1
|
Padmanabhan P, Lu J, Ng KC, Srinivasan DK, Sundramurthy K, Nilewski LG, Sikkema WKA, Tour JM, Kent TA, Gulyás B, Carlstedt-Duke J. Neuroprotective Effects of Functionalized Hydrophilic Carbon Clusters: Targeted Therapy of Traumatic Brain Injury in an Open Blast Rat Model. Biomedicines 2024; 12:2832. [PMID: 39767738 PMCID: PMC11673356 DOI: 10.3390/biomedicines12122832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 11/28/2024] [Accepted: 12/09/2024] [Indexed: 01/11/2025] Open
Abstract
Traumatic brain injury (TBI) causes multiple cerebrovascular disruptions and oxidative stress. These pathological mechanisms are often accompanied by serious impairment of cerebral blood flow autoregulation and neuronal and glial degeneration. BACKGROUND/OBJECTIVES Multiple biochemical cascades are triggered by brain damage, resulting in reactive oxygen species production alongside blood loss and hypoxia. However, most currently available early antioxidant therapies lack capacity and hence sufficient efficacy against TBI. The aim of this study was to test a novel catalytic antioxidant nanoparticle to alleviate the damage occurring in blast TBI. METHODS TBI was elicited in an open blast rat model, in which the rats were exposed to the effects of an explosive blast. Key events of the post-traumatic chain in the brain parenchyma were studied using immunohistochemistry. The application of a newly developed biologically compatible catalytic superoxide dismutase mimetic carbon-based nanocluster, a poly-ethylene-glycol-functionalized hydrophilic carbon cluster (PEG-HCC), was tested post-blast to modulate the components of the TBI process. RESULTS The PEG-HCC was shown to significantly ameliorate neuronal loss in the brain cortex, the dentate gyrus, and hippocampus when administered shortly after the blast. There was also a significant increase in endothelial activity to repair blood-brain barrier damage as well as the modulation of microglial and astrocyte activity and an increase in inducible NO synthase in the cortex. CONCLUSIONS We have demonstrated qualitatively and quantitatively that the previously demonstrated antioxidant properties of PEG-HCCs have a neuroprotective effect after traumatic brain injury following an explosive blast, acting at multiple levels of the pathological chain of events elicited by TBI.
Collapse
Affiliation(s)
- Parasuraman Padmanabhan
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 636921, Singapore; (J.L.); (K.S.)
| | - Jia Lu
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 636921, Singapore; (J.L.); (K.S.)
- Defence Science Organisation National Laboratories, Singapore 117510, Singapore;
- Department of Anatomy, Yong Loo Lin School of Medicine, National University Singapore, Singapore 119228, Singapore;
| | - Kian Chye Ng
- Defence Science Organisation National Laboratories, Singapore 117510, Singapore;
| | - Dinesh Kumar Srinivasan
- Department of Anatomy, Yong Loo Lin School of Medicine, National University Singapore, Singapore 119228, Singapore;
| | - Kumar Sundramurthy
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 636921, Singapore; (J.L.); (K.S.)
| | - Lizanne Greer Nilewski
- Department of Chemistry, Rice University, Houston, TX 77005, USA; (L.G.N.); (W.K.A.S.); (J.M.T.); (T.A.K.)
| | - William K. A. Sikkema
- Department of Chemistry, Rice University, Houston, TX 77005, USA; (L.G.N.); (W.K.A.S.); (J.M.T.); (T.A.K.)
| | - James M. Tour
- Department of Chemistry, Rice University, Houston, TX 77005, USA; (L.G.N.); (W.K.A.S.); (J.M.T.); (T.A.K.)
| | - Thomas A. Kent
- Department of Chemistry, Rice University, Houston, TX 77005, USA; (L.G.N.); (W.K.A.S.); (J.M.T.); (T.A.K.)
- Institute of Biosciences and Technology, Texas A&M University, Houston, TX 77030, USA
| | - Balázs Gulyás
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 636921, Singapore; (J.L.); (K.S.)
| | - Jan Carlstedt-Duke
- President’s Office (Retired), Nanyang Technological University, Singapore 639798, Singapore
| |
Collapse
|
2
|
Dennis EL, Rowland JA, Esopenko C, Tustison NJ, Newsome MR, Hovenden ES, Avants BB, Gill J, Hinds SR, Kenney K, Lindsey HM, Martindale SL, Pugh MJ, Scheibel RS, Shahim PP, Shih R, Stone JR, Troyanskaya M, Walker WC, Werner K, York GE, Cifu DX, Tate DF, Wilde EA. Differences in Brain Volume in Military Service Members and Veterans After Blast-Related Mild TBI: A LIMBIC-CENC Study. JAMA Netw Open 2024; 7:e2443416. [PMID: 39527059 PMCID: PMC11555548 DOI: 10.1001/jamanetworkopen.2024.43416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 09/12/2024] [Indexed: 11/16/2024] Open
Abstract
Importance Blast-related mild traumatic brain injuries (TBIs), the "signature injury" of post-9/11 conflicts, are associated with clinically relevant, long-term cognitive, psychological, and behavioral dysfunction and disability; however, the underlying neural mechanisms remain unclear. Objective To investigate associations between a history of remote blast-related mild TBI and regional brain volume in a sample of US veterans and active duty service members. Design, Setting, and Participants Prospective cohort study of US veterans and active duty service members from the Long-Term Impact of Military-Relevant Brain Injury Consortium-Chronic Effects of Neurotrauma Consortium (LIMBIC-CENC), which enrolled more than 1500 participants at 5 sites used in this analysis between 2014 and 2023. Participants were recruited from Veterans Affairs medical centers across the US; 774 veterans and active duty service members of the US military met eligibility criteria for this secondary analysis. Assessment dates were from January 6, 2015, to March 31, 2023; processing and analysis dates were from August 1, 2023, to January 15, 2024. Exposure All participants had combat exposure, and 82% had 1 or more lifetime mild TBIs with variable injury mechanisms. Main Outcomes and Measures Regional brain volume was calculated using tensor-based morphometry on 3-dimensional, T1-weighted magnetic resonance imaging scans; history of TBI, including history of blast-related mild TBI, was assessed by structured clinical interview. Cognitive performance and psychiatric symptoms were assessed with a battery of validated instruments. We hypothesized that regional volume would be smaller in the blast-related mild TBI group and that this would be associated with cognitive performance. Results A total of 774 veterans (670 [87%] male; mean [SD] age, 40.1 [9.8] years; 260 [34%] with blast-related TBI) were included in the sample. Individuals with a history of blast-related mild TBI had smaller brain volumes than individuals without a history of blast-related mild TBI (which includes uninjured individuals and those with non-blast-related mild TBI) in several clusters, with the largest centered bilaterally in the superior corona radiata and subcortical gray and white matter (cluster peak Cohen d range, -0.23 to -0.38; mean [SD] Cohen d, 0.28 [0.03]). Additionally, causal mediation analysis revealed that these volume differences significantly mediated the association between blast-related mild TBI and performance on measures of working memory and processing speed. Conclusions and Relevance In this cohort study of 774 veterans and active duty service members, robust volume differences associated with blast-related TBI were identified. Furthermore, these volume differences significantly mediated the association between blast-related mild TBI and cognitive function, indicating that this pattern of brain differences may have implications for daily functioning.
Collapse
Affiliation(s)
- Emily L. Dennis
- Department of Neurology, University of Utah School of Medicine, Salt Lake City
- George E. Wahlen Veterans Affairs Medical Center, Salt Lake City, Utah
| | - Jared A. Rowland
- W. G. (Bill) Hefner VA Healthcare System, Salisbury, North Carolina
- Department of Translational Neuroscience, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Carrie Esopenko
- Department of Rehabilitation and Human Performance, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Nicholas J. Tustison
- Department of Radiology and Medical Imaging, University of Virginia, Charlottesville
| | - Mary R. Newsome
- Department of Neurology, University of Utah School of Medicine, Salt Lake City
- George E. Wahlen Veterans Affairs Medical Center, Salt Lake City, Utah
- H. Ben Taub Department of Physical Medicine and Rehabilitation, Baylor College of Medicine, Houston, Texas
| | - Elizabeth S. Hovenden
- Department of Neurology, University of Utah School of Medicine, Salt Lake City
- George E. Wahlen Veterans Affairs Medical Center, Salt Lake City, Utah
| | - Brian B. Avants
- Department of Radiology and Medical Imaging, University of Virginia, Charlottesville
| | - Jessica Gill
- National Institutes of Health, National Institute of Nursing Research, Bethesda, Maryland
- Center for Neuroscience and Regenerative Medicine, Uniformed Services University, Bethesda, Maryland
| | - Sidney R. Hinds
- Department of Neurology, Uniformed Services University, Bethesda, Maryland
| | - Kimbra Kenney
- Department of Neurology, Uniformed Services University, Bethesda, Maryland
- National Intrepid Center of Excellence, Walter Reed National Military Medical Center, Bethesda, Maryland
| | - Hannah M. Lindsey
- Department of Neurology, University of Utah School of Medicine, Salt Lake City
- George E. Wahlen Veterans Affairs Medical Center, Salt Lake City, Utah
| | - Sarah L. Martindale
- W. G. (Bill) Hefner VA Healthcare System, Salisbury, North Carolina
- Department of Translational Neuroscience, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Mary Jo Pugh
- Department of Medicine, University of Utah School of Medicine, Salt Lake City
- Information Decision-Enhancement and Analytic Sciences Center, VA Salt Lake City, Salt Lake City, Utah
| | - Randall S. Scheibel
- H. Ben Taub Department of Physical Medicine and Rehabilitation, Baylor College of Medicine, Houston, Texas
- Michael E. DeBakey Veterans Affairs Medical Center, Houston, Texas
| | - Pashtun-Poh Shahim
- Rehabilitation Medicine Department, National Institutes of Health Clinical Center, Bethesda, Maryland
| | - Robert Shih
- Department of Radiology and Radiological Sciences, Uniformed Services University, Bethesda, Maryland
| | - James R. Stone
- Department of Radiology and Medical Imaging, University of Virginia, Charlottesville
| | - Maya Troyanskaya
- H. Ben Taub Department of Physical Medicine and Rehabilitation, Baylor College of Medicine, Houston, Texas
- Michael E. DeBakey Veterans Affairs Medical Center, Houston, Texas
| | - William C. Walker
- Department of Physical Medicine and Rehabilitation, Virginia Commonwealth University, Richmond
- Richmond Veterans Affairs Medical Center, Central Virginia VA Healthcare System, Richmond
| | - Kent Werner
- Department of Neurology, Uniformed Services University, Bethesda, Maryland
| | | | - David X. Cifu
- Department of Physical Medicine and Rehabilitation, Virginia Commonwealth University, Richmond
| | - David F. Tate
- Department of Neurology, University of Utah School of Medicine, Salt Lake City
- George E. Wahlen Veterans Affairs Medical Center, Salt Lake City, Utah
| | - Elisabeth A. Wilde
- Department of Neurology, University of Utah School of Medicine, Salt Lake City
- George E. Wahlen Veterans Affairs Medical Center, Salt Lake City, Utah
- H. Ben Taub Department of Physical Medicine and Rehabilitation, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
3
|
Belding JN, Bonkowski J, Englert R, Grimes Stanfill A, Tsao JW. Associations between concussion and more severe TBIs, mild cognitive impairment, and early-onset dementia among military retirees over 40 years. Front Neurol 2024; 15:1442715. [PMID: 39296958 PMCID: PMC11408918 DOI: 10.3389/fneur.2024.1442715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Accepted: 08/19/2024] [Indexed: 09/21/2024] Open
Abstract
Background and objectives As the population of U.S. service members (SMs) who have sustained concussions and more severe traumatic brain injuries (TBIs) during military service ages, understanding the long-term outcomes associated with such injuries will provide critical information that may promote long-term assessment, support, and rehabilitation following military service. The objective of this research was to examine whether concussion and more severe TBIs are associated with greater risk of precursors to dementia (i.e., mild cognitive impairment, memory loss), early-onset dementia, and any dementia. Methods This study used a retrospective cohort design wherein archival medical and career records from 1980 to 2020 identified U.S. military personnel who retired from military service and their corresponding Tricare-reimbursable medical encounters in inpatient and/or outpatient settings in military treatment facilities and/or purchased care settings both before and after retirement. All military personnel who served on active duty between 1980 and 2020 and were at least 45 years of age by 2020 were eligible for inclusion (N = 6,092,432). Those who were discharged from military service with a retirement designation, and were thus eligible for Tricare for Life, were included in the analytic sample (N = 1,211,972). Diagnoses of concussion and more severe TBI during active duty service recorded in inpatient settings between 1980 and 2020 and in outpatient settings from 2001 to 2020 were identified. Focal outcomes of interest included memory loss, mild cognitive impairment, Alzheimer's, Lewy Body dementia, frontotemporal dementia, and vascular dementia. Dementia diagnoses before age 65 were labeled early-onset. Results Those with (vs. without) concussion diagnoses during military service were significantly more likely to be diagnosed with memory loss and mild cognitive impairment and any of the dementias examined. However, they were not at greater risk of being diagnosed with early-onset dementia. Discussion Military SMs diagnosed with concussion may be at elevated risk for long-term neurodegenerative outcomes including memory loss, mild cognitive impairment, and dementia. As the population of SMs who sustained TBI during the Global War on Terror continue to age, the prevalence of dementia will increase and may bring a unique burden to the VHA.
Collapse
Affiliation(s)
- Jennifer N Belding
- Leidos Inc., San Diego, CA, United States
- Psychological Health and Readiness Department, Naval Health Research Center, San Diego, CA, United States
| | - James Bonkowski
- Leidos Inc., San Diego, CA, United States
- Psychological Health and Readiness Department, Naval Health Research Center, San Diego, CA, United States
| | - Robyn Englert
- Leidos Inc., San Diego, CA, United States
- Psychological Health and Readiness Department, Naval Health Research Center, San Diego, CA, United States
| | - Ansley Grimes Stanfill
- College of Nursing, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Jack W Tsao
- Department of Neurology, NYU Grossman School of Medicine, New York, NY, United States
| |
Collapse
|
4
|
Rowland JA, Martindale SL. Considerations for the assessment of blast exposure in service members and veterans. Front Neurol 2024; 15:1383710. [PMID: 38685944 PMCID: PMC11056521 DOI: 10.3389/fneur.2024.1383710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 03/29/2024] [Indexed: 05/02/2024] Open
Abstract
Introduction Blast exposure is an increasingly present occupational hazard for military service members, particularly in modern warfare scenarios. The study of blast exposure in humans is limited by the lack of a consensus definition for blast exposure and considerable variability in measurement. Research has clearly demonstrated a robust and reliable effect of blast exposure on brain structure and function in the absence of other injury mechanisms. However, the exact mechanisms underlying these outcomes remain unclear. Despite clear contributions from preclinical studies, this knowledge has been slow to translate to clinical applications. The present manuscript empirically demonstrates the consequences of variability in measurement and definition across studies through a re-analysis of previously published data from the Chronic Effects of Neurotrauma Study 34. Methods Definitions of blast exposure used in prior work were examined including Blast TBI, Primary Blast TBI, Pressure Severity, Distance, and Frequency of Exposure. Outcomes included both symptom report and cognitive testing. Results Results demonstrate significant differences in outcomes based on the definition of blast exposure used. In some cases the same definition was strongly related to one type of outcome, but unrelated to another. Discussion The implications of these results for the study of blast exposure are discussed and potential actions to address the major limitations in the field are recommended. These include the development of a consensus definition of blast exposure, further refinement of the assessment of blast exposure, continued work to identify relevant mechanisms leading to long-term negative outcomes in humans, and improved education efforts.
Collapse
Affiliation(s)
- Jared A. Rowland
- Salisbury VA Healthcare System, Salisbury, NC, United States
- Veterans Integrated Service Network (VISN)-6 Mid-Atlantic Mental Illness, Research Education and Clinical Center (MIRECC), Durham, NC, United States
- Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Sarah L. Martindale
- Salisbury VA Healthcare System, Salisbury, NC, United States
- Veterans Integrated Service Network (VISN)-6 Mid-Atlantic Mental Illness, Research Education and Clinical Center (MIRECC), Durham, NC, United States
- Wake Forest School of Medicine, Winston-Salem, NC, United States
| |
Collapse
|
5
|
Sachdeva T, Ganpule SG. Twenty Years of Blast-Induced Neurotrauma: Current State of Knowledge. Neurotrauma Rep 2024; 5:243-253. [PMID: 38515548 PMCID: PMC10956535 DOI: 10.1089/neur.2024.0001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2024] Open
Abstract
Blast-induced neurotrauma (BINT) is an important injury paradigm of neurotrauma research. This short communication summarizes the current knowledge of BINT. We divide the BINT research into several broad categories-blast wave generation in laboratory, biomechanics, pathology, behavioral outcomes, repetitive blast in animal models, and clinical and neuroimaging investigations in humans. Publications from 2000 to 2023 in each subdomain were considered. The analysis of the literature has brought out salient aspects. Primary blast waves can be simulated reasonably in a laboratory using carefully designed shock tubes. Various biomechanics-based theories of BINT have been proposed; each of these theories may contribute to BINT by generating a unique biomechanical signature. The injury thresholds for BINT are in the nascent stages. Thresholds for rodents are reasonably established, but such thresholds (guided by primary blast data) are unavailable in humans. Single blast exposure animal studies suggest dose-dependent neuronal pathologies predominantly initiated by blood-brain barrier permeability and oxidative stress. The pathologies were typically reversible, with dose-dependent recovery times. Behavioral changes in animals include anxiety, auditory and recognition memory deficits, and fear conditioning. The repetitive blast exposure manifests similar pathologies in animals, however, at lower blast overpressures. White matter irregularities and cortical volume and thickness alterations have been observed in neuroimaging investigations of military personnel exposed to blast. Behavioral changes in human cohorts include sleep disorders, poor motor skills, cognitive dysfunction, depression, and anxiety. Overall, this article provides a concise synopsis of current understanding, consensus, controversies, and potential future directions.
