1
|
Martini APR, Hoeper E, Dos Santos DP, Norman T, Dos Santos AS, Pereira LO, Netto CA. Acrobatic training prevents motor deficits and neuronal loss in male and female rats following chronic cerebral hypoperfusion. Behav Brain Res 2024; 465:114941. [PMID: 38447760 DOI: 10.1016/j.bbr.2024.114941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/26/2024] [Accepted: 03/02/2024] [Indexed: 03/08/2024]
Abstract
BACKGROUND Chronic cerebral hypoperfusion in vascular dementia leads to memory and motor deficits; Physical exercise improves these aspects and promotes neuroprotection. Sexual dimorphism may significantly influence both ischemic and exercise outcomes. AIMS The aim of this study was to investigate the effects of 2VO (Two-Vessel occlusion) and the acrobatic training on motor function, functional performance, and tissue loss in male and female rats. METHODS Male and female rats were randomly divided into 4 groups: sham acrobatic, sham sedentary, 2VO acrobatic and 2VO sedentary. After 45 days of 2VO surgery, the animals received 4 weeks of acrobatic training. At the end, open field, beam balance and horizontal ladder tests were performed. Brain samples were taken for histological and morphological evaluation. RESULTS Spontaneous motor activity in the open field was not affected by 2VO, on the other hand, an impairment in forelimb placement was observed after 2VO and acrobatic training prevented errors and improved hindlimb placement. Neuronal loss was found in the motor cortex and striatum after 2VO, especially in females, which was prevented by acrobatic training. CONCLUSION Mild motor damage was found in animals after 2VO when refined movement was evaluated, probably associated to neuronal death in the motor cortex and striatum. The acrobatic exercise showed a neuroprotective effect, promoting neuronal survival and attenuating the motor deficit.
Collapse
Affiliation(s)
- Ana Paula Rodrigues Martini
- Graduate Program in Neuroscience, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Eduarda Hoeper
- Department of Biochemistry, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Graduated in Biological Sciences, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.
| | - Débora Piassarollo Dos Santos
- Graduated in Physical Therapy, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, RS, Brazil
| | - Tatiana Norman
- Graduated in Physical Therapy, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, RS, Brazil
| | - Adriana Souza Dos Santos
- Graduate Program in Neuroscience, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Lenir Orlandi Pereira
- Graduate Program in Neuroscience, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Carlos Alexandre Netto
- Graduate Program in Neuroscience, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Department of Biochemistry, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| |
Collapse
|
2
|
Rahmi U, Goenawan H, Sylviana N, Setiawan I, Putri ST, Andriyani S, Fitriana LA. Exercise induction at expression immediate early gene (c-Fos, ARC, EGR-1) in the hippocampus: a systematic review. Dement Neuropsychol 2024; 18:e20230015. [PMID: 38628561 PMCID: PMC11019719 DOI: 10.1590/1980-5764-dn-2023-0015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 11/06/2023] [Accepted: 11/17/2023] [Indexed: 04/19/2024] Open
Abstract
The immediate early gene exhibits activation markers in the nervous system consisting of ARC, EGR-1, and c-Fos and is related to synaptic plasticity, especially in the hippocampus. Immediate early gene expression is affected by physical exercise, which induces direct ARC, EGR-1, and c-Fos expression. Objective To assess the impact of exercise, we conducted a literature study to determine the expression levels of immediate early genes (ARC, c-Fos, and EGR-1). Methods The databases accessed for online literature included PubMed-Medline, Scopus, and ScienceDirect. The original English articles were selected using the following keywords in the title: (Exercise OR physical activity) AND (c-Fos) AND (Hippocampus), (Exercise OR physical activity) AND (ARC) AND (Hippocampus), (Exercise OR physical activity) AND (EGR-1 OR zif268) AND (Hippocampus). Results Physical exercise can affect the expression of EGR-1, c-Fos, and ARC in the hippocampus, an important part of the brain involved in learning and memory. High-intensity physical exercise can increase c-Fos expression, indicating neural activation. Furthermore, the expression of the ARC gene also increases due to physical exercise. ARC is a gene that plays a role in synaptic plasticity and regulation of learning and memory, changes in synaptic structure and increased synaptic connections, while EGR-1 also plays a role in synaptic plasticity, a genetic change that affects learning and memory. Overall, exercise or regular physical exercise can increase the expression of ARC, c-Fos, and EGR-1 in the hippocampus. This reflects the changes in neuroplasticity and synaptic plasticity that occur in response to physical activity. These changes can improve cognitive function, learning, and memory. Conclusion c-Fos, EGR-1, and ARC expression increases in hippocampal neurons after exercise, enhancing synaptic plasticity and neurogenesis associated with learning and memory.
