1
|
Gryksa K, Schäfer T, Gareis F, Fuchs E, Royer M, Schmidtner AK, Bludau A, Neumann ID. Beyond fur color: differences in socio-emotional behavior and the oxytocin system between male BL6 and CD1 mice in adolescence and adulthood. Front Neurosci 2024; 18:1493619. [PMID: 39717700 PMCID: PMC11663876 DOI: 10.3389/fnins.2024.1493619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 11/08/2024] [Indexed: 12/25/2024] Open
Abstract
Introduction The development of stress-related psychopathologies, often associated with socio-emotional dysfunctions, is crucially determined by genetic and environmental factors, which shape the individual vulnerability or resilience to stress. Especially early adolescence is considered a vulnerable time for the development of psychopathologies. Various mouse strains are known to age-dependently differ in social, emotional, and endocrine stress responses based on genetic and epigenetic differences. This highlights the importance of the qualified selection of an adequate strain and age for any biomedical research. Neuropeptides like oxytocin (OXT) can contribute to individual and strain-dependent differences in emotional and social behaviors. Methods In this study, we compared anxiety- and fear-related, as well as social behavior and pain perception between male adolescent and adult mice of two commonly used strains, C57BL/6N (BL6) and CD1. Results We revealed BL6 mice as being more anxious, less social, and more susceptible toward non-social and social trauma, both in adolescence and adulthood. Furthermore, during development from adolescence toward adulthood, BL6 mice lack the reduction in fear- and anxiety-related behavior seen in adult CD1 mice and show even higher social fear-responses and perception of noxious stimuli during adulthood. Analysis of the OXT system, by means of receptor autoradiography and immunohistochemistry, showed strain- and age-specific differences in OXT receptor (OXTR) binding in relevant brain regions, but no differences in the number of hypothalamic OXT neurons. However, intracerebroventricular infusion of OXT did neither reduce the high level of anxiety-related nor of social fear-related behavior in adult BL6 mice. Discussion In summary, we show that male BL6 mice present an anxious and stress vulnerable phenotype in adolescence, which further exacerbates in adulthood, whereas CD1 mice show a more resilient socio-emotional state both in adolescence as well as during adulthood. These consistent behavioral differences between the two strains might only be partly mediated by differences in the OXT system but highlight the influence of early-life environment on socio-emotional behavior.
Collapse
|
2
|
Grey DK, Purcell JB, Buford KN, Schuster MA, Elliott MN, Emery ST, Mrug S, Knight DC. Discrimination Exposure, Neural Reactivity to Stress, and Psychological Distress. Am J Psychiatry 2024; 181:1112-1126. [PMID: 39473266 DOI: 10.1176/appi.ajp.20220884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/02/2024]
Abstract
OBJECTIVE Discrimination exposure has a detrimental impact on mental health, increasing the risk of depression, anxiety, and posttraumatic stress. The impact discrimination exposure has on mental health is likely mediated by neural processes associated with emotion expression and regulation. However, the specific neural processes that mediate the relationship between discrimination exposure and mental health remain to be determined. The present study investigated the relationship adolescent discrimination exposure has with stress-elicited brain activity and mental health symptoms in young adulthood. METHODS A total of 301 participants completed the Montreal Imaging Stress Task while functional MRI data were collected. Discrimination exposure was measured four times from ages 11 to 19, and stress-elicited brain activity and psychological distress (depression, anxiety, posttraumatic stress) were assessed in young adulthood (age 20). RESULTS Stress-elicited dorsolateral and dorsomedial prefrontal cortex (PFC), inferior parietal lobule (IPL), and hippocampal activity varied with discrimination exposure. Activity within these brain regions varied with the cumulative amount and trajectory of discrimination exposure across adolescence (initial exposure, change in exposure, and acceleration of exposure). Depression, anxiety, and posttraumatic stress symptoms varied with discrimination exposure. Stress-elicited activity within the dorsolateral PFC and the IPL statistically mediated the relationship between discrimination exposure and psychological distress. CONCLUSIONS The findings suggest that adolescent discrimination exposure may alter the neural response to future stressors (i.e., within regions associated with emotion expression and regulation), which may in turn modify susceptibility and resilience to psychological distress. Thus, differences in stress-elicited neural reactivity may represent an important neurobiological mechanism underlying discrimination-related mental health disparities.
Collapse
Affiliation(s)
- Devon K Grey
- Department of Psychology, University of Alabama at Birmingham (Grey, Purcell, Buford, Mrug, Knight); Kaiser Permanente Bernard J. Tyson School of Medicine, Pasadena, CA (Schuster); RAND Corporation, Santa Monica, CA (Elliott); UTHealth Houston School of Public Health, Houston (Emery)
| | - Juliann B Purcell
- Department of Psychology, University of Alabama at Birmingham (Grey, Purcell, Buford, Mrug, Knight); Kaiser Permanente Bernard J. Tyson School of Medicine, Pasadena, CA (Schuster); RAND Corporation, Santa Monica, CA (Elliott); UTHealth Houston School of Public Health, Houston (Emery)
| | - Kristen N Buford
- Department of Psychology, University of Alabama at Birmingham (Grey, Purcell, Buford, Mrug, Knight); Kaiser Permanente Bernard J. Tyson School of Medicine, Pasadena, CA (Schuster); RAND Corporation, Santa Monica, CA (Elliott); UTHealth Houston School of Public Health, Houston (Emery)
| | - Mark A Schuster
- Department of Psychology, University of Alabama at Birmingham (Grey, Purcell, Buford, Mrug, Knight); Kaiser Permanente Bernard J. Tyson School of Medicine, Pasadena, CA (Schuster); RAND Corporation, Santa Monica, CA (Elliott); UTHealth Houston School of Public Health, Houston (Emery)
| | - Marc N Elliott
- Department of Psychology, University of Alabama at Birmingham (Grey, Purcell, Buford, Mrug, Knight); Kaiser Permanente Bernard J. Tyson School of Medicine, Pasadena, CA (Schuster); RAND Corporation, Santa Monica, CA (Elliott); UTHealth Houston School of Public Health, Houston (Emery)
| | - Susan Tortolero Emery
- Department of Psychology, University of Alabama at Birmingham (Grey, Purcell, Buford, Mrug, Knight); Kaiser Permanente Bernard J. Tyson School of Medicine, Pasadena, CA (Schuster); RAND Corporation, Santa Monica, CA (Elliott); UTHealth Houston School of Public Health, Houston (Emery)
| | - Sylvie Mrug
- Department of Psychology, University of Alabama at Birmingham (Grey, Purcell, Buford, Mrug, Knight); Kaiser Permanente Bernard J. Tyson School of Medicine, Pasadena, CA (Schuster); RAND Corporation, Santa Monica, CA (Elliott); UTHealth Houston School of Public Health, Houston (Emery)
| | - David C Knight
- Department of Psychology, University of Alabama at Birmingham (Grey, Purcell, Buford, Mrug, Knight); Kaiser Permanente Bernard J. Tyson School of Medicine, Pasadena, CA (Schuster); RAND Corporation, Santa Monica, CA (Elliott); UTHealth Houston School of Public Health, Houston (Emery)
| |
Collapse
|
3
|
Huang Z, Wei X, Tian J, Fu Y, Dong J, Wang Y, Shi J, Lu L, Zhang W. A disinhibitory microcircuit of the orbitofrontal cortex mediates cocaine preference in mice. Mol Psychiatry 2024; 29:3160-3169. [PMID: 38698268 DOI: 10.1038/s41380-024-02579-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 04/18/2024] [Accepted: 04/22/2024] [Indexed: 05/05/2024]
Abstract
Both clinical and animal studies showed that the impaired functions of the orbitofrontal cortex (OFC) underlie the compulsive drug-seeking behavior of drug addiction. However, the functional changes of the microcircuit in the OFC and the underlying molecular mechanisms in drug addiction remain elusive, and little is known for whether microcircuits in the OFC contributed to drug addiction-related behaviors. Utilizing the cocaine-induced conditioned-place preference model, we found that the malfunction of the microcircuit led to disinhibition in the OFC after cocaine withdrawal. We further showed that enhanced Somatostatin-Parvalbumin (SST-PV) inhibitory synapse strength changed microcircuit function, and SST and PV inhibitory neurons showed opposite contributions to the drug addiction-related behavior of mice. Brevican of the perineuronal nets of PV neurons regulated SST-PV synapse strength, and the knockdown of Brevican alleviated cocaine preference. These results reveal a novel molecular mechanism of the regulation of microcircuit function and a novel circuit mechanism of the OFC in gating cocaine preference.