Collapse
Affiliation(s)
- Tarun Sachdeva
- Department of Mechanical and Industrial Engineering, Indian Institute of Technology Roorkee, Roorkee, India
| | - Shailesh G. Ganpule
- Department of Mechanical and Industrial Engineering, Indian Institute of Technology Roorkee, Roorkee, India
- Department of Design, Indian Institute of Technology Roorkee, Roorkee, India
| |
Collapse
|
6
|
Miller AR, Martindale SL, Rowland JA, Walton S, Talmy T, Walker WC. Blast-related mild TBI: LIMBIC-CENC focused review with implications commentary. NeuroRehabilitation 2024; 55:329-345. [PMID: 39093081 PMCID: PMC11612977 DOI: 10.3233/nre-230268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 06/19/2024] [Indexed: 08/04/2024]
Abstract
BACKGROUND A significant factor for the high prevalence of traumatic brain injury (TBI) among U.S. service members is their exposure to explosive munitions leading to blast-related TBI. Our understanding of the specific clinical effects of mild TBI having a component of blast mechanism remains limited compared to pure blunt mechanisms. OBJECTIVE The purpose of this review is to provide a synopsis of clinical research findings on the long-term effects of blast-related mild TBI derived to date from the Long-Term Impact of Military-Relevant Brain Injury Consortium - Chronic Effects of Neurotrauma Consortium (LIMBIC-CENC). METHODS Publications on blast-related mild TBI from LIMBIC-CENC and the LIMBIC-CENC prospective longitudinal study (PLS) cohort were reviewed and their findings summarized. Findings from the broader literature on blast-related mild TBI that evaluate similar outcomes are additionally reviewed for a perspective on the state of the literature. RESULTS The most consistent and compelling evidence for long-term effects of blast-related TBI is for poorer psychological health, greater healthcare utilization and disability levels, neuroimaging impacts on brain structure and function, and greater headache impact on daily life. To date, evidence for chronic cognitive performance deficits from blast-related mild TBI is limited, but futher research including crucial longitudinal data is needed. CONCLUSION Commentary is provided on: how LIMBIC-CENC findings assimilate with the broader literature; ongoing research gaps alongside future research needs and priorities; how the scientific community can utilize the LIMBIC-CENC database for independent or collaborative research; and how the evidence from the clinical research should be assimilated into clinical practice.
Collapse
Affiliation(s)
| | - Sarah L. Martindale
- Research and Academic Affairs, W.G. (Bill) Hefner Veterans Affairs Healthcare System, Salisbury, NC, USA
- Mid-Atlantic Mental Illness Research Education and Clinical Center, Durham, NC, USA
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Jared A. Rowland
- Research and Academic Affairs, W.G. (Bill) Hefner Veterans Affairs Healthcare System, Salisbury, NC, USA
- Mid-Atlantic Mental Illness Research Education and Clinical Center, Durham, NC, USA
- Department of Neurobiology and Anatomy, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Samuel Walton
- Department of Physical Medicine and Rehabilitation (PM& R), School of Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Tomer Talmy
- Israel Defense Forces, Medical Corps, Ramat Gan, Israel
- Department of Military Medicine, Faculty of Medicine, Hebrew University, Jerusalem, Israel
| | - William C. Walker
- Department of Physical Medicine and Rehabilitation (PM& R), School of Medicine, Virginia Commonwealth University, Richmond, VA, USA
- Richmond Veterans Affairs (VA) Medical Center, Central Virginia VA Health Care System, Richmond, VA, USA
| |
Collapse
|
7
|
Cacace AT, Berri B. Blast Overpressures as a Military and Occupational Health Concern. Am J Audiol 2023; 32:779-792. [PMID: 37713532 DOI: 10.1044/2023_aja-23-00125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/17/2023] Open
Abstract
PURPOSE This tutorial reviews effects of environmental stressors like blast overpressures and other well-known acoustic contaminants (continuous, intermittent, and impulsive noise) on hearing, tinnitus, vestibular, and balance-related functions. Based on the overall outcome of these effects, detailed consideration is given to the health and well-being of individuals. METHOD Because hearing loss and tinnitus are consequential in affecting quality of life, novel neuromodulation paradigms are reviewed for their positive abatement and treatment-related effects. Examples of clinical data, research strategies, and methodological approaches focus on repetitive transcranial magnetic stimulation (rTMS) and electrical stimulation of the vagus nerve paired with tones (VNSt) for their unique contributions to this area. RESULTS Acoustic toxicants transmitted through the atmosphere are noteworthy for their propensity to induce hearing loss and tinnitus. Mounting evidence also indicates that high-level rapid onset changes in atmospheric sound pressure can significantly impact vestibular and balance function. Indeed, the risk of falling secondary to loss of, or damage to, sensory receptor cells in otolith organs (utricle and saccule) is a primary reason for this concern. As part of the complexities involved in VNSt treatment strategies, vocal dysfunction may also manifest. In addition, evaluation of temporospatial gait parameters is worthy of consideration based on their ability to detect and monitor incipient neurological disease, cognitive decline, and mortality. CONCLUSION Highlighting these respective areas underscores the need to enhance information exchange among scientists, clinicians, and caregivers on the benefits and complications of these outcomes.
Collapse
Affiliation(s)
- Anthony T Cacace
- Department of Communication Sciences & Disorders, Wayne State University, Detroit, MI
| | - Batoul Berri
- Department of Communication Sciences & Disorders, Wayne State University, Detroit, MI
- Department of Otolaryngology, University of Michigan, Ann Arbor
| |
Collapse
|
8
|
Jin G, Ho JW, Keeney-Bonthrone TP, Pai MP, Wen B, Ober RA, Dimonte D, Chtraklin K, Joaquin TA, Latif Z, Vercruysse C, Alam HB. Prolonging the therapeutic window for valproic acid treatment in a swine model of traumatic brain injury and hemorrhagic shock. J Trauma Acute Care Surg 2023; 95:657-663. [PMID: 37314445 DOI: 10.1097/ta.0000000000004022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
BACKGROUND It has previously been shown that administration of valproic acid (VPA) can improve outcomes if given within an hour following traumatic brain injury (TBI). This short therapeutic window (TW) limits its use in real-life situations. Based upon its pharmacokinetic data, we hypothesized that TW can be extended to 3 hours if a second dose of VPA is given 8 hours after the initial dose. METHOD Yorkshire swine (40-45 kg; n = 10) were subjected to TBI (controlled cortical impact) and 40% blood volume hemorrhage. After 2 hours of shock, they were randomized to either (1) normal saline resuscitation (control) or (2) normal saline-VPA (150 mg/kg × two doses). First dose of VPA was started 3 hours after the TBI, with a second dose 8 hours after the first dose. Neurologic severity scores (range, 0-36) were assessed daily for 14 days, and brain lesion size was measured via magnetic resonance imaging on postinjury day 3. RESULTS Hemodynamic and laboratory parameters of shock were similar in both groups. Valproic acid-treated animals had significantly less neurologic impairment on days 2 (16.3 ± 2.0 vs. 7.3 ± 2.8) and 3 (10.9 ± 3.6 vs. 2.8 ± 1.1) postinjury and returned to baseline levels 54% faster. Magnetic resonance imaging showed no differences in brain lesion size on day 3. Pharmacokinetic data confirmed neuroprotective levels of VPA in the circulation. CONCLUSION This is the first study to demonstrate that VPA can be neuroprotective even when given 3 hours after TBI. This expanded TW has significant implications for the design of the clinical trial.
Collapse
Affiliation(s)
- Guang Jin
- From the Department of Surgery (G.J., J.W.H., T.P.K.-B., K.C., T.A.J., Z.L., C.V., H.B.A.), Feinberg School of Medicine, Northwestern University, Chicago; Department of Clinical Pharmacy (M.P.P., B.W.), University of Michigan, Ann Arbor, Michigan; Center for Comparative Medicine (R.A.O.), Northwestern University, Chicago; and Electrical and Computer Engineering (D.D.), Robert R. McCormick School, Northwestern University, Evanston, Illinois
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Parsey CM, Kang HJ, Eaton JC, McGrath ME, Barber J, Temkin NR, Donald CLM. Chronic frontal neurobehavioural symptoms in combat-deployed military personnel with and without a history of blast-related mild traumatic brain injury. Brain Inj 2023; 37:1127-1134. [PMID: 37165638 PMCID: PMC10524397 DOI: 10.1080/02699052.2023.2209740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 03/02/2023] [Accepted: 04/28/2023] [Indexed: 05/12/2023]
Abstract
OBJECTIVE This study evaluated frontal behavioural symptoms, via the FrSBe self-report, in military personnel with and without a history of blast-related mild traumatic brain injury (mild TBI). METHODS Prospective observational cohort study of combat-deployed service members leveraging 1-year and 5-year demographic and follow up clinical outcome data. RESULTS The blast mild TBI group (n = 164) showed greater frontal behavioural symptoms, including clinically elevated apathy, disinhibition, and executive dysfunction, during a 5-year follow-up, compared to a group of combat-deployed controls (n = 107) without mild TBI history or history of blast exposure. We also explored changes inbehaviourall symptoms over a 4-year span, which showed clinically significant increases in disinhibition in the blast mild TBI group, whereas the control group did not show significant increases in symptoms over time. CONCLUSION Our findings add to the growing evidence that a proportion of individuals who sustain mild TBI experience persistent behavioural symptoms. We also offer a demonstration of a novel use of the FrSBe as a tool for longitudinal symptom monitoring in a military mild TBI population.
Collapse
Affiliation(s)
- Carolyn M. Parsey
- Department of Neurology, University of Washington, School of Medicine, Seattle, WA USA
| | | | - Jessica C. Eaton
- Department of Neurological Surgery, University of Washington, School of Medicine, Seattle, WA USA
| | - Margaret E. McGrath
- Department of Neurological Surgery, University of Washington, School of Medicine, Seattle, WA USA
| | - Jason Barber
- Department of Neurological Surgery, University of Washington, School of Medicine, Seattle, WA USA
| | - Nancy R. Temkin
- Department of Neurological Surgery, University of Washington, School of Medicine, Seattle, WA USA
- Department of Biostatistics, University of Washington, School of Public Health, Seattle, WA USA
| | - Christine L. Mac Donald
- Harborview Medical Center, Seattle WA USA
- Department of Neurological Surgery, University of Washington, School of Medicine, Seattle, WA USA
| |
Collapse
|
10
|
Norman R, Flaugher T, Chang S, Power E. Self-Perception of Cognitive-Communication Functions After Mild Traumatic Brain Injury. AMERICAN JOURNAL OF SPEECH-LANGUAGE PATHOLOGY 2023; 32:883-906. [PMID: 36645876 PMCID: PMC10166193 DOI: 10.1044/2022_ajslp-22-00101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 07/01/2022] [Accepted: 10/19/2022] [Indexed: 05/10/2023]
Abstract
PURPOSE A mixed-method approach was used to investigate the lived experiences of adults with mild traumatic brain injury (mTBI). The study aimed to understand the perceived relationship between cognitive-communication problems, thinking and communication concerns, and neurobehavioral symptoms. We hypothesized that individuals with cognitive-communication problems would attribute their problems with communication to their mTBI history and their self-perceived problems would be correlated with symptomatology. METHOD The Neurobehavioral Symptom Inventory (NSI) and an online cognitive-communication survey was used to conduct a study of 30 adults with mTBI history. Quantitative survey and NSI scores were analyzed with content analysis and correlational statistics. RESULTS The average NSI Total score was 17 with the following subscale scores: somatic (5), affective (8), and cognitive (3.9). Participants reported problems with expressive communication (56%), comprehension (80%), thinking (63%), and social skills (60%). Content analysis revealed problems in the following areas: expression (e.g., verbal, and written language), comprehension (reading and verbal comprehension), cognition (e.g., attention, memory and speed of processing, error regulation), and functional consequences (e.g., academic work, social problems, and anxiety and stress). A Pearson correlation indicated a statistically significant relationship (p < .01) between the Communication Survey Total and the Total, Somatic, Affective, and Cognitive subscales. CONCLUSIONS This study highlights a multifactorial basis of cognitive-communication impairment in adults with mTBI. We show that those with mTBI history perceive difficulties with cognitive-communication skills: conversations, writing, and short-term memory/attention. Furthermore, those with mTBI perceive their cognitive-communication problems after injury have impacted their vocational, social, and academic success.
Collapse
Affiliation(s)
- Rocio Norman
- Department of Communication Sciences and Disorders, University of Texas Health Science Center at San Antonio
| | - Tara Flaugher
- Department of Neuroscience, Developmental and Regenerative Biology, University of Texas at San Antonio
| | - Sharon Chang
- Department of Otolaryngology—Head & Neck Surgery, Oregon Health & Science University, Portland
| | - Emma Power
- University of Technology Sydney, Speech Pathology, New South Wales, Australia
| |
Collapse
|
11
|
Gharahi H, Garimella HT, Chen ZJ, Gupta RK, Przekwas A. Mathematical model of mechanobiology of acute and repeated synaptic injury and systemic biomarker kinetics. Front Cell Neurosci 2023; 17:1007062. [PMID: 36814869 PMCID: PMC9939777 DOI: 10.3389/fncel.2023.1007062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 01/10/2023] [Indexed: 02/09/2023] Open
Abstract
Background Blast induced Traumatic Brain Injury (bTBI) has become a signature casualty of military operations. Recently, military medics observed neurocognitive deficits in servicemen exposed to repeated low level blast (LLB) waves during military heavy weapons training. In spite of significant clinical and preclinical TBI research, current understanding of injury mechanisms and short- and long-term outcomes is limited. Mathematical models of bTBI biomechanics and mechanobiology of sensitive neuro-structures such as synapses may help in better understanding of injury mechanisms and in the development of improved diagnostics and neuroprotective strategies. Methods and results In this work, we formulated a model of a single synaptic structure integrating the dynamics of the synaptic cell adhesion molecules (CAMs) with the deformation mechanics of the synaptic cleft. The model can resolve time scales ranging from milliseconds during the hyperacute phase of mechanical loading to minutes-hours acute/chronic phase of injury progression/repair. The model was used to simulate the synaptic injury responses caused by repeated blast loads. Conclusion Our simulations demonstrated the importance of the number of exposures compared to the duration of recovery period between repeated loads on the synaptic injury responses. The paper recognizes current limitations of the model and identifies potential improvements.
Collapse
Affiliation(s)
- Hamidreza Gharahi
- Biomedical and Data Sciences Division, CFD Research Corporation, Huntsville, AL, United States,Hamidreza Gharahi,
| | - Harsha T. Garimella
- Biomedical and Data Sciences Division, CFD Research Corporation, Huntsville, AL, United States
| | - Zhijian J. Chen
- Biomedical and Data Sciences Division, CFD Research Corporation, Huntsville, AL, United States
| | - Raj K. Gupta
- Department of Defense Blast Injury Research Program Coordinating Office, U.S. Army Medical Research and Development Command, Fort Detrick, MD, United States
| | - Andrzej Przekwas
- Biomedical and Data Sciences Division, CFD Research Corporation, Huntsville, AL, United States,*Correspondence: Andrzej Przekwas,
| |
Collapse
|
12
|
Kim SY, Soumoff AA, Raiciulescu S, Kemezis PA, Spinks EA, Brody DL, Capaldi VF, Ursano RJ, Benedek DM, Choi KH. Association of Traumatic Brain Injury Severity and Self-Reported Neuropsychiatric Symptoms in Wounded Military Service Members. Neurotrauma Rep 2023; 4:14-24. [PMID: 36726873 PMCID: PMC9886188 DOI: 10.1089/neur.2022.0063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The impact of traumatic brain injury (TBI) severity and loss of consciousness (LOC) on the development of neuropsychiatric symptoms was studied in injured service members (SMs; n = 1278) evacuated from combat settings between 2003 and 2012. TBI diagnoses of mild TBI (mTBI) or moderate-to-severe TBI (MS-TBI) along with LOC status were identified using International Classification of Diseases, Ninth Revision (ICD-9) codes and the Defense and Veterans Brain Injury Center Standard Surveillance Case Definition for TBI. Self-reported psychiatric symptoms were evaluated for post-traumatic stress disorder (PTSD) with the PTSD Checklist, Civilian Version for PTSD, the Patient Health Questionnaire-9 for major depressive disorder (MDD), and the Patient Health Questionnaire-15 for somatic symptom disorder (SSD) in two time periods post-injury: Assessment Period 1 (AP1, 0.0-2.5 months) and Assessment Period 2 (AP2, 3-12 months). mTBI, but not MS-TBI, was associated with increased neuropsychiatric symptoms: PTSD in AP1 and AP2; MDD in AP1; and SSD in AP2. A subgroup analysis of mTBI with and without LOC revealed that mTBI with LOC, but not mTBI without LOC, was associated with increased symptoms as compared to non-TBI: PTSD in AP1 and AP2; MDD in AP1; and SSD in AP1 and AP2. Moreover, mTBI with LOC was associated with increased MDD symptoms in AP2, and SSD symptoms in AP1 and AP2, compared to mTBI without LOC. These findings reinforce the need for the accurate characterization of TBI severity and a multi-disciplinary approach to address the devastating impacts of TBI in injured SMs.
