1
|
Alexander RPD, Bender KJ. Delta opioid receptors engage multiple signaling cascades to differentially modulate prefrontal GABA release with input and target specificity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.08.607246. [PMID: 39149233 PMCID: PMC11326311 DOI: 10.1101/2024.08.08.607246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Opioids regulate circuits associated with motivation and reward across the brain. Of the opioid receptor types, delta opioid receptors (DORs) appear to have a unique role in regulating the activity of circuits related to reward without a liability for abuse. In neocortex, DORs are expressed primarily in interneurons, including parvalbumin- and somatostatin-expressing interneurons that inhibit somatic and dendritic compartments of excitatory pyramidal cells, respectively. But how DORs regulate transmission from these key interneuron classes is unclear. We found that DORs regulate inhibition from these interneuron classes using different G-protein signaling pathways that both converge on presynaptic calcium channels, but regulate distinct aspects of calcium channel function. This imposes different temporal filtering effects, via short-term plasticity, that depend on how calcium channels are regulated. Thus, DORs engage differential signaling cascades to regulate inhibition depending on the postsynaptic target compartment, with different effects on synaptic information transfer in somatic and dendritic domains.
Collapse
Affiliation(s)
- Ryan P. D. Alexander
- Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Kevin J. Bender
- Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| |
Collapse
|
2
|
Kawaminami A, Yamada D, Yoshioka T, Hatakeyama A, Nishida M, Kajino K, Saitoh T, Nagase H, Saitoh A. The delta opioid receptor agonist KNT-127 relieves innate anxiety-like behavior in mice by suppressing transmission from the prelimbic cortex to basolateral amygdala. Neuropsychopharmacol Rep 2024; 44:256-261. [PMID: 38156409 PMCID: PMC10932786 DOI: 10.1002/npr2.12406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/16/2023] [Accepted: 11/20/2023] [Indexed: 12/30/2023] Open
Abstract
AIM Excitatory projections from the prelimbic cortex (PL) to the basolateral nucleus of the amygdala (BLA) are implicated in the regulation of anxiety-like behaviors, and we previously demonstrated that anxiolytic-like effects of the selective delta-opioid receptor (DOP) agonist KNT-127 is involved in suppressing glutamate neurotransmission in the PL. Here, we investigated the mechanisms underlying the anxiolytic-like effect of KNT-127 in mice by combining optogenetic stimulation of the PL-BLA pathway with behavioral analyses. METHODS Four-week-old male C57BL/6J mice received bilateral administration of adeno-associated virus (AAV)2-CaMKIIa-hChR2(H134R)-enhanced yellow fluorescent protein (EYFP) into the PL to induce expression of the light-activated excitatory ionic channel ChR2. Subsequently, an optic fiber cannula connected to a wireless photo-stimulator was implanted into the BLA for optogenetic PL-BLA pathway stimulation. We evaluated innate anxiety using the elevated plus maze (EPM) and open field (OF) tests as well as learned anxiety using the contextual fear conditioning (CFC) test. RESULTS Optogenetic activation of the PL-BLA pathway enhanced anxiety-like behaviors in the EPM and OF, while prior subcutaneous administration of KNT-127 (10 mg/kg) reduced this anxiogenic effect. In contrast, optogenetic activation of the PL-BLA pathway had no significant effect on conditioned fear. CONCLUSION Our findings indicate that the PL-BLA circuit contributes to innate anxiety and that the anxiolytic-like effects of KNT-127 are mediated at least in part by suppression of PL-BLA transmission. The PL delta-opioid receptor may thus be an effective therapeutic target for anxiety disorders.