Collapse
Affiliation(s)
- Ziran Huang
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence Research, Peking University, Beijing, 100191, China
| | - Xiaoyan Wei
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence Research, Peking University, Beijing, 100191, China
| | - Jing Tian
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence Research, Peking University, Beijing, 100191, China
| | - Yangxue Fu
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence Research, Peking University, Beijing, 100191, China
| | - Jihui Dong
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence Research, Peking University, Beijing, 100191, China
| | - Yihui Wang
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence Research, Peking University, Beijing, 100191, China
| | - Jie Shi
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence Research, Peking University, Beijing, 100191, China
| | - Lin Lu
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital); Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, 100191, China
| | - Wen Zhang
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence Research, Peking University, Beijing, 100191, China.
| |
Collapse
|
4
|
Palmisano A, Pandit S, Smeralda CL, Demchenko I, Rossi S, Battelli L, Rivolta D, Bhat V, Santarnecchi E. The Pathophysiological Underpinnings of Gamma-Band Alterations in Psychiatric Disorders. Life (Basel) 2024; 14:578. [PMID: 38792599 PMCID: PMC11122172 DOI: 10.3390/life14050578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/04/2024] [Accepted: 04/06/2024] [Indexed: 05/26/2024] Open
Abstract
Investigating the biophysiological substrates of psychiatric illnesses is of great interest to our understanding of disorders' etiology, the identification of reliable biomarkers, and potential new therapeutic avenues. Schizophrenia represents a consolidated model of γ alterations arising from the aberrant activity of parvalbumin-positive GABAergic interneurons, whose dysfunction is associated with perineuronal net impairment and neuroinflammation. This model of pathogenesis is supported by molecular, cellular, and functional evidence. Proof for alterations of γ oscillations and their underlying mechanisms has also been reported in bipolar disorder and represents an emerging topic for major depressive disorder. Although evidence from animal models needs to be further elucidated in humans, the pathophysiology of γ-band alteration represents a common denominator for different neuropsychiatric disorders. The purpose of this narrative review is to outline a framework of converging results in psychiatric conditions characterized by γ abnormality, from neurochemical dysfunction to alterations in brain rhythms.
Collapse
Affiliation(s)
- Annalisa Palmisano
- Chair of Lifespan Developmental Neuroscience, Faculty of Psychology, TUD Dresden University of Technology, 01069 Dresden, Germany
- Precision Neuroscience and Neuromodulation Program, Gordon Center for Medical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02115, USA (E.S.)
- Department of Education, Psychology, and Communication, University of Bari Aldo Moro, 70121 Bari, Italy;
| | - Siddhartha Pandit
- Precision Neuroscience and Neuromodulation Program, Gordon Center for Medical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02115, USA (E.S.)
| | - Carmelo L. Smeralda
- Precision Neuroscience and Neuromodulation Program, Gordon Center for Medical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02115, USA (E.S.)
- Siena Brain Investigation and Neuromodulation (SI-BIN) Laboratory, Department of Medicine, Surgery and Neuroscience, Neurology and Clinical Neurophysiology Section, University of Siena, 53100 Siena, Italy;
| | - Ilya Demchenko
- Interventional Psychiatry Program, St. Michael’s Hospital—Unity Health Toronto, Toronto, ON M5B 1W8, Canada; (I.D.)
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A1, Canada
| | - Simone Rossi
- Siena Brain Investigation and Neuromodulation (SI-BIN) Laboratory, Department of Medicine, Surgery and Neuroscience, Neurology and Clinical Neurophysiology Section, University of Siena, 53100 Siena, Italy;
| | - Lorella Battelli
- Berenson-Allen Center for Noninvasive Brain Stimulation, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
- Center for Neuroscience and Cognitive Systems@UniTn, Istituto Italiano di Tecnologia, 38068 Rovereto, Italy
| | - Davide Rivolta
- Department of Education, Psychology, and Communication, University of Bari Aldo Moro, 70121 Bari, Italy;
| | - Venkat Bhat
- Interventional Psychiatry Program, St. Michael’s Hospital—Unity Health Toronto, Toronto, ON M5B 1W8, Canada; (I.D.)
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A1, Canada
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A1, Canada
| | - Emiliano Santarnecchi
- Precision Neuroscience and Neuromodulation Program, Gordon Center for Medical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02115, USA (E.S.)
- Department of Neurology and Radiology, Massachusetts General Hospital, Boston, MA 02114, USA
| |
Collapse
|
5
|
Staal L, Plösch T, Kunovac Kallak T, Sundström Poromaa I, Wertheim B, Olivier JDA. Sex-Specific Transcriptomic Changes in the Villous Tissue of Placentas of Pregnant Women Using a Selective Serotonin Reuptake Inhibitor. ACS Chem Neurosci 2024; 15:1074-1083. [PMID: 38421943 PMCID: PMC10958514 DOI: 10.1021/acschemneuro.3c00621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 02/09/2024] [Accepted: 02/09/2024] [Indexed: 03/02/2024] Open
Abstract
About 5% of pregnant women are treated with selective serotonin reuptake inhibitor (SSRI) antidepressants to treat their depression. SSRIs influence serotonin levels, a key factor in neural embryonic development, and their use during pregnancy has been associated with adverse effects on the developing embryo. However, the role of the placenta in transmitting these negative effects is not well understood. In this study, we aim to elucidate how disturbances in the maternal serotonergic system affect the villous tissue of the placenta by assessing whole transcriptomes in the placentas of women with healthy pregnancies and women with depression and treated with the SSRI fluoxetine during pregnancy. Twelve placentas of the Biology, Affect, Stress, Imaging and Cognition in Pregnancy and the Puerperium (BASIC) project were selected for RNA sequencing to examine differentially expressed genes: six male infants and six female infants, equally distributed over women treated with SSRI and without SSRI treatment. Our results show that more genes in the placenta of male infants show changed expression associated with fluoxetine treatment than in placentas of female infants, stressing the importance of sex-specific analyses. In addition, we identified genes related to extracellular matrix organization to be significantly enriched in placentas of male infants born to women treated with fluoxetine. It remains to be established whether the differentially expressed genes that we found to be associated with SSRI treatment are the result of the SSRI treatment itself, the underlying depression, or a combination of the two.
Collapse
Affiliation(s)
- Laura Staal
- Neurobiology,
Groningen Institute for Evolutionary Life Sciences, University of Groningen, 9700 CC Groningen, The Netherlands
- Department
of Cardiology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands
| | - Torsten Plösch
- Departments
of Obstetrics and Gynaecology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands
- Perinatal
Neurobiology, Department of Human Medicine, School of Medicine and
Health Sciences, Carl von Ossietzky University
Oldenburg, 26129 Oldenburg, Germany
| | | | | | - Bregje Wertheim
- Evolutionary
Genetics, Development & Behaviour, Groningen Institute for Evolutionary
Life Sciences, University of Groningen, 9700 CC Groningen, The Netherlands
| | - Jocelien D. A. Olivier
- Neurobiology,
Groningen Institute for Evolutionary Life Sciences, University of Groningen, 9700 CC Groningen, The Netherlands
| |
Collapse
|
6
|
Morphett JC, Whittaker AL, Reichelt AC, Hutchinson MR. Perineuronal net structure as a non-cellular mechanism contributing to affective state: A scoping review. Neurosci Biobehav Rev 2024; 158:105568. [PMID: 38309496 DOI: 10.1016/j.neubiorev.2024.105568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/25/2024] [Accepted: 01/29/2024] [Indexed: 02/05/2024]
Abstract
Affective state encompasses emotional responses to our physiology and influences how we perceive and respond within our environment. In affective disorders such as depression, cognitive adaptability is challenged, and structural and functional brain changes have been identified. However, an incomplete understanding persists of the molecular and cellular mechanisms at play in affective state. An exciting area of newly appreciated importance is perineuronal nets (PNNs); a specialised component of extracellular matrix playing a critical role in neuroprotection and synaptic plasticity. A scoping review found 24 studies demonstrating that PNNs are still a developing field of research with a promising general trend for stress in adulthood to increase the intensity of PNNs, whereas stress in adolescence reduced (potentially developmentally delayed) PNN numbers and intensity, while antidepressants correlated with reduced PNN numbers. Despite promising trends, limited research underscores the need for further exploration, emphasizing behavioral outcomes for validating affective states. Understanding PNNs' role may offer therapeutic insights for depression and inform biomarker development, advancing precision medicine and enhancing well-being.