Collapse
Affiliation(s)
- Sharon Y. Kim
- Program in Neuroscience, Uniformed Services University, Bethesda, Maryland, USA
| | - Alyssa A. Soumoff
- Department of Psychiatry, Uniformed Services University, Bethesda, Maryland, USA.,Behavioral Health Directorate, Walter Reed National Military Medical Center, Bethesda, Maryland, USA
| | - Sorana Raiciulescu
- Department of Preventive Medicine and Biostatistics, Biostatistics Consulting Center, Uniformed Services University, Bethesda, Maryland, USA
| | - Patricia A. Kemezis
- Behavioral Health Directorate, Walter Reed National Military Medical Center, Bethesda, Maryland, USA
| | - Elizabeth A. Spinks
- Behavioral Health Directorate, Walter Reed National Military Medical Center, Bethesda, Maryland, USA
| | - David L. Brody
- Center for Neuroscience and Regenerative Medicine, Uniformed Services University, Bethesda, Maryland, USA.,Department of Neurology, Uniformed Services University, Bethesda, Maryland, USA
| | - Vincent F. Capaldi
- Program in Neuroscience, Uniformed Services University, Bethesda, Maryland, USA.,Department of Psychiatry, Uniformed Services University, Bethesda, Maryland, USA.,Center for the Study of Traumatic Stress, Uniformed Services University, Bethesda, Maryland, USA
| | - Robert J. Ursano
- Program in Neuroscience, Uniformed Services University, Bethesda, Maryland, USA.,Department of Psychiatry, Uniformed Services University, Bethesda, Maryland, USA.,Center for the Study of Traumatic Stress, Uniformed Services University, Bethesda, Maryland, USA
| | - David M. Benedek
- Program in Neuroscience, Uniformed Services University, Bethesda, Maryland, USA.,Department of Psychiatry, Uniformed Services University, Bethesda, Maryland, USA.,Center for the Study of Traumatic Stress, Uniformed Services University, Bethesda, Maryland, USA
| | - Kwang H. Choi
- Program in Neuroscience, Uniformed Services University, Bethesda, Maryland, USA.,Department of Psychiatry, Uniformed Services University, Bethesda, Maryland, USA.,Center for the Study of Traumatic Stress, Uniformed Services University, Bethesda, Maryland, USA.,Address correspondence to: Kwang H. Choi, PhD, Department of Psychiatry, Uniformed Services University, 4301 Jones Bridge Road, Bethesda, MD 20814, USA.
| |
Collapse
|
13
|
Belding JN, Kolaja CA, Rull RP, Trone DW. Single and repeated high-level blast, low-level blast, and new-onset self-reported health conditions in the U.S. Millennium Cohort Study: An exploratory investigation. Front Neurol 2023; 14:1110717. [PMID: 37025202 PMCID: PMC10070873 DOI: 10.3389/fneur.2023.1110717] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 02/13/2023] [Indexed: 04/08/2023] Open
Abstract
Introduction Although previous research suggests that overpressure exposure from either high-level blast (HLB) or low-level blast (LLB) are harmful to health, to date no large-scale studies with representative samples of military personnel have utilized prospective designs and self-reported measures to examine the relationships between blast exposure and health conditions. To address these limitations, this analysis of data from the Millennium Cohort Study (MCS), the largest and longest running study of U.S. service members and veterans, examined (1) whether single or repeated HLB exposure is associated with self-reported diagnoses of illness and injury, (2) whether repeated HLB is associated with greater risk than single HLB, (3) potential adverse consequences of LLB exposure using military occupation as a proxy, and (4) the combined effects of single or repeated HLB and LLB exposure. Method MCS participants who completed the 2011-2013 survey (N = 138,949) were classified as having been exposed to "no," "single," or "repeated" HLB exposure, and into low or high risk of exposure to LLB based on occupation. Participants self-reported diagnosis of 45 medical conditions; newly reported diagnoses were regressed on single and repeated (vs. no) HLB, occupational risk of LLB, and relevant interactions using logistic regression. Results Single and repeated HLB were associated with new onset of 25 and 29 diagnoses, respectively; repeated HLB exposure was associated with greater risk than single HLB exposure for five diagnoses (e.g., PTSD, depression). Occupational risk of LLB was associated with 11 diagnoses (e.g., PTSD, significant hearing loss). Additionally, 14 significant interactions were detected across 11 diagnoses. Discussion Findings suggest that overpressure exposure (including single HLB, repeated HLB, and occupational risk of LLB) may increase the risks of self-reporting clinical diagnoses of PTSD, hearing loss, chronic fatigue syndrome, neuropathy-caused reduced sensation in the hands and feet, depression, vision loss, sinusitis, reflux, and anemia. Furthermore, the combination of HLB and LLB exposure may be associated with greater risk of migraines, PTSD, and impaired fecundity. These findings provide further evidence of the potential adverse consequences associated with overpressure exposure and underscore the necessity of public health surveillance initiatives for blast exposure and/or safety recommendations for training and operational environments.
Collapse
Affiliation(s)
- Jennifer N. Belding
- Leidos, San Diego, CA, United States
- Deployment Health Research Department, Naval Health Research Center, San Diego, CA, United States
- *Correspondence: Jennifer N. Belding
| | - Claire A. Kolaja
- Leidos, San Diego, CA, United States
- Deployment Health Research Department, Naval Health Research Center, San Diego, CA, United States
| | - Rudolph P. Rull
- Deployment Health Research Department, Naval Health Research Center, San Diego, CA, United States
| | - Daniel W. Trone
- Deployment Health Research Department, Naval Health Research Center, San Diego, CA, United States
| |
Collapse
|
14
|
Snapper DM, Reginauld B, Liaudanskaya V, Fitzpatrick V, Kim Y, Georgakoudi I, Kaplan DL, Symes AJ. Development of a novel bioengineered 3D brain-like tissue for studying primary blast-induced traumatic brain injury. J Neurosci Res 2023; 101:3-19. [PMID: 36200530 DOI: 10.1002/jnr.25123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 08/04/2022] [Accepted: 08/29/2022] [Indexed: 11/08/2022]
Abstract
Primary blast injury is caused by the direct impact of an overpressurization wave on the body. Due to limitations of current models, we have developed a novel approach to study primary blast-induced traumatic brain injury. Specifically, we employ a bioengineered 3D brain-like human tissue culture system composed of collagen-infused silk protein donut-like hydrogels embedded with human IPSC-derived neurons, human astrocytes, and a human microglial cell line. We have utilized this system within an advanced blast simulator (ABS) to expose the 3D brain cultures to a blast wave that can be precisely controlled. These 3D cultures are enclosed in a 3D-printed surrogate skull-like material containing media which are then placed in a holder apparatus inside the ABS. This allows for exposure to the blast wave alone without any secondary injury occurring. We show that blast induces an increase in lactate dehydrogenase activity and glutamate release from the cultures, indicating cellular injury. Additionally, we observe a significant increase in axonal varicosities after blast. These varicosities can be stained with antibodies recognizing amyloid precursor protein. The presence of amyloid precursor protein deposits may indicate a blast-induced axonal transport deficit. After blast injury, we find a transient release of the known TBI biomarkers, UCHL1 and NF-H at 6 h and a delayed increase in S100B at 24 and 48 h. This in vitro model will enable us to gain a better understanding of clinically relevant pathological changes that occur following primary blast and can also be utilized for discovery and characterization of biomarkers.
Collapse
Affiliation(s)
- Dustin M Snapper
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University, Bethesda, Maryland, USA
| | - Bianca Reginauld
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University, Bethesda, Maryland, USA
| | - Volha Liaudanskaya
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts, USA
| | - Vincent Fitzpatrick
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts, USA
| | - Yeonho Kim
- Preclinical Behavior and Modeling Core, Uniformed Services University, Bethesda, Maryland, USA
| | - Irene Georgakoudi
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts, USA
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts, USA
| | - Aviva J Symes
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University, Bethesda, Maryland, USA
| |
Collapse
|
15
|
Stewart IJ, Amuan ME, Wang CP, Kennedy E, Kenney K, Werner JK, Carlson KF, Tate DF, Pogoda TK, Dismuke-Greer CE, Wright WS, Wilde EA, Pugh MJ. Association Between Traumatic Brain Injury and Subsequent Cardiovascular Disease Among Post-9/11-Era Veterans. JAMA Neurol 2022; 79:1122-1129. [PMID: 36066882 PMCID: PMC9449870 DOI: 10.1001/jamaneurol.2022.2682] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Question What is the association of a traumatic brain injury (TBI) with the subsequent risk of cardiovascular disease in veterans of the recent conflicts in Iraq and Afghanistan? Findings In this cohort study of 1 559 928 participants, TBI was associated with the development of a composite end point for cardiovascular disease (coronary artery disease, stroke, and peripheral artery disease). TBI was also associated with the individual components of this composite end point. Meaning Traumatic brain injury is a potentially novel risk factor for cardiovascular disease in veterans. Importance Traumatic brain injury (TBI) was common among US service members deployed to Iraq and Afghanistan. Although there is some evidence to suggest that TBI increases the risk of cardiovascular disease (CVD), prior reports were predominantly limited to cerebrovascular outcomes. The potential association of TBI with CVD has not been comprehensively examined in post-9/11–era veterans. Objective To determine the association between TBI and subsequent CVD in post-9/11–era veterans. Design, Setting, and Participants This was a retrospective cohort study conducted from October 1, 1999, to September 30, 2016. Participants were followed up until December 31, 2018. Included in the study were administrative data from the US Department of Veterans Affairs and the Department of Defense from the Long-term Impact of Military-Relevant Brain Injury Consortium–Chronic Effects of Neurotrauma Consortium. Participants were excluded if dates did not overlap with the study period. Data analysis was conducted between November 22, 2021, and June 28, 2022. Exposures History of TBI as measured by diagnosis in health care records. Main Outcomes and Measures Composite end point of CVD: coronary artery disease, stroke, peripheral artery disease, and cardiovascular death. Results Of the 2 530 875 veterans from the consortium, after exclusions, a total of 1 559 928 veterans were included in the analysis. A total of 301 169 veterans (19.3%; median [IQR] age, 27 [23-34] years; 265 217 male participants [88.1]) with a TBI history and 1 258 759 veterans (80.7%; median [IQR] age, 29 [24-39] years; 1 012 159 male participants [80.4%]) without a TBI history were included for analysis. Participants were predominately young (1 058 054 [67.8%] <35 years at index date) and male (1 277 376 [81.9%]). Compared with participants without a history of TBI, diagnoses of mild TBI (hazard ratio [HR], 1.62; 95% CI, 1.58-1.66; P < .001), moderate to severe TBI (HR, 2.63; 95% CI, 2.51-2.76; P < .001), and penetrating TBI (HR, 4.60; 95% CI, 4.26-4.96; P < .001) were associated with CVD in adjusted models. In analyses of secondary outcomes, all severities of TBI were associated with the individual components of the composite outcome except penetrating TBI and CVD death. Conclusions and Relevance Results of this cohort study suggest that US veterans with a TBI history were more likely to develop CVD compared with veterans without a TBI history. Given the relatively young age of the cohort, these results suggest that there may be an increased burden of CVD as these veterans age and develop other CVD risk factors. Future studies are needed to determine if the increased risk associated with TBI is modifiable.
Collapse
Affiliation(s)
- Ian J Stewart
- Department of Medicine, Uniformed Services University, Bethesda, Maryland.,Military Cardiovascular Outcomes Research Program, Bethesda, Maryland
| | - Megan E Amuan
- Informatics, Decision-Enhancement, and Analytic Sciences Center of Innovation, VA Salt Lake City Health Care System, Salt Lake City, Utah.,Division of Epidemiology, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City
| | - Chen-Pin Wang
- University of Texas Health San Antonio, Department of Population Health Sciences, San Antonio
| | - Eamonn Kennedy
- Informatics, Decision-Enhancement, and Analytic Sciences Center of Innovation, VA Salt Lake City Health Care System, Salt Lake City, Utah.,Division of Epidemiology, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City
| | - Kimbra Kenney
- National Intrepid Center of Excellence, Walter Reed National Military Medical Center, Bethesda, Maryland.,Department of Neurology, Uniformed Services University, Bethesda, Maryland
| | - J Kent Werner
- Department of Neurology, Uniformed Services University, Bethesda, Maryland
| | - Kathleen F Carlson
- VA Portland Health Care System and Oregon Health and Science University, School of Public Health, Portland
| | - David F Tate
- Informatics, Decision-Enhancement, and Analytic Sciences Center of Innovation, VA Salt Lake City Health Care System, Salt Lake City, Utah.,Department of Neurology, University of Utah School of Medicine, Salt Lake City
| | - Terri K Pogoda
- VA Boston Healthcare System, Boston University School of Public Health, Boston, Massachusetts
| | - Clara E Dismuke-Greer
- VA Palo Alto Healthcare System, Health Economics Resource Center, Palo Alto, California
| | - W Shea Wright
- Informatics, Decision-Enhancement, and Analytic Sciences Center of Innovation, VA Salt Lake City Health Care System, Salt Lake City, Utah.,Department of Neurology, University of Utah School of Medicine, Salt Lake City
| | - Elisabeth A Wilde
- Informatics, Decision-Enhancement, and Analytic Sciences Center of Innovation, VA Salt Lake City Health Care System, Salt Lake City, Utah.,Department of Neurology, University of Utah School of Medicine, Salt Lake City
| | - Mary Jo Pugh
- Informatics, Decision-Enhancement, and Analytic Sciences Center of Innovation, VA Salt Lake City Health Care System, Salt Lake City, Utah.,Division of Epidemiology, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City
| |
Collapse
|
16
|
Detection of Chronic Blast-Related Mild Traumatic Brain Injury with Diffusion Tensor Imaging and Support Vector Machines. Diagnostics (Basel) 2022; 12:diagnostics12040987. [PMID: 35454035 PMCID: PMC9030428 DOI: 10.3390/diagnostics12040987] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 04/07/2022] [Accepted: 04/08/2022] [Indexed: 01/13/2023] Open
Abstract
Blast-related mild traumatic brain injury (bmTBI) often leads to long-term sequalae, but diagnostic approaches are lacking due to insufficient knowledge about the predominant pathophysiology. This study aimed to build a diagnostic model for future verification by applying machine-learning based support vector machine (SVM) modeling to diffusion tensor imaging (DTI) datasets to elucidate white-matter features that distinguish bmTBI from healthy controls (HC). Twenty subacute/chronic bmTBI and 19 HC combat-deployed personnel underwent DTI. Clinically relevant features for modeling were selected using tract-based analyses that identified group differences throughout white-matter tracts in five DTI metrics to elucidate the pathogenesis of injury. These features were then analyzed using SVM modeling with cross validation. Tract-based analyses revealed abnormally decreased radial diffusivity (RD), increased fractional anisotropy (FA) and axial/radial diffusivity ratio (AD/RD) in the bmTBI group, mostly in anterior tracts (29 features). SVM models showed that FA of the anterior/superior corona radiata and AD/RD of the corpus callosum and anterior limbs of the internal capsule (5 features) best distinguished bmTBI from HCs with 89% accuracy. This is the first application of SVM to identify prominent features of bmTBI solely based on DTI metrics in well-defined tracts, which if successfully validated could promote targeted treatment interventions.
Collapse
|
17
|
Kempuraj D, Mohan RR. Autophagy in Extracellular Matrix and Wound Healing Modulation in the Cornea. Biomedicines 2022; 10:biomedicines10020339. [PMID: 35203548 PMCID: PMC8961790 DOI: 10.3390/biomedicines10020339] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/24/2021] [Accepted: 12/28/2021] [Indexed: 12/18/2022] Open
Abstract
Autophagy is a robust cellular mechanism for disposing of harmful molecules or recycling them to cells, which also regulates physiopathological processes in cornea. Dysregulated autophagy causes inefficient clearance of unwanted proteins and cellular debris, mitochondrial disorganization, defective inflammation, organ dysfunctions, cell death, and diseases. The cornea accounts for two-thirds of the refraction of light that occurs in the eyes, but is prone to trauma/injury and infection. The extracellular matrix (ECM) is a noncellular dynamic macromolecular network in corneal tissues comprised of collagens, proteoglycans, elastin, fibronectin, laminins, hyaluronan, and glycoproteins. The ECM undergoes remodeling by matrix-degrading enzymes and maintains corneal transparency. Autophagy plays an important role in the ECM and wound healing maintenance. Delayed/dysregulated autophagy impacts the ECM and wound healing, and can lead to corneal dysfunction. Stromal wound healing involves responses from the corneal epithelium, basement membrane, keratocytes, the ECM, and many cytokines and chemokines, including transforming growth factor beta-1 and platelet-derived growth factor. Mild corneal injuries self-repair, but greater injuries lead to corneal haze/scars/fibrosis and vision loss due to disruptions in the ECM, autophagy, and normal wound healing processes. Presently, the precise role of autophagy and ECM remodeling in corneal wound healing is elusive. This review discusses recent trends in autophagy and ECM modulation in the context of corneal wound healing and homeostasis.