Collapse
Affiliation(s)
- Ayako Kawaminami
- Laboratory of Pharmacology, Department of Pharmacy, Faculty of Pharmaceutical SciencesTokyo University of ScienceNodaJapan
| | - Daisuke Yamada
- Laboratory of Pharmacology, Department of Pharmacy, Faculty of Pharmaceutical SciencesTokyo University of ScienceNodaJapan
| | - Toshinori Yoshioka
- Laboratory of Pharmacology, Department of Pharmacy, Faculty of Pharmaceutical SciencesTokyo University of ScienceNodaJapan
| | - Azumi Hatakeyama
- Laboratory of Pharmacology, Department of Pharmacy, Faculty of Pharmaceutical SciencesTokyo University of ScienceNodaJapan
| | - Moeno Nishida
- Laboratory of Pharmacology, Department of Pharmacy, Faculty of Pharmaceutical SciencesTokyo University of ScienceNodaJapan
| | - Keita Kajino
- International Institute for Integrative Sleep Medicine (WPI‐IIIS)TsukubaJapan
| | - Tsuyoshi Saitoh
- International Institute for Integrative Sleep Medicine (WPI‐IIIS)TsukubaJapan
| | | | - Akiyoshi Saitoh
- Laboratory of Pharmacology, Department of Pharmacy, Faculty of Pharmaceutical SciencesTokyo University of ScienceNodaJapan
| |
Collapse
|
3
|
Neugebauer V, Presto P, Yakhnitsa V, Antenucci N, Mendoza B, Ji G. Pain-related cortico-limbic plasticity and opioid signaling. Neuropharmacology 2023; 231:109510. [PMID: 36944393 PMCID: PMC10585936 DOI: 10.1016/j.neuropharm.2023.109510] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 03/15/2023] [Accepted: 03/16/2023] [Indexed: 03/23/2023]
Abstract
Neuroplasticity in cortico-limbic circuits has been implicated in pain persistence and pain modulation in clinical and preclinical studies. The amygdala has emerged as a key player in the emotional-affective dimension of pain and pain modulation. Reciprocal interactions with medial prefrontal cortical regions undergo changes in pain conditions. Other limbic and paralimbic regions have been implicated in pain modulation as well. The cortico-limbic system is rich in opioids and opioid receptors. Preclinical evidence for their pain modulatory effects in different regions of this highly interactive system, potentially opposing functions of different opioid receptors, and knowledge gaps will be described here. There is little information about cell type- and circuit-specific functions of opioid receptor subtypes related to pain processing and pain-related plasticity in the cortico-limbic system. The important role of anterior cingulate cortex (ACC) and amygdala in MOR-dependent analgesia is most well-established, and MOR actions in the mesolimbic system appear to be similar but remain to be determined in mPFC regions other than ACC. Evidence also suggests that KOR signaling generally serves opposing functions whereas DOR signaling in the ACC has similar, if not synergistic effects, to MOR. A unifying picture of pain-related neuronal mechanisms of opioid signaling in different elements of the cortico-limbic circuitry has yet to emerge. This article is part of the Special Issue on "Opioid-induced changes in addiction and pain circuits".
Collapse
Affiliation(s)
- Volker Neugebauer
- Department of Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA; Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, TX, USA; Garrison Institute on Aging, Texas Tech University Health Sciences Center, Lubbock, TX, USA.
| | - Peyton Presto
- Department of Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Vadim Yakhnitsa
- Department of Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Nico Antenucci
- Department of Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Brianna Mendoza
- Department of Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Guangchen Ji
- Department of Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA; Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| |
Collapse
|
4
|
Karasawa Y, Miyano K, Yamaguchi M, Nonaka M, Yamaguchi K, Iseki M, Kawagoe I, Uezono Y. Therapeutic Potential of Orally Administered Rubiscolin-6. Int J Mol Sci 2023; 24:9959. [PMID: 37373107 DOI: 10.3390/ijms24129959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 06/07/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
Rubiscolins are naturally occurring opioid peptides derived from the enzymatic digestion of the ribulose bisphosphate carboxylase/oxygenase protein in spinach leaves. They are classified into two subtypes based on amino acid sequence, namely rubiscolin-5 and rubiscolin-6. In vitro studies have determined rubiscolins as G protein-biased delta-opioid receptor agonists, and in vivo studies have demonstrated that they exert several beneficial effects via the central nervous system. The most unique and attractive advantage of rubiscolin-6 over other oligopeptides is its oral availability. Therefore, it can be considered a promising candidate for the development of a novel and safe drug. In this review, we show the therapeutic potential of rubiscolin-6, mainly focusing on its effects when orally administered based on available evidence. Additionally, we present a hypothesis for the pharmacokinetics of rubiscolin-6, focusing on its absorption in the intestinal tract and ability to cross the blood-brain barrier.