Collapse
Affiliation(s)
- J C Morphett
- School of Biomedicine, Adelaide Medical School, University of Adelaide, Adelaide, Kaurna Country, Australia.
| | - A L Whittaker
- School of Animal and Veterinary Sciences, University of Adelaide, Roseworthy, SA, Australia
| | - A C Reichelt
- School of Biomedicine, Adelaide Medical School, University of Adelaide, Adelaide, Kaurna Country, Australia
| | - M R Hutchinson
- School of Biomedicine, Adelaide Medical School, University of Adelaide, Adelaide, Kaurna Country, Australia; Australian Research Council Centre of Excellence for Nanoscale BioPhotonics, University of Adelaide, Adelaide, SA, Australia; Davies Livestock Research Centre, University of Adelaide, Roseworthy, SA, Australia
| |
Collapse
|
7
|
Perica MI, Luna B. Impact of stress on excitatory and inhibitory markers of adolescent cognitive critical period plasticity. Neurosci Biobehav Rev 2023; 153:105378. [PMID: 37643681 PMCID: PMC10591935 DOI: 10.1016/j.neubiorev.2023.105378] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/24/2023] [Accepted: 08/25/2023] [Indexed: 08/31/2023]
Abstract
Adolescence is a time of significant neurocognitive development. Prolonged maturation of prefrontal cortex (PFC) through adolescence has been found to support improvements in executive function. Changes in excitatory and inhibitory mechanisms of critical period plasticity have been found to be present in the PFC through adolescence, suggesting that environment may have a greater effect on development during this time. Stress is one factor known to affect neurodevelopment increasing risk for psychopathology. However, less is known about how stress experienced during adolescence could affect adolescent-specific critical period plasticity mechanisms and cognitive outcomes. In this review, we synthesize findings from human and animal literatures looking at the experience of stress during adolescence on cognition and frontal excitatory and inhibitory neural activity. Studies indicate enhancing effects of acute stress on cognition and excitation within specific contexts, while chronic stress generally dampens excitatory and inhibitory processes and impairs cognition. We propose a model of how stress could affect frontal critical period plasticity, thus potentially altering neurodevelopmental trajectories that could lead to risk for psychopathology.
Collapse
Affiliation(s)
- Maria I Perica
- Department of Psychology, University of Pittsburgh, PA, USA.
| | - Beatriz Luna
- Department of Psychology, University of Pittsburgh, PA, USA
| |
Collapse
|
8
|
Pathways explaining racial/ethnic and socio-economic disparities in incident all-cause dementia among older US adults across income groups. Transl Psychiatry 2022; 12:478. [PMID: 36379922 PMCID: PMC9666623 DOI: 10.1038/s41398-022-02243-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/21/2022] [Accepted: 10/28/2022] [Indexed: 11/16/2022] Open
Abstract
Differential racial and socioeconomic disparities in dementia incidence across income groups and their underlying mechanisms remain largely unknown. A retrospective cohort study examining all-cause dementia incidence across income groups was conducted linking third National Health and Nutrition Examination Surveys (NHANES III) to Centers for Medicare and Medicaid Services-Medicare data over ≤26 y of follow-up (1988-2014). Cox regression and generalized structural equations models (GSEM) were constructed among adults aged≥60 y at baseline (N = 4,592). Non-Hispanic Black versus White (NHW) adults had higher risk of dementia in age and sex-adjusted Cox regression models (HR = 1.34, 95%CI: 1.15-1.55, P < 0.001), an association that was attenuated in the SES-adjusted model (HR = 1.15, 95%CI: 1.01-1.34, P = 0.092). SES was inversely related to dementia risk overall (per Standard Deviation, HR = 0.80, 95% CI:0.69-0.92, P = 0.002, Model 2), mainly within the middle-income group. Within the lowest and middle-income groups and in socio-economic status (SES)-adjusted models, Mexican American participants were at lower all-cause dementia risk compared with their NHW counterparts. GSEM models further detected 3 pathways explaining >55% of the total effect of SES on dementia risk (Total effect = -0.160 ± 0.067, p = 0.022), namely SES→LIFESTYLE→DEMENTIA (Indirect effect (IE) = -0.041 ± 0.014, p = 0.004), SES→LIFESTYLE→COGN→DEMENTIA (IE = -0.006 ± 0.001, p < 0.001), SES→COGN→DEMENTIA(IE = -0.040 ± 0.008, p < 0.001), with the last two remaining significant or marginally significant in the uppermost income groups. Diet and social support were among key lifestyle factors involved in socio-economic disparities in dementia incidence. We provide evidence for modifiable risk factors that may delay dementia onset differentially across poverty-income ratio groups, underscoring their importance for future observational and intervention studies.
Collapse
|
9
|
Caldas IFR, Paim IDM, Leite KTF, de Mello Junior HD, Bataglia PUR, Martins RA, Pereira A. Out of sight out of mind: Psychological distance and opinion about the age of penal majority. Front Psychol 2022; 13:763335. [PMID: 36186326 PMCID: PMC9521616 DOI: 10.3389/fpsyg.2022.763335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 07/04/2022] [Indexed: 11/30/2022] Open
Abstract
The growth of urban violence in Brazil, as in other countries, has led citizens to demand more severe and punitive measures to solve the problem of juvenile crime. One motion submitted to the Brazilian parliament, for instance, proposes to reduce the age of penal majority (APM) from 18 to 16 years. Our hypothesis is that popular opinions about this proposal are largely constrained by construal levels and psychological distance. Accordingly, we expect that the knowledge and proximity to the circumstances associated with juvenile transgression will influence opinions about the proposal. To test this hypothesis, we evaluated how opinion against or for the proposal can be explained by psychological distance and moral development theory. We studied two samples, composed of people who do not have a deep experience with the subject (passersby in a public square (N = 77) and workers from a juvenile justice court (N = 157). After collecting socio-demographic information from the subjects and their answer to moral dilemmas, the data was subjected to a multivariate analysis by multimodal logistic regression for socio-demographic characteristics, Kohlberg moral stages, and opinion on the reduction of APM (agree, indifferent, and disagree) as dependent variables. Our findings suggest that 1) opinion about the APM depends on psychological distance and 2) socioeconomic variables may influence the average construal level of adolescent transgressors in the public’s perspective.
Collapse
Affiliation(s)
| | - Igor de Moraes Paim
- Federal Institute of Education, Science and Technology of Ceará, Maranguape, Brazil
| | - Karla Tereza Figueiredo Leite
- Department of Electrical Engineering, Faculty of Engineering, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Harold Dias de Mello Junior
- Department of Electrical Engineering, Faculty of Engineering, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | | | - Raul Aragão Martins
- Department of Education, Paulista State University, Sao Jose do Rio Preto, Brazil
| | - Antonio Pereira
- Department of Electrical and Biomedical Engineering, Institute of Technology, Federal University of Pará, Belem, Brazil
- *Correspondence: Antonio Pereira,
| |
Collapse
|
10
|
Impact of stress on inhibitory neuronal circuits, our tribute to Bruce McEwen. Neurobiol Stress 2022; 19:100460. [PMID: 35734023 PMCID: PMC9207718 DOI: 10.1016/j.ynstr.2022.100460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 04/22/2022] [Accepted: 05/10/2022] [Indexed: 12/03/2022] Open
Abstract
This manuscript is dedicated to the memory of Bruce S. McEwen, to commemorate the impact he had on how we understand stress and neuronal plasticity, and the profound influence he exerted on our scientific careers. The focus of this review is the impact of stressors on inhibitory circuits, particularly those of the limbic system, but we also consider other regions affected by these adverse experiences. We revise the effects of acute and chronic stress during different stages of development and lifespan, taking into account the influence of the sex of the animals. We review first the influence of stress on the physiology of inhibitory neurons and on the expression of molecules related directly to GABAergic neurotransmission, and then focus on specific interneuron subpopulations, particularly on parvalbumin and somatostatin expressing cells. Then we analyze the effects of stress on molecules and structures related to the plasticity of inhibitory neurons: the polysialylated form of the neural cell adhesion molecule and perineuronal nets. Finally, we review the potential of antidepressants or environmental manipulations to revert the effects of stress on inhibitory circuits.
