traumatic stress disorder than males. However, the neural mechanisms mediating these sex differences are poorly understood. Animal models can be useful in exploring such neural mechanisms. Conditioned taste aversion (CTA) is a behavioral task that assesses how animals process the competition between associated reinforcing and aversive stimuli in subsequent task performance, a process critical to healthy behavior in many domains. The purpose of the present study was to identify sex differences in this behavior and associated neural responses. We hypothesized that females would value the rewarding stimulus (Boost®) relative to the aversive stimulus (LiCl) more than males in performing CTA. We evaluated behavior (Boost® intake, LiCl-induced behaviors, ultrasonic vocalizations (USVs), CTA performance) and Fos activation in relevant brain regions after the acute stimuli [acute Boost® (AB), acute LiCl (AL)] and the context-only task control (COT), Boost® only task (BOT) and Boost®-LiCl task (BLT). Acutely, females drank more Boost® than males but showed similar aversive behaviors after LiCl. Females and males performed CTA similarly. Both sexes produced 55 kHz USVs anticipating BOT and inhibited these calls in the BLT. However, more females emitted both 22 kHz and 55 kHz USVs in the BLT than males: the latter correlated with less CTA. Estrous cycle stage also influenced 55 kHz USVs. Fos responses were similar in males and females after AB or AL. Females engaged the gustatory cortex and ventral tegmental area (VTA) more than males during the BOT and males engaged the amygdala more than females in both the BOT and BLT. Network analysis of correlated Fos responses across brain regions identified two unique networks characterizing the BOT and BLT, in both of which the VTA played a central role. In situ hybridization with RNAscope identified a population of D1-receptor expressing cells in the CeA that responded to Boost® and D2 receptor-expressing cells that responded to LiCl. The present study suggests that males and females differentially process the affective valence of a stimulus to produce the same goal-directed behavior.
Collapse
Affiliation(s)
- Alyssa Bernanke
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, United States of America
| | - Elizabeth Burnette
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, United States of America
| | - Justine Murphy
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, United States of America
| | - Nathaniel Hernandez
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, United States of America
| | - Sara Zimmerman
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, United States of America
| | - Q. David Walker
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, United States of America
| | - Rylee Wander
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, United States of America
| | - Samantha Sette
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, United States of America
| | - Zackery Reavis
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, United States of America
| | - Reynold Francis
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, United States of America
| | - Christopher Armstrong
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, United States of America
| | - Mary-Louise Risher
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, West Virginia, United States of America
| | - Cynthia Kuhn
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, United States of America
| |
Collapse
|
2
|
Acoustilytix™: A Web-Based Automated Ultrasonic Vocalization Scoring Platform. Brain Sci 2021; 11:brainsci11070864. [PMID: 34209754 PMCID: PMC8301917 DOI: 10.3390/brainsci11070864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 06/18/2021] [Indexed: 12/04/2022] Open
Abstract
Ultrasonic vocalizations (USVs) are known to reflect emotional processing, brain neurochemistry, and brain function. Collecting and processing USV data is manual, time-intensive, and costly, creating a significant bottleneck by limiting researchers’ ability to employ fully effective and nuanced experimental designs and serving as a barrier to entry for other researchers. In this report, we provide a snapshot of the current development and testing of Acoustilytix™, a web-based automated USV scoring tool. Acoustilytix implements machine learning methodology in the USV detection and classification process and is recording-environment-agnostic. We summarize the user features identified as desirable by USV researchers and how these were implemented. These include the ability to easily upload USV files, output a list of detected USVs with associated parameters in csv format, and the ability to manually verify or modify an automatically detected call. With no user intervention or tuning, Acoustilytix achieves 93% sensitivity (a measure of how accurately Acoustilytix detects true calls) and 73% precision (a measure of how accurately Acoustilytix avoids false positives) in call detection across four unique recording environments and was superior to the popular DeepSqueak algorithm (sensitivity = 88%; precision = 41%). Future work will include integration and implementation of machine-learning-based call type classification prediction that will recommend a call type to the user for each detected call. Call classification accuracy is currently in the 71–79% accuracy range, which will continue to improve as more USV files are scored by expert scorers, providing more training data for the classification model. We also describe a recently developed feature of Acoustilytix that offers a fast and effective way to train hand-scorers using automated learning principles without the need for an expert hand-scorer to be present and is built upon a foundation of learning science. The key is that trainees are given practice classifying hundreds of calls with immediate corrective feedback based on an expert’s USV classification. We showed that this approach is highly effective with inter-rater reliability (i.e., kappa statistics) between trainees and the expert ranging from 0.30–0.75 (average = 0.55) after only 1000–2000 calls of training. We conclude with a brief discussion of future improvements to the Acoustilytix platform.
