1
|
Gu L, Lai Z, Zhang C, Liu Z, Huo Y, Qian Y, Wang B, Wang Z, Zhao Z, Hu W, Ma M. (-) - (11R, 12S)-mefloquine ameliorates neuropathic pain by modulating Cx36-ER stress interaction in the pain-related central nervous system in rats. Life Sci 2025; 363:123405. [PMID: 39828229 DOI: 10.1016/j.lfs.2025.123405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 01/03/2025] [Accepted: 01/15/2025] [Indexed: 01/22/2025]
Abstract
AIMS To explore the specific molecular and cellular mechanisms of (-) - Mefloquine (one of Mefloquine's enantiomers) in modulating the interaction between Connexin 36 (Cx36) and endoplasmic reticulum stress (ERS) both in rats with CCI-induced neuropathic pain and in tunicamycin-induced ERS cells. MATERIALS AND METHODS The authors conducted chronic constriction injury (CCI) in rats to induce neuropathic pain and established the ERS model in SH-SY5Y cells to mimic the stress state after neuropathic pain. The study employed behavioral tests and various molecular biology techniques, including Western blot analysis, cell transfection, and co-immunoprecipitation (co-IP). KEY FINDINGS In vivo, we found that (-) - MQ treatment alleviated CCI-induced ERS to regulate the cytoplasmic Cx36 by inhibiting the activation of PERK in spinal cord and ATF-6 in hippocampus, thereby ameliorating neuropathic pain significantly. In vitro, (-) - MQ not only promoted Cx36 synthesis in the ER and inhibited the excessive transport of Cx36 from the ER to the Golgi apparatus, but also interrupted the binding of Cx36 with calmodulin (CaM), which led to diminished junction formation as indicated by the reduced over-stacking of Cx36 on the membrane of the ERS-exposed cells. Together, these findings clarified that (-) - MQ could ameliorate neuropathic pain through modulating Cx36-ERS interactions within pain-associated regions of the central nervous system in CCI rats. SIGNIFICANCE This study, for the first time, elucidated the cellular and molecular mechanisms of (-) - MQ in modulating Cx36-ERS interaction in neuropathic pain, thereby providing new therapeutic options for clinical treatment.
Collapse
Affiliation(s)
- Lingling Gu
- Key Laboratory of Brain Functional Genomics, Ministry of Education, School of Life Sciences, East China Normal University, Shanghai 200062, China
| | - Zelin Lai
- Key Laboratory of Brain Functional Genomics, Ministry of Education, School of Life Sciences, East China Normal University, Shanghai 200062, China; Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Cheng Zhang
- Key Laboratory of Brain Functional Genomics, Ministry of Education, School of Life Sciences, East China Normal University, Shanghai 200062, China
| | - Zhili Liu
- Key Laboratory of Brain Functional Genomics, Ministry of Education, School of Life Sciences, East China Normal University, Shanghai 200062, China; Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Hong Kong, China
| | - Yan Huo
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Yu Qian
- State Key Laboratory of Anti-Infective Drug Discovery and Development, Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Bingying Wang
- Key Laboratory of Brain Functional Genomics, Ministry of Education, School of Life Sciences, East China Normal University, Shanghai 200062, China
| | - Zhiru Wang
- Key Laboratory of Brain Functional Genomics, Ministry of Education, School of Life Sciences, East China Normal University, Shanghai 200062, China
| | - Zheng Zhao
- Key Laboratory of Brain Functional Genomics, Ministry of Education, School of Life Sciences, East China Normal University, Shanghai 200062, China.
| | - Wenhao Hu
- State Key Laboratory of Anti-Infective Drug Discovery and Development, Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China.
| | - Mingliang Ma
- Key Laboratory of Brain Functional Genomics, Ministry of Education, School of Life Sciences, East China Normal University, Shanghai 200062, China; Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China.
| |
Collapse
|
2
|
Zlomuzica A, Plank L, Dere E. A new path to mental disorders: Through gap junction channels and hemichannels. Neurosci Biobehav Rev 2022; 142:104877. [PMID: 36116574 DOI: 10.1016/j.neubiorev.2022.104877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 08/20/2022] [Accepted: 09/13/2022] [Indexed: 11/18/2022]
Abstract
Behavioral disturbances related to emotional regulation, reward processing, cognition, sleep-wake regulation and activity/movement represent core symptoms of most common mental disorders. Increasing empirical and theoretical evidence suggests that normal functioning of these behavioral domains relies on fine graded coordination of neural and glial networks which are maintained and modulated by intercellular gap junction channels and unapposed pannexin or connexin hemichannels. Dysfunctions in these networks might contribute to the development and maintenance of psychopathological and neurobiological features associated with mental disorders. Here we review and discuss the evidence indicating a prominent role of gap junction channel and hemichannel dysfunction in core symptoms of mental disorders. We further discuss how the increasing knowledge on intercellular gap junction channels and unapposed pannexin or connexin hemichannels in the brain might lead to deeper mechanistic insight in common mental disorders and to the development of novel treatment approaches. We further attempt to exemplify what type of future research on this topic could be integrated into multidimensional approaches to understand and cure mental disorders.