Collapse
|
11
|
Neurocan regulates vulnerability to stress and the anti-depressant effect of ketamine in adolescent rats. Mol Psychiatry 2022; 27:2522-2532. [PMID: 35264728 DOI: 10.1038/s41380-022-01495-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 02/10/2022] [Accepted: 02/14/2022] [Indexed: 12/13/2022]
Abstract
Depression is more prevalent among adolescents than adults, but the underlying mechanisms remain largely unknown. Using a subthreshold chronic stress model, here we show that developmentally regulated expressions of the perineuronal nets (PNNs), and one of the components, Neurocan in the prelimbic cortex (PrL) are important for the vulnerability to stress and depressive-like behaviors in both adolescent and adult rats. Reduction of PNNs or Neurocan with pharmacological or viral methods to mimic the expression of PNNs in the PrL during adolescence compromised resilience to stress in adult rats, while virally mediated overexpression of Neurocan reversed vulnerability to stress in adolescent rats. Ketamine, a recent-approved drug for treatment-resistant depression rescued impaired function of Parvalbumin-positive neurons function, increased expression of PNNs in the PrL, and reversed depressive-like behaviors in adolescent rats. Furthermore, we show that Neurocan mediates the anti-depressant effect of ketamine, virally mediated reduction of Neurocan in the PrL abolished the anti-depressant effect of ketamine in adolescent rats. Our findings show an important role of Neurocan in depression in adolescence, and suggest a novel mechanism for the anti-depressant effect of ketamine.
Collapse
|
12
|
Woodward EM, Coutellier L. Age- and sex-specific effects of stress on parvalbumin interneurons in preclinical models: Relevance to sex differences in clinical neuropsychiatric and neurodevelopmental disorders. Neurosci Biobehav Rev 2021; 131:1228-1242. [PMID: 34718048 PMCID: PMC8642301 DOI: 10.1016/j.neubiorev.2021.10.031] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 10/06/2021] [Accepted: 10/23/2021] [Indexed: 01/06/2023]
Abstract
Stress is a major risk factor for neurodevelopmental and neuropsychiatric disorders, with the capacity to impact susceptibility to disease as well as long-term neurobiological and behavioral outcomes. Parvalbumin (PV) interneurons, the most prominent subtype of GABAergic interneurons in the cortex, are uniquely responsive to stress due to their protracted development throughout the highly plastic neonatal period and into puberty and adolescence. Additionally, PV + interneurons appear to respond to stress in a sex-specific manner. This review aims to discuss existing preclinical studies that support our overall hypothesis that the sex-and age-specific impacts of stress on PV + interneurons contribute to differences in individual vulnerability to stress across the lifespan, particularly in regard to sex differences in the diagnostic rate of neurodevelopmental and neuropsychiatric diseases in clinical populations. We also emphasize the importance of studying sex as a biological variable to fully understand the mechanistic and behavioral differences between males and females in models of neuropsychiatric disease.
Collapse
Affiliation(s)
- Emma M Woodward
- Department of Neuroscience, Ohio State University, 255 Institute for Behavioral Medicine Research Building, 460 Medical Center Drive, Columbus, OH, 43210, United States
| | - Laurence Coutellier
- Department of Neuroscience, Ohio State University, 255 Institute for Behavioral Medicine Research Building, 460 Medical Center Drive, Columbus, OH, 43210, United States; Department of Psychology, Ohio State University, 53 Psychology Building, 1835 Neil Avenue, Columbus, OH, 43210, United States.
| |
Collapse
|
13
|
Dalmaz C, Barth B, Pokhvisneva I, Wang Z, Patel S, Quillfeldt JA, Mendonça Filho EJ, de Lima RMS, Arcego DM, Sassi RB, Hall GBC, Kobor MS, Meaney MJ, Silveira PP. Prefrontal cortex VAMP1 gene network moderates the effect of the early environment on cognitive flexibility in children. Neurobiol Learn Mem 2021; 185:107509. [PMID: 34454100 DOI: 10.1016/j.nlm.2021.107509] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 08/10/2021] [Accepted: 08/20/2021] [Indexed: 01/07/2023]
Abstract
During development, genetic and environmental factors interact to modify specific phenotypes. Both in humans and in animal models, early adversities influence cognitive flexibility, an important brain function related to behavioral adaptation to variations in the environment. Abnormalities in cognitive functions are related to changes in synaptic connectivity in the prefrontal cortex (PFC), and altered levels of synaptic proteins. We investigated if individual variations in the expression of a network of genes co-expressed with the synaptic protein VAMP1 in the prefrontal cortex moderate the effect of early environmental quality on the performance of children in cognitive flexibility tasks. Genes overexpressed in early childhood and co-expressed with the VAMP1 gene in the PFC were selected for study. SNPs from these genes (post-clumping) were compiled in an expression-based polygenic score (PFC-ePRS-VAMP1). We evaluated cognitive performance of the 4 years-old children in two cohorts using similar cognitive flexibility tasks. In the first cohort (MAVAN) we utilized two CANTAB tasks: (a) the Intra-/Extra-dimensional Set Shift (IED) task, and (b) the Spatial Working Memory (SWM) task. In the second cohort, GUSTO, we used the Dimensional Change Card Sort (DCCS) task. The results show that in 4 years-old children, the PFC-ePRS-VAMP1 network moderates responsiveness to the effects of early adversities on the performance in attentional flexibility tests. The same result was observed for a spatial working memory task. Compared to attentional flexibility, reversal learning showed opposite effects of the environment, as moderated by the ePRS. A parallel ICA analysis was performed to identify relationships between whole-brain voxel based gray matter density and SNPs that comprise the PFC-ePRS-VAMP1. The early environment predicts differences in gray matter content in regions such as prefrontal and temporal cortices, significantly associated with a genetic component related to Wnt signaling pathways. Our data suggest that a network of genes co-expressed with VAMP1 in the PFC moderates the influence of early environment on cognitive function in children.
Collapse
Affiliation(s)
- Carla Dalmaz
- Ludmer Centre for Neuroinformatics and Mental Health, Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada; Depto Bioquimica e PPG CB Bioquimica, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; PPG Neurociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
| | - Barbara Barth
- Ludmer Centre for Neuroinformatics and Mental Health, Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada; Department of Psychiatry, Faculty of Medicine, McGill University, Montreal, QC, Canada
| | - Irina Pokhvisneva
- Ludmer Centre for Neuroinformatics and Mental Health, Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada
| | - Zihan Wang
- Ludmer Centre for Neuroinformatics and Mental Health, Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada
| | - Sachin Patel
- Ludmer Centre for Neuroinformatics and Mental Health, Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada
| | - Jorge A Quillfeldt
- PPG Neurociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Depto Biofisica, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Euclides J Mendonça Filho
- Ludmer Centre for Neuroinformatics and Mental Health, Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada
| | - Randriely Merscher Sobreira de Lima
- Ludmer Centre for Neuroinformatics and Mental Health, Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada; PPG Neurociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Danusa M Arcego
- Ludmer Centre for Neuroinformatics and Mental Health, Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada; Department of Psychiatry, Faculty of Medicine, McGill University, Montreal, QC, Canada
| | - Roberto Britto Sassi
- Mood Disorders Program, Department of Psychiatry & Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada
| | - Geoffrey B C Hall
- Department of Psychology, Neuroscience & Behaviour, McMaster University, Hamilton, ON, Canada
| | - Michael S Kobor
- Centre for Molecular Medicine and Therapeutics, BC Children's Hospital Research Institute, Department of Medical Genetics, The University of British Columbia, 938 West 28th Avenue, Vancouver, BC V5Z 4H4, Canada
| | - Michael J Meaney
- Ludmer Centre for Neuroinformatics and Mental Health, Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada; Department of Psychiatry, Faculty of Medicine, McGill University, Montreal, QC, Canada; Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Patrícia P Silveira
- Ludmer Centre for Neuroinformatics and Mental Health, Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada; Department of Psychiatry, Faculty of Medicine, McGill University, Montreal, QC, Canada; PPG Neurociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| |
Collapse
|
14
|
Drzewiecki CM, Willing J, Cortes LR, Juraska JM. Adolescent stress during, but not after, pubertal onset impairs indices of prepulse inhibition in adult rats. Dev Psychobiol 2021; 63:837-850. [PMID: 33629385 DOI: 10.1002/dev.22111] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 01/12/2021] [Accepted: 02/01/2021] [Indexed: 02/01/2023]
Abstract
Exposure to stress during adolescence is a risk factor for developing several psychiatric disorders, many of which involve prefrontal cortex (PFC) dysfunction. The human PFC and analogous rodent medial prefrontal cortex (mPFC) continue to mature functionally and anatomically during adolescence, and some of these maturational events coincide with pubertal onset. As developing brain regions are more susceptible to the negative effects of stress, this may make puberty especially vulnerable. To test this, we exposed male and female rats to isolation and restraint stress during the onset of puberty or during the post-pubertal period of adolescence. In young adulthood, both stressed groups and an unstressed control group underwent testing on a battery of tasks to assess emotional and cognitive behaviors, and the volume of the mPFC was quantified postmortem. Factor analysis revealed only subjects stressed peri-pubertally showed a long-term deficiency compared to controls in prepulse inhibition. Additionally, both sexes showed volumetric mPFC decreases following adolescent stress, and these losses were most pronounced in females. Our findings suggest that pubertal onset may be a vulnerable window wherein adolescents are most susceptible to the negative consequences of stress exposure. Furthermore, it highlights the importance of accounting for pubertal status when studying adolescents.