Collapse
Affiliation(s)
- Duraisamy Kempuraj
- Harry S. Truman Memorial Veterans’ Hospital, Columbia, MO 65212, USA;
- One-Health Vision Research Program, Departments of Veterinary Medicine & Surgery and Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO 65212, USA
| | - Rajiv R. Mohan
- Harry S. Truman Memorial Veterans’ Hospital, Columbia, MO 65212, USA;
- One-Health Vision Research Program, Departments of Veterinary Medicine & Surgery and Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO 65212, USA
- Mason Eye Institute, School of Medicine, University of Missouri, Columbia, MO 65212, USA
- Correspondence:
| |
Collapse
|
18
|
Chen S, Siedhoff HR, Zhang H, Liu P, Balderrama A, Li R, Johnson C, Greenlief CM, Koopmans B, Hoffman T, DePalma RG, Li DP, Cui J, Gu Z. Low-intensity blast induces acute glutamatergic hyperexcitability in mouse hippocampus leading to long-term learning deficits and altered expression of proteins involved in synaptic plasticity and serine protease inhibitors. Neurobiol Dis 2022; 165:105634. [PMID: 35077822 DOI: 10.1016/j.nbd.2022.105634] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 01/11/2022] [Accepted: 01/17/2022] [Indexed: 11/26/2022] Open
Abstract
Neurocognitive consequences of blast-induced traumatic brain injury (bTBI) pose significant concerns for military service members and veterans with the majority of "invisible injury." However, the underlying mechanism of such mild bTBI by low-intensity blast (LIB) exposure for long-term cognitive and mental deficits remains elusive. Our previous studies have shown that mice exposed to LIB result in nanoscale ultrastructural abnormalities in the absence of gross or apparent cellular damage in the brain. Here we tested the hypothesis that glutamatergic hyperexcitability may contribute to long-term learning deficits. Using brain slice electrophysiological recordings, we found an increase in averaged frequencies with a burst pattern of miniature excitatory postsynaptic currents (mEPSCs) in hippocampal CA3 neurons in LIB-exposed mice at 1- and 7-days post injury, which was blocked by a specific NMDA receptor antagonist AP5. In addition, cognitive function assessed at 3-months post LIB exposure by automated home-cage monitoring showed deficits in dynamic patterns of discrimination learning and cognitive flexibility in LIB-exposed mice. Collected hippocampal tissue was further processed for quantitative global-proteomic analysis. Advanced data-independent acquisition for quantitative tandem mass spectrometry analysis identified altered expression of proteins involved in synaptic plasticity and serine protease inhibitors in LIB-exposed mice. Some were correlated with the ability of discrimination learning and cognitive flexibility. These findings show that acute glutamatergic hyperexcitability in the hippocampus induced by LIB may contribute to long-term cognitive dysfunction and protein alterations. Studies using this military-relevant mouse model of mild bTBI provide valuable insights into developing a potential therapeutic strategy to ameliorate hyperexcitability-modulated LIB injuries.
Collapse
Affiliation(s)
- Shanyan Chen
- Truman VA Hospital Research Service, Columbia, MO 65201, USA; Department of Pathology & Anatomical Sciences, University of Missouri School of Medicine, Columbia, MO 65212, USA
| | - Heather R Siedhoff
- Truman VA Hospital Research Service, Columbia, MO 65201, USA; Department of Pathology & Anatomical Sciences, University of Missouri School of Medicine, Columbia, MO 65212, USA
| | - Hua Zhang
- Department of Medicine, University of Missouri School of Medicine, Columbia, MO 65212, USA
| | - Pei Liu
- Charles W. Gehrke Proteomics Center, University of Missouri, Columbia, MO 65211, USA
| | - Ashley Balderrama
- Truman VA Hospital Research Service, Columbia, MO 65201, USA; Department of Pathology & Anatomical Sciences, University of Missouri School of Medicine, Columbia, MO 65212, USA
| | - Runting Li
- Truman VA Hospital Research Service, Columbia, MO 65201, USA; Department of Pathology & Anatomical Sciences, University of Missouri School of Medicine, Columbia, MO 65212, USA
| | - Catherine Johnson
- Department of Mining and Nuclear Engineering, Missouri University of Science and Technology, Rolla, MO 65409, USA
| | - C Michael Greenlief
- Charles W. Gehrke Proteomics Center, University of Missouri, Columbia, MO 65211, USA
| | | | - Timothy Hoffman
- Truman VA Hospital Research Service, Columbia, MO 65201, USA; Department of Medicine, University of Missouri School of Medicine, Columbia, MO 65212, USA
| | - Ralph G DePalma
- Office of Research and Development, Department of Veterans Affairs, Washington DC 20420, USA; Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - De-Pei Li
- Department of Medicine, University of Missouri School of Medicine, Columbia, MO 65212, USA
| | - Jiankun Cui
- Truman VA Hospital Research Service, Columbia, MO 65201, USA; Department of Pathology & Anatomical Sciences, University of Missouri School of Medicine, Columbia, MO 65212, USA.
| | - Zezong Gu
- Truman VA Hospital Research Service, Columbia, MO 65201, USA; Department of Pathology & Anatomical Sciences, University of Missouri School of Medicine, Columbia, MO 65212, USA.
| |
Collapse
|
19
|
Siedhoff HR, Chen S, Song H, Cui J, Cernak I, Cifu DX, DePalma RG, Gu Z. Perspectives on Primary Blast Injury of the Brain: Translational Insights Into Non-inertial Low-Intensity Blast Injury. Front Neurol 2022; 12:818169. [PMID: 35095749 PMCID: PMC8794583 DOI: 10.3389/fneur.2021.818169] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 12/20/2021] [Indexed: 12/18/2022] Open
Abstract
Most traumatic brain injuries (TBIs) during military deployment or training are clinically "mild" and frequently caused by non-impact blast exposures. Experimental models were developed to reproduce the biological consequences of high-intensity blasts causing moderate to severe brain injuries. However, the pathophysiological mechanisms of low-intensity blast (LIB)-induced neurological deficits have been understudied. This review provides perspectives on primary blast-induced mild TBI models and discusses translational aspects of LIB exposures as defined by standardized physical parameters including overpressure, impulse, and shock wave velocity. Our mouse LIB-exposure model, which reproduces deployment-related scenarios of open-field blast (OFB), caused neurobehavioral changes, including reduced exploratory activities, elevated anxiety-like levels, impaired nesting behavior, and compromised spatial reference learning and memory. These functional impairments associate with subcellular and ultrastructural neuropathological changes, such as myelinated axonal damage, synaptic alterations, and mitochondrial abnormalities occurring in the absence of gross- or cellular damage. Biochemically, we observed dysfunctional mitochondrial pathways that led to elevated oxidative stress, impaired fission-fusion dynamics, diminished mitophagy, decreased oxidative phosphorylation, and compensated cell respiration-relevant enzyme activity. LIB also induced increased levels of total tau, phosphorylated tau, and amyloid β peptide, suggesting initiation of signaling cascades leading to neurodegeneration. We also compare translational aspects of OFB findings to alternative blast injury models. By scoping relevant recent research findings, we provide recommendations for future preclinical studies to better reflect military-operational and clinical realities. Overall, better alignment of preclinical models with clinical observations and experience related to military injuries will facilitate development of more precise diagnosis, clinical evaluation, treatment, and rehabilitation.
Collapse
Affiliation(s)
- Heather R. Siedhoff
- Department of Pathology and Anatomical Sciences, University of Missouri School of Medicine, Columbia, MO, United States
- Harry S. Truman Memorial Veterans' Hospital Research Service, Columbia, MO, United States
| | - Shanyan Chen
- Department of Pathology and Anatomical Sciences, University of Missouri School of Medicine, Columbia, MO, United States
- Harry S. Truman Memorial Veterans' Hospital Research Service, Columbia, MO, United States
| | - Hailong Song
- Department of Pathology and Anatomical Sciences, University of Missouri School of Medicine, Columbia, MO, United States
- Harry S. Truman Memorial Veterans' Hospital Research Service, Columbia, MO, United States
| | - Jiankun Cui
- Department of Pathology and Anatomical Sciences, University of Missouri School of Medicine, Columbia, MO, United States
- Harry S. Truman Memorial Veterans' Hospital Research Service, Columbia, MO, United States
| | - Ibolja Cernak
- Department of Biomedical Sciences, Mercer University School of Medicine, Macon, GA, United States
| | - David X. Cifu
- Department of Physical Medicine and Rehabilitation, Virginia Commonwealth University School of Medicine, Richmond, VA, United States
| | - Ralph G. DePalma
- Office of Research and Development, Department of Veterans Affairs, Washington, DC, United States
- Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Zezong Gu
- Department of Pathology and Anatomical Sciences, University of Missouri School of Medicine, Columbia, MO, United States
- Harry S. Truman Memorial Veterans' Hospital Research Service, Columbia, MO, United States
| |
Collapse
|
20
|
Siedhoff HR, Chen S, Balderrama A, Sun GY, Koopmans B, DePalma RG, Cui J, Gu Z. Long-Term Effects of Low-Intensity Blast Non-Inertial Brain Injury on Anxiety-Like Behaviors in Mice: Home-Cage Monitoring Assessments. Neurotrauma Rep 2022; 3:27-38. [PMID: 35141713 PMCID: PMC8820222 DOI: 10.1089/neur.2021.0063] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Mild traumatic brain injury induced by low-intensity blast (LIB) exposure poses concerns in military personnel. Using an open-field, non-inertial blast model and assessments by conventional behavioral tests, our previous studies revealed early-phase anxiety-like behaviors in LIB-exposed mice. However, the impact of LIB upon long-term anxiety-like behaviors requires clarification. This study applied a highly sensitive automated home-cage monitoring (HCM) system, which minimized human intervention and environmental changes, to assess anxiety-like responses in mice 3 months after LIB exposure. Initial assessment of 72-h spontaneous activities in a natural cage condition over multiple light and dark phases showed altered sheltering behaviors. LIB-exposed mice exhibited a subtle, but significantly decreased, duration of short shelter visits as compared to sham controls. Other measured responses between LIB-exposed mice and sham controls were insignificant. When behavioral assessments were performed in a challenged condition using an aversive spotlight, LIB-exposed mice demonstrated a significantly higher frequency of movements of shorter distance and duration per movement. Taken together, these findings demonstrated the presence of chronic anxiety-like behaviors assessed by the HCM system under both natural and challenged conditions in mice occurring post-LIB exposure. This model thus provides a platform to test for screening and interventions on anxiety disorders occurring after LIB non-inertial brain injury.
Collapse
Affiliation(s)
- Heather R. Siedhoff
- Harry S. Truman Memorial Veterans' Hospital Research Service, Columbia, Missouri, USA
- Department of Pathology and Anatomical Sciences, University of Missouri School of Medicine, Columbia, Missouri, USA
| | - Shanyan Chen
- Harry S. Truman Memorial Veterans' Hospital Research Service, Columbia, Missouri, USA
- Department of Pathology and Anatomical Sciences, University of Missouri School of Medicine, Columbia, Missouri, USA
| | - Ashley Balderrama
- Harry S. Truman Memorial Veterans' Hospital Research Service, Columbia, Missouri, USA
- Department of Pathology and Anatomical Sciences, University of Missouri School of Medicine, Columbia, Missouri, USA
| | - Grace Y. Sun
- Department of Biochemistry, University of Missouri School of Medicine, Columbia, Missouri, USA
| | | | - Ralph G. DePalma
- Office of Research and Development, Department of Veterans Affairs, Washington, DC, USA; Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Jiankun Cui
- Harry S. Truman Memorial Veterans' Hospital Research Service, Columbia, Missouri, USA
- Department of Pathology and Anatomical Sciences, University of Missouri School of Medicine, Columbia, Missouri, USA
| | - Zezong Gu
- Harry S. Truman Memorial Veterans' Hospital Research Service, Columbia, Missouri, USA
- Department of Pathology and Anatomical Sciences, University of Missouri School of Medicine, Columbia, Missouri, USA
| |
Collapse
|
21
|
Isaki E. Commentary on Mild Traumatic Brain Injury Research Needs in the General Population. AMERICAN JOURNAL OF SPEECH-LANGUAGE PATHOLOGY 2021; 30:1656-1659. [PMID: 33844593 PMCID: PMC8702872 DOI: 10.1044/2021_ajslp-20-00403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/19/2021] [Accepted: 01/19/2021] [Indexed: 06/12/2023]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Emi Isaki
- Department of Communication Sciences and Disorders, Northern Arizona University, Flagstaff
| |
Collapse
|
22
|
Al-Hajj S, Dhaini HR, Mondello S, Kaafarani H, Kobeissy F, DePalma RG. Beirut Ammonium Nitrate Blast: Analysis, Review, and Recommendations. Front Public Health 2021; 9:657996. [PMID: 34150702 PMCID: PMC8212863 DOI: 10.3389/fpubh.2021.657996] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 05/04/2021] [Indexed: 11/13/2022] Open
Abstract
A massive chemical detonation occurred on August 4, 2020 in the Port of Beirut, Lebanon. An uncontrolled fire in an adjacent warehouse ignited ~2,750 tons of Ammonium Nitrate (AN), producing one of the most devastating blasts in recent history. The blast supersonic pressure and heat wave claimed the lives of 220 people and injured more than 6,500 instantaneously, with severe damage to the nearby dense residential and commercial areas. This review represents one of the in-depth reports to provide a detailed analysis of the Beirut blast and its health and environmental implications. It further reviews prior AN incidents and suggests actionable recommendations and strategies to optimize chemical safety measures, improve emergency preparedness, and mitigate the delayed clinical effects of blast and toxic gas exposures. These recommended actionable steps offer a starting point for government officials and policymakers to build frameworks, adopt regulations, and implement chemical safety protocols to ensure safe storage of hazardous materials as well as reorganizing healthcare system disaster preparedness to improve emergency preparedness in response to similar large-scale disasters and promote population safety. Future clinical efforts should involve detailed assessment of physical injuries sustained by blast victims, with systemic mitigation and possible treatment of late blast effects involving individuals, communities and the region at large.
Collapse
Affiliation(s)
- Samar Al-Hajj
- Health Management and Policy, Faculty of Health Sciences, American University of Beirut, Beirut, Lebanon
| | - Hassan R Dhaini
- Department of Environmental Health, Faculty of Health Sciences, American University of Beirut, Beirut, Lebanon
| | - Stefania Mondello
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy
| | - Haytham Kaafarani
- Division of Trauma, Emergency Surgery and Surgical Critical Care. Massachusetts General Hospital, Boston, MA, United States
| | - Firas Kobeissy
- Department of Biochemistry & Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Ralph G DePalma
- Office of Research and Development, Department of Veterans Affairs, Washington, DC, United States
| |
Collapse
|
23
|
Jitsu M, Niwa K, Suzuki G, Obara T, Iwama Y, Hagisawa K, Takahashi Y, Matsushita Y, Takeuchi S, Nawashiro H, Sato S, Kawauchi S. Behavioral and Histopathological Impairments Caused by Topical Exposure of the Rat Brain to Mild-Impulse Laser-Induced Shock Waves: Impulse Dependency. Front Neurol 2021; 12:621546. [PMID: 34093390 PMCID: PMC8177106 DOI: 10.3389/fneur.2021.621546] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 04/23/2021] [Indexed: 12/26/2022] Open
Abstract
Although an enormous number of animal studies on blast-induced traumatic brain injury (bTBI) have been conducted, there still remain many uncertain issues in its neuropathology and mechanisms. This is partially due to the complex and hence difficult experimental environment settings, e.g., to minimize the effects of blast winds (tertiary mechanism) and to separate the effects of brain exposure and torso exposure. Since a laser-induced shock wave (LISW) is free from dynamic pressure and its energy is spatially well confined, the effects of pure shock wave exposure (primary mechanism) solely on the brain can be examined by using an LISW. In this study, we applied a set of four LISWs in the impulse range of 15–71 Pa·s to the rat brain through the intact scalp and skull; the interval between each exposure was ~5 s. For the rats, we conducted locomotor activity, elevated plus maze and forced swimming tests. Axonal injury in the brain was also examined by histological analysis using Bodian silver staining. Only the rats with exposure at higher impulses of 54 and 71 Pa·s showed significantly lower spontaneous movements at 1 and 2 days post-exposure by the locomotor activity test, but after 3 days post-exposure, they had recovered. At 7 days post-exposure, however, these rats (54 and 71 Pa·s) showed significantly higher levels of anxiety-related and depression-like behaviors by the elevated plus maze test and forced swimming test, respectively. To the best of the authors' knowledge, there have been few studies in which a rat model showed both anxiety-related and depression-like behaviors caused by blast or shock wave exposure. At that time point (7 days post-exposure), histological analysis showed significant decreases in axonal density in the cingulum bundle and corpus callosum in impulse-dependent manners; axons in the cingulum bundle were found to be more affected by a shock wave. Correlation analysis showed a statistically significant correlation between the depression like-behavior and axonal density reduction in the cingulum bundle. The results demonstrated the dependence of behavior deficits and axonal injury on the shock wave impulse loaded on the brain.