Collapse
|
3
|
Spontaneous Ultrasonic Vocalization Transmission in Adult, Male Long-Evans Rats Is Age-Dependent and Sensitive to EtOH Modulation. Brain Sci 2020; 10:brainsci10110890. [PMID: 33266373 PMCID: PMC7700419 DOI: 10.3390/brainsci10110890] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 11/18/2020] [Accepted: 11/19/2020] [Indexed: 01/01/2023] Open
Abstract
Ultrasonic vocalizations (USVs) are well-established markers of motivational and emotional status. Recent work from our lab has provided novel evidence for a role of USVs in models of ethanol (EtOH) use. For instance, USV acoustic characteristics can be used to accurately discriminate between rats selectively bred for high EtOH intake (e.g., alcohol-preferring (P) and high-alcohol-drinking (HAD)) versus EtOH-avoiding (e.g., alcohol-non-preferring (NP) and low-alcohol-drinking (LAD)) strains, as well as differentiate between male and female rats. In the present study we sought to explore the effect of age and alcohol availability on spontaneously emitted 50–55 kHz frequency modulated (FM) and 22–28 kHz USVs in adult, male Long–Evans rats. With the hypothesis that age and alcohol experience influence spontaneous USV emissions, we examined USV data collected across a 24-week intermittent EtOH access experiment in male Long–Evans rats. USV counts and acoustic characteristic (i.e., mean frequency, duration, bandwidth and power) data revealed distinct age-dependent phenotypes in both 50–55 kHz FM and 22–28 kHz USV transmission patterns that were modulated by EtOH exposure. These results highlight the influence of age and EtOH experience on the unique emotional phenotypes of male Long–Evans rats.
Collapse
|
4
|
Seo SY, Kim SP, Bang SK, Kang SY, Cho SJ, Choi KH, Ryu Y. The effect of acupuncture stimulation on alleviating emotional changes due to acute alcohol administration and the possibility of sigma 1 receptor involvement. Integr Med Res 2020; 10:100497. [PMID: 33384922 PMCID: PMC7689173 DOI: 10.1016/j.imr.2020.100497] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 07/27/2020] [Accepted: 08/02/2020] [Indexed: 01/17/2023] Open
Abstract
Background Most ETOH addiction preclinical studies have focused on the rewards of chronic ETOH self-administration or the ETOH reinstatement model. Acute ETOH administration studies are scarce despite the potential of ETOH to cause sedation, intoxication and reduced acute functional tolerance. Here, we established a rat model of acute ETOH administration induced by an intraperitoneal injection of 1 g/kg ethanol and assessed the similarities in physiological and behavioral effects between acupuncture and Sigma1 R antagonists. Methods Male Wistar rats (300-330 g) received pretreatment with (1) saline injection, (2) saline + mechanical stimulation using a mechanical acupuncture instrument (MAI) for acupuncture at the Shenmen (HT7), (3) ETOH (1 g/kg) injection, (4) ETOH + HT7, or (5) the selective σ1 R antagonist BD 1047 (3, 10, or 30 mg/kg, intraperitoneal (IP) injection). ETOH (1 g/kg) or saline was IP injected after 10 min. Then, ETOH-induced immobility was evaluated in an open field arena, ultrasonic vocalizations (USVs) indicating ethanol-induced emotional changes were recorded in a recording chamber, and the rats were sacrificed for the analysis of protein levels of σ1 R in several regions of the brain. Results Acute ethanol exposure increased the immobile time, 22-kHz USVs, and protein levels of σ1 R in the ventral tegmental area (VTA). However, pretreatment with acupuncture at HT7 induced recovery of immobile time, reduced 22-kHz USVs, and regulated the protein levels of σ1 R in the VTA. These effects have similarities with IP injection of BD 1047 (10 mg/kg). Conclusion This study showed that acupuncture at HT7 regulates immobility and 22-kHz USVs via Sigma1 R in the VTA upon acute ETOH exposure.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yeonhee Ryu
- Corresponding author at: Clinical Medicine Division, Korea Institute of Oriental Medicine, 1672 Yuseong-daero, Yuseong-Gu, Daejeon, 34054, Korea.