Collapse
Affiliation(s)
- Carly M Drzewiecki
- Program in Neuroscience, University of Illinois at Urbana-Champaign, Champaign, IL, USA
| | - Jari Willing
- Department of Psychology, University of Illinois at Urbana-Champaign, Champaign, IL, USA.,Department of Psychology, Bowling Green State University, 822 E Merry Ave, Bowling Green, OH, 43403, USA
| | - Laura R Cortes
- Department of Psychology, University of Illinois at Urbana-Champaign, Champaign, IL, USA.,Neuroscience Institute, Georgia State University, 100 Piedmont Ave SE, Atlanta, GA, 30303, USA
| | - Janice M Juraska
- Program in Neuroscience, University of Illinois at Urbana-Champaign, Champaign, IL, USA.,Department of Psychology, University of Illinois at Urbana-Champaign, Champaign, IL, USA
| |
Collapse
|
15
|
Chronic Mild Unpredictable Stress and High-Fat Diet Given during Adolescence Impact Both Cognitive and Noncognitive Behaviors in Young Adult Mice. Brain Sci 2021; 11:brainsci11020260. [PMID: 33669543 PMCID: PMC7923206 DOI: 10.3390/brainsci11020260] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 02/12/2021] [Accepted: 02/14/2021] [Indexed: 12/24/2022] Open
Abstract
Stress and diet are intricately linked, and they often interact in a negative fashion. Increases in stress can lead to poor food choices; adolescence is a period that is often accompanied by increased levels of stress. Stress and poor dietary choices can affect learning and memory; it is important to understand their combined effects when occurring during crucial developmental periods. Here, we present evidence that chronic mild unpredictable stress (CMUS) and high-fat diet (HFD) impact both cognitive and noncognitive behaviors when assessed after four weeks of manipulation in four-week old mice. CMUS mice had increased anxiety in the open field test (OFT) (p = 0.01) and spent more time in the open arms of the elevated zero maze (EZM) (p < 0.01). HFD administration was shown to interact with CMUS to impair spatial memory in the Morris Water Maze (MWM) (p < 0.05). Stress and diet also led to disturbances in non-cognitive behaviors: CMUS led to significantly more burrowing (p < 0.05) and HFD administration led to the poorer nest construction (p < 0.05). These findings allow for researchers to assess how modifying lifestyle factors (including diet and stress) during adolescence can serve as a potential strategy to improve cognition in young adulthood.
Collapse
|
16
|
Spijker S, Koskinen MK, Riga D. Incubation of depression: ECM assembly and parvalbumin interneurons after stress. Neurosci Biobehav Rev 2020; 118:65-79. [DOI: 10.1016/j.neubiorev.2020.07.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 07/06/2020] [Accepted: 07/15/2020] [Indexed: 02/06/2023]
|
17
|
Koskinen MK, van Mourik Y, Smit AB, Riga D, Spijker S. From stress to depression: development of extracellular matrix-dependent cognitive impairment following social stress. Sci Rep 2020; 10:17308. [PMID: 33057053 PMCID: PMC7560730 DOI: 10.1038/s41598-020-73173-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 09/04/2020] [Indexed: 12/13/2022] Open
Abstract
Stress can predispose to depressive episodes, yet the molecular mechanisms regulating the transition from the initial stress response to a persistent pathological depressive state remain poorly understood. We profiled the development of an enduring depressive-like state by assessing affective behavior and hippocampal function during the 2 months following social-defeat stress. We measured remodeling of hippocampal extracellular matrix (ECM) during this period, as we recently identified ECM changes to mediate cognitive impairment during the sustained depressive-like state. Affective disturbance and cognitive impairments develop disparately after social stress, with gradual appearance of affective deficits. In contrast, spatial memory was impaired both early after stress and during the late-emerging chronic depressive-like state, while intact in-between. Similarly, we observed a biphasic regulation of the hippocampal ECM coinciding with hippocampus-dependent memory deficits. Together our data (1) reveal a dichotomy between affective and cognitive impairments similar to that observed in patients, (2) indicate different molecular processes taking place during early stress and the chronic depressive-like state, and (3) support a role of the ECM in mediating long-lasting effects on memory. From a translational point of view, it is important to prioritize on temporal phenotypic aspects in animal models to elucidate the underlying mechanisms of depression.
Collapse
Affiliation(s)
- Maija-Kreetta Koskinen
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit, Amsterdam, The Netherlands
| | - Yvar van Mourik
- Department of Anatomy and Neurosciences, Amsterdam Neuroscience, Amsterdam UMC, Location VU University Medical Center, Amsterdam, The Netherlands
| | - August Benjamin Smit
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit, Amsterdam, The Netherlands
| | - Danai Riga
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit, Amsterdam, The Netherlands
- Molecular Neuroplasticity, German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - Sabine Spijker
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit, Amsterdam, The Netherlands.
| |
Collapse
|
18
|
Abstract
Chronic stress exposure is associated with impaired cognitive function; however, the underlying mechanism is not yet clear. This study investigated the association between perceived chronic stress and anticipatory processing, measured by event-related potentials, and the moderating role of resilience on this relationship in healthy adults. Fifty-nine healthy volunteers (22.52 ± 1.75 years) underwent a continuous performance test, and anticipatory processing was indexed with the contingent negative variation (CNV) of event-related potentials, the Cohen Perceived Stress Scale, and the Connor-Davidson Resilience Scale. The results showed that greater reports of perceived chronic stress were associated with more negative early CNVs; however, there was no significant relationship between perceived chronic stress and behavioral performance on the continuous performance test. More importantly, the relationship between perceived chronic stress and early CNV was moderated by resilience as the association between the Cohen Perceived Stress Scale score and early CNV amplitude was significant for low and average levels of resilience. These results not only suggest that chronic stress may lead to decreased cognitive efficiency in cortical anticipatory activity, but also underscore the role of resilience as a key protective factor in decreased cognitive efficiency.
Collapse
Affiliation(s)
- Xia Shi
- Department of Psychology, Tianjin university of technology and education, Tianjin, China
| | - Jianhui Wu
- Center for Brain Disorder and Cognitive Science, Shenzhen University, Shenzhen, China
| |
Collapse
|
19
|
Cavalcanti HG, da Silva Nunes AD, da Cunha BKS, de Freitas Alvarenga K, Balen SA, Pereira A. Early exposure to environment sounds and the development of cortical auditory evoked potentials of preterm infants during the first 3 months of life. BMC Res Notes 2020; 13:303. [PMID: 32586405 PMCID: PMC7318486 DOI: 10.1186/s13104-020-05129-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Accepted: 06/04/2020] [Indexed: 01/02/2023] Open
Abstract
OBJECTIVE Preterm infants are exposed earlier than their term counterparts to unattenuated sounds from the external environment during the sensitive period of the organization of the auditory cortical circuitry. In the current study, we investigate the effect of preterm birth on the course of development of auditory cortical areas by evaluating how gestational age (GA) correlates with the latency of the P1 component of the cortical auditory evoked potential (CAEP) of two experimental groups measured at 1 or 3 months of age. RESULTS Our sample consisted of 23 infants delivered at GA ranging from 31.28 to 41.42 weeks and separated into two groups evaluated transversally at 1 or 3 months of corrected age (CA). In the group evaluated at 1-month CA, the latency of the component P1 was similar in both terms and infants classified as late-preterm (GA > 32 weeks). However, in the group evaluated at 3 months CA, P1 latency was significantly smaller in preterms. These preliminary results suggest an acceleration of the development of auditory cortical pathways in preterms, probably due to their early exposure to socially relevant auditory stimuli from the external environment.