Collapse
Affiliation(s)
- Yusuke Karasawa
- Department of Pain Medicine, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
- Department of Pain Control Research, The Jikei University School of Medicine, Tokyo 105-8461, Japan
- Medical Affairs, Viatris Pharmaceuticals Japan Inc., Tokyo 105-0001, Japan
| | - Kanako Miyano
- Department of Pain Medicine, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
- Department of Pain Control Research, The Jikei University School of Medicine, Tokyo 105-8461, Japan
- Division of Cancer Pathophysiology, National Cancer Center Research Institute, Tokyo 104-0045, Japan
| | - Masahiro Yamaguchi
- Department of Pain Medicine, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
- Department of Pain Control Research, The Jikei University School of Medicine, Tokyo 105-8461, Japan
- Medical Affairs, Pfizer Japan Inc., Tokyo 151-8589, Japan
| | - Miki Nonaka
- Department of Pain Control Research, The Jikei University School of Medicine, Tokyo 105-8461, Japan
| | - Keisuke Yamaguchi
- Department of Pain Medicine, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
- Department of Anesthesiology and Pain Medicine, Faculty of Medicine, Juntendo University, Tokyo 113-8421, Japan
| | - Masako Iseki
- Department of Pain Medicine, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
- Department of Anesthesiology and Pain Medicine, Faculty of Medicine, Juntendo University, Tokyo 113-8421, Japan
| | - Izumi Kawagoe
- Department of Anesthesiology and Pain Medicine, Faculty of Medicine, Juntendo University, Tokyo 113-8421, Japan
| | - Yasuhito Uezono
- Department of Pain Medicine, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
- Department of Pain Control Research, The Jikei University School of Medicine, Tokyo 105-8461, Japan
- Department of Anesthesiology and Pain Medicine, Faculty of Medicine, Juntendo University, Tokyo 113-8421, Japan
- Supportive and Palliative Care Research Support Office, National Cancer Center Hospital East, Chiba 277-8577, Japan
| |
Collapse
|
5
|
Role for μ-opioid receptor in antidepressant effects of δ-opioid receptor agonist KNT-127. J Pharmacol Sci 2023; 151:135-141. [PMID: 36828615 DOI: 10.1016/j.jphs.2022.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 12/17/2022] [Accepted: 12/26/2022] [Indexed: 12/29/2022] Open
Abstract
Previous pharmacological data have shown the possible existence of functional interactions between μ- (MOP), κ- (KOP), and δ-opioid receptors (DOP) in pain and mood disorders. We previously reported that MOP knockout (KO) mice exhibit a lower stress response compared with wildtype (WT) mice. Moreover, DOP agonists have been shown to exert antidepressant-like effects in numerous animal models. In the present study, the tail suspension test (TST) and forced swim test (FST) were used to examine the roles of MOP and DOP in behavioral despair. MOP-KO mice and WT mice were treated with KNT-127 (10 mg/kg), a selective DOP agonist. The results indicated a significant decrease in immobility time in the KNT-127 group compared with the saline group in all genotypes in both tests. In the saline groups, immobility time significantly decreased in MOP-KO mice compared with WT mice in both tests. In female MOP-KO mice, KNT-127 significantly decreased immobility time in the TST compared with WT mice. In male MOP-KO mice, however, no genotypic differences were found in the TST after either KNT-127 or saline treatment. Thus, at least in the FST and TST, the activation of DOP and absence of MOP had additive effects in reducing measures of behavioral despair, suggesting that effects on this behavior by DOP activation occur independently of MOP.
Collapse
|
6
|
Reeves KC, Shah N, Muñoz B, Atwood BK. Opioid Receptor-Mediated Regulation of Neurotransmission in the Brain. Front Mol Neurosci 2022; 15:919773. [PMID: 35782382 PMCID: PMC9242007 DOI: 10.3389/fnmol.2022.919773] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 05/26/2022] [Indexed: 12/15/2022] Open
Abstract
Opioids mediate their effects via opioid receptors: mu, delta, and kappa. At the neuronal level, opioid receptors are generally inhibitory, presynaptically reducing neurotransmitter release and postsynaptically hyperpolarizing neurons. However, opioid receptor-mediated regulation of neuronal function and synaptic transmission is not uniform in expression pattern and mechanism across the brain. The localization of receptors within specific cell types and neurocircuits determine the effects that endogenous and exogenous opioids have on brain function. In this review we will explore the similarities and differences in opioid receptor-mediated regulation of neurotransmission across different brain regions. We discuss how future studies can consider potential cell-type, regional, and neural pathway-specific effects of opioid receptors in order to better understand how opioid receptors modulate brain function.