Collapse
Affiliation(s)
- Upik Rahmi
- Universitas Pendidikan Indonesia, Department of Nursing, Bandung, West Java, Indonesia
- Universitas Padjadjaran, Department of Medicine, Bandung, West Java, Indonesia
| | - Hanna Goenawan
- Universitas Padjadjaran, Department of Medicine, Bandung, West Java, Indonesia
| | - Nova Sylviana
- Universitas Padjadjaran, Department of Medicine, Bandung, West Java, Indonesia
| | - Iwan Setiawan
- Universitas Padjadjaran, Department of Medicine, Bandung, West Java, Indonesia
| | - Suci Tuty Putri
- Universitas Pendidikan Indonesia, Department of Nursing, Bandung, West Java, Indonesia
| | - Septian Andriyani
- Universitas Pendidikan Indonesia, Department of Nursing, Bandung, West Java, Indonesia
| | - Lisna Anisa Fitriana
- Universitas Pendidikan Indonesia, Department of Nursing, Bandung, West Java, Indonesia
| |
Collapse
|
3
|
Liang X, Tang J, Qi YQ, Luo YM, Yang CM, Dou XY, Jiang L, Xiao Q, Zhang L, Chao FL, Zhou CN, Tang Y. Exercise more efficiently regulates the maturation of newborn neurons and synaptic plasticity than fluoxetine in a CUS-induced depression mouse model. Exp Neurol 2022; 354:114103. [PMID: 35525307 DOI: 10.1016/j.expneurol.2022.114103] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 04/28/2022] [Accepted: 04/30/2022] [Indexed: 11/24/2022]
Abstract
Depression, a common and important cause of morbidity and mortality worldwide, is commonly treated with antidepressants, electric shock and psychotherapy. Recently, increasing evidence has shown that exercise can effectively alleviate depression. To determine the difference in efficacy between exercise and the classic antidepressant fluoxetine in treating depression, we established four groups: the Control, chronic unpredictable stress (CUS/STD), running (CUS/RUN) and fluoxetine (CUS/FLX) groups. The sucrose preference test (SPT), the forced swimming test (FST), the tail suspension test (TST), immunohistochemistry, immunofluorescence and stereological analyses were used to clarify the difference in therapeutic efficacy and mechanism between exercise and fluoxetine in the treatment of depression. In the seventh week, the sucrose preference of the CUS/RUN group was significantly higher than that of the CUS/STD group, while the sucrose preference of the CUS/FLX group did not differ from that of the CUS/STD group until the eighth week. Exercise reduced the immobility time in the FST and TST, while fluoxetine only reduced immobility time in the TST. Hippocampal structure analysis showed that the CUS/STD group exhibited an increase in immature neurons and a decrease in mature neurons. Exercise reduced the number of immature neurons and increased the number of mature neurons, but no increase in the number of mature neurons was observed after fluoxetine treatment. In addition, both running and fluoxetine reversed the decrease in the number of MAP2+ dendrites in depressed mice. Exercise increased the number of spinophilin-positive (Sp+) dendritic spines in the hippocampal CA1, CA3, and dentate gyrus (DG) regions, whereas fluoxetine only increased the number of SP+ spines in the DG. In summary, exercise promoted newborn neuron maturation in the DG and regulated neuronal plasticity in three hippocampal subregions, which might explain why running exerts earlier and more comprehensive antidepressant effects than fluoxetine.