Collapse
Affiliation(s)
- Hannalice Gottschalck Cavalcanti
- Department of Speech and Language Pathology, Federal University of Paraíba, Cidade Universitária, S/N - Conj. Pres. Castelo Branco III, João Pessoa, PB, 58051-900, Brazil
| | - Aryelly Dayane da Silva Nunes
- Speech and Language Pathology Graduate Program, Federal University of Rio Grande do Norte, Rua Gen. Gustavo Cordeiro de Farias, S/N, Natal, RN, 59012-570, Brazil
| | - Brenda Karla Silva da Cunha
- Speech and Language Pathology Graduate Program, Federal University of Rio Grande do Norte, Rua Gen. Gustavo Cordeiro de Farias, S/N, Natal, RN, 59012-570, Brazil
| | - Kátia de Freitas Alvarenga
- Department of Speech and Language Pathology, University of São Paulo, Alameda Dr. Octávio Pinheiro Brisolla, 9-75, Bauru, SP, 17012-901, Brazil
| | - Sheila Andreoli Balen
- Department of Speech and Language Pathology, Federal University of Rio Grande do Norte, Rua Gen. Gustavo Cordeiro de Farias, S/N, Natal, RN, 59012-570, Brazil
| | - Antonio Pereira
- Department of Electrical and Biomedical Engineering, Institute of Technology, Federal University of Pará, Rua Augusto Correa, S/N, Belém, PA, 66075-110, Brazil.
| |
Collapse
|
20
|
Yu Z, Chen N, Hu D, Chen W, Yuan Y, Meng S, Zhang W, Lu L, Han Y, Shi J. Decreased Density of Perineuronal Net in Prelimbic Cortex Is Linked to Depressive-Like Behavior in Young-Aged Rats. Front Mol Neurosci 2020; 13:4. [PMID: 32116542 PMCID: PMC7025547 DOI: 10.3389/fnmol.2020.00004] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 01/08/2020] [Indexed: 11/13/2022] Open
Abstract
Perineuronal nets (PNNs) are condensed extracellular matrix (ECM) structures regulating developmental plasticity and protecting neurons against oxidative stress. PNN abnormalities have been observed in various psychiatric disorders such as schizophrenia and bipolar disorder, but the relationship between PNN density and depression still remains unclear. In the present study, we examined the density and components of PNNs including aggrecan, neurocan and Tenascin-R in the prelimbic cortex (PrL) after chronic unpredictable mild stress (CUMS). We found that depressive-like behaviors were induced after 30 days of CUMS accompanied by decreases in PNN+ cell density and aggrecan expression in the PrL. In addition, rats subjected to 20 days of CUMS were separated into vulnerable and resilient subpopulations that differ along several behavioral domains. Consistently, the density of PNNs and the expression level of neurocan in the vulnerable group were decreased compared to control and resilient groups. Finally, we examined individual differences based on locomotion in a novel context and classified rats as high responding (HR) and low responding (LR) phenotypes. The density of PNNs and the expression level of neurocan in the LR group were lower than the HR group. Moreover, the LR rats were more susceptible to depressive-like behaviors compared with HR rats. Altogether, these results suggest that the density of PNNs in the PrL is associated with depressive-like behaviors in young-aged rats, and it may serve as a potential endophenotype or therapeutic target for depression.
Collapse
Affiliation(s)
- Zhoulong Yu
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, China.,Department of Pharmacology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Na Chen
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, China.,Department of Pharmacology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Die Hu
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, China.,Department of Pharmacology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Wenxi Chen
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, China.,Department of Pharmacology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Yi Yuan
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, China.,Department of Pharmacology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Shiqiu Meng
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, China
| | - Wen Zhang
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, China
| | - Lin Lu
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, China.,Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China.,Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, China
| | - Ying Han
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, China
| | - Jie Shi
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, China.,The State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, China.,The Key Laboratory for Neuroscience of the Ministry of Education and Health, Peking University, Beijing, China
| |
Collapse
|
21
|
Pan MH, Zhu SR, Duan WJ, Ma XH, Luo X, Liu B, Kurihara H, Li YF, Chen JX, He RR. "Shanghuo" increases disease susceptibility: Modern significance of an old TCM theory. JOURNAL OF ETHNOPHARMACOLOGY 2019; 250:112491. [PMID: 31863858 DOI: 10.1016/j.jep.2019.112491] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 12/16/2019] [Accepted: 12/17/2019] [Indexed: 02/08/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE "Shanghuo", a concept based on Traditional Chinese Medicine (TCM) theory, describes a status of Yin-Yang imbalance when Yang overwhelms Yin. The imbalance of Yin-Yang resembles the breaking of homeostasis and manifests by the impaired physiological functions, which leads to the onset, recurrence, and progression of diseases. Since ancient times, Chinese Materia Medica (CMM), such as herbal tea, has been applied as a treatment for "Shanghuo". AIM OF THE STUDY This review is aimed to describe the origin of "Shanghuo" from the Yin-Yang theory in TCM, as well as explore the relevance and correlations between "Shanghuo" and diseases susceptibility from the perspective of modern medicine. We also propose several strategies from CMM to improve the status of "Shanghuo" for the purpose of treating diseases. METHODS Systematic research of articles with keywords including Shanghuo, Yin-Yang, emotional stress and disease susceptibility was done by using the literature databases (Web of Science, Google Scholar, PubMed, CNKI). Related books, PhD and master's dissertations were also researched. Full scientific plant names were validated by "The Plant List" (www.theplantlist.org). RESULTS To date, a large number of publications have reported research on sub-health status, but studies about the theory or intervention of "Shanghuo" are rarely found. The articles we reviewed indicate that accumulated emotional stress is critical for the cause of "Shanghuo". As a status similar to sub-health, "Shanghuo" is also manifested by impaired physiological functions and decreased nonspecific resistance, which increase susceptibility to various diseases. What's more, some studies highlight the importance of TCM treatment towards "Shanghuo" in maintaining normal physiological functions, such as immunity, lipid metabolism and ROS clearance. CONCLUSIONS Researches on "Shanghuo" and its mechanism are every rare currently and are in need of investigation in the future. Studies on disease susceptibility recently are mostly about susceptible genes that relate to a few parts of people, however, for most of the people, accumulated emotional stress or other stressors is accountable for the susceptibility of diseases. Given that emotional stress plays an important factor in the causation of "Shanghuo", we reviewed the articles about this relevance and discussed the connection of "Shanghuo" with disease susceptibility in a novel perspective. In addition, we have reviewed the disease susceptibility model of restraint stress from its biochemical manifestation to application in CMM assessment. Although it would be a breakthrough in evaluating CMM efficacy of attenuating disease-susceptibility, understanding the comprehensive theory and establishing more models of "Shanghuo" would be required in further investigation.
Collapse
Affiliation(s)
- Ming-Hai Pan
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, Jinan University, Guangzhou, 510632, China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, China; International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Si-Rui Zhu
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, Jinan University, Guangzhou, 510632, China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, China; International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou, 510632, China; School of Pharmaceutical Sciences, Sun Yat-sen University, Guangdong, Guangzhou, 510006, China
| | - Wen-Jun Duan
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, Jinan University, Guangzhou, 510632, China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, China; International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Xiao-Hui Ma
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, Jinan University, Guangzhou, 510632, China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, China; International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Xiang Luo
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, Jinan University, Guangzhou, 510632, China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, China; International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Bo Liu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, And Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Hiroshi Kurihara
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, Jinan University, Guangzhou, 510632, China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, China; International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Yi-Fang Li
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, Jinan University, Guangzhou, 510632, China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, China; International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou, 510632, China.
| | - Jia-Xu Chen
- College of Chinese Medicine, Jinan University, Guangzhou, 510632, China.
| | - Rong-Rong He
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, Jinan University, Guangzhou, 510632, China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, China; International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
22
|
Alcaide J, Guirado R, Crespo C, Blasco-Ibáñez JM, Varea E, Sanjuan J, Nacher J. Alterations of perineuronal nets in the dorsolateral prefrontal cortex of neuropsychiatric patients. Int J Bipolar Disord 2019; 7:24. [PMID: 31728775 DOI: 10.1186/s40345-019-0161-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 10/08/2019] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Alterations in the structure and physiology of interneurons in the prefrontal cortex (PFC) are important factors in the etiopathology of different psychiatric disorders. Among the interneuronal subpopulations, parvalbumin (PV) expressing cells appear to be specially affected. Interestingly, during development and adulthood the connectivity of these interneurons is regulated by the presence of perineuronal nets (PNNs), specialized regions of the extracellular matrix, which are frequently surrounding PV expressing neurons. Previous reports have found anomalies in the density of PNNs in the PFC of schizophrenic patients. However, although some studies have described alterations in PNNs in some extracortical regions of bipolar disorder patients, there are no studies focusing on the prefrontocortical PNNs of bipolar or major depression patients. For this reason, we have analyzed the density of PNNs in post-mortem sections of the dorsolateral PFC (DLPFC) from the Stanley Neuropathology Consortium, which includes controls, schizophrenia, bipolar and major depression patients. RESULTS We have not observed differences in the distribution of PV+ cells or PNNs, or in the percentage of PV+ interneurons surrounded by PNNs. The density of PV+ interneurons was similar in all the experimental groups, but there was a significantly lower density of PNNs in the DLPFC of bipolar disorder patients and a tendency towards a decrease in schizophrenic patients. No differences were found when evaluating the density of PV+ cells surrounded by PNNs. Interestingly, when assessing the influence of demographic data, we found an inverse correlation between the density of PNNs and the presence of psychosis. CONCLUSIONS The present results point to prefrontocortical PNNs and their role in the regulation of neuronal plasticity as putative players in the etiopathology of bipolar disorder and schizophrenia. Our findings also suggest a link between these specialized regions of the extracellular matrix and the presence of psychosis.