| |
Collapse
|
5
|
Shahrier MA, Wada H. Effects of prenatal ethanol exposure on acoustic characteristics of play fighting-induced ultrasonic vocalizations in juvenile rats. Neurotoxicology 2020; 79:25-39. [PMID: 32294486 DOI: 10.1016/j.neuro.2020.03.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 03/30/2020] [Indexed: 10/24/2022]
Abstract
Juvenile rats display rough-and-tumble playing with conspecifics (play fighting behavior) and produce 22 and 50 kHz ultrasonic vocalizations (USVs). The 22 kHz USV is considered to reflect negative emotionality such as anxiety, fear, and distress, whereas the 50 kHz USV is considered to reflect positive emotionality such as joy, happiness, and satisfaction. USV is a sensitive tool for measuring emotionality in socially interactive situations. However, effects of prenatal ethanol-exposure on the acoustic characteristics of play fighting-induced USVs have remained unclear. In Experiment I, we recorded USVs produced by prenatally ethanol-exposed rats during play fighting on postnatal days (PNDs) 40-42 and examined the acoustic characteristics of negative and positive emotion-induced USVs. In Experiment II, we examined the anxiety levels through elevated plus maze testing on PNDs 37-39 and frequencies of playful attacks on PNDs 43-45 in ethanol-exposed rats. Ethanol was administered to pregnant rats in three gradually increased concentrations between gestational days (GDs) 8 and 20. From GDs 14 to 20, ethanol-containing tap water at concentrations of 30% and 15% (v/v) was administered to the high- and low-ethanol groups, respectively. Tap water without added ethanol was given to the control group. On PNDs 40-42, three rats from the same sex and same ethanol concentration group but from different litters were placed together into a playing cage for play fighting. The high-ethanol male triads displayed elevations of 20-35 kHz USVs reflecting negative emotionality and reductions of 45-70 kHz USVs reflecting positive emotionality compared with both the low-ethanol and control male triads. The high-ethanol male triads had prominent elevations of 20-35 kHz USVs with durations longer than 200 ms, whereas the control male triads did not produce such 20-35 kHz USVs at all. There was no difference in USV acoustic characteristics among the female triads. In addition, the high-ethanol male rats exhibited greater anxiety levels and less frequencies of play fighting than the control male rats. Altogether, we conclude that prenatal exposure to ethanol enhances negative emotionality such as anxiety and, accordingly, 20-35 kHz USVs reflecting negative emotionality are produced with a marked decrease in play fighting, suggesting difficulties in social interactions with conspecifics.