Collapse
Affiliation(s)
- Kaitlin C. Reeves
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, United States
- Department of Neuroscience, Charleston Alcohol Research Center, Medical University of South Carolina, Charleston, SC, United States
| | - Nikhil Shah
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, United States
- Medical Scientist Training Program, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Braulio Muñoz
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Brady K. Atwood
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, United States
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, United States
| |
Collapse
|
7
|
Saitoh A, Nagayama Y, Yamada D, Makino K, Yoshioka T, Yamanaka N, Nakatani M, Takahashi Y, Yamazaki M, Shigemoto C, Ohashi M, Okano K, Omata T, Toda E, Sano Y, Takahashi H, Matsushima K, Terashima Y. Disulfiram Produces Potent Anxiolytic-Like Effects Without Benzodiazepine Anxiolytics-Related Adverse Effects in Mice. Front Pharmacol 2022; 13:826783. [PMID: 35330835 PMCID: PMC8940232 DOI: 10.3389/fphar.2022.826783] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 02/14/2022] [Indexed: 12/02/2022] Open
Abstract
Disulfiram is an FDA approved drug for the treatment of alcoholism. The drug acts by inhibiting aldehyde dehydrogenase, an enzyme essential to alcohol metabolism. However, a recent study has demonstrated that disulfiram also potently inhibits the cytoplasmic protein FROUNT, a common regulator of chemokine receptor CCR2 and CCR5 signaling. Several studies have reported that chemokine receptors are associated with the regulation of emotional behaviors in rodents, such as anxiety. Therefore, this study was performed to clarify the effect of disulfiram on emotional behavior in rodents. The anxiolytic-like effects of disulfiram were investigated using an elevated plus-maze (EPM) test, a typical screening model for anxiolytics. Disulfiram (40 or 80 mg/kg) significantly increased the amount of time spent in the open arms of the maze and the number of open arm entries without affecting the total open arms entries. Similar results were obtained in mice treated with a selective FROUNT inhibitor, disulfiram-41 (10 mg/kg). These disulfiram-associated behavioral changes were similar to those observed following treatment with the benzodiazepine anxiolytic diazepam (1.5 mg/kg). Moreover, disulfiram (40 mg/kg) significantly and completely attenuated increased extracellular glutamate levels in the prelimbic-prefrontal cortex (PL-PFC) during stress exposure on the elevated open-platform. However, no effect in the EPM test was seen following administration of the selective aldehyde dehydrogenase inhibitor cyanamide (40 mg/kg). In contrast to diazepam, disulfiram caused no sedation effects in the open-field, coordination disorder on a rotarod, or amnesia in a Y-maze. This is the first report suggesting that disulfiram produces anxiolytic-like effects in rodents. We found that the presynaptic inhibitory effects on glutaminergic neurons in the PL-PFC may be involved in its underlying mechanism. Disulfiram could therefore be an effective and novel anxiolytic drug that does not produce benzodiazepine-related adverse effects, such as amnesia, coordination disorder, or sedation, as found with diazepam. We propose that the inhibitory activity of disulfiram against FROUNT function provides an effective therapeutic option in anxiety.
Collapse
Affiliation(s)
- Akiyoshi Saitoh
- Laboratory of Pharmacology, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba, Japan
| | - Yoshifumi Nagayama
- Laboratory of Pharmacology, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba, Japan
| | - Daisuke Yamada
- Laboratory of Pharmacology, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba, Japan
| | - Kosho Makino
- Department of Medicinal Chemistry, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba, Japan
| | - Toshinori Yoshioka
- Laboratory of Pharmacology, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba, Japan
| | - Nanami Yamanaka
- Laboratory of Pharmacology, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba, Japan
| | - Momoka Nakatani
- Laboratory of Pharmacology, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba, Japan
| | - Yoshino Takahashi
- Department of Medicinal Chemistry, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba, Japan
| | - Mayuna Yamazaki
- Laboratory of Pharmacology, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba, Japan
| | - Chihiro Shigemoto
- Laboratory of Pharmacology, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba, Japan
| | - Misaki Ohashi
- Laboratory of Pharmacology, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba, Japan
| | - Kotaro Okano
- Laboratory of Pharmacology, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba, Japan
| | - Tomoki Omata