Collapse
Affiliation(s)
- Motoyuki Jitsu
- Military Medicine Research Unit, Japan Ground Self Defense Force, Tokyo, Japan
| | - Katsuki Niwa
- Military Medicine Research Unit, Japan Ground Self Defense Force, Tokyo, Japan
| | - Go Suzuki
- Military Medicine Research Unit, Japan Ground Self Defense Force, Tokyo, Japan
| | - Takeyuki Obara
- Military Medicine Research Unit, Japan Ground Self Defense Force, Tokyo, Japan
| | - Yukiko Iwama
- Military Medicine Research Unit, Japan Ground Self Defense Force, Tokyo, Japan
| | - Kohsuke Hagisawa
- Military Medicine Research Unit, Japan Ground Self Defense Force, Tokyo, Japan
| | - Yukihiro Takahashi
- Military Medicine Research Unit, Japan Ground Self Defense Force, Tokyo, Japan
| | | | - Satoru Takeuchi
- Department of Neurosurgery, National Defense Medical College, Tokorozawa, Japan
| | - Hiroshi Nawashiro
- Department of Neurosurgery, National Defense Medical College, Tokorozawa, Japan
| | - Shunichi Sato
- Division of Bioinformation and Therapeutic Systems, National Defense Medical College Research Institute, Tokorozawa, Japan
| | - Satoko Kawauchi
- Division of Bioinformation and Therapeutic Systems, National Defense Medical College Research Institute, Tokorozawa, Japan
| |
Collapse
|
24
|
Hardy MS, Kennedy JE, Cooper DB. Patient Attribution of Posttraumatic Symptoms to Brain Injury Versus PTSD in Military-Related Mild TBI. J Neuropsychiatry Clin Neurosci 2021; 32:252-258. [PMID: 32054399 DOI: 10.1176/appi.neuropsych.19090202] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
OBJECTIVE Persistent cognitive, somatic, and neuropsychiatric symptoms following mild traumatic brain injury (TBI) are influenced by posttraumatic stress disorder (PTSD), particularly in military patients. The authors evaluated the degree to which military service members with a history of mild TBI attributed posttraumatic symptoms to TBI versus PTSD. METHODS Service members (N=372) with mild TBI were surveyed about the severity of posttraumatic symptoms across four symptom clusters (cognitive, affective, somatosensory, and vestibular) with the Neurobehavioral Symptom Inventory (NSI). Participants rated the degree to which they believed TBI, PTSD, or other conditions contributed to their symptoms. Differences in cognitive, affective, somatosensory, and vestibular symptom severity were evaluated across participants with TBI, PTSD, or combined TBI-PTSD attribution. Logistic regression was used to evaluate the association between symptom profiles and attribution. RESULTS Participants attributed symptoms mostly to TBI, followed by insufficient sleep, PTSD, chronic pain, depression, and deployment-readjustment stress. PTSD and combined TBI-PTSD attribution were associated with higher total NSI scores (39.5 and 51.6, respectively), compared with TBI attribution only (31.4) (F=29.08, df=3, 358, p<0.01), as well as higher scores in every symptom category. More severe affective symptoms were associated with decreased odds of TBI attribution (odds ratio=0.90, 95% CI=0.83-0.97) and increased odds of PTSD attribution (odds ratio=1.14, 95% CI=1.03-1.26). A PTSD diagnosis was highly associated with PTSD attribution (odds ratio=2.44, 95% CI=1.07-5.58). CONCLUSIONS The nature and severity of posttraumatic symptoms appear to play a role in patient beliefs about the causes of symptoms, whether from TBI or PTSD.
Collapse
Affiliation(s)
- Morgan S Hardy
- 59th Medical Wing, Wilford Hall Ambulatory Surgical Center, Lackland Air Force Base, San Antonio, Tex. (Hardy); the Department of Psychiatry, University of Texas Health San Antonio, San Antonio, Tex. (Hardy, Cooper); the Defense and Veterans Brain Injury Center, Brooke Army Medical Center, Fort Sam Houston, San Antonio, Tex. (Kennedy); General Dynamics Information Technology, Falls Church, Va. (Kennedy, Cooper); and the Defense and Veterans Brain Injury Center, San Antonio Polytrauma Rehabilitation Center, Audie L. Murphy Memorial VA Hospital, San Antonio, Tex. (Cooper)
| | - Jan E Kennedy
- 59th Medical Wing, Wilford Hall Ambulatory Surgical Center, Lackland Air Force Base, San Antonio, Tex. (Hardy); the Department of Psychiatry, University of Texas Health San Antonio, San Antonio, Tex. (Hardy, Cooper); the Defense and Veterans Brain Injury Center, Brooke Army Medical Center, Fort Sam Houston, San Antonio, Tex. (Kennedy); General Dynamics Information Technology, Falls Church, Va. (Kennedy, Cooper); and the Defense and Veterans Brain Injury Center, San Antonio Polytrauma Rehabilitation Center, Audie L. Murphy Memorial VA Hospital, San Antonio, Tex. (Cooper)
| | - Douglas B Cooper
- 59th Medical Wing, Wilford Hall Ambulatory Surgical Center, Lackland Air Force Base, San Antonio, Tex. (Hardy); the Department of Psychiatry, University of Texas Health San Antonio, San Antonio, Tex. (Hardy, Cooper); the Defense and Veterans Brain Injury Center, Brooke Army Medical Center, Fort Sam Houston, San Antonio, Tex. (Kennedy); General Dynamics Information Technology, Falls Church, Va. (Kennedy, Cooper); and the Defense and Veterans Brain Injury Center, San Antonio Polytrauma Rehabilitation Center, Audie L. Murphy Memorial VA Hospital, San Antonio, Tex. (Cooper)
| |
Collapse
|
25
|
Chen B, Shi QX, Nie C, Zhao ZP, Luo L, Zhao QJ, Si SY, Xu BX, Wang T, Gao LY, Gu JW. Establishment and Evaluation of a Novel High-Efficiency Model of Graded Traumatic Brain Injury in Mice. World Neurosurg 2021; 154:e7-e18. [PMID: 33992827 DOI: 10.1016/j.wneu.2021.05.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 05/04/2021] [Accepted: 05/05/2021] [Indexed: 11/16/2022]
Abstract
BACKGROUND Although previous studies have made significant contributions to establishing animal traumatic brain injury (TBI) models for simulation of human TBI, the accuracy, controllability, and modeling efficiency of animal TBI models need to be further improved. This study established a novel high-efficiency graded mouse TBI model induced by shock wave. METHODS A total of 125 mice were randomly divided into sham, 0.7 mm, 0.6 mm, and 0.5 mm groups according to the depth of the cross groove of the aluminum sheets. The stability and repeatability of apparatus were evaluated, and the integrity of the blood-brain barrier, cerebral edema, neuropathologic immunohistochemistry, apoptosis-related protein, and behavioral tests of neurologic function were used to validate this new model. RESULTS The results showed that 4 mice were injured simultaneously in 1 experiment. They received the same intensity of shock waves. Moreover, the mortality rates caused by 3 different aluminum sheets were consistent with the mortality rates of mild TBI, moderate TBI, and severe TBI. Compared with the sham group, mice in different injured groups significantly increased brain water content, blood-brain barrier permeability, and neuronal apoptosis. And the mice in all injured groups showed poor motor ability, balancing, spatial learning, and memory abilities. CONCLUSIONS The novel TBI apparatus has advantages in its small size, simple operation, high repeatability, high efficiency, and graded severity. Our TBI apparatus provides a novel tool to investigate the neuropathologic changes and underlying mechanisms of TBI with various levels of severities.
Collapse
Affiliation(s)
- Bing Chen
- Savaid Medical College, University of Chinese Academy of Sciences, Hangzhou, China
| | - Quan-Xing Shi
- People's Liberation Army Strategic Support Force Medical Center, Hangzhou, China
| | - Chuang Nie
- People's Liberation Army Strategic Support Force Medical Center, Hangzhou, China
| | - Zhi-Ping Zhao
- School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Ling Luo
- People's Liberation Army Strategic Support Force Medical Center, Hangzhou, China
| | - Quan-Jun Zhao
- People's Liberation Army Strategic Support Force Medical Center, Hangzhou, China
| | - Shao-Yan Si
- People's Liberation Army Strategic Support Force Medical Center, Hangzhou, China
| | - Bing-Xin Xu
- People's Liberation Army Strategic Support Force Medical Center, Hangzhou, China
| | - Tao Wang
- People's Liberation Army Strategic Support Force Medical Center, Hangzhou, China
| | - Ling-Yu Gao
- Zhejiang University School of Medicine, Hangzhou, China
| | - Jian-Wen Gu
- People's Liberation Army Strategic Support Force Medical Center, Hangzhou, China.
| |
Collapse
|
26
|
Miyai K, Kawauchi S, Kato T, Yamamoto T, Mukai Y, Yamamoto T, Sato S. Axonal damage and behavioral deficits in rats with repetitive exposure of the brain to laser-induced shock waves: Effects of inter-exposure time. Neurosci Lett 2021; 749:135722. [PMID: 33592306 DOI: 10.1016/j.neulet.2021.135722] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 02/05/2021] [Accepted: 02/06/2021] [Indexed: 10/22/2022]
Abstract
Much attention has been given to effects of repeated exposure to a shock wave as a possible factor causing severe higher brain dysfunction and post-traumatic stress disorder (PTSD)-like symptoms in patients with mild to moderate blast-induced traumatic brain injury (bTBI). However, it is unclear how the repeated exposure and the inter-exposure time affect the brain. In this study, we topically applied low-impulse (∼54 Pa·s) laser-induced shock waves (LISWs; peak pressure, ∼75.7 MPa) to the rat brain once or twice with the different inter-exposure times (15 min, 1 h, 3 h, 24 h and 7 days) and examined anxiety-related behavior and motor dysfunction in the rats as well as expression of β-amyloid precursor protein (APP) as an axonal damage marker in the brains of the rats. The averaged APP expression scores for the rat brains doubly-exposed to LISWs with inter-exposure times from 15 min to 24 h were significantly higher than those for rats with a single exposure (P < 0.0001). The rats with double exposure to LISWs showed significantly more frequent anxiety-related behavior (P < 0.05) and poorer motor function (P < 0.01) than those of rats with a single exposure. When the inter-exposure time was extended to 7 days, however, the rats showed no significant differences either in axonal damage score or level of motor dysfunction. The results suggest that the cumulative effects of shock wave-related brain injury can be avoided with an appropriate inter-exposure time. However, clinical bTBI occurs in much more complex environments than those in our model. Further study considering other factors, such as the effects of acceleration, is needed to know the clinically-relevant, necessary inter-exposure time.
Collapse
Affiliation(s)
- Kosuke Miyai
- Military Medicine Research Unit, Japan Ground Self Defense Force, Setagaya, Tokyo, Japan
| | - Satoko Kawauchi
- Division of Biomedical Information Sciences, National Defense Medical College Research Institute, Tokorozawa, Saitama, Japan
| | - Tamaki Kato
- Military Medicine Research Unit, Japan Ground Self Defense Force, Setagaya, Tokyo, Japan
| | - Tetsuo Yamamoto
- Military Medicine Research Unit, Japan Ground Self Defense Force, Setagaya, Tokyo, Japan
| | - Yasuo Mukai
- Military Medicine Research Unit, Japan Ground Self Defense Force, Setagaya, Tokyo, Japan
| | - Taisuke Yamamoto
- Military Medicine Research Unit, Japan Ground Self Defense Force, Setagaya, Tokyo, Japan
| | - Shunichi Sato
- Division of Biomedical Information Sciences, National Defense Medical College Research Institute, Tokorozawa, Saitama, Japan.
| |
Collapse
|
27
|
Huang MX, Huang CW, Harrington DL, Nichols S, Robb-Swan A, Angeles-Quinto A, Le L, Rimmele C, Drake A, Song T, Huang JW, Clifford R, Ji Z, Cheng CK, Lerman I, Yurgil KA, Lee RR, Baker DG. Marked Increases in Resting-State MEG Gamma-Band Activity in Combat-Related Mild Traumatic Brain Injury. Cereb Cortex 2021; 30:283-295. [PMID: 31041986 DOI: 10.1093/cercor/bhz087] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 03/29/2019] [Accepted: 04/01/2019] [Indexed: 01/08/2023] Open
Abstract
Combat-related mild traumatic brain injury (mTBI) is a leading cause of sustained impairments in military service members and veterans. Recent animal studies show that GABA-ergic parvalbumin-positive interneurons are susceptible to brain injury, with damage causing abnormal increases in spontaneous gamma-band (30-80 Hz) activity. We investigated spontaneous gamma activity in individuals with mTBI using high-resolution resting-state magnetoencephalography source imaging. Participants included 25 symptomatic individuals with chronic combat-related blast mTBI and 35 healthy controls with similar combat experiences. Compared with controls, gamma activity was markedly elevated in mTBI participants throughout frontal, parietal, temporal, and occipital cortices, whereas gamma activity was reduced in ventromedial prefrontal cortex. Across groups, greater gamma activity correlated with poorer performances on tests of executive functioning and visuospatial processing. Many neurocognitive associations, however, were partly driven by the higher incidence of mTBI participants with both higher gamma activity and poorer cognition, suggesting that expansive upregulation of gamma has negative repercussions for cognition particularly in mTBI. This is the first human study to demonstrate abnormal resting-state gamma activity in mTBI. These novel findings suggest the possibility that abnormal gamma activities may be a proxy for GABA-ergic interneuron dysfunction and a promising neuroimaging marker of insidious mild head injuries.
Collapse
Affiliation(s)
- Ming-Xiong Huang
- Radiology, Research, and Psychiatry Services, VA San Diego Healthcare System, San Diego, CA, USA.,Department of Radiology, University of California, San Diego, CA, USA
| | - Charles W Huang
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Deborah L Harrington
- Radiology, Research, and Psychiatry Services, VA San Diego Healthcare System, San Diego, CA, USA.,Department of Radiology, University of California, San Diego, CA, USA
| | - Sharon Nichols
- Department of Neuroscience, University of California, San Diego, CA, USA
| | - Ashley Robb-Swan
- Radiology, Research, and Psychiatry Services, VA San Diego Healthcare System, San Diego, CA, USA.,Department of Radiology, University of California, San Diego, CA, USA
| | - Annemarie Angeles-Quinto
- Radiology, Research, and Psychiatry Services, VA San Diego Healthcare System, San Diego, CA, USA.,Department of Radiology, University of California, San Diego, CA, USA
| | - Lu Le
- ASPIRE Center, VASDHS Residential Rehabilitation Treatment Program, San Diego, CA, USA
| | - Carl Rimmele
- ASPIRE Center, VASDHS Residential Rehabilitation Treatment Program, San Diego, CA, USA
| | - Angela Drake
- Cedar Sinai Medical Group Chronic Pain Program, Beverly Hills, CA, USA
| | - Tao Song
- Department of Radiology, University of California, San Diego, CA, USA
| | - Jeffrey W Huang
- Department of Computer Science, Columbia University, New York, NY, USA
| | - Royce Clifford
- Radiology, Research, and Psychiatry Services, VA San Diego Healthcare System, San Diego, CA, USA.,Department of Psychiatry, University of California, San Diego, CA, USA.,VA Center of Excellence for Stress and Mental Health, San Diego, CA, USA
| | - Zhengwei Ji
- Department of Radiology, University of California, San Diego, CA, USA
| | - Chung-Kuan Cheng
- Department of Computer Science and Engineering, University of California, San Diego, CA, USA
| | - Imanuel Lerman
- Radiology, Research, and Psychiatry Services, VA San Diego Healthcare System, San Diego, CA, USA
| | - Kate A Yurgil
- Radiology, Research, and Psychiatry Services, VA San Diego Healthcare System, San Diego, CA, USA.,VA Center of Excellence for Stress and Mental Health, San Diego, CA, USA.,Department of Psychological Sciences, Loyola University, New Orleans, LA, USA
| | - Roland R Lee
- Radiology, Research, and Psychiatry Services, VA San Diego Healthcare System, San Diego, CA, USA.,Department of Radiology, University of California, San Diego, CA, USA
| | - Dewleen G Baker
- Radiology, Research, and Psychiatry Services, VA San Diego Healthcare System, San Diego, CA, USA.,Department of Psychiatry, University of California, San Diego, CA, USA.,VA Center of Excellence for Stress and Mental Health, San Diego, CA, USA
| |
Collapse
|
28
|
Ríos JD, Hughes CK, Lally J, Wienandt N, Esquivel C, Serhan CN, Weitzel EK. Neuroprotectin D1 Attenuates Blast Overpressure Induced Reactive Microglial Cells in the Cochlea. Laryngoscope 2021; 131:E2018-E2025. [PMID: 33427310 DOI: 10.1002/lary.29337] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 12/02/2020] [Accepted: 12/08/2020] [Indexed: 12/31/2022]
Abstract
OBJECTIVE/HYPOTHESIS We examined a neuroinflammatory response associated with glial activation in the cochlea exposed to blast overpressure and evaluated the potential therapeutic efficacy of specialized pro-resolving mediators such as neuroprotectin D1, NPD1; (10R, 17S-dihydroxy-4Z, 7Z, 11E, 13E, 15Z, 19Z-docosahexaenoic acid) in a rodent blast-induced auditory injury model. STUDY DESIGN Animal Research. METHODS A compressed-air driven shock tube was used to expose anesthetized adult male Long-Evan rats to shock waves simulating an open-field blast exposure. Approximately 30 minutes after blast exposure, rats were treated with NPD1 (100 ng/kg body wt.) or vehicle delivered intravenously via tail vein injection. Rats were then euthanized 48 hours after blast exposure. Unexposed rats were included as controls. Tissue sections containing both middle and inner ear were prepared with hematoxylin-eosin staining to elucidate histopathological changes associated with blast exposure. Cochlear tissues were evaluated for relative expression of ionized calcium-binding adaptor 1 (Iba1), as an indicator of microglial activation by immunohistochemistry and western blot analyses. RESULTS Our animal model resulted in an acute injury mechanism manifested by damage to the tympanic membrane, hemorrhage, infiltration of inflammatory cells, and increased expression of Iba1 protein. Moreover, therapeutic intervention with NPD1 significantly reduced Iba1 expression in the cochlea, suggesting a reduction of a neuroinflammatory response caused by blast overpressure. CONCLUSIONS Blast overpressure resulted in an increased expression of proteins involved in gliosis within the auditory system, which were reduced by NPD1. Treatment of NPD1 suggests an effective strategy to reduce or halt auditory microglial cell activation due to primary blast exposure. LEVEL OF EVIDENCE NA Laryngoscope, 131:E2018-E2025, 2021.