Collapse
Affiliation(s)
- Mohd Ashik Shahrier
- Department of Psychology, Graduate School of Letters, Hokkaido University, Japan.
| | - Hiromi Wada
- Department of Psychology, Faculty of Humanities and Human Sciences, Hokkaido University, Kita 10 Nishi 7 Kita-Ku, Sapporo 060-0810, Japan
| |
Collapse
|
6
|
LPS-induced sickness behavior is not affected by selenium but is switched off by psychogenic stress in rats. Vet Res Commun 2019; 43:239-247. [PMID: 31760569 DOI: 10.1007/s11259-019-09766-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 10/02/2019] [Indexed: 01/03/2023]
Abstract
Sickness behavior (SB) is considered part of the adaptive behavioral and neuroimmune changes that occur in response to inflammatory processes. However, SB is a motivational state modulated by the environmental context. The objective of this study was to evaluate if selenium could ameliorate symptoms of SB and if stress would affect these responses. We induced SB in rats using lipopolysaccharide (LPS). We choose selenium based on our findings of LPS-exposure decreasing selenium levels in rats. We exposed these rats to a psychogenic stress and studied motivational modulation paradigms, such as cure of the organism, preservation of the species, and fight or flight. We studied ultrasonic vocalizations, open-field behaviors, body weight, and IL-1 beta and IFN-gamma serum levels. LPS-induced SB was evidenced by decreased motor/exploratory activity and increased proinflammatory mediators' levels. Selenium treatment did not exert beneficial effects on SB, revealing that probably the selenium deficiency was not related to SB. When analyzed with the stress paradigm, the behavior of rats was differentially affected. LPS did not affect behavior in the presence of stress. SB was abrogated during stressor events to prioritize survival behaviors, such as fight-or-flight. Contrarily, the association of LPS, selenium, and stress induced SB even during stressor events, revealing that this combination induced a cumulative toxic effect.
Collapse
|
7
|
Rodent ultrasonic vocalizations as biomarkers of future alcohol use: A predictive analytic approach. COGNITIVE AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2019; 18:88-98. [PMID: 29209998 DOI: 10.3758/s13415-017-0554-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Excessive alcohol consumption has a vast, negative impact on society. Rodent models have been successful in furthering our understanding of the biological underpinnings that drive alcohol consumption. Rodents emit ultrasonic vocalizations (USVs) that are each composed of several acoustic characteristics (e.g., frequency, duration, bandwidth, power). USVs reflect neurotransmitter activity in the ascending limb of the mesolimbic dopaminergic and cholinergic neurotransmitter systems and serve as noninvasive, real-time biomarkers of dopaminergic and cholinergic neurotransmission in the limbic system. In the present study, we recorded spontaneously emitted USVs from alcohol-naïve Long-Evans (LE) rats and then measured their alcohol intake. We compared the USV acoustic characteristics and alcohol consumption data from these LE rats with previously published data from selectively bred high-alcohol (P and HAD-1) and low-alcohol (NP and LAD-1) drinking lines from studies with the same experimental method. Predictive analytic techniques were applied simultaneously to this combined data set and revealed that (a) USVs emitted by alcohol-naïve rats accurately discriminated among high-alcohol consuming, LE, and low-alcohol consuming rat lines, and (b) future alcohol consumption in these same rat lines was reliably predicted from the USV data collected in an alcohol-naïve state. To our knowledge, this is the first study to show that alcohol consumption is predicted directly from USV profiles of alcohol-naïve rats. Because USV acoustic characteristics are sensitive to underlying neural activity, these findings suggest that baseline differences in mesolimbic cholinergic and dopaminergic tone could determine the propensity for future alcohol consumption in rodents.