Collapse
Affiliation(s)
- Xin Liang
- Department of Pathophysiology, Faculty of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, PR China; Laboratory of Stem Cells and Tissue Engineering, Faculty of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, PR China
| | - Jing Tang
- Laboratory of Stem Cells and Tissue Engineering, Faculty of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, PR China; Department of Histology and Embryology, Faculty of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, PR China
| | - Ying-Qiang Qi
- Institute of Life Science, Chongqing Medical University, Chongqing 400016, PR China
| | - Yan-Min Luo
- Laboratory of Stem Cells and Tissue Engineering, Faculty of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, PR China; Department of Physiology, Faculty of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, PR China
| | - Chun-Mao Yang
- Laboratory of Stem Cells and Tissue Engineering, Faculty of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, PR China
| | - Xiao-Yun Dou
- Institute of Life Science, Chongqing Medical University, Chongqing 400016, PR China
| | - Lin Jiang
- Laboratory of Stem Cells and Tissue Engineering, Faculty of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, PR China; Lab Teaching & Management Center, Chongqing Medical University, Chongqing 400016, PR China
| | - Qian Xiao
- Laboratory of Stem Cells and Tissue Engineering, Faculty of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, PR China; Department of Radioactive Medicine, Faculty of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, PR China
| | - Lei Zhang
- Laboratory of Stem Cells and Tissue Engineering, Faculty of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, PR China; Department of Histology and Embryology, Faculty of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, PR China
| | - Feng-Lei Chao
- Laboratory of Stem Cells and Tissue Engineering, Faculty of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, PR China; Department of Histology and Embryology, Faculty of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, PR China
| | - Chun-Ni Zhou
- Laboratory of Stem Cells and Tissue Engineering, Faculty of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, PR China; Department of Histology and Embryology, Faculty of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, PR China
| | - Yong Tang
- Laboratory of Stem Cells and Tissue Engineering, Faculty of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, PR China; Department of Histology and Embryology, Faculty of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, PR China.
| |
Collapse
|
4
|
Martini APR, Hoeper E, Pedroso TA, Carvalho AVS, Odorcyk FK, Fabres RB, Pereira NDSC, Netto CA. Effects of acrobatic training on spatial memory and astrocytic scar in CA1 subfield of hippocampus after chronic cerebral hypoperfusion in male and female rats. Behav Brain Res 2022; 430:113935. [PMID: 35605797 DOI: 10.1016/j.bbr.2022.113935] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 05/07/2022] [Accepted: 05/17/2022] [Indexed: 12/22/2022]
Abstract
Chronic cerebral hypoperfusion leads to neuronal loss in the hippocampus and spatial memory impairments. Physical exercise is known to prevent cognitive deficits in animal models; and there is evidence of sex differences in behavioral neuroprotective approaches. The aim of present study was to investigate the effects of acrobatic training in male and female rats submitted to chronic cerebral hypoperfusion. Males and females rats underwent 2VO (two-vessel occlusion) surgery and were randomly allocated into 4 groups of males and 4 groups of females, as follows: 2VO acrobatic, 2VO sedentary, Sham acrobatic and Sham sedentary. The acrobatic training started 45 days after surgery and lasted 4 weeks; animals were then submitted to object recognition and water maze testing. Brain samples were collected for histological and morphological assessment and flow cytometry. 2VO causes cognitive impairments and acrobatic training prevented spatial memory deficits assessed in the water maze, mainly for females. Morphological analysis showed that 2VO animals had less NeuN labeling and acrobatic training prevented it. Increased number of GFAP positive cells was observerd in females; moreover, males had more branched astrocytes and acrobatic training prevented the branching after 2VO. Flow cytometry showed higher mitochondrial potential in trained animals and more reactive oxygen species production in males. Acrobatic training promoted neuronal survival and improved mitochondrial function in both sexes, and influenced the glial scar in a sex-dependent manner, associated to greater cognitive benefit to females after chronic cerebral hypoperfusion.
Collapse
Affiliation(s)
- Ana Paula Rodrigues Martini
- Graduate Program in Neuroscience, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Department of Biochemistry, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.