Collapse
Affiliation(s)
- José David Ríos
- US Army Institute of Surgical Research, JBSA Fort Sam Houston, San Antonio, Texas, U.S.A
| | - Charlotte K Hughes
- US Army Institute of Surgical Research, JBSA Fort Sam Houston, San Antonio, Texas, U.S.A
| | - John Lally
- US Army Institute of Surgical Research, JBSA Fort Sam Houston, San Antonio, Texas, U.S.A
| | - Nathan Wienandt
- US Army Institute of Surgical Research, JBSA Fort Sam Houston, San Antonio, Texas, U.S.A
| | - Carlos Esquivel
- Department of Defense (DoD) Hearing Center of Excellence, Defense Health Agency, Joint Base San Antonio-Lackland, San Antonio, Texas, U.S.A
| | - Charles N Serhan
- Center for Experimental Therapeutics and Reperfusion Injury, Brigham and Women's Hospital and Department of Anesthesia, Perioperative and Pain Medicine, Harvard Medical School, Boston, Massachusetts, U.S.A
| | - Erik K Weitzel
- US Army Institute of Surgical Research, JBSA Fort Sam Houston, San Antonio, Texas, U.S.A.,Department of Defense (DoD) Hearing Center of Excellence, Defense Health Agency, Joint Base San Antonio-Lackland, San Antonio, Texas, U.S.A
| |
Collapse
|
29
|
Uzunalli G, Herr S, Dieterly AM, Shi R, Lyle LT. Structural disruption of the blood-brain barrier in repetitive primary blast injury. Fluids Barriers CNS 2021; 18:2. [PMID: 33413513 PMCID: PMC7789532 DOI: 10.1186/s12987-020-00231-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 11/07/2020] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Blast-induced traumatic brain injury (bTBI) is a growing health concern due to the increased use of low-cost improvised explosive devices in modern warfare. Mild blast exposures are common amongst military personnel; however, these women and men typically do not have adequate recovery time from their injuries due to the transient nature of behavioral symptoms. bTBI has been linked to heterogeneous neuropathology, including brain edema, neuronal degeneration and cognitive abnormalities depending on the intensity of blast overpressure and frequency. Recent studies have reported heterogeneity in blood-brain barrier (BBB) permeability following blast injury. There still remains a limited understanding of the pathologic changes in the BBB following primary blast injuries. In this study, our goal was to elucidate the pathologic pattern of BBB damage through structural analysis following single and repetitive blast injury using a clinically relevant rat model of bTBI. METHODS A validated, open-ended shock tube model was used to deliver single or repetitive primary blast waves. The pathology of the BBB was assessed using immunofluorescence and immunohistochemistry assays. All data were analyzed using the one-way ANOVA test. RESULTS We have demonstrated that exposure to repetitive blast injury affects the desmin-positive and CD13-positive subpopulations of pericytes in the BBB. Changes in astrocytes and microglia were also detected. CONCLUSION This study provides analysis of the BBB components after repetitive blast injury. These results will be critical as preventative and therapeutic strategies are established for veterans recovering from blast-induced traumatic brain injury.
Collapse
Affiliation(s)
- Gozde Uzunalli
- Department of Comparative Pathobiology, Purdue University College of Veterinary Medicine, West Lafayette, IN, USA
| | - Seth Herr
- Department of Basic Medical Sciences, Purdue University College of Veterinary Medicine, West Lafayette, IN, USA
| | - Alexandra M Dieterly
- Department of Comparative Pathobiology, Purdue University College of Veterinary Medicine, West Lafayette, IN, USA
| | - Riyi Shi
- Department of Basic Medical Sciences, Purdue University College of Veterinary Medicine, West Lafayette, IN, USA
- Purdue University Weldon School of Biomedical Engineering, West Lafayette, IN, USA
| | - L Tiffany Lyle
- Department of Comparative Pathobiology, Purdue University College of Veterinary Medicine, West Lafayette, IN, USA.
- Center for Cancer Research, Purdue University, West Lafayette, IN, USA.
- Center for Comparative Translational Research, Purdue University, West Lafayette, IN, USA.
| |
Collapse
|
30
|
Shin MK, Vázquez-Rosa E, Cintrón-Pérez CJ, Riegel WA, Harper MM, Ritzel D, Pieper AA. Characterization of the Jet-Flow Overpressure Model of Traumatic Brain Injury in Mice. Neurotrauma Rep 2021; 2:1-13. [PMID: 33748810 PMCID: PMC7962691 DOI: 10.1089/neur.2020.0020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The jet-flow overpressure chamber (OPC) has been previously reported as a model of blast-mediated traumatic brain injury (bTBI). However, rigorous characterization of the features of this injury apparatus shows that it fails to recapitulate exposure to an isolated blast wave. Through combined experimental and computational modeling analysis of gas-dynamic flow conditions, we show here that the jet-flow OPC produces a collimated high-speed jet flow with extreme dynamic pressure that delivers a severe compressive impulse. Variable rupture dynamics of the diaphragm through which the jet flow originates also generate a weak and infrequent shock front. In addition, there is a component of acceleration-deceleration injury to the head as it is agitated in the headrest. Although not a faithful model of free-field blast exposure, the jet-flow OPC produces a complex multi-modal model of TBI that can be useful in laboratory investigation of putative TBI therapies and fundamental neurophysiological processes after brain injury.
Collapse
Affiliation(s)
- Min-Kyoo Shin
- Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, Ohio, USA.,Department of Psychiatry and Department of Neuroscience, Case Western Reserve University, Cleveland, Ohio, USA.,Geriatric Research Education and Clinical Centers, Louis Stokes Cleveland VAMC, Cleveland, Ohio, USA
| | - Edwin Vázquez-Rosa
- Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, Ohio, USA.,Department of Psychiatry and Department of Neuroscience, Case Western Reserve University, Cleveland, Ohio, USA.,Geriatric Research Education and Clinical Centers, Louis Stokes Cleveland VAMC, Cleveland, Ohio, USA
| | - Coral J Cintrón-Pérez
- Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, Ohio, USA.,Department of Psychiatry and Department of Neuroscience, Case Western Reserve University, Cleveland, Ohio, USA.,Geriatric Research Education and Clinical Centers, Louis Stokes Cleveland VAMC, Cleveland, Ohio, USA
| | - William A Riegel
- Stumptown Research and Development, LLC, Black Mountain, North Carolina, USA
| | - Matthew M Harper
- Center for the Prevention and Treatment of Visual Loss, Veterans Affairs Medical Center, Iowa City, Iowa, USA.,Departments of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, Iowa, USA
| | - David Ritzel
- Dyn-FX Consulting, Ltd., Amherstburg, Ontario, Canada
| | - Andrew A Pieper
- Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, Ohio, USA.,Department of Psychiatry and Department of Neuroscience, Case Western Reserve University, Cleveland, Ohio, USA.,Geriatric Research Education and Clinical Centers, Louis Stokes Cleveland VAMC, Cleveland, Ohio, USA
| |
Collapse
|
31
|
Muresanu DF, Sharma A, Sahib S, Tian ZR, Feng L, Castellani RJ, Nozari A, Lafuente JV, Buzoianu AD, Sjöquist PO, Patnaik R, Wiklund L, Sharma HS. Diabetes exacerbates brain pathology following a focal blast brain injury: New role of a multimodal drug cerebrolysin and nanomedicine. PROGRESS IN BRAIN RESEARCH 2020; 258:285-367. [PMID: 33223037 DOI: 10.1016/bs.pbr.2020.09.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Blast brain injury (bBI) is a combination of several forces of pressure, rotation, penetration of sharp objects and chemical exposure causing laceration, perforation and tissue losses in the brain. The bBI is quite prevalent in military personnel during combat operations. However, no suitable therapeutic strategies are available so far to minimize bBI pathology. Combat stress induces profound cardiovascular and endocrine dysfunction leading to psychosomatic disorders including diabetes mellitus (DM). This is still unclear whether brain pathology in bBI could exacerbate in DM. In present review influence of DM on pathophysiology of bBI is discussed based on our own investigations. In addition, treatment with cerebrolysin (a multimodal drug comprising neurotrophic factors and active peptide fragments) or H-290/51 (a chain-breaking antioxidant) using nanowired delivery of for superior neuroprotection on brain pathology in bBI in DM is explored. Our observations are the first to show that pathophysiology of bBI is exacerbated in DM and TiO2-nanowired delivery of cerebrolysin induces profound neuroprotection in bBI in DM, not reported earlier. The clinical significance of our findings with regard to military medicine is discussed.
Collapse
Affiliation(s)
- Dafin F Muresanu
- Department of Clinical Neurosciences, University of Medicine & Pharmacy, Cluj-Napoca, Romania; "RoNeuro" Institute for Neurological Research and Diagnostic, Cluj-Napoca, Romania
| | - Aruna Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden.
| | - Seaab Sahib
- Department of Chemistry & Biochemistry, University of Arkansas, Fayetteville, AR, United States
| | - Z Ryan Tian
- Department of Chemistry & Biochemistry, University of Arkansas, Fayetteville, AR, United States
| | - Lianyuan Feng
- Department of Neurology, Bethune International Peace Hospital, Shijiazhuang, Hebei Province, China
| | - Rudy J Castellani
- Department of Pathology, University of Maryland, Baltimore, MD, United States
| | - Ala Nozari
- Anesthesiology & Intensive Care, Massachusetts General Hospital, Boston, MA, United States
| | - José Vicente Lafuente
- LaNCE, Department of Neuroscience, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain
| | - Anca D Buzoianu
- Department of Clinical Pharmacology and Toxicology, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Per-Ove Sjöquist
- Division of Cardiology, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Ranjana Patnaik
- Department of Biomaterials, School of Biomedical Engineering, Indian Institute of Technology, Banaras Hindu University, Varanasi, India
| | - Lars Wiklund
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden
| | - Hari Shanker Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
32
|
Huang MX, Nichols S, Robb-Swan A, Angeles-Quinto A, Harrington DL, Drake A, Huang CW, Song T, Diwakar M, Risbrough VB, Matthews S, Clifford R, Cheng CK, Huang JW, Sinha A, Yurgil KA, Ji Z, Lerman I, Lee RR, Baker DG. MEG Working Memory N-Back Task Reveals Functional Deficits in Combat-Related Mild Traumatic Brain Injury. Cereb Cortex 2020; 29:1953-1968. [PMID: 29668852 DOI: 10.1093/cercor/bhy075] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 03/11/2018] [Accepted: 03/13/2018] [Indexed: 12/24/2022] Open
Abstract
Combat-related mild traumatic brain injury (mTBI) is a leading cause of sustained cognitive impairment in military service members and Veterans. However, the mechanism of persistent cognitive deficits including working memory (WM) dysfunction is not fully understood in mTBI. Few studies of WM deficits in mTBI have taken advantage of the temporal and frequency resolution afforded by electromagnetic measurements. Using magnetoencephalography (MEG) and an N-back WM task, we investigated functional abnormalities in combat-related mTBI. Study participants included 25 symptomatic active-duty service members or Veterans with combat-related mTBI and 20 healthy controls with similar combat experiences. MEG source-magnitude images were obtained for alpha (8-12 Hz), beta (15-30 Hz), gamma (30-90 Hz), and low-frequency (1-7 Hz) bands. Compared with healthy combat controls, mTBI participants showed increased MEG signals across frequency bands in frontal pole (FP), ventromedial prefrontal cortex, orbitofrontal cortex (OFC), and anterior dorsolateral prefrontal cortex (dlPFC), but decreased MEG signals in anterior cingulate cortex. Hyperactivations in FP, OFC, and anterior dlPFC were associated with slower reaction times. MEG activations in lateral FP also negatively correlated with performance on tests of letter sequencing, verbal fluency, and digit symbol coding. The profound hyperactivations from FP suggest that FP is particularly vulnerable to combat-related mTBI.
Collapse
Affiliation(s)
- Ming-Xiong Huang
- Radiology, Research, and Psychiatry Services, VA San Diego Healthcare System, San Diego, CA, USA.,Department of Radiology, University of California, San Diego, CA, USA
| | - Sharon Nichols
- Department of Neuroscience, University of California, San Diego, CA, USA
| | - Ashley Robb-Swan
- Department of Radiology, University of California, San Diego, CA, USA
| | | | - Deborah L Harrington
- Radiology, Research, and Psychiatry Services, VA San Diego Healthcare System, San Diego, CA, USA.,Department of Radiology, University of California, San Diego, CA, USA
| | - Angela Drake
- Cedar Sinai Medical Group Chronic Pain Program, Beverly Hills, CA, USA
| | - Charles W Huang
- Department of Bioengineering, University of California, San Diego, CA, USA
| | - Tao Song
- Department of Radiology, University of California, San Diego, CA, USA
| | - Mithun Diwakar
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA
| | - Victoria B Risbrough
- Radiology, Research, and Psychiatry Services, VA San Diego Healthcare System, San Diego, CA, USA.,Department of Psychiatry, University of California, San Diego, CA, USA.,VA Center of Excellence for Stress and Mental Health, San Diego, CA, USA
| | - Scott Matthews
- ASPIRE Center, VASDHS Residential Rehabilitation Treatment Program, San Diego, CA, USA
| | - Royce Clifford
- Radiology, Research, and Psychiatry Services, VA San Diego Healthcare System, San Diego, CA, USA.,Department of Psychiatry, University of California, San Diego, CA, USA.,VA Center of Excellence for Stress and Mental Health, San Diego, CA, USA
| | - Chung-Kuan Cheng
- Department of Computer Science and Engineering, University of California, San Diego, CA, USA
| | | | - Anusha Sinha
- California Institute of Technology, Pasadena, CA, USA
| | - Kate A Yurgil
- Radiology, Research, and Psychiatry Services, VA San Diego Healthcare System, San Diego, CA, USA.,VA Center of Excellence for Stress and Mental Health, San Diego, CA, USA.,Loyola University New Orleans, LA, USA
| | - Zhengwei Ji
- Department of Radiology, University of California, San Diego, CA, USA
| | - Imanuel Lerman
- Radiology, Research, and Psychiatry Services, VA San Diego Healthcare System, San Diego, CA, USA
| | - Roland R Lee
- Radiology, Research, and Psychiatry Services, VA San Diego Healthcare System, San Diego, CA, USA.,Department of Radiology, University of California, San Diego, CA, USA
| | - Dewleen G Baker
- Radiology, Research, and Psychiatry Services, VA San Diego Healthcare System, San Diego, CA, USA.,Department of Psychiatry, University of California, San Diego, CA, USA.,VA Center of Excellence for Stress and Mental Health, San Diego, CA, USA
| |
Collapse
|
33
|
Smith KD, Chen T, Gan RZ. Hearing Damage Induced by Blast Overpressure at Mild TBI Level in a Chinchilla Model. Mil Med 2020; 185:248-255. [DOI: 10.1093/milmed/usz309] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Abstract
Introduction
The peripheral auditory system and various structures within the central auditory system are vulnerable to blast injuries, and even blast overpressure is at relatively mild traumatic brain injury (TBI) level. However, the extent of hearing loss in relation to blast number and time course of post-blast is not well understood. This study reports the progressive hearing damage measured in chinchillas after multiple blast exposures at mild TBI levels (103–138 kPa or 15–20 psi).
Materials and Methods
Sixteen animals (two controls) were exposed to two blasts and three blasts, respectively, in two groups with both ears plugged with foam earplugs to prevent the eardrum from rupturing. Auditory brainstem response (ABR) and distortion product otoacoustic emission (DPOAE) were measured in pre- and post-blasts. Immunohistochemical study of chinchilla brains were performed at the end of experiment.
Results
Results show that the ABR threshold and DPOAE level shifts in 2-blast animals were recovered after 7 days. In 3-blast animals, the ABR and DPOAE shifts remained at 26 and 23 dB, respectively after 14 days. Variation of auditory cortex damage between 2-blast and 3-blast was also observed in immunofluorescence images.
Conclusions
This study demonstrates that the number of blasts causing mild TBI critically affects hearing damage.