- Laboratory of Pharmacology, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba, Japan
| | - Etsuko Toda
- Division of Molecular Regulation of Inflammatory and Immune Diseases, Research Institute for Biomedical Sciences (RIBS), Tokyo University of Science, Chiba, Japan.,Department of Analytic Human Pathology, Nippon Medical School, Tokyo, Japan
| | - Yoshitake Sano
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, Chiba, Japan
| | - Hideyo Takahashi
- Department of Medicinal Chemistry, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba, Japan
| | - Kouji Matsushima
- Division of Molecular Regulation of Inflammatory and Immune Diseases, Research Institute for Biomedical Sciences (RIBS), Tokyo University of Science, Chiba, Japan
| | - Yuya Terashima
- Division of Molecular Regulation of Inflammatory and Immune Diseases, Research Institute for Biomedical Sciences (RIBS), Tokyo University of Science, Chiba, Japan
| |
Collapse
|
8
|
Kawaminami A, Yamada D, Yanagisawa S, Shirakata M, Iio K, Nagase H, Saitoh A. Selective δ-Opioid Receptor Agonist, KNT-127, Facilitates Contextual Fear Extinction via Infralimbic Cortex and Amygdala in Mice. Front Behav Neurosci 2022; 16:808232. [PMID: 35264937 PMCID: PMC8899726 DOI: 10.3389/fnbeh.2022.808232] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 01/10/2022] [Indexed: 11/18/2022] Open
Abstract
Facilitation of fear extinction is a desirable action for the drugs to treat fear-related diseases, such as posttraumatic stress disorder (PTSD). We previously reported that a selective agonist of the δ-opioid receptor (DOP), KNT-127, facilitates contextual fear extinction in mice. However, its site of action in the brain and the underlying molecular mechanism remains unknown. Here, we investigated brain regions and cellular signaling pathways that may mediate the action of KNT-127 on fear extinction. Twenty-four hours after the fear conditioning, mice were reexposed to the conditioning chamber for 6 min as extinction training (reexposure 1). KNT-127 was microinjected into either the basolateral nucleus of the amygdala (BLA), hippocampus (HPC), prelimbic (PL), or infralimbic (IL) subregions of the medial prefrontal cortex, 30 min before reexposure 1. Next day, mice were reexposed to the chamber for 6 min as memory testing (reexposure 2). KNT-127 that infused into the BLA and IL, but not HPC or PL, significantly reduced the freezing response in reexposure 2 compared with those of control. The effect of KNT-127 administered into the BLA and IL was antagonized by pretreatment with a selective DOP antagonist. Further, the effect of KNT-127 was abolished by local administration of MEK/ERK inhibitor into the BLA, and PI3K/Akt inhibitor into the IL, respectively. These results suggested that the effect of KNT-127 was mediated by MEK/ERK signaling in the BLA, PI3K/Akt signaling in the IL, and DOPs in both brain regions. Here, we propose that DOPs play a role in fear extinction via distinct signaling pathways in the BLA and IL.
Collapse
Affiliation(s)
- Ayako Kawaminami
- Laboratory of Pharmacology, Department of Pharmacy, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba, Japan
| | - Daisuke Yamada
- Laboratory of Pharmacology, Department of Pharmacy, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba, Japan
- *Correspondence: Daisuke Yamada,
| | - Shoko Yanagisawa
- Laboratory of Pharmacology, Department of Pharmacy, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba, Japan
| | - Motoki Shirakata
- Laboratory of Pharmacology, Department of Pharmacy, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba, Japan
| | - Keita Iio
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Ibaraki, Japan
| | - Hiroshi Nagase
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Ibaraki, Japan
| | - Akiyoshi Saitoh
- Laboratory of Pharmacology, Department of Pharmacy, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba, Japan
| |
Collapse
|
9
|
Yamada D, Saitoh A. [Neural mechanism underlying the regulation of emotional behavior via δ-opioid receptors]. Nihon Yakurigaku Zasshi 2022; 157:448-452. [PMID: 36328559 DOI: 10.1254/fpj.22059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The delta opioid receptor (DOP) belongs to the G protein-coupled receptor family and is abundant in the limbic system. In recent years, consistent with their distribution, they have been suggested to be involved in the regulation of emotional behavior. In particular, DOP agonists have been shown to exhibit antidepressant and anxiolytic-like effects, and clinical trials are underway as targets for the development of new psychotropic drugs with mechanisms of action different from those of existing monoamine drugs. In this article, we review the roles and mechanisms of DOP in emotion regulation that are being elucidated in basic studies using rodents, and also introduce the current status of its clinical application.