Collapse
|
8
|
Bialy M, Podobinska M, Barski J, Bogacki-Rychlik W, Sajdel-Sulkowska EM. Distinct classes of low frequency ultrasonic vocalizations in rats during sexual interactions relate to different emotional states. Acta Neurobiol Exp (Wars) 2019. [DOI: 10.21307/ane-2019-001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
9
|
Simola N, Granon S. Ultrasonic vocalizations as a tool in studying emotional states in rodent models of social behavior and brain disease. Neuropharmacology 2018; 159:107420. [PMID: 30445100 DOI: 10.1016/j.neuropharm.2018.11.008] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 11/05/2018] [Accepted: 11/08/2018] [Indexed: 02/06/2023]
Abstract
Rodents emit ultrasonic vocalizations (USVs) to communicate the presence of positive or negative emotional states and to coordinate social interactions. On this basis, USVs are increasingly being used as a behavioral readout in rodent studies of affect, motivation and social behavior. Notably, several investigations have demonstrated that rodents emit USVs when tested in experimental paradigms that are used in preclinical studies of psychiatric and neurological diseases. Moreover, it has been shown that calling behavior may be influenced by genetic and/or environmental factors (i.e., stress), early rearing conditions that have been implicated in brain disease, as well as psychoactive drugs. Hence, measuring USV emissions has emerged as a useful tool in studying the mechanisms that underlie the emotional disturbances featuring certain brain diseases, as well as in the development of suited pharmacological therapies. This review provides an overview of the behavioral significance of USV emissions and describes the contexts that promote calling behavior in rats and mice. Moreover, the review summarizes the current evidence concerning the use of USVs as a marker of affect in rat and mouse models of sociability, psychiatric diseases and neurological diseases, and discusses the strengths and current limitations of using USVs as a behavioral readout in rodent studies of emotional behavior. This article is part of the Special Issue entitled 'The neuropharmacology of social behavior: from bench to bedside'.
Collapse
Affiliation(s)
- Nicola Simola
- Department of Biomedical Sciences, Section of Neuroscience, University of Cagliari, Cagliari, Italy.
| | - Sylvie Granon
- Neurobiology of Decision Making, Institute of Neuroscience Paris-Saclay, UMR9197, Université Paris-Sud, Centre National de la Recherche Scientifique, Orsay, France
| |
Collapse
|
10
|
Mittal N, Thakore N, Reno JM, Bell RL, Maddox WT, Schallert T, Duvauchelle CL. Alcohol-naïve USVs distinguish male HAD-1 from LAD-1 rat strains. Alcohol 2018; 68:9-17. [PMID: 29427829 PMCID: PMC5851795 DOI: 10.1016/j.alcohol.2017.09.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2017] [Revised: 09/09/2017] [Accepted: 09/11/2017] [Indexed: 12/11/2022]
Abstract
Ultrasonic vocalizations (USVs) are mediated through specific dopaminergic and cholinergic neural pathways and serve as real-time measures of positive and negative emotional status in rodents. Although most USV studies focus primarily on USV counts, each USV possesses a number of characteristics shown to reflect activity in the associated neurotransmitter system. In the present study, we recorded spontaneously emitted USVs from alcohol-naïve high alcohol drinking (HAD-1) and low alcohol drinking (LAD-1) rats. Using our recently developed WAAVES algorithm, we quantified four acoustic characteristics (mean frequency, duration, power, and bandwidth) from each 22-28 kHz and 50-55 kHz frequency-modulated (FM) USV. This rich USV representation allowed us to apply advanced statistical techniques to identify the USV acoustic characteristics that distinguished HAD-1 from LAD-1 rats. Linear mixed models (LMM) examined the predictability of each USV characteristic in isolation and linear discriminant analysis (LDA), and binomial logistic regression examined the predictability of linear combinations of the USV characteristics as a group. Results revealed significant differences in acoustic characteristics between HAD-1 and LAD-1 rats in both 22-28 kHz and 50-55 kHz FM USVs. In other words, these rats selectively bred for high- and low-alcohol consumption can be identified as HAD-1 or LAD-1 rats with high classification accuracy (approximately 92-100%) exclusively based on their emitted 22-28 kHz and 50-55 kHz FM USV acoustic characteristics. In addition, acoustic characteristics of 22-28 kHz and 50-55 kHz FM USVs emitted by alcohol-naïve HAD-1 and LAD-1 rats significantly correlate with their future alcohol consumption. Our current findings provide novel evidence that USV acoustic characteristics can be used to discriminate between alcohol-naïve HAD-1 and LAD-1 rats, and may serve as biomarkers in rodents with a predisposition for, or against, excessive alcohol intake.