| | - Eduarda Hoeper
- Department of Biochemistry, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Graduation in Biological Sciences, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Thales Avila Pedroso
- Department of Biochemistry, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Graduation in Physical Therapy, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Andrey Vinicios Soares Carvalho
- Graduate Program in Neuroscience, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Department of Biochemistry, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Felipe Kawa Odorcyk
- Department of Biochemistry, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Graduate Program in Physiology, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Rafael Bandeira Fabres
- Department of Biochemistry, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Graduate Program in Physiology, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Natividade de Sá Couto Pereira
- Graduate Program in Neuroscience, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Department of Biochemistry, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Carlos Alexandre Netto
- Graduate Program in Neuroscience, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Department of Biochemistry, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Graduate Program in Physiology, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| |
Collapse
|
5
|
Zhuo W, Lundquist AJ, Donahue EK, Guo Y, Phillips D, Petzinger GM, Jakowec MW, Holschneider DP. A mind in motion: Exercise improves cognitive flexibility, impulsivity and alters dopamine receptor gene expression in a Parkinsonian rat model. CURRENT RESEARCH IN NEUROBIOLOGY 2022; 3:100039. [DOI: 10.1016/j.crneur.2022.100039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 02/06/2022] [Accepted: 04/24/2022] [Indexed: 11/26/2022] Open
|
6
|
Ferrer-Uris B, Ramos MA, Busquets A, Angulo-Barroso R. Can exercise shape your brain? A review of aerobic exercise effects on cognitive function and neuro-physiological underpinning mechanisms. AIMS Neurosci 2022; 9:150-174. [PMID: 35860684 PMCID: PMC9256523 DOI: 10.3934/neuroscience.2022009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 03/11/2022] [Accepted: 03/22/2022] [Indexed: 11/18/2022] Open
Abstract
It is widely accepted that physical exercise can be used as a tool for the prevention and treatment of various diseases or disorders. In addition, in the recent years, exercise has also been successfully used to enhance people's cognition. There is a large amount of research that has supported the benefits of physical exercise on human cognition, both in children and adults. Among these studies, some have focused on the acute or transitory effects of exercise on cognition, while others have focused on the effects of regular physical exercise. However, the relation between exercise and cognition is complex and we still have limited knowledge about the moderators and mechanisms underlying this relation. Most of human studies have focused on the behavioral aspects of exercise-effects on cognition, while animal studies have deepened in its possible neuro-physiological mechanisms. Even so, thanks to advances in neuroimaging techniques, there is a growing body of evidence that provides valuable information regarding these mechanisms in the human population. This review aims to analyze the effects of regular and acute aerobic exercise on cognition. The exercise-cognition relationship will be reviewed both from the behavioral perspective and from the neurophysiological mechanisms. The effects of exercise on animals, adult humans, and infant humans will be analyzed separately. Finally, physical exercise intervention programs aiming to increase cognitive performance in scholar and workplace environments will be reviewed.
Collapse
Affiliation(s)
- Blai Ferrer-Uris
- Institut Nacional d'Educació Física de Catalunya (INEFC), Universitat de Barcelona (UB), Barcelona, Spain
| | - Maria Angeles Ramos
- Institut Nacional d'Educació Física de Catalunya (INEFC), Universitat de Barcelona (UB), Barcelona, Spain
| | - Albert Busquets
- Institut Nacional d'Educació Física de Catalunya (INEFC), Universitat de Barcelona (UB), Barcelona, Spain
| | - Rosa Angulo-Barroso
- Institut Nacional d'Educació Física de Catalunya (INEFC), Universitat de Barcelona (UB), Barcelona, Spain
- Department of Kinesiology, California State University, Northridge, CA, United States
| |
Collapse
|
7
|
Sampaio ASB, Real CC, Gutierrez RMS, Singulani MP, Alouche SR, Britto LR, Pires RS. Neuroplasticity induced by the retention period of a complex motor skill learning in rats. Behav Brain Res 2021; 414:113480. [PMID: 34302881 DOI: 10.1016/j.bbr.2021.113480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 07/01/2021] [Accepted: 07/19/2021] [Indexed: 11/16/2022]
Abstract
Learning complex motor skills is an essential process in our daily lives. Moreover, it is an important aspect for the development of therapeutic strategies that refer to rehabilitation processes since motor skills previously acquired can be transferred to similar tasks (motor skill transfer) or recovered without further practice after longer delays (motor skill retention). Different acrobatic exercise training (AE) protocols induce plastic changes in areas involved in motor control and improvement in motor performance. However, the plastic mechanisms involved in the retention of a complex motor skill, essential for motor learning, are not well described. Thus, our objective was to analyze the brain plasticity mechanisms involved in motor skill retention in AE . Motor behavior tests, and the expression of synaptophysin (SYP), synapsin-I (SYS), and early growth response protein 1 (Egr-1) in brain areas involved in motor learning were evaluated. Young male Wistar rats were randomly divided into 3 groups: sedentary (SED), AE, and AE with retention period (AER). AE was performed three times a week for 8 weeks, with 5 rounds in the circuit. After a fifteen-day retention interval, the AER animals was again exposed to the acrobatic circuit. Our results revealed motor performance improvement in the AE and AER groups. In the elevated beam test, the AER group presented a lower time and greater distance, suggesting retention period is important for optimizing motor learning consolidation. Moreover, AE promoted significant plastic changes in the expression of proteins in important areas involved in control and motor learning, some of which were maintained in the AER group. In summary, these data contribute to the understanding of neural mechanisms involved in motor learning in an animal model, and can be useful to the construction of therapeutics strategies that optimize motor learning in a rehabilitative context.