Collapse
Affiliation(s)
- Daisuke Yamada
- Laboratory of Pharmacology, Department of Pharmacy, Faculty of Pharmaceutical Sciences, Tokyo University of Science
| | - Akiyoshi Saitoh
- Laboratory of Pharmacology, Department of Pharmacy, Faculty of Pharmaceutical Sciences, Tokyo University of Science
| |
Collapse
|
10
|
Ko MJ, Chiang T, Mukadam AA, Mulia GE, Gutridge AM, Lin A, Chester JA, van Rijn RM. β-Arrestin-dependent ERK signaling reduces anxiety-like and conditioned fear-related behaviors in mice. Sci Signal 2021; 14:14/694/eaba0245. [PMID: 34344831 DOI: 10.1126/scisignal.aba0245] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
G protein-coupled receptors (GPCRs) are implicated in the regulation of fear and anxiety. GPCR signaling involves canonical G protein pathways but can also engage downstream kinases and effectors through scaffolding interactions mediated by β-arrestin. Here, we investigated whether β-arrestin signaling regulates anxiety-like and fear-related behavior in mice in response to activation of the GPCR δ-opioid receptor (δOR or DOR). Administration of β-arrestin-biased δOR agonists to male C57BL/6 mice revealed β-arrestin 2-dependent activation of extracellular signal-regulated kinases 1 and 2 (ERK1/2) in the dorsal hippocampus and amygdala and β-arrestin 1-dependent activation of ERK1/2 in the nucleus accumbens. In mice, β-arrestin-biased agonist treatment was associated with reduced anxiety-like and fear-related behaviors, with some overlapping and isoform-specific input. In contrast, applying a G protein-biased δOR agonist decreased ERK1/2 activity in all three regions as well as the dorsal striatum and was associated with increased fear-related behavior without effects on baseline anxiety. Our results indicate a complex picture of δOR neuromodulation in which β-arrestin 1- and 2-dependent ERK signaling in specific brain subregions suppresses behaviors associated with anxiety and fear and opposes the effects of G protein-biased signaling. Overall, our findings highlight the importance of noncanonical β-arrestin-dependent GPCR signaling in the regulation of these interrelated emotions.
Collapse
Affiliation(s)
- Mee Jung Ko
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN 47907, USA.,Purdue Institute for Integrative Neuroscience, West Lafayette, IN 47907, USA.,Purdue Interdisciplinary Life Sciences Graduate Program, West Lafayette, IN 47907, USA
| | - Terrance Chiang
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN 47907, USA
| | - Arbaaz A Mukadam
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN 47907, USA.,Department of Psychological Sciences, College of Health and Human Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Grace E Mulia
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN 47907, USA.,Purdue Interdisciplinary Life Sciences Graduate Program, West Lafayette, IN 47907, USA
| | - Anna M Gutridge
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN 47907, USA.,Purdue Institute for Integrative Neuroscience, West Lafayette, IN 47907, USA
| | - Angel Lin
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN 47907, USA
| | - Julia A Chester
- Purdue Institute for Integrative Neuroscience, West Lafayette, IN 47907, USA.,Purdue Interdisciplinary Life Sciences Graduate Program, West Lafayette, IN 47907, USA.,Department of Psychological Sciences, College of Health and Human Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Richard M van Rijn
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN 47907, USA. .,Purdue Institute for Integrative Neuroscience, West Lafayette, IN 47907, USA.,Purdue Interdisciplinary Life Sciences Graduate Program, West Lafayette, IN 47907, USA.,Purdue Institute for Drug Discovery, West Lafayette, IN 47907, USA
| |
Collapse
|
11
|
Yamada D, Takahashi J, Iio K, Nagase H, Saitoh A. Modulation of glutamatergic synaptic transmission and neuronal excitability in the prelimbic medial prefrontal cortex via delta-opioid receptors in mice. Biochem Biophys Res Commun 2021; 560:192-198. [PMID: 34000468 DOI: 10.1016/j.bbrc.2021.05.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 05/02/2021] [Indexed: 11/25/2022]
Abstract
The medial prefrontal cortex (mPFC) plays a vital role in the processing of emotional events. It has been shown that activation of the glutamatergic transmission in prelimbic subregion of the mPFC (PL-PFC) evoked anxiety-like behavior in rodents. We previously reported that local perfusion of a selective agonist to delta-opioid receptor (DOP), KNT-127, attenuated the veratrine-induced elevation of extracellular glutamate in the PL-PFC and anxiety-like behavior in mice. These results suggested the possibility that KNT-127 suppresses glutamate release from the presynaptic site in the PL-PFC. To examine this possibility directly, we performed whole-cell patch-clamp recording from principal neurons in the PL-PFC and examined the spontaneous and electrically-evoked excitatory postsynaptic currents (EPSC)s. We found that bath application of KNT-127 significantly decreased the frequency of spontaneous and miniature EPSCs. Conversely, amplitude, rise time, and decay time of spontaneous and miniature EPSCs were not affected by bath application of KNT-127. Also, KNT-127 increased paired-pulse ratios of electrically-evoked EPSCs in the PL-PFC principal neurons tested. Further, we analyzed the firing properties of pyramidal neurons in the PL-PFC and found that KNT-127 treatment significantly reduced the number of action potentials and firing threshold. These results suggested that KNT-127 suppresses glutamatergic synaptic transmission by inhibiting glutamate release from the presynaptic site and reduces neuronal excitability in the mouse PL-PFC. We propose the possibility that these suppressing effects of KNT-127 on PL-PFC activity are part of the underlying mechanisms of its anxiolytic-like effects.