Collapse
Affiliation(s)
- Nitish Mittal
- The University of Texas at Austin, College of Pharmacy, Division of Pharmacology and Toxicology, 2409 University Avenue, Stop A1915, Austin, TX 78712, United States; Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, 2500 Speedway, Stop A4800, Austin, TX 78712, United States
| | - Neha Thakore
- The University of Texas at Austin, College of Pharmacy, Division of Pharmacology and Toxicology, 2409 University Avenue, Stop A1915, Austin, TX 78712, United States; Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, 2500 Speedway, Stop A4800, Austin, TX 78712, United States
| | - James M Reno
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, 2500 Speedway, Stop A4800, Austin, TX 78712, United States; The University of Texas at Austin, Department of Psychology, Behavioral Neuroscience Division, 108 E. Dean Keeton, Stop A8000, Austin, TX 78712, United States
| | - Richard L Bell
- Institute of Psychiatric Research, Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN 46202, United States
| | - W Todd Maddox
- Cognitive Design and Statistical Consulting, Austin, TX 78746, United States
| | - Timothy Schallert
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, 2500 Speedway, Stop A4800, Austin, TX 78712, United States; The University of Texas at Austin, Department of Psychology, Behavioral Neuroscience Division, 108 E. Dean Keeton, Stop A8000, Austin, TX 78712, United States
| | - Christine L Duvauchelle
- The University of Texas at Austin, College of Pharmacy, Division of Pharmacology and Toxicology, 2409 University Avenue, Stop A1915, Austin, TX 78712, United States; Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, 2500 Speedway, Stop A4800, Austin, TX 78712, United States.
| |
Collapse
|
11
|
Mittal N, Thakore N, Bell RL, Maddox WT, Schallert T, Duvauchelle CL. Sex-specific ultrasonic vocalization patterns and alcohol consumption in high alcohol-drinking (HAD-1) rats. Physiol Behav 2017; 203:81-90. [PMID: 29146494 DOI: 10.1016/j.physbeh.2017.11.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 10/03/2017] [Accepted: 11/12/2017] [Indexed: 12/29/2022]
Abstract
Ultrasonic vocalizations (USVs) have been established as an animal model of emotional status and are often utilized in drug abuse studies as motivational and emotional indices. Further USV functionality has been demonstrated in our recent work showing accurate identification of selectively-bred high versus low alcohol-consuming male rats ascertained exclusively from 22 to 28kHz and 50-55kHz FM USV acoustic parameters. With the hypothesis that alcohol-sensitive sex differences could be revealed through USV acoustic parameters, the present study examined USVs and alcohol consumption in male and female selectively bred high-alcohol drinking (HAD-1) rats. For the current study, we examined USV data collected during a 12-week experiment in male and female HAD-1 rats. Experimental phases included Baseline (2weeks), 4-h EtOH Access (4weeks), 24-h EtOH Access (4weeks) and Abstinence (2weeks). Findings showed that both male and female HAD-1 rats spontaneously emitted a large number of 22-28kHz and 50-55kHz FM USVs and that females drank significantly more alcohol compared to males over the entire course of the experiment. Analyses of USV acoustic characteristics (i.e. mean frequency, duration, bandwidth and power) revealed distinct sex-specific phenotypes in both 50-55kHz FM and 22-28kHz USV transmission that were modulated by ethanol exposure. Moreover, by using a linear combination of these acoustic characteristics, we were able to develop binomial logistic regression models able to discriminate between male and female HAD-1 rats with high accuracy. Together these results highlight unique emotional phenotypes in male and female HAD-1 rats that are differentially modulated by alcohol experience.