Collapse
Affiliation(s)
| | - Caroline Cristiano Real
- Laboratory of Nuclear Medicine (LIM 43), Institute of Radiology, Faculty of Medicine, University of São Paulo, São Paulo, SP, Brazil; Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark; Laboratory of Cellular Neurobiology, Department of Physiology and Biophysics, Biomedical Science Institute, University of São Paulo, São Paulo, SP, Brazil
| | - Rita Mara Soares Gutierrez
- Master's and Doctoral Programs in Physical Therapy, University of the City of São Paulo, São Paulo, SP, Brazil
| | - Monique Patricio Singulani
- Laboratory of Cellular Neurobiology, Department of Physiology and Biophysics, Biomedical Science Institute, University of São Paulo, São Paulo, SP, Brazil; Laboratory of Neurosciences (LIM 27), Institute of Psychiatry, Faculty of Medicine, University of São Paulo, São Paulo, SP, Brazil
| | - Sandra Regina Alouche
- Master's and Doctoral Programs in Physical Therapy, University of the City of São Paulo, São Paulo, SP, Brazil
| | - Luiz Roberto Britto
- Laboratory of Cellular Neurobiology, Department of Physiology and Biophysics, Biomedical Science Institute, University of São Paulo, São Paulo, SP, Brazil
| | - Raquel Simoni Pires
- Master's and Doctoral Programs in Physical Therapy, University of the City of São Paulo, São Paulo, SP, Brazil.
| |
Collapse
|
8
|
de Almeida W, Confortim HD, Deniz BF, Miguel PM, Vieira MC, Bronauth L, Dos Santos AS, Bertoldi K, Siqueira IR, Pereira LO. Acrobatic exercise recovers object recognition memory impairment in hypoxic-ischemic rats. Int J Dev Neurosci 2020; 81:60-70. [PMID: 33135304 DOI: 10.1002/jdn.10075] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 10/17/2020] [Accepted: 10/28/2020] [Indexed: 11/08/2022] Open
Abstract
Neonatal hypoxia-ischemia (HI) can lead to cognitive impairments and motor dysfunction. Acrobatic exercises (AE) were proposing as therapeutic option to manage HI motor deficits, however, the cognitive effects after this treatment are still poorly understood. Therefore, we evaluated the effects of AE protocol on memory impairments and brain plasticity markers after Rice-Vannucci HI rodent model. Wistar rats on the 7th postnatal day (PND) were submitted to HI model and after weaning (PND22) were trained for 5 weeks with AE protocol, then subsequently submitted to cognitive tests. Our results showed recovery in novel object recognition (NOR) memory, but not, spatial Morris Water Maze (WM) memory after AE treatment in HI rats. BDNF and synaptophysin neuroplasticity markers indicate plastic alterations in the hippocampus and striatum, with maintenance of synaptophysin despite the reduction of total volume tissue, besides, hippocampal HI-induced ipsilateral BDNF increased, and striatum contralateral BDNF decreased were noted. Nevertheless, the exercise promoted functional recovery and seems to be a promising strategy for HI treatment, however, future studies identifying neuroplastic pathway for this improvement are needed.