Collapse
Affiliation(s)
- Kyle D Smith
- School of Aerospace and Mechanical Engineering, University of Oklahoma, 865 Asp Avenue, Norman, OK 73019
| | - Tao Chen
- School of Aerospace and Mechanical Engineering, University of Oklahoma, 865 Asp Avenue, Norman, OK 73019
| | - Rong Z Gan
- School of Aerospace and Mechanical Engineering, University of Oklahoma, 865 Asp Avenue, Norman, OK 73019
| |
Collapse
|
34
|
Beitchman JA, Griffiths DR, Hur Y, Ogle SB, Bromberg CE, Morrison HW, Lifshitz J, Adelson PD, Thomas TC. Experimental Traumatic Brain Injury Induces Chronic Glutamatergic Dysfunction in Amygdala Circuitry Known to Regulate Anxiety-Like Behavior. Front Neurosci 2020; 13:1434. [PMID: 32038140 PMCID: PMC6985437 DOI: 10.3389/fnins.2019.01434] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 12/18/2019] [Indexed: 01/01/2023] Open
Abstract
Up to 50% of traumatic brain injury (TBI) survivors demonstrate persisting and late-onset anxiety disorders indicative of limbic system dysregulation, yet the pathophysiology underlying the symptoms is unclear. We hypothesize that the development of TBI-induced anxiety-like behavior in an experimental model of TBI is mediated by changes in glutamate neurotransmission within the amygdala. Adult, male Sprague-Dawley rats underwent midline fluid percussion injury or sham surgery. Anxiety-like behavior was assessed at 7 and 28 days post-injury (DPI) followed by assessment of real-time glutamate neurotransmission in the basolateral amygdala (BLA) and central nucleus of the amygdala (CeA) using glutamate-selective microelectrode arrays. The expression of anxiety-like behavior at 28 DPI coincided with decreased evoked glutamate release and slower glutamate clearance in the CeA, not BLA. Numerous factors contribute to the changes in glutamate neurotransmission over time. In two additional animal cohorts, protein levels of glutamatergic transporters (Glt-1 and GLAST) and presynaptic modulators of glutamate release (mGluR2, TrkB, BDNF, and glucocorticoid receptors) were quantified using automated capillary western techniques at 28 DPI. Astrocytosis and microglial activation have been shown to drive maladaptive glutamate signaling and were histologically assessed over 28 DPI. Alterations in glutamate neurotransmission could not be explained by changes in protein levels for glutamate transporters, mGluR2 receptors, astrocytosis, and microglial activation. Presynaptic modulators, BDNF and TrkB, were significantly decreased at 28 DPI in the amygdala. Dysfunction in presynaptic regulation of glutamate neurotransmission may contribute to anxiety-related behavior and serve as a therapeutic target to improve circuit function.
Collapse
Affiliation(s)
- Joshua A Beitchman
- Barrow Neurological Institute at Phoenix Children's Hospital, Phoenix, AZ, United States.,Department of Child Health, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, United States.,College of Graduate Studies, Midwestern University, Glendale, AZ, United States
| | - Daniel R Griffiths
- Barrow Neurological Institute at Phoenix Children's Hospital, Phoenix, AZ, United States.,Department of Child Health, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, United States
| | - Yerin Hur
- Barrow Neurological Institute at Phoenix Children's Hospital, Phoenix, AZ, United States.,Department of Child Health, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, United States
| | - Sarah B Ogle
- Barrow Neurological Institute at Phoenix Children's Hospital, Phoenix, AZ, United States.,Department of Child Health, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, United States.,Banner University Medical Center, Phoenix, AZ, United States
| | - Caitlin E Bromberg
- Barrow Neurological Institute at Phoenix Children's Hospital, Phoenix, AZ, United States.,Department of Child Health, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, United States
| | - Helena W Morrison
- College of Nursing, University of Arizona, Tucson, AZ, United States
| | - Jonathan Lifshitz
- Barrow Neurological Institute at Phoenix Children's Hospital, Phoenix, AZ, United States.,Department of Child Health, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, United States.,Phoenix VA Health Care System, Phoenix, AZ, United States
| | - P David Adelson
- Barrow Neurological Institute at Phoenix Children's Hospital, Phoenix, AZ, United States.,Department of Child Health, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, United States
| | - Theresa Currier Thomas
- Barrow Neurological Institute at Phoenix Children's Hospital, Phoenix, AZ, United States.,Department of Child Health, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, United States.,Phoenix VA Health Care System, Phoenix, AZ, United States
| |
Collapse
|
35
|
Shura RD, Epstein EL, Armistead-Jehle P, Cooper DB, Eapen BC. Assessment and Treatment of Concussion in Service Members and Veterans. Concussion 2020. [DOI: 10.1016/b978-0-323-65384-8.00013-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
36
|
Dieter JN, Engel SD. Traumatic Brain Injury and Posttraumatic Stress Disorder: Comorbid Consequences of War. Neurosci Insights 2019; 14:1179069519892933. [PMID: 32363347 PMCID: PMC7176398 DOI: 10.1177/1179069519892933] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 11/11/2019] [Indexed: 12/14/2022] Open
Abstract
Scientific literature is reviewed supporting a “consequence of war syndrome (CWS)” in Operation Enduring Freedom/Operation Iraqi Freedom/Operation New Dawn soldiers. CWS constituents include chronic pain and insomnia, other physical complaints, posttraumatic stress disorder (PTSD), anxiety, depression, and neuropsychological deficits. The foundation of CWS lies with the chronic stressors inherent to deployment and the cascade of biological events mediated and maintained by hypothalamic-pituitary-adrenal (HPA) axis dysregulation. Such dysregulation is modified by the individual’s specific experiences at war, difficulty reintegrating to post-deployment life, and the onset or exacerbation of the chronic and comorbid physical, emotional, and cognitive disorders. The circuit network between the prefrontal cortex (PFC), amygdala, and hippocampus is particularly sensitive to the consequences of war. The review’s specific conclusions are as follows: HPA axis dysregulation contributes to the chronic insomnia and hyperarousal seen in soldiers. There is considerable symptom overlap between PTSD and blast-related head injury, and it is difficult to determine the relative contributions of the two disorders to abnormal imaging studies. In some cases, traumatic brain injury (TBI) may directly precipitate PTSD symptoms. While not intuitive, the relationship between TBI and postconcussion syndrome appears indirect and mediated through PTSD. Blast-related or conventional head injury may have little long-term impact on neuropsychological functioning; contrarily, PTSD particularly accounts for current cognitive deficits. The psychological experience of CWS includes a “war-within” where soldiers continue to battle an internalized enemy. Successful treatment of CWS entails transdisciplinary care that addresses each of the constituent disorders.
Collapse
Affiliation(s)
- John Ni Dieter
- Intrepid Spirit Center, Carl R. Darnall Army Medical Center, U.S. Army, Fort Hood, TX, USA
| | - Scot D Engel
- Intrepid Spirit Center, Carl R. Darnall Army Medical Center, U.S. Army, Fort Hood, TX, USA
| |
Collapse
|
37
|
Taylor MK, Hernández LM, Stump J, Tschiffely AE, Goforth CW, Laver DC, Ahlers ST. Blast exposure interacts with genetic variant 5HTTLPR to predict posttraumatic stress symptoms in military explosives personnel. Psychiatry Res 2019; 280:112519. [PMID: 31442670 DOI: 10.1016/j.psychres.2019.112519] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 08/01/2019] [Accepted: 08/14/2019] [Indexed: 11/18/2022]
Abstract
The first of its kind, this study determined whether blast exposure interacts with genetic variant 5HTTLPR to predict posttraumatic stress (PTS) symptoms in 78 military explosives operators. In all models, blast-exposed 5HTTLPR S carriers registered definitively higher PTS symptoms in comparison to non-exposed S carriers, as well as exposed and non-exposed LL carriers (all p < 0.01). All findings were robust to confounding influences of age and traumatic brain injury diagnosis. Not only is blast exposure prevalent in EOD personnel, but it also interacts with genetic predisposition to predict trauma symptoms in this unique, at-risk military population.
Collapse
Affiliation(s)
- Marcus K Taylor
- Biobehavioral Sciences Lab, Warfighter Performance Department, Naval Health Research Center, San Diego, CA, USA
| | - Lisa M Hernández
- Biobehavioral Sciences Lab, Warfighter Performance Department, Naval Health Research Center, San Diego, CA, USA; Leidos, Inc., San Diego, CA, USA.
| | - Jeremy Stump
- Biobehavioral Sciences Lab, Warfighter Performance Department, Naval Health Research Center, San Diego, CA, USA; Leidos, Inc., San Diego, CA, USA
| | - Anna E Tschiffely
- Neurotrauma Department, Operational and Undersea Medicine Directorate, Naval Medical Research Center, Silver Spring, MD, USA
| | - Carl W Goforth
- Neurotrauma Department, Operational and Undersea Medicine Directorate, Naval Medical Research Center, Silver Spring, MD, USA
| | - D Christine Laver
- Biobehavioral Sciences Lab, Warfighter Performance Department, Naval Health Research Center, San Diego, CA, USA; Leidos, Inc., San Diego, CA, USA
| | - Stephen T Ahlers
- Neurotrauma Department, Operational and Undersea Medicine Directorate, Naval Medical Research Center, Silver Spring, MD, USA
| |
Collapse
|
38
|
Chen T, Smith K, Jiang S, Zhang T, Gan RZ. Progressive hearing damage after exposure to repeated low-intensity blasts in chinchillas. Hear Res 2019; 378:33-42. [DOI: 10.1016/j.heares.2019.01.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 01/09/2019] [Accepted: 01/15/2019] [Indexed: 12/31/2022]
|
39
|
Keenan KE, Biller JR, Delfino JG, Boss MA, Does MD, Evelhoch JL, Griswold MA, Gunter JL, Hinks RS, Hoffman SW, Kim G, Lattanzi R, Li X, Marinelli L, Metzger GJ, Mukherjee P, Nordstrom RJ, Peskin AP, Perez E, Russek SE, Sahiner B, Serkova N, Shukla-Dave A, Steckner M, Stupic KF, Wilmes LJ, Wu HH, Zhang H, Jackson EF, Sullivan DC. Recommendations towards standards for quantitative MRI (qMRI) and outstanding needs. J Magn Reson Imaging 2019; 49:e26-e39. [PMID: 30680836 PMCID: PMC6663309 DOI: 10.1002/jmri.26598] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 11/16/2018] [Accepted: 11/16/2018] [Indexed: 12/12/2022] Open
Abstract
LEVEL OF EVIDENCE 5 Technical Efficacy: Stage 5 J. Magn. Reson. Imaging 2019.
Collapse
Affiliation(s)
- Kathryn E Keenan
- Physical Measurement Laboratory, National Institute of Standards and Technology, Boulder, Colorado, USA
| | - Joshua R Biller
- Physical Measurement Laboratory, National Institute of Standards and Technology, Boulder, Colorado, USA
| | - Jana G Delfino
- Center for Devices and Radiological Health, Food and Drug Administration, Silver Spring, Maryland, USA
| | - Michael A Boss
- Physical Measurement Laboratory, National Institute of Standards and Technology, Boulder, Colorado, USA
- Department of Physics, University of Colorado, Boulder, Colorado, USA
| | - Mark D Does
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, Tennessee, USA
| | | | - Mark A Griswold
- Department of Radiology, Case Western Reserve University, Cleveland, Ohio, USA
| | - Jeffrey L Gunter
- Departments of Radiology and Information Technology, Mayo Clinic, Rochester, Minnesota, USA
| | | | - Stuart W Hoffman
- Rehabilitation Research and Development Service, Department of Veterans Affairs, Washington, DC, USA
| | - Geena Kim
- College of Computer & Information Sciences, Regis University, Denver, Colorado, USA
| | - Riccardo Lattanzi
- Department of Radiology, New York University School of Medicine, New York, New York, USA
| | - Xiaojuan Li
- Program of Advanced Musculoskeletal Imaging (PAMI), Cleveland Clinic, Cleveland, Ohio, USA
| | | | - Gregory J Metzger
- Department of Radiology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Pratik Mukherjee
- Department of Radiology, University of California San Francisco, San Francisco, California, USA
| | | | - Adele P Peskin
- Information Technology Laboratory, National Institute of Standards and Technology, Boulder, Colorado, USA
| | | | - Stephen E Russek
- Physical Measurement Laboratory, National Institute of Standards and Technology, Boulder, Colorado, USA
| | - Berkman Sahiner
- Center for Devices and Radiological Health, Food and Drug Administration, Silver Spring, Maryland, USA
| | - Natalie Serkova
- Department of Radiology, Anschutz Medical Center, Aurora, Colorado, USA
| | - Amita Shukla-Dave
- Departments of Medical Physics and Radiology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | | | - Karl F Stupic
- Physical Measurement Laboratory, National Institute of Standards and Technology, Boulder, Colorado, USA
| | - Lisa J Wilmes
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California, USA
| | - Holden H Wu
- Department of Radiological Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA
| | | | - Edward F Jackson
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Daniel C Sullivan
- Department of Radiology, Duke University Medical Center, Durham, North Carolina, USA
| |
Collapse
|
40
|
Differences in Posttraumatic Stress Disorder, Depression, and Attribution of Symptoms in Service Members With Combat Versus Noncombat Mild Traumatic Brain Injury. J Head Trauma Rehabil 2019; 35:37-45. [PMID: 31033746 DOI: 10.1097/htr.0000000000000486] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE This study compares combat-related mild traumatic brain injury (mTBI) to non-combat-related mTBI in rates of posttraumatic stress disorder (PTSD) and depression after injury, severity of postconcussive symptoms (PCSs), and attribution of those symptoms to mTBI versus PTSD. PARTICIPANTS A total of 371 active duty service members (SMs) with documented history of mTBI, divided into combat and non-combat-related cohorts. DESIGN Retrospective cohort study. MAIN MEASURES Diagnoses of PTSD and depression based on medical record review and self-report. PCSs measured using Neurobehavioral Symptom Index. Attribution of symptoms based on a rating scale asking how much mTBI, PTSD, depression, deployment, or readjustment stress contributed to current symptoms. RESULTS Prevalence of PTSD was significantly higher after a combat-related mTBI, compared with a noncombat mTBI (P = .001). Prevalence of depression did not differ between the 2 groups. PCSs were high in both combat and noncombat mTBIs, with no statistical difference between groups. SMs with PTSD reported higher PCS, regardless of combat status. SMs without PTSD attributed symptoms mainly to mTBI, whereas SMs with PTSD, regardless of combat status, were much more likely to attribute symptoms to PTSD, depression, and deployment/readjustment stress. CONCLUSIONS This research contributes to our understanding of the complex interplay between mTBI and PTSD in both combat and noncombat injuries within the military population and the importance of addressing both simultaneously.
Collapse
|
41
|
Finan JD. Biomechanical simulation of traumatic brain injury in the rat. Clin Biomech (Bristol, Avon) 2019; 64:114-121. [PMID: 29449041 PMCID: PMC6068009 DOI: 10.1016/j.clinbiomech.2018.01.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 12/08/2017] [Accepted: 01/18/2018] [Indexed: 02/07/2023]
Abstract
BACKGROUND Traumatic brain injury poses an enormous clinical challenge. Rats are the animals most widely used in pre-clinical experiments. Biomechanical simulations of these experiments predict the distribution of mechanical stress and strain across key tissues. It is in theory possible to dramatically increase our understanding of traumatic brain injury pathophysiology by correlating stress and strain with histological and functional injury outcomes. This review summarizes the state of the art in biomechanical simulation of traumatic brain injury in the rat. It also places this body of knowledge in the context of the wider effort to understand traumatic brain injury in rats and in humans. METHODS Peer-reviewed research articles on biomechanical simulation of traumatic brain injury in the rat were reviewed and summarized. FINDINGS When mathematical models of traumatic brain injury in the rat first emerged, they relied on scant data regarding biomechanical properties. The data on relevant biomechanical properties has increased recently. However, experimental models of traumatic brain injury in the rat have also become less homogeneous. New and modified models have emerged that are biomechanically distinct from traditional models. INTERPRETATION Important progress in mathematical modeling and measurement of biomechanical properties has led to credible, predictive simulations of traditional, experimental models of traumatic brain injury in the rat, such as controlled cortical impact. However, recent trends such as the increasing popularity of closed head models and blast models create new biomechanical challenges. Investigators studying rat brain biomechanics must continue to innovate to keep pace with these developments.
Collapse
|
42
|
Epstein EL, Martindale SL, Va Mid-Atlantic Mirecc Workgroup, Miskey HM. Posttraumatic stress disorder and traumatic brain Injury: Sex differences in veterans. Psychiatry Res 2019; 274:105-111. [PMID: 30784779 DOI: 10.1016/j.psychres.2019.01.097] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 01/17/2019] [Accepted: 01/18/2019] [Indexed: 12/13/2022]
Abstract
Around half of Iraq and Afghanistan war veterans with traumatic brain injury (TBI) have co-occurring posttraumatic stress disorder (PTSD). Research on the differences between male and female veterans with co-occurring PTSD/TBI is sparse. This study evaluated behavioral health differences between sexes with these conditions. Veterans (N = 1577) completed a structured psychiatric interview, TBI interview, and self-report interviews assessing sleep quality, alcohol use, substance use, pain, depression symptoms, PTSD symptoms, and combat exposure. Groups depended on the presence/absence of a lifetime PTSD diagnosis and history of TBI. Among veterans with PTSD and TBI, males and females were equally likely to meet criteria for current PTSD, and in the PTSD only group, male veterans were more likely to have current PTSD. Male veterans with PTSD were also more likely to meet criteria for lifetime alcohol and substance use disorders (AUD and SUD), and mild TBI. Although TBI severity did not differ between sexes in the TBI only group, female veterans were more likely to have a moderate/severe TBI among veterans with co-occurring PTSD. Female veterans without PTSD and TBI were more likely to have major depressive disorder (MDD). Significant sex differences were found for AUD, MDD, current PTSD, and TBI severity.