Collapse
Affiliation(s)
- Julia Alcaide
- Neurobiology Unit, Department of Cell Biology, Interdisciplinary Research Structure for Biotechnology and Biomedicine (BIOTECMED), Universitat de Valencia, Dr. Moliner 50, 46100, Burjassot, Spain
| | - Ramón Guirado
- Neurobiology Unit, Department of Cell Biology, Interdisciplinary Research Structure for Biotechnology and Biomedicine (BIOTECMED), Universitat de Valencia, Dr. Moliner 50, 46100, Burjassot, Spain
| | - Carlos Crespo
- Neurobiology Unit, Department of Cell Biology, Interdisciplinary Research Structure for Biotechnology and Biomedicine (BIOTECMED), Universitat de Valencia, Dr. Moliner 50, 46100, Burjassot, Spain
| | - José Miguel Blasco-Ibáñez
- Neurobiology Unit, Department of Cell Biology, Interdisciplinary Research Structure for Biotechnology and Biomedicine (BIOTECMED), Universitat de Valencia, Dr. Moliner 50, 46100, Burjassot, Spain
| | - Emilio Varea
- Neurobiology Unit, Department of Cell Biology, Interdisciplinary Research Structure for Biotechnology and Biomedicine (BIOTECMED), Universitat de Valencia, Dr. Moliner 50, 46100, Burjassot, Spain
| | - Julio Sanjuan
- Department of Medicine, Universitat de València, Valencia, Spain.,CIBERSAM: Spanish National Network for Research in Mental Health, Madrid, Spain.,Fundación Investigación Hospital Clínico de Valencia, INCLIVA, Valencia, Spain
| | - Juan Nacher
- Neurobiology Unit, Department of Cell Biology, Interdisciplinary Research Structure for Biotechnology and Biomedicine (BIOTECMED), Universitat de Valencia, Dr. Moliner 50, 46100, Burjassot, Spain. .,CIBERSAM: Spanish National Network for Research in Mental Health, Madrid, Spain. .,Fundación Investigación Hospital Clínico de Valencia, INCLIVA, Valencia, Spain.
| |
Collapse
|
23
|
Abstract
Drug consumption is driven by a drug's pharmacological effects, which are experienced as rewarding, and is influenced by genetic, developmental, and psychosocial factors that mediate drug accessibility, norms, and social support systems or lack thereof. The reinforcing effects of drugs mostly depend on dopamine signaling in the nucleus accumbens, and chronic drug exposure triggers glutamatergic-mediated neuroadaptations in dopamine striato-thalamo-cortical (predominantly in prefrontal cortical regions including orbitofrontal cortex and anterior cingulate cortex) and limbic pathways (amygdala and hippocampus) that, in vulnerable individuals, can result in addiction. In parallel, changes in the extended amygdala result in negative emotional states that perpetuate drug taking as an attempt to temporarily alleviate them. Counterintuitively, in the addicted person, the actual drug consumption is associated with an attenuated dopamine increase in brain reward regions, which might contribute to drug-taking behavior to compensate for the difference between the magnitude of the expected reward triggered by the conditioning to drug cues and the actual experience of it. Combined, these effects result in an enhanced motivation to "seek the drug" (energized by dopamine increases triggered by drug cues) and an impaired prefrontal top-down self-regulation that favors compulsive drug-taking against the backdrop of negative emotionality and an enhanced interoceptive awareness of "drug hunger." Treatment interventions intended to reverse these neuroadaptations show promise as therapeutic approaches for addiction.
Collapse
Affiliation(s)
- Nora D Volkow
- National Institute on Drug Abuse, National Institutes of Health, Bethesda, Maryland
| | - Michael Michaelides
- National Institute on Drug Abuse, National Institutes of Health, Bethesda, Maryland
| | - Ruben Baler
- National Institute on Drug Abuse, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
24
|
Page CE, Coutellier L. Prefrontal excitatory/inhibitory balance in stress and emotional disorders: Evidence for over-inhibition. Neurosci Biobehav Rev 2019; 105:39-51. [PMID: 31377218 DOI: 10.1016/j.neubiorev.2019.07.024] [Citation(s) in RCA: 121] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 07/31/2019] [Accepted: 07/31/2019] [Indexed: 01/04/2023]
Abstract
Chronic stress-induced emotional disorders like anxiety and depression involve imbalances between the excitatory glutamatergic system and the inhibitory GABAergic system in the prefrontal cortex (PFC). However, the precise nature and trajectory of excitatory/inhibitory (E/I) imbalances in these conditions is not clear, with the literature reporting glutamatergic and GABAergic findings that are at times contradictory and inconclusive. Here we propose and discuss the hypothesis that chronic stress-induced emotional dysfunction involves hypoactivity of the PFC due to increased inhibition. We will also discuss E/I imbalances in the context of sex differences. In this review, we will synthesize research about how glutamatergic and GABAergic systems are perturbed by chronic stress and in related emotional disorders like anxiety and depression and propose ideas for reconciling contradictory findings in support of the hypothesis of over-inhibition. We will also discuss evidence for how aspects of the GABAergic system such as parvalbumin (PV) cells can be targeted therapeutically for reinstating activity and plasticity in the PFC and treating stress-related disorders.
Collapse
Affiliation(s)
- Chloe E Page
- Department of Neuroscience, Ohio State University, Columbus OH, United States
| | - Laurence Coutellier
- Department of Neuroscience, Ohio State University, Columbus OH, United States; Department of Psychology, Ohio State University, Columbus OH, United States.
| |
Collapse
|
25
|
Zimmermann KS, Richardson R, Baker KD. Maturational Changes in Prefrontal and Amygdala Circuits in Adolescence: Implications for Understanding Fear Inhibition during a Vulnerable Period of Development. Brain Sci 2019; 9:E65. [PMID: 30889864 PMCID: PMC6468701 DOI: 10.3390/brainsci9030065] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 03/13/2019] [Accepted: 03/14/2019] [Indexed: 12/24/2022] Open
Abstract
Anxiety disorders that develop in adolescence represent a significant burden and are particularly challenging to treat, due in no small part to the high occurrence of relapse in this age group following exposure therapy. This pattern of persistent fear is preserved across species; relative to those younger and older, adolescents consistently show poorer extinction, a key process underpinning exposure therapy. This suggests that the neural processes underlying fear extinction are temporarily but profoundly compromised during adolescence. The formation, retrieval, and modification of fear- and extinction-associated memories are regulated by a forebrain network consisting of the prefrontal cortex (PFC), the amygdala, and the hippocampus. These regions undergo robust maturational changes in early life, with unique alterations in structure and function occurring throughout adolescence. In this review, we focus primarily on two of these regions-the PFC and the amygdala-and discuss how changes in plasticity, synaptic transmission, inhibition/excitation, and connectivity (including modulation by hippocampal afferents to the PFC) may contribute to transient deficits in extinction retention. We end with a brief consideration of how exposure to stress during this adolescent window of vulnerability can permanently disrupt neurodevelopment, leading to lasting impairments in pathways of emotional regulation.