Collapse
Affiliation(s)
- Wellington de Almeida
- Programa de Pós-Graduação em Neurociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Departamento de Ciências Morfológicas, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Heloísa Deola Confortim
- Programa de Pós-Graduação em Neurociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,UNIVEL Centro Universitário, Cascavel, Brazil
| | - Bruna Ferrary Deniz
- Programa de Pós-Graduação em Neurociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Departamento de Ciências Morfológicas, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Patrícia Maidana Miguel
- Programa de Pós-Graduação em Neurociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Departamento de Ciências Morfológicas, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Milene Cardoso Vieira
- Departamento de Ciências Morfológicas, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Loise Bronauth
- Departamento de Ciências Morfológicas, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Adriana Souza Dos Santos
- Programa de Pós-Graduação em Neurociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Departamento de Ciências Morfológicas, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Karine Bertoldi
- Departamento de Farmacologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Ionara Rodrigues Siqueira
- Departamento de Farmacologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Programa de Pós-Graduação em Ciências Biológicas, Fisiologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Lenir Orlandi Pereira
- Programa de Pós-Graduação em Neurociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Departamento de Ciências Morfológicas, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
9
|
Nakamura R, Asami T, Yoshimi A, Kato D, Fujita E, Takaishi M, Yoshida H, Yamaguchi H, Shiozaki K, Kase A, Hirayasu Y. Clinical and brain structural effects of the Illness Management and Recovery program in middle-aged and older patients with schizophrenia. Psychiatry Clin Neurosci 2019; 73:731-737. [PMID: 31353759 DOI: 10.1111/pcn.12919] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 07/17/2019] [Accepted: 07/23/2019] [Indexed: 01/11/2023]
Abstract
AIMS In this study, we implemented the Illness Management and Recovery (IMR) program for middle-aged and older patients with schizophrenia hospitalized for long periods and assessed the effect of the IMR program on psychiatric symptoms and psychosocial function. The effects of the IMR program on brain structure were also evaluated. METHODS The IMR program was implemented for 19 patients with schizophrenia; 17 patients with schizophrenia receiving treatment as usual (TAU) were also recruited as controls. In all patients, mean age was 61.4 years (range, 50-77 years) and mean hospitalization duration was 13.1 years (range, 1-31 years) at enrollment. Structural magnetic resonance images and Positive and Negative Syndrome Scale (PANSS) and Global Assessment of Functioning (GAF) scores as clinical variables were obtained at the beginning and end of the IMR program. Longitudinal analyses were performed to compare the effects of the IMR program on clinical symptoms and cortical thickness in the superior temporal gyrus (STG) between the IMR and TAU groups. RESULTS Significant improvements in GAF scores and the total, Insight and Judgment, and Positive components of the PANSS were found in the IMR group compared with the TAU group. Cortical thickness in the left STG was preserved in the IMR group compared with the TAU group. CONCLUSIONS This is the first report demonstrating the effectiveness of the IMR program for improving psychotic symptoms and psychosocial function and protecting brain structure in middle-aged and older inpatients with schizophrenia hospitalized for long periods.
Collapse
Affiliation(s)
- Ryota Nakamura
- Department of Psychiatry, Graduate School of Medicine, Yokohama City University, Yokohama, Japan.,Department of Psychiatry, Yokohama Maioka Hospital, Yokohama, Japan
| | - Takeshi Asami
- Department of Psychiatry, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| | - Asuka Yoshimi
- Department of Psychiatry, Graduate School of Medicine, Yokohama City University, Yokohama, Japan.,Department of Psychiatry, Yokohama Maioka Hospital, Yokohama, Japan
| | - Daiji Kato
- Totsuka Nishiguchi Rindou Clinic, Yokohama, Japan
| | - Emi Fujita
- Division of Clinical Psychology, Yokohama City University Hospital, Yokohama, Japan
| | - Masao Takaishi
- Department of Psychiatry, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| | - Haruhisa Yoshida
- Department of Psychiatry, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| | - Hiroyuki Yamaguchi