Collapse
Affiliation(s)
- Daisuke Yamada
- Laboratory of Pharmacology, Department of Pharmacy, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan
| | - Junpei Takahashi
- Laboratory of Pharmacology, Department of Pharmacy, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan
| | - Keita Iio
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Hiroshi Nagase
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Akiyoshi Saitoh
- Laboratory of Pharmacology, Department of Pharmacy, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan.
| |
Collapse
|
12
|
Mahmoodkhani M, Amini M, Derafshpour L, Ghasemi M, Mehranfard N. Negative relationship between brain α 1A-AR neurotransmission and βArr2 levels in anxious adolescent rats subjected to early life stress. Exp Brain Res 2020; 238:2833-2844. [PMID: 33025031 DOI: 10.1007/s00221-020-05937-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 09/27/2020] [Indexed: 01/06/2023]
Abstract
Early-life stress is correlated with the development of anxiety-related behavior in adolescence, but underlying mechanisms remain poorly known. The α1A-adrenergic receptor (AR) is linked to mood regulation and its function is assumed to be regulated by β-arrestins (βArrs) via desensitization and downregulation. Here, we investigated correlation between changes in α1A-AR and βArr2 levels in the prefrontal cortex (PFC) and hippocampus of adolescent and adult male rats subjected to maternal separation (MS) and their relationship with anxiety-like behavior in adolescence. MS was performed 3 h per day from postnatal days 2-11 and anxiety-like behavior was evaluated in the elevated plus-maze and open field tests. The protein levels were examined using western blot assay. MS decreased α1A-AR expression and increased βArr2 expression in both brain regions of adolescent rats, while induced reverse changes in adulthood. MS adolescent rats demonstrated higher anxiety-type behavior and lower activity in behavioral tests than controls. Decreased α1A-AR levels in MS adolescence strongly correlated with reduced time spent in the open field central area, consistent with increased anxiety-like behavior. An anxiety-like phenotype was mimicked by acute and chronic treatment of developing rats with prazosin, an α1A-AR antagonist, suggesting α1A-AR downregulation may facilitate anxiety behavior in MS adolescent rats. Together, our results indicate a negative correlation between α1A-AR neurotransmission and βArr2 levels in both adults and anxious-adolescent rats and suggest that increased βArr2 levels may contribute to posttranslational regulation of α1A-AR and modulation of anxiety-like behavior in adolescent rats. This may provide a path to develop more effective anxiolytic treatments.
Collapse
Affiliation(s)
- Maryam Mahmoodkhani
- Neurophysiology Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Mohammad Amini
- Neurophysiology Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Leila Derafshpour
- Neurophysiology Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Maedeh Ghasemi
- Department of Physiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Nasrin Mehranfard
- Neurophysiology Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran.
| |
Collapse
|
13
|
Abstract
This paper is the forty-first consecutive installment of the annual anthological review of research concerning the endogenous opioid system, summarizing articles published during 2018 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides and receptors as well as effects of opioid/opiate agonists and antagonists. The review is subdivided into the following specific topics: molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors (2), the roles of these opioid peptides and receptors in pain and analgesia in animals (3) and humans (4), opioid-sensitive and opioid-insensitive effects of nonopioid analgesics (5), opioid peptide and receptor involvement in tolerance and dependence (6), stress and social status (7), learning and memory (8), eating and drinking (9), drug abuse and alcohol (10), sexual activity and hormones, pregnancy, development and endocrinology (11), mental illness and mood (12), seizures and neurologic disorders (13), electrical-related activity and neurophysiology (14), general activity and locomotion (15), gastrointestinal, renal and hepatic functions (16), cardiovascular responses (17), respiration and thermoregulation (18), and immunological responses (19).