Collapse
Affiliation(s)
- Erica L Epstein
- Salisbury VA Health Care System, 1601 Brenner Ave, Salisbury, NC 28144, USA; VA Mid-Atlantic Mental Illness Research, Education, and Clinical Center (MIRECC), 508 Fulton St, Durham, NC 27705, USA; Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157, USA.
| | - Sarah L Martindale
- Salisbury VA Health Care System, 1601 Brenner Ave, Salisbury, NC 28144, USA; VA Mid-Atlantic Mental Illness Research, Education, and Clinical Center (MIRECC), 508 Fulton St, Durham, NC 27705, USA; Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157, USA.
| | | | - Holly M Miskey
- Salisbury VA Health Care System, 1601 Brenner Ave, Salisbury, NC 28144, USA; VA Mid-Atlantic Mental Illness Research, Education, and Clinical Center (MIRECC), 508 Fulton St, Durham, NC 27705, USA; Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157, USA.
| |
Collapse
|
43
|
Sours C, Kinnison J, Padmala S, Gullapalli RP, Pessoa L. Altered segregation between task-positive and task-negative regions in mild traumatic brain injury. Brain Imaging Behav 2019; 12:697-709. [PMID: 28456880 DOI: 10.1007/s11682-017-9724-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Changes in large-scale brain networks that accompany mild traumatic brain injury (mTBI) were investigated using functional magnetic resonance imaging (fMRI) during the N-back working memory task at two cognitive loads (1-back and 2-back). Thirty mTBI patients were examined during the chronic stage of injury and compared to 28 control participants. Demographics and behavioral performance were matched across groups. Due to the diffuse nature of injury, we hypothesized that there would be an imbalance in the communication between task-positive and Default Mode Network (DMN) regions in the context of effortful task execution. Specifically, a graph-theoretic measure of modularity was used to quantify the extent to which groups of brain regions tended to segregate into task-positive and DMN sub-networks. Relative to controls, mTBI patients showed reduced segregation between the DMN and task-positive networks, but increased functional connectivity within the DMN regions during the more cognitively demanding 2-back task. Together, our findings reveal that patients exhibit alterations in the communication between and within neural networks during a cognitively demanding task. These findings reveal altered processes that persist through the chronic stage of injury, highlighting the need for longitudinal research to map the neural recovery of mTBI patients.
Collapse
Affiliation(s)
- Chandler Sours
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, 22 South Greene Street, Baltimore, MD, 21201, USA.
| | - Joshua Kinnison
- Department of Psychology, University of Maryland, College Park, MD, 20742, USA
| | - Srikanth Padmala
- Department of Psychology, University of Maryland, College Park, MD, 20742, USA
| | - Rao P Gullapalli
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, 22 South Greene Street, Baltimore, MD, 21201, USA
| | - Luiz Pessoa
- Department of Psychology, University of Maryland, College Park, MD, 20742, USA
| |
Collapse
|
44
|
Tripathy A, Shade A, Erskine B, Bailey K, Grande A, deLong JJ, Perry G, Castellani RJ. No Evidence of Increased Chronic Traumatic Encephalopathy Pathology or Neurodegenerative Proteinopathy in Former Military Service Members: A Preliminary Study. J Alzheimers Dis 2019; 67:1277-1289. [DOI: 10.3233/jad-181039] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Arushi Tripathy
- Center for Neuropathology, Western Michigan University Homer Stryker MD School of Medicine, Kalamazoo, MI, USA
| | - Ashley Shade
- Center for Neuropathology, Western Michigan University Homer Stryker MD School of Medicine, Kalamazoo, MI, USA
| | - Brittany Erskine
- Center for Neuropathology, Western Michigan University Homer Stryker MD School of Medicine, Kalamazoo, MI, USA
| | - Kristi Bailey
- Center for Neuropathology, Western Michigan University Homer Stryker MD School of Medicine, Kalamazoo, MI, USA
| | - Abigail Grande
- Center for Neuropathology, Western Michigan University Homer Stryker MD School of Medicine, Kalamazoo, MI, USA
| | - Joyce J. deLong
- Center for Neuropathology, Western Michigan University Homer Stryker MD School of Medicine, Kalamazoo, MI, USA
| | - George Perry
- College of Sciences, University of Texas at San Antonio, San Antonio, TX, USA
| | - Rudy J. Castellani
- Center for Neuropathology, Western Michigan University Homer Stryker MD School of Medicine, Kalamazoo, MI, USA
- Departments of Pathology and Neuroscience, West Virginia University School of Medicine, Rockefeller Neuroscience Institute, Morgantown, WV, USA
| |
Collapse
|
45
|
Multi-Scale Modeling of Head Kinematics and Brain Tissue Response to Blast Exposure. Ann Biomed Eng 2019; 47:1993-2004. [PMID: 30671753 DOI: 10.1007/s10439-018-02193-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 12/19/2018] [Indexed: 12/22/2022]
Abstract
Injuries resulting from blast exposure have been increasingly prevalent in recent conflicts, with a particular focus on the risk of head injury. In the current study, a multibody model (GEBOD) was used to investigate the gross kinematics resulting from blast exposure, including longer duration events such as the fall and ground impact. Additionally, detailed planar head models, in the sagittal and transverse planes, were used to model the primary blast wave interaction with the head, and resulting tissue response. For severe blast load cases (scaled distance less than 2), the translational head accelerations during primary blast were found to increase as the height-of-burst (HOB) was lowered, while the HOB was found to have no effect for cases with scaled distance greater than 2. The HOB was found to affect both the magnitude and direction of rotational accelerations, with increasing magnitudes as the HOB deviated from the height of the head. The choice of ground contact stiffness was found to greatly affect the predicted head accelerations during ground impact. For a medium soil ground material, the kinematics during ground impact were greater for scaled distances exceeding 1.5, below which the primary blast produced greater kinematic head response.
Collapse
|
46
|
Castellani RJ, Perry G. Tau Biology, Tauopathy, Traumatic Brain Injury, and Diagnostic Challenges. J Alzheimers Dis 2019; 67:447-467. [PMID: 30584140 PMCID: PMC6398540 DOI: 10.3233/jad-180721] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/08/2018] [Indexed: 12/12/2022]
Abstract
There is considerable interest in the pathobiology of tau protein, given its potential role in neurodegenerative diseases and aging. Tau is an important microtubule associated protein, required for the assembly of tubulin into microtubules and maintaining structural integrity of axons. Tau has other diverse cellular functions involving signal transduction, cellular proliferation, developmental neurobiology, neuroplasticity, and synaptic activity. Alternative splicing results in tau isoforms with differing microtubule binding affinity, differing representation in pathological inclusions in certain disease states, and differing roles in developmental biology and homeostasis. Tau haplotypes confer differing susceptibility to neurodegeneration. Tau phosphorylation is a normal metabolic process, critical in controlling tau's binding to microtubules, and is ongoing within the brain at all times. Tau may be hyperphosphorylated, and may aggregate as detectable fibrillar deposits in tissues, in both aging and neurodegenerative disease. The hypothesis that p-tau is neurotoxic has prompted constructs related to isomers, low-n assembly intermediates or oligomers, and the "tau prion". Human postmortem studies have elucidated broad patterns of tauopathy, with tendencies for those patterns to differ as a function of disease phenotype. However, there is extensive overlap, not only between genuine neurodegenerative diseases, but also between aging and disease. Recent studies highlight uniqueness to pathological patterns, including a pattern attributed to repetitive head trauma, although clinical correlations have been elusive. The diagnostic process for tauopathies and neurodegenerative diseases in general is challenging in many respects, and may be particularly problematic for postmortem evaluation of former athletes and military service members.
Collapse
Affiliation(s)
- Rudy J. Castellani
- Departments of Pathology and Neuroscience, West Virginia University School of Medicine, Morgantown, WV, USA
| | - George Perry
- College of Sciences, University of Texas, San Antonio, San Antonio, TX, USA
| |
Collapse
|
47
|
Song H, Konan LM, Cui J, Johnson CE, Langenderfer M, Grant D, Ndam T, Simonyi A, White T, Demirci U, Mott DR, Schwer D, Hubler GK, Cernak I, DePalma RG, Gu Z. Ultrastructural brain abnormalities and associated behavioral changes in mice after low-intensity blast exposure. Behav Brain Res 2018. [PMID: 29526786 DOI: 10.1016/j.bbr.2018.03.007] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Explosive blast-induced mild traumatic brain injury (mTBI), a "signature wound" of recent military conflicts, commonly affects service members. While past blast injury studies have provided insights into TBI with moderate- to high-intensity explosions, the impact of primary low-intensity blast (LIB)-mediated pathobiology on neurological deficits requires further investigation. Our prior considerations of blast physics predicted ultrastructural injuries at nanoscale levels. Here, we provide quantitative data using a primary LIB injury murine model exposed to open field detonation of 350 g of high-energy explosive C4. We quantified ultrastructural and behavioral changes up to 30 days post blast injury (DPI). The use of an open-field experimental blast generated a primary blast wave with a peak overpressure of 6.76 PSI (46.6 kPa) at a 3-m distance from the center of the explosion, a positive phase duration of approximate 3.0 milliseconds (ms), a maximal impulse of 8.7 PSI × ms and a sharp rising time of 9 × 10-3 ms, with no apparent impact/acceleration in exposed animals. Neuropathologically, myelinated axonal damage was observed in blast-exposed groups at 7 DPI. Using transmission electron microscopy, we observed and quantified myelin sheath defects and mitochondrial abnormalities at 7 and 30 DPI. Inverse correlations between blast intensities and neurobehavioral outcomes including motor activities, anxiety levels, nesting behavior, spatial learning and memory occurred. These observations uncover unique ultrastructural brain abnormalities and associated behavioral changes due to primary blast injury and provide key insights into its pathogenesis and potential treatment.
Collapse
Affiliation(s)
- Hailong Song
- Department of Pathology & Anatomical Sciences, University of Missouri School of Medicine, Columbia, MO 65212, USA
| | - Landry M Konan
- Department of Pathology & Anatomical Sciences, University of Missouri School of Medicine, Columbia, MO 65212, USA
| | - Jiankun Cui
- Department of Pathology & Anatomical Sciences, University of Missouri School of Medicine, Columbia, MO 65212, USA; Truman VA Hospital Research Service, Columbia, MO 65201, USA
| | - Catherine E Johnson
- Department of Mining and Nuclear Engineering, Missouri University of Science and Technology, Rolla, MO 65409, USA
| | - Martin Langenderfer
- Department of Mining and Nuclear Engineering, Missouri University of Science and Technology, Rolla, MO 65409, USA
| | - DeAna Grant
- Electron Microscopy Core Facility, University of Missouri, Columbia, MO 65211, USA
| | - Tina Ndam
- Department of Pathology & Anatomical Sciences, University of Missouri School of Medicine, Columbia, MO 65212, USA
| | - Agnes Simonyi
- Department of Biochemistry, University of Missouri School of Medicine, Columbia, MO 65212, USA
| | - Tommi White
- Electron Microscopy Core Facility, University of Missouri, Columbia, MO 65211, USA
| | - Utkan Demirci
- Department of Radiology, Stanford University School of Medicine, Department of Electrical Engineering, Stanford University, Stanford, CA 94305, USA
| | - David R Mott
- U.S. Naval Research Lab, Washington, DC 20375, USA
| | - Doug Schwer
- U.S. Naval Research Lab, Washington, DC 20375, USA
| | - Graham K Hubler
- Sidney Kimmel Institute for Nuclear Renaissance, Department of Physics and Astronomy, University of Missouri, Columbia, MO 65211, USA
| | - Ibolja Cernak
- Canadian Military and Veterans' Clinical Rehabilitation, Faculty of Rehabilitation Medicine, University of Alberta, Edmonton, AB T6G 2G4, Canada
| | - Ralph G DePalma
- Office of Research and Development, Department of Veterans Affairs, Washington, DC 20420, USA
| | - Zezong Gu
- Department of Pathology & Anatomical Sciences, University of Missouri School of Medicine, Columbia, MO 65212, USA; Truman VA Hospital Research Service, Columbia, MO 65201, USA.
| |
Collapse
|
48
|
Yamamoto S, DeWitt DS, Prough DS. Impact & Blast Traumatic Brain Injury: Implications for Therapy. Molecules 2018; 23:E245. [PMID: 29373501 PMCID: PMC6017013 DOI: 10.3390/molecules23020245] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Revised: 01/22/2018] [Accepted: 01/24/2018] [Indexed: 12/23/2022] Open
Abstract
Traumatic brain injury (TBI) is one of the most frequent causes of combat casualties in Operations Iraqi Freedom (OIF), Enduring Freedom (OEF), and New Dawn (OND). Although less common than combat-related blast exposure, there have been significant numbers of blast injuries in civilian populations in the United States. Current United States Department of Defense (DoD) ICD-9 derived diagnoses of TBI in the DoD Health Care System show that, for 2016, severe and moderate TBIs accounted for just 0.7% and 12.9%, respectively, of the total of 13,634 brain injuries, while mild TBIs (mTBIs) accounted for 86% of the total. Although there is a report that there are differences in the frequency of long-term complications in mTBI between blast and non-blast TBIs, clinical presentation is classified by severity score rather than mechanism because severity scoring is associated with prognosis in clinical practice. Blast TBI (bTBI) is unique in its pathology and mechanism, but there is no treatment specific for bTBIs-these patients are treated similarly to TBIs in general and therapy is tailored on an individual basis. Currently there is no neuroprotective drug recommended by the clinical guidelines based on evidence.
Collapse
Affiliation(s)
- Satoshi Yamamoto
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, TX 77555, USA.
| | - Douglas S DeWitt
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, TX 77555, USA.
| | - Donald S Prough
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, TX 77555, USA.
| |
Collapse
|
49
|
Ling G. The need for VA leadership in advancing traumatic brain injury care. Brain Inj 2017; 31:1252-1255. [PMID: 28981346 DOI: 10.1080/02699052.2017.1359335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Traumatic brain injury (TBI) afflicts veterans, active duty service members and the civilian community. An estimated 5.3 million US men, women, and children live with a permanent TBI-related disability. There is no cure for TBI, and the discovery of new and effective treatments is complicated by the fact that TBI is multifaceted and varies from individual to individual. Due to its established research centers, wealth of veteran health data, and commitment to veteran health, the VA should be considered a natural leader for expanded TBI research.
Collapse
Affiliation(s)
- Geoffrey Ling
- a Professor of Neurology , Division of Neurocritical Care The Johns Hopkins Hospital 600 N. Wolfe St., Phipps 455 Baltimore , MD 21287
| |
Collapse
|
50
|
Wang Y, Sawyer TW, Tse YC, Fan C, Hennes G, Barnes J, Josey T, Weiss T, Nelson P, Wong TP. Primary Blast-Induced Changes in Akt and GSK 3β Phosphorylation in Rat Hippocampus. Front Neurol 2017; 8:413. [PMID: 28868045 PMCID: PMC5563325 DOI: 10.3389/fneur.2017.00413] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 07/31/2017] [Indexed: 12/30/2022] Open
Abstract
Traumatic brain injury (TBI) due to blast from improvised explosive devices has been a leading cause of morbidity and mortality in recent conflicts in Iraq and Afghanistan. However, the mechanisms of primary blast-induced TBI are not well understood. The Akt signal transduction pathway has been implicated in various brain pathologies including TBI. In the present study, the effects of simulated primary blast waves on the phosphorylation status of Akt and its downstream effector kinase, glycogen synthase kinase 3β (GSK3β), in rat hippocampus, were investigated. Male Sprague-Dawley (SD) rats (350–400 g) were exposed to a single pulse shock wave (25 psi; ~7 ms duration) and sacrificed 1 day, 1 week, or 6 weeks after exposure. Total and phosphorylated Akt, as well as phosphorylation of its downstream effector kinase GSK3β (at serine 9), were detected with western blot analysis and immunohistochemistry. Results showed that Akt phosphorylation at both serine 473 and threonine 308 was increased 1 day after blast on the ipsilateral side of the hippocampus, and this elevation persisted until at least 6 weeks postexposure. Similarly, phosphorylation of GSK3β at serine 9, which inhibits GSK3β activity, was also increased starting at 1 day and persisted until at least 6 weeks after primary blast on the ipsilateral side. In contrast, p-Akt was increased at 1 and 6 weeks on the contralateral side, while p-GSK3β was increased 1 day and 1 week after primary blast exposure. No significant changes in total protein levels of Akt and GSK were observed on either side of the hippocampus at any time points. Immunohistochemical results showed that increased p-Akt was mainly of neuronal origin in the CA1 region of the hippocampus and once phosphorylated, the majority was translocated to the dendritic and plasma membranes. Finally, electrophysiological data showed that evoked synaptic N-methyl-d-aspartate (NMDA) receptor activity was significantly increased 6 weeks after primary blast, suggesting that increased Akt phosphorylation may enhance synaptic NMDA receptor activation, or that enhanced synaptic NMDA receptor activation may increase Akt phosphorylation.
Collapse
Affiliation(s)
- Yushan Wang
- Defence Research and Development Canada, Suffield Research Centre, Medicine Hat, AB, Canada
| | - Thomas W Sawyer
- Defence Research and Development Canada, Suffield Research Centre, Medicine Hat, AB, Canada
| | - Yiu Chung Tse
- Department of Psychiatry, Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada
| | - Changyang Fan
- Defence Research and Development Canada, Suffield Research Centre, Medicine Hat, AB, Canada
| | - Grant Hennes
- Defence Research and Development Canada, Suffield Research Centre, Medicine Hat, AB, Canada
| | - Julia Barnes
- Defence Research and Development Canada, Suffield Research Centre, Medicine Hat, AB, Canada
| | - Tyson Josey
- Defence Research and Development Canada, Suffield Research Centre, Medicine Hat, AB, Canada
| | - Tracy Weiss
- Defence Research and Development Canada, Suffield Research Centre, Medicine Hat, AB, Canada
| | - Peggy Nelson
- Defence Research and Development Canada, Suffield Research Centre, Medicine Hat, AB, Canada
| | - Tak Pan Wong
- Department of Psychiatry, Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada
| |
Collapse
|