- Department of Psychiatry, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| | - Kazumasa Shiozaki
- Department of Psychiatry, Yokohama Comprehensive Care Continuum, Yokohama, Japan
| | - Akihiko Kase
- Department of Psychiatry, Yokohama Maioka Hospital, Yokohama, Japan
| | - Yoshio Hirayasu
- Department of Psychiatry, Graduate School of Medicine, Yokohama City University, Yokohama, Japan.,Department of Psychiatry, Hirayasu Hospital, Urasoe, Japan
| |
Collapse
|
10
|
Confortim HD, Deniz BF, de Almeida W, Miguel PM, Bronauth L, Vieira MC, de Oliveira BC, Pereira LO. Neonatal hypoxia-ischemia caused mild motor dysfunction, recovered by acrobatic training, without affecting morphological structures involved in motor control in rats. Brain Res 2018; 1707:27-44. [PMID: 30448443 DOI: 10.1016/j.brainres.2018.11.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 10/29/2018] [Accepted: 11/14/2018] [Indexed: 10/27/2022]
Abstract
The aim of this study was to evaluated motor function and morphological aspects of the components involved in motor control (sensorimotor cortex, spinal cord, sciatic nerve, neuromuscular junctions and skeletal muscle) in male Wistar rats exposed to a model of neonatal hypoxic-ischemic encephalopathy (HIE) and the possible influence of different physical exercise protocols - treadmill and acrobatic. Male Wistar rats at the 7th post-natal day (PND) were submitted to the HIE model and from the 22nd until 60th PND the exercise protocols (treadmill or acrobatic training) were running. After the training, the animals were evaluated in Open Field, Ladder Rung Walking and Rotarod tasks and after samples of the motor control components were collected. Our results evidenced that the acrobatic training reversed the hyperactivity and anxiety, caused locomotion improvement and decreased brain atrophy in HIE animals. We did not find morphological differences on sensorimotor cortex, spinal cord, sciatic nerve, neuromuscular junctions and skeletal muscle in the animals submitted to HIE model. These intriguing data support the statement of the Rice-Vannucci model does not seem to reproduce, in structures involved in control function, the damage found in humans that suffer HIE. Regarding the protocols of exercise, we proposed that the acrobatic exercise could be a good therapeutic option especially in children affected by neonatal HIE and can be responsible for good results in cognitive and motor aspects.
Collapse
Affiliation(s)
- Heloísa Deola Confortim
- Programa de Pós-Graduação em Neurociências, Universidade Federal do Rio Grande do Sul, Rua Sarmento Leite, 500, sala 107, 90050-170 Porto Alegre, RS, Brazil; Departamento de Ciências Morfológicas, Universidade Federal do Rio Grande do Sul, Rua Sarmento Leite, 500, 90050-170 Porto Alegre, RS, Brazil
| | - Bruna Ferrary Deniz
- Programa de Pós-Graduação em Neurociências, Universidade Federal do Rio Grande do Sul, Rua Sarmento Leite, 500, sala 107, 90050-170 Porto Alegre, RS, Brazil; Departamento de Ciências Morfológicas, Universidade Federal do Rio Grande do Sul, Rua Sarmento Leite, 500, 90050-170 Porto Alegre, RS, Brazil
| | - Wellington de Almeida
- Programa de Pós-Graduação em Neurociências, Universidade Federal do Rio Grande do Sul, Rua Sarmento Leite, 500, sala 107, 90050-170 Porto Alegre, RS, Brazil; Departamento de Ciências Morfológicas, Universidade Federal do Rio Grande do Sul, Rua Sarmento Leite, 500, 90050-170 Porto Alegre, RS, Brazil
| | - Patrícia Maidana Miguel
- Programa de Pós-Graduação em Neurociências, Universidade Federal do Rio Grande do Sul, Rua Sarmento Leite, 500, sala 107, 90050-170 Porto Alegre, RS, Brazil; Departamento de Ciências Morfológicas, Universidade Federal do Rio Grande do Sul, Rua Sarmento Leite, 500, 90050-170 Porto Alegre, RS, Brazil
| | - Loise Bronauth
- Departamento de Ciências Morfológicas, Universidade Federal do Rio Grande do Sul, Rua Sarmento Leite, 500, 90050-170 Porto Alegre, RS, Brazil
| | - Milene Cardoso Vieira
- Departamento de Ciências Morfológicas, Universidade Federal do Rio Grande do Sul, Rua Sarmento Leite, 500, 90050-170 Porto Alegre, RS, Brazil
| | - Bruna Chaves de Oliveira
- Departamento de Ciências Morfológicas, Universidade Federal do Rio Grande do Sul, Rua Sarmento Leite, 500, 90050-170 Porto Alegre, RS, Brazil
| | - Lenir Orlandi Pereira
- Programa de Pós-Graduação em Neurociências, Universidade Federal do Rio Grande do Sul, Rua Sarmento Leite, 500, sala 107, 90050-170 Porto Alegre, RS, Brazil; Departamento de Ciências Morfológicas, Universidade Federal do Rio Grande do Sul, Rua Sarmento Leite, 500, 90050-170 Porto Alegre, RS, Brazil.