Collapse
Affiliation(s)
- Armin Zlomuzica
- Department of Behavioral and Clinical Neuroscience, Ruhr-University Bochum (RUB), Massenbergstraße 9-13, D-44787 Bochum, Germany.
| | - Laurin Plank
- Department of Behavioral and Clinical Neuroscience, Ruhr-University Bochum (RUB), Massenbergstraße 9-13, D-44787 Bochum, Germany
| | - Ekrem Dere
- Department of Behavioral and Clinical Neuroscience, Ruhr-University Bochum (RUB), Massenbergstraße 9-13, D-44787 Bochum, Germany; Sorbonne Université. Institut de Biologie Paris-Seine, (IBPS), Département UMR 8256: Adaptation Biologique et Vieillissement, UFR des Sciences de la Vie, Campus Pierre et Marie Curie, Bâtiment B, 9 quai Saint Bernard, F-75005 Paris, France.
| |
Collapse
|
3
|
Ngezahayo A, Ruhe FA. Connexins in the development and physiology of stem cells. Tissue Barriers 2021; 9:1949242. [PMID: 34227910 DOI: 10.1080/21688370.2021.1949242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
Connexins (Cxs) form gap junction (GJ) channels linking vertebrate cells. During embryogenesis, Cxs are expressed as early as the 4-8 cell stage. As cells differentiate into pluripotent stem cells (PSCs) and during gastrulation, the Cx expression pattern is adapted. Knockdown of Cx43 and Cx45 does not interfere with embryogenic development until the blastula stage, questioning the role of Cxs in PSC physiology and development. Studies in cultivated and induced PSCs (iPSCs) showed that Cx43 is essential for the maintenance of self-renewal and the expression of pluripotency markers. It was found that the role of Cxs in PSCs is more related to regulation of transcription or cell-cell adherence than to formation of GJ channels. Furthermore, a crucial role of Cxs for the self-renewal and differentiation was shown in cultivated adult mesenchymal stem cells. This review aims to highlight aspects that link Cxs to the function and physiology of stem cell development.
Collapse
Affiliation(s)
- Anaclet Ngezahayo
- Dept. Cell Physiology and Biophysics, Institute of Cell Biology and Biophysics, Leibniz University Hannover, Hannover, Germany.,Center for Systems Neuroscience (ZSN), University of Veterinary Medicine Hannover, Hannover, Germany
| | - Frederike A Ruhe
- Dept. Cell Physiology and Biophysics, Institute of Cell Biology and Biophysics, Leibniz University Hannover, Hannover, Germany
| |
Collapse
|
4
|
Dere D, Zlomuzica A, Dere E. Channels to consciousness: a possible role of gap junctions in consciousness. Rev Neurosci 2020; 32:/j/revneuro.ahead-of-print/revneuro-2020-0012/revneuro-2020-0012.xml. [PMID: 32853172 DOI: 10.1515/revneuro-2020-0012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 06/26/2020] [Indexed: 12/20/2022]
Abstract
The neurophysiological basis of consciousness is still unknown and one of the most challenging questions in the field of neuroscience and related disciplines. We propose that consciousness is characterized by the maintenance of mental representations of internal and external stimuli for the execution of cognitive operations. Consciousness cannot exist without working memory, and it is likely that consciousness and working memory share the same neural substrates. Here, we present a novel psychological and neurophysiological framework that explains the role of consciousness for cognition, adaptive behavior, and everyday life. A hypothetical architecture of consciousness is presented that is organized as a system of operation and storage units named platforms that are controlled by a consciousness center (central executive/online platform). Platforms maintain mental representations or contents, are entrusted with different executive functions, and operate at different levels of consciousness. The model includes conscious-mode central executive/online and mental time travel platforms and semiconscious steady-state and preconscious standby platforms. Mental representations or contents are represented by neural circuits and their support cells (astrocytes, oligodendrocytes, etc.) and become conscious when neural circuits reverberate, that is, fire sequentially and continuously with relative synchronicity. Reverberatory activity in neural circuits may be initiated and maintained by pacemaker cells/neural circuit pulsars, enhanced electronic coupling via gap junctions, and unapposed hemichannel opening. The central executive/online platform controls which mental representations or contents should become conscious by recruiting pacemaker cells/neural network pulsars, the opening of hemichannels, and promoting enhanced neural circuit coupling via gap junctions.