Collapse
Affiliation(s)
- N Mittal
- The University of Texas at Austin, College of Pharmacy, Division of Pharmacology and Toxicology, 2409 University Avenue, Stop A1915, Austin, TX 78712, USA; Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, 2500 Speedway, Stop A4800, Austin, TX 78712, USA
| | - N Thakore
- The University of Texas at Austin, College of Pharmacy, Division of Pharmacology and Toxicology, 2409 University Avenue, Stop A1915, Austin, TX 78712, USA; Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, 2500 Speedway, Stop A4800, Austin, TX 78712, USA
| | - R L Bell
- Institute of Psychiatric Research, Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - W T Maddox
- Cognitive Design and Statistical Consulting, LLC, Austin, TX 78746, USA
| | - T Schallert
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, 2500 Speedway, Stop A4800, Austin, TX 78712, USA; The University of Texas at Austin, College of Liberal Arts, Behavioral Neuroscience, 108 E. Dean Keeton, Stop A8000, Austin, TX 78712, USA
| | - C L Duvauchelle
- The University of Texas at Austin, College of Pharmacy, Division of Pharmacology and Toxicology, 2409 University Avenue, Stop A1915, Austin, TX 78712, USA; Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, 2500 Speedway, Stop A4800, Austin, TX 78712, USA.
| |
Collapse
|
12
|
Reno JM, Thakore N, Cormack LK, Schallert T, Bell RL, Maddox WT, Duvauchelle CL. Negative Affect-Associated USV Acoustic Characteristics Predict Future Excessive Alcohol Drinking and Alcohol Avoidance in Male P and NP Rats. Alcohol Clin Exp Res 2017; 41:786-797. [PMID: 28118495 DOI: 10.1111/acer.13344] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 01/14/2017] [Indexed: 11/28/2022]
Abstract
BACKGROUND Negative emotional status and adverse emotional events increase vulnerability to alcohol abuse. Ultrasonic vocalizations (USVs) emitted by rats are a well-established model of emotional status that can reflect positive or negative affective responses in real time. Most USV studies assess counts, yet each USV is a multidimensional data point characterized by several acoustic characteristics that may provide insight into the neurocircuitry underlying emotional response. METHODS USVs emitted from selectively bred alcohol-naïve and alcohol-experienced alcohol-preferring and nonpreferring rats (P and NP rats) were recorded during 4-hour sessions on alternating days over 4 weeks. Linear mixed modeling (LMM) and linear discriminant analysis (LDA) were applied to USV acoustic characteristics (e.g., frequency, duration, power, and bandwidth) of negative affect (22 to 28 kilohertz [kHz])- and positive (50 to 55 kHz) affect-related USVs. RESULTS Hundred percent separation between alcohol-naïve P and NP rats was achieved through a linear combination (produced by LDA) of USV acoustic characteristics of 22- to 28-kHz USVs, whereas poor separation (36.5%) was observed for 50- to 55-kHz USVs. 22- to 28-kHz LDA separation was high (87%) between alcohol-experienced P and NP rats, but was poor for 50- to 55-kHz USVs (57.3%). USV mean frequency and duration were the highest weighted characteristics in both the naïve and experienced 22- to 28-kHz LDA representations suggesting that alcohol experience does not alter the representations. LMM analyses of 22- to 28-kHz USV acoustic characteristics matched the LDA results. Poor LDA separation was observed between alcohol-naïve and alcohol-experienced P rats for both 22- to 28-kHz and 50- to 55-kHz USVs. CONCLUSIONS Advanced statistical analysis of negative affect-associated USV data predicts future behaviors of excessive alcohol drinking and alcohol avoidance in selectively bred rats. USV characteristics across rat lines reveal affect-related motivation to consume alcohol and may predict neural pathways mediating emotional response. Further characterization of these differences could delineate particular neurocircuitry and methods to ameliorate dysregulated emotional states often observed in human alcohol abusers.