| |
Collapse
|
11
|
Hwang RJ, Chen HJ, Guo ZX, Lee YS, Liu TY. Effects of aerobic exercise on sad emotion regulation in young women: an electroencephalograph study. Cogn Neurodyn 2018; 13:33-43. [PMID: 30728869 DOI: 10.1007/s11571-018-9511-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 10/14/2018] [Accepted: 10/22/2018] [Indexed: 11/29/2022] Open
Abstract
The effects of exercise on cognitive abilities have been studied. However, evidence regarding the neural substrates of sad emotion regulation is limited. Women have higher rates for affective disorders than men, but insufficient outcomes assess how aerobic exercises modulate central frontal activation in sad emotion inhibition and resilience among healthy women. This study investigated the effects of aerobic exercise-related brain activity on sad emotion inhibition processing in young women. Sad facial Go/No-Go and neutral Go/No-Go trials were conducted among 30 healthy young women to examine the changes in the N2 component, which reflects frontal inhibition responses, between pre-exercise and post-exercise periods. The first test was performed before aerobic exercise (baseline; 1st) and the second test was performed during an absolute rest period of 90 min after exercise. The sad No-Go stimuli that evoked N200 (N2) event-related potential were recorded and analyzed. The results showed that in the sad No-Go trials, N2 activation at the central-prefrontal cortex was significantly attenuated after exercise compared to the baseline N2 activation. Exercise-modulated N2 activation was not observed in the neutral No-Go trials. The behavioral error rates of sad No-Go trials did not differ between the two experiments. A reduced engagement of central-frontal activation to sad No-Go stimuli was shown after exercise. However, behavioral performance was consistent between the two measurements. The findings scope the benefits of the aerobic exercise on the neural efficiency in responding to sad emotion-eliciting cues as well as adaptive transitions reinstatement for regulatory capabilities in healthy young women.
Collapse
Affiliation(s)
- Ren-Jen Hwang
- Department of Nursing, Chang Gung University of Science and Technology (CGUST), 261 Wei-Hwa 1st Rd, Kwei-Shan, Tao-Yuan, Taiwan, ROC.,Nursing Department, Chang Gung Memorial Hospital, Linkou, Taiwan.,3Center of Clinical Competency Center, Chang Gung University of Science and Technology (CGUST), Tao-Yuan, Taiwan
| | - Hsin-Ju Chen
- Department of Nursing, Chang Gung University of Science and Technology (CGUST), 261 Wei-Hwa 1st Rd, Kwei-Shan, Tao-Yuan, Taiwan, ROC
| | - Zhan-Xian Guo
- Department of Nursing, Chang Gung University of Science and Technology (CGUST), 261 Wei-Hwa 1st Rd, Kwei-Shan, Tao-Yuan, Taiwan, ROC
| | - Yu-Sheun Lee
- Department of Nursing, Chang Gung University of Science and Technology (CGUST), 261 Wei-Hwa 1st Rd, Kwei-Shan, Tao-Yuan, Taiwan, ROC.,4China Medical University Hospital, Taichung City, Taiwan
| | - Tai-Ying Liu
- 5Science and Technology Policy Research and Information Center, National Applied Research Laboratories, 15F, No. 106, Sec. 2, Heping E. Rd, Taipei, 10636 Taiwan, ROC
| |
Collapse
|
12
|
Gutierrez RMS, Real CC, Scaranzi CR, Garcia PC, Oliveira DL, Britto LR, Pires RS. Motor improvement requires an increase in presynaptic protein expression and depends on exercise type and age. Exp Gerontol 2018; 113:18-28. [DOI: 10.1016/j.exger.2018.09.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 08/08/2018] [Accepted: 09/17/2018] [Indexed: 12/12/2022]
|
13
|
Fernandes J, Vieira AS, Kramer-Soares JC, Da Silva EA, Lee KS, Lopes-Cendes I, Arida RM. Hippocampal microRNA-mRNA regulatory network is affected by physical exercise. Biochim Biophys Acta Gen Subj 2018; 1862:1711-1720. [DOI: 10.1016/j.bbagen.2018.05.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 05/03/2018] [Accepted: 05/04/2018] [Indexed: 12/20/2022]
|
14
|
The effects of acrobatic exercise on brain plasticity: a systematic review of animal studies. Brain Struct Funct 2018; 223:2055-2071. [DOI: 10.1007/s00429-018-1631-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 02/17/2018] [Indexed: 12/24/2022]
|