Collapse
Affiliation(s)
- Dorothea Dere
- Département UMR 8256 Adaptation Biologique et Vieillissement, Sorbonne Université, Institut de Biologie Paris-Seine, (IBPS), UFR des Sciences de la Vie, Campus Pierre et Marie Curie, Bâtiment B, 9 quai Saint Bernard, F-75005 Paris Cedex, France
| | - Armin Zlomuzica
- Faculty of Psychology, Behavioral and Clinical Neuroscience, University of Bochum, Massenbergstraße 9-13, D-44787 Bochum, Germany
| | - Ekrem Dere
- Département UMR 8256 Adaptation Biologique et Vieillissement, Sorbonne Université, Institut de Biologie Paris-Seine, (IBPS), UFR des Sciences de la Vie, Campus Pierre et Marie Curie, Bâtiment B, 9 quai Saint Bernard, F-75005 Paris Cedex, France
| |
Collapse
|
5
|
He JT, LI XY, Yang L, Zhao X. Astroglial connexins and cognition: memory formation or deterioration? Biosci Rep 2020; 40:BSR20193510. [PMID: 31868207 PMCID: PMC6954363 DOI: 10.1042/bsr20193510] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 11/27/2019] [Accepted: 11/29/2019] [Indexed: 01/20/2023] Open
Abstract
Connexins are the membrane proteins that form high-conductance plasma membrane channels and are the important constituents of gap junctions and hemichannels. Among different types of connexins, connexin 43 is the most widely expressed and studied gap junction proteins in astrocytes. Due to the key involvement of astrocytes in memory impairment and abundant expression of connexins in astrocytes, astroglial connexins have been projected as key therapeutic targets for Alzheimer's disease. On the other hand, the role of connexin gap junctions and hemichannels in memory formation and consolidation has also been reported. Moreover, deletion of these proteins and loss of gap junction communication result in loss of short-term spatial memory. Accordingly, both memory formation and memory deteriorating functions of astrocytes-located connexins have been documented. Physiologically expressed connexins may be involved in the memory formation, while pathologically increased expression of connexins with consequent excessive activation of astrocytes may induce neuronal injury and cognitive decline. The present review describes the memory formation as well as memory deteriorating functions of astroglial connexins in memory disorders of different etiology with possible mechanisms.
Collapse
Affiliation(s)
- Jin-Ting He
- Department of Neurology, China-Japan Union Hospital, Jilin University, Changchun, 130033, Jilin Province, China
| | - Xiao-Yan LI
- Department of Neurology, China-Japan Union Hospital, Jilin University, Changchun, 130033, Jilin Province, China
| | - Le Yang
- Department of Endocrinology, The People’s Hospital of Jilin Province, Changchun 130031, China
| | - Xin Zhao
- Department of Paediatrics, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| |
Collapse
|
6
|
Beheshti S, Ghorbanpour Skakakomi A, Ghaedi K, Dehestani H. Frankincense upregulates the hippocampal calcium/calmodulin kinase II‐α during development of the rat brain and improves memory performance. Int J Dev Neurosci 2018; 69:44-48. [DOI: 10.1016/j.ijdevneu.2018.06.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 05/24/2018] [Accepted: 06/24/2018] [Indexed: 11/29/2022] Open
Affiliation(s)
- Siamak Beheshti
- Division of Animal Sciences, Department of Biology, Faculty of SciencesUniversity of IsfahanIsfahanIran
| | | | - Kamran Ghaedi
- Division of Cellular and Molecular Biology, Department of Biology, Faculty of SciencesUniversity of IsfahanIsfahanIran
| | - Hadi Dehestani
- Division of Animal Sciences, Department of Biology, Faculty of SciencesUniversity of IsfahanIsfahanIran
| |
Collapse
|
7
|
Vicario N, Zappalà A, Calabrese G, Gulino R, Parenti C, Gulisano M, Parenti R. Connexins in the Central Nervous System: Physiological Traits and Neuroprotective Targets. Front Physiol 2017; 8:1060. [PMID: 29326598 PMCID: PMC5741605 DOI: 10.3389/fphys.2017.01060] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 12/04/2017] [Indexed: 01/22/2023] Open
Abstract
Cell-to-cell interaction and cell-to-extracellular environment communication are emerging as new therapeutic targets in neurodegenerative disorders. Dynamic expression of connexins leads to distinctive hemichannels and gap junctions, characterized by cell-specific conduction, exchange of stimuli or metabolites, and particular channel functions. Herein, we briefly reviewed classical physiological traits and functions of connexins, hemichannels, and gap junctions, in order to discuss the controversial role of these proteins and their mediated interactions during neuroprotection, with a particular focus on Cx43-based channels. We pointed out the contribution of connexins in neural cells populations during neurodegenerative processes to explore potential neuroprotective therapeutic applications.
Collapse
Affiliation(s)
- Nunzio Vicario
- Section of Physiology, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Agata Zappalà
- Section of Physiology, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Giovanna Calabrese
- Section of Physiology, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Rosario Gulino
- Section of Physiology, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Carmela Parenti
- Department of Drug Sciences, University of Catania, Catania, Italy
| | - Massimo Gulisano
- Section of Physiology, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy.,Department of Drug Sciences, University of Catania, Catania, Italy
| | - Rosalba Parenti
- Section of Physiology, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| |
Collapse
|