Collapse
Affiliation(s)
- James M Reno
- Waggoner Center for Alcohol and Addiction Research , The University of Texas at Austin, Austin, Texas.,Department of Psychology , College of Liberal Arts, The University of Texas at Austin, Austin, Texas
| | - Neha Thakore
- Waggoner Center for Alcohol and Addiction Research , The University of Texas at Austin, Austin, Texas.,Division of Pharmacology and Toxicology , College of Pharmacy, The University of Texas at Austin, Austin, Texas
| | - Lawrence K Cormack
- Department of Psychology , College of Liberal Arts, The University of Texas at Austin, Austin, Texas
| | - Timothy Schallert
- Waggoner Center for Alcohol and Addiction Research , The University of Texas at Austin, Austin, Texas.,Department of Psychology , College of Liberal Arts, The University of Texas at Austin, Austin, Texas
| | - Richard L Bell
- Department of Psychiatry , Institute of Psychiatric Research, Indiana University School of Medicine, Indianapolis, Indiana
| | - W Todd Maddox
- Cognitive Design and Statistical Consulting , LLC, Austin, Texas
| | - Christine L Duvauchelle
- Waggoner Center for Alcohol and Addiction Research , The University of Texas at Austin, Austin, Texas.,Division of Pharmacology and Toxicology , College of Pharmacy, The University of Texas at Austin, Austin, Texas
| |
Collapse
|
13
|
Harding SM, Mollé N, Reyes-Fondeur L, Karanian JM. The effects of repeated forced ethanol consumption during adolescence on reproductive behaviors in male rats. Alcohol 2016; 55:61-68. [PMID: 27788779 DOI: 10.1016/j.alcohol.2016.08.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Revised: 08/06/2016] [Accepted: 08/30/2016] [Indexed: 12/15/2022]
Abstract
Adolescence is a sensitive period of brain development when changes in hormone levels may have long-lasting effects on synaptic connections and behavior. In humans, alcohol consumption frequently begins during this critical period, although the impact of early exposure has not been fully examined. The current study was designed to investigate short- and long-term effects of repeated forced ethanol consumption during adolescence on emerging reproductive behaviors. Twenty-six young male Long-Evans rats were assigned to ethanol (Young EtOH, n = 12) or water (Young Control, n = 14) groups at postnatal day (P) 32, receiving a modified binge protocol of 3 g/kg of solution via gavage twice per week from P32 to P80. For comparison, another cohort of rats received a similar treatment paradigm in adulthood from P75-P133 (Adult EtOH, n = 8; Adult Control, n = 10). Reproductive behavior was assessed with tests for copulation, partner preference, and 50-kHz vocalizations during forced consumption (intoxication) and again after a 4-5 week period of abstinence. During forced consumption, the Young EtOH group showed significantly longer latencies on copulation tests than Young Controls, but these differences did not persist after abstinence. Different patterns were observed in Adult animals, who only showed significant, delayed impairments in the post-ejaculatory interval. Preference for sexually receptive females increased with sexual experience in both adolescent and adult rats, regardless of treatment during the forced consumption phase. However, after abstinence, the Young EtOH group showed a significantly reduced partner preference compared to the Young Control group, which may indicate long-term effects on sexual motivation. Additionally, during forced consumption the Young EtOH group tended to emit fewer ultrasonic vocalizations, perhaps reflecting impairments in sexual communication. Adult groups showed no differences in partner preference or vocalization tests at any time. Taken together, these findings indicate that repeated, intermittent ethanol exposure may have moderate effects on reproductive behavior that vary as a function of age. After abstinence, differences were only observed in the younger group, suggesting that the adolescent brain and behavior are more sensitive to ethanol exposure than the adult brain for sexual motivation and performance.
Collapse
|