Collapse
Affiliation(s)
- Kelsey S Zimmermann
- School of Psychology, University of New South Wales (UNSW), Sydney, NSW 2052, Australia.
| | - Rick Richardson
- School of Psychology, University of New South Wales (UNSW), Sydney, NSW 2052, Australia.
| | - Kathryn D Baker
- School of Psychology, University of New South Wales (UNSW), Sydney, NSW 2052, Australia.
| |
Collapse
|
26
|
Adolescent Stress Disrupts the Maturation of Anxiety-related Behaviors and Alters the Developmental Trajectory of the Prefrontal Cortex in a Sex- and Age-specific Manner. Neuroscience 2018; 390:265-277. [PMID: 30179643 DOI: 10.1016/j.neuroscience.2018.08.030] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 08/20/2018] [Accepted: 08/24/2018] [Indexed: 12/11/2022]
Abstract
Adolescence is a window of vulnerability to environmental factors such as chronic stress that can disrupt brain development and cause long-lasting behavioral dysfunction, as seen in disorders like depression, anxiety, and schizophrenia. There are also sex differences in the prevalence of these disorders across the lifespan. However, the mechanisms of how adolescent stress contributes to neuropsychiatric phenotypes are not well understood, nor are the mediating effects of sex. We hypothesize that adolescent stress disrupts the γ-aminobutyric acid (GABA) system in the prefrontal cortex (PFC) in a sex-specific manner, as this system matures during adolescence and plays an important role in cognitive and emotional functioning. We exposed male and female mice to unpredictable chronic mild stress (UCMS) during adolescence (post-natal day [PND] 28-42). One cohort underwent testing for PFC-related behavioral and molecular changes 24 h following the cessation of stress (late adolescence); a separate cohort was tested approximately 2.5 weeks after the end of UCMS (adulthood). We observed an age-related decline in anxiety-like behaviors in control mice, while mice stressed in adolescence showed elevated anxiety-like behaviors in both adolescence and adulthood. PFC-dependent cognitive functioning was also impaired in adult males stressed in adolescence. Adolescent stress disrupted expression patterns of parvalbumin (PV) and perineuronal nets (PNNs) in the PFC, as well as NMDA receptor subunit composition, in a sex- and age-specific manner. The findings presented here contribute to understanding how adolescent stress may lead to neuropsychiatric disorders such as anxiety by disrupting the development of the PFC and emotional behaviors.
Collapse
|
27
|
Ueno H, Suemitsu S, Murakami S, Kitamura N, Wani K, Matsumoto Y, Okamoto M, Aoki S, Ishihara T. Juvenile stress induces behavioral change and affects perineuronal net formation in juvenile mice. BMC Neurosci 2018; 19:41. [PMID: 30012101 PMCID: PMC6048828 DOI: 10.1186/s12868-018-0442-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Accepted: 07/11/2018] [Indexed: 12/16/2022] Open
Abstract
Background Many neuropsychiatric disorders develop in early life. Although the mechanisms involved have not been elucidated, it is possible that functional abnormalities of parvalbumin-positive interneurons (PV neurons) are present. Several previous studies have shown that juvenile stress is implicated in the development of neuropsychiatric disorders. We aimed to clarify the effects of juvenile stress on behavior and on the central nervous system. We investigated behavioral abnormalities of chronically-stressed mice during juvenilehood and the effect of juvenile stress on PV neurons and WFA-positive perineuronal nets (PNNs), which are associated with vulnerability and plasticity in the mouse brain. Results Due to juvenile stress, mice showed neurodevelopmental disorder-like behavior. Juvenile stressed mice did not show depressive-like behaviors, but on the contrary, they showed increased activity and decreased anxiety-like behavior. In the central nervous system of juvenile stressed mice, the fluorescence intensity of WFA-positive PNNs decreased, which may signify increased vulnerability. Conclusion This study suggested that juvenile stressed mice showed behavioral abnormalities, resembling those seen in neuropsychiatric disorders, and increased brain vulnerability.
Collapse
Affiliation(s)
- Hiroshi Ueno
- Department of Medical Technology, Kawasaki University of Medical Welfare, 288, Matsushima, Kurashiki, Okayama, 701-0193, Japan. .,Department of Medical Technology, Graduate School of Health Sciences, Okayama University, Okayama, 700-8558, Japan.
| | - Shunsuke Suemitsu
- Department of Psychiatry, Kawasaki Medical School, Kurashiki, 701-0192, Japan
| | - Shinji Murakami
- Department of Psychiatry, Kawasaki Medical School, Kurashiki, 701-0192, Japan
| | - Naoya Kitamura
- Department of Psychiatry, Kawasaki Medical School, Kurashiki, 701-0192, Japan
| | - Kenta Wani
- Department of Psychiatry, Kawasaki Medical School, Kurashiki, 701-0192, Japan
| | - Yosuke Matsumoto
- Department of Neuropsychiatry, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, 700-8558, Japan
| | - Motoi Okamoto
- Department of Medical Technology, Graduate School of Health Sciences, Okayama University, Okayama, 700-8558, Japan
| | - Shozo Aoki
- Department of Psychiatry, Kawasaki Medical School, Kurashiki, 701-0192, Japan
| | - Takeshi Ishihara
- Department of Psychiatry, Kawasaki Medical School, Kurashiki, 701-0192, Japan
| |
Collapse
|
28
|
Altman DE, Simmons LP, Vuong CT, Taylor RM, Sousa JC, Marcsisin SR, Zottig VE, Moore NLT. Developmental differences in stress responding after repeated underwater trauma exposures in rats. Stress 2018; 21:267-273. [PMID: 29451058 DOI: 10.1080/10253890.2018.1439012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Adolescence is a distinct developmental period characterized by behavioral and physiological maturation. Rapid ongoing changes during neurodevelopment in particular present potential opportunities for stress to have lasting effects on longitudinal outcomes of behavioral and neuroendocrine function. While adult stress effects on outcomes during adulthood have been characterized, little is known about the lasting effects of adolescent repeated stressor exposure on outcomes during adolescence. We have previously reported different stress responses in adolescent rats relative to adult rats, including a blunted fear response outcome in adulthood in rats stressed during adolescence. The present study characterized the ontogeny of behavioral and neuroendocrine responses to eight underwater trauma (UWT) exposures in rats over a two week poststress time period during adolescence (P34) or adulthood (P83) relative to age-matched control groups that underwent eight swimming episodes without UWT. Repeated UWT exposures starting in adolescence, but not adulthood, resulted in adverse behavioral responses on the elevated plus maze 1 day post-stress. Corticosterone responses did not differ between UWT-exposed and controls for either age group at 1 day or at 7 days poststress, although there was an effect of age on corticosterone levels. We conclude that repeated UWT stress events have a lasting, negative behavioral effect on adolescent rats that is not observed in adult rats after the two-week exposure window. These results suggest that neurophysiological mechanisms underlying recovery from a repeated stressor are immature in adolescence relative to adulthood in rats.
Collapse
Affiliation(s)
- Daniel E Altman
- a Center for Military Psychiatry and Neuroscience, Department of Behavioral Biology , Walter Reed Army Institute of Research , Silver Spring , MD , USA
| | - Laurence P Simmons
- a Center for Military Psychiatry and Neuroscience, Department of Behavioral Biology , Walter Reed Army Institute of Research , Silver Spring , MD , USA
| | - Chau T Vuong
- b Division of Experimental Therapeutics, Drug Metabolism and Distribution Branch , Walter Reed Army Institute of Research , Silver Spring , MD , USA
| | - Rachel M Taylor
- a Center for Military Psychiatry and Neuroscience, Department of Behavioral Biology , Walter Reed Army Institute of Research , Silver Spring , MD , USA
| | - Jason C Sousa
- b Division of Experimental Therapeutics, Drug Metabolism and Distribution Branch , Walter Reed Army Institute of Research , Silver Spring , MD , USA
| | - Sean R Marcsisin
- b Division of Experimental Therapeutics, Drug Metabolism and Distribution Branch , Walter Reed Army Institute of Research , Silver Spring , MD , USA
| | - Victor E Zottig
- b Division of Experimental Therapeutics, Drug Metabolism and Distribution Branch , Walter Reed Army Institute of Research , Silver Spring , MD , USA
| | - Nicole L T Moore
- a Center for Military Psychiatry and Neuroscience, Department of Behavioral Biology , Walter Reed Army Institute of Research , Silver Spring , MD , USA
| |
Collapse
|
29
|
Lo Iacono L, Carola V. The impact of adolescent stress experiences on neurobiological development. Semin Cell Dev Biol 2018; 77:93-103. [DOI: 10.1016/j.semcdb.2017.09.040] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 09/18/2017] [Accepted: 09/29/2017] [Indexed: 01/23/2023]
|
30
|
Page CE, Alexander J, Shepard R, Coutellier L. Npas4 deficiency interacts with adolescent stress to disrupt prefrontal GABAergic maturation and adult cognitive flexibility. GENES BRAIN AND BEHAVIOR 2018; 17:e12459. [DOI: 10.1111/gbb.12459] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 12/08/2017] [Accepted: 01/11/2018] [Indexed: 01/03/2023]
Affiliation(s)
- C. E. Page
- Department of Neuroscience; The Ohio State University; Columbus Ohio
| | - J. Alexander
- Department of Neuroscience; The Ohio State University; Columbus Ohio
| | - R. Shepard
- Department of Psychology; The Ohio State University; Columbus Ohio
| | - L. Coutellier
- Department of Neuroscience; The Ohio State University; Columbus Ohio
- Department of Psychology; The Ohio State University; Columbus Ohio
| |
Collapse
|