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, Flushing, NY, 11367, United States.
| |
Collapse
|
14
|
Nie J, Wei X, Xu X, Li N, Li Y, Zhao Y, Guan Y, Ge F, Guan X. Electro-acupuncture alleviates adolescent cocaine exposure-enhanced anxiety-like behaviors in adult mice by attenuating the activities of PV interneurons in PrL. FASEB J 2020; 34:11913-11924. [PMID: 32683743 DOI: 10.1096/fj.202000346rr] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 06/14/2020] [Accepted: 06/23/2020] [Indexed: 12/12/2022]
Abstract
We recently found that adolescent cocaine exposure (ACE) resulted in an enhancement of the γ-aminobutyric acid (GABA) neurotransmitter system in the prelimbic cortex (PrL) of adult mice. Here, we aim to further investigate the role of GABAergic transmission, especially parvalbumin (PV) interneurons within PrL in the development of ACE-induced anxiety-like behavior, and to assess whether and how electro-acupuncture (EA) therapeutically manage the ACE-induced abnormal behaviors in adulthood. ACE mice exhibited the enhanced anxiety-like behaviors in their adulthood, accompanied by increased GABAergic transmission and PV interneurons in PrL. Chemogenetic blocking PV interneurons in PrL alleviated ACE-enhanced anxiety-like behaviors in mice. Importantly, 37-day EA treatments (mixture of 2 Hz/100 Hz, 1 mA, 30 minutes once a day) at the acupoints of Yintang (GV29) and Baihui (GV20) also alleviated ACE-induced anxiety-like behaviors, and rescued ACE-impaired GABAergic neurotransmitter system and PV interneurons in PrL. In parallel, EA treatments further suppressed the activities of pyramidal neurons in PrL, suggesting that EA treatments seem to perform it beneficial effects on the ACE-induced abnormal emotional behaviors by "calming down" the whole PrL. Collectively, these findings revealed that hyper-function of GABAergic transmission, especially mediating by PV interneurons in PrL may be key etiology underlying ACE-induced anxiety-like behaviors. At least by normalizing the function of GABAergic and PV interneurons, EA may represent a promising therapeutic strategy for managing adolescent substance use-related emotional disorders.
Collapse
Affiliation(s)
- Jiaxun Nie
- Department of Human Anatomy and Histoembryology, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xiaoyan Wei
- Department of Human Anatomy and Histoembryology, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xing Xu
- Department of Human Anatomy and Histoembryology, Nanjing University of Chinese Medicine, Nanjing, China
| | - Nanqin Li
- Department of Human Anatomy and Histoembryology, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yuehan Li
- Department of Human Anatomy and Histoembryology, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yonghua Zhao
- Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Yun Guan
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Feifei Ge
- Department of Human Anatomy and Histoembryology, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xiaowei Guan
- Department of Human Anatomy and Histoembryology, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
15
|
Nagase H, Saitoh A. Research and development of κ opioid receptor agonists and δ opioid receptor agonists. Pharmacol Ther 2019; 205:107427. [PMID: 31654658 DOI: 10.1016/j.pharmthera.2019.107427] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 09/30/2019] [Indexed: 12/28/2022]
Abstract
Delta opioid delta receptor (DOP) agonists were expected to be analgesics and many researchers tried to develop the SNC80 derivatives. However, the derivatives were dropped at the stage of early clinical trials because of undesirable side effects and weak analgesia. On the other hand, DOP agonists have been proposed as attractive candidates for the novel psychotropic drugs. We recently succeeded in synthesizing a novel selective DOP agonist KNT-127. KNT-127 produced neither catalepsy nor convulsive effects. We have demonstrated that KNT-127 has potent anxiolytic-like effect in rat models of innate anxiety. This anxiolytic-like effect was independent from known adverse effect of benzodiazepine, such as memory impairment, motor coordination deficits, and ethanol interactions. We have also demonstrated that KNT-127 showed potent and rapid antidepressant-like effects in rat models of depression. This antidepressant-like effect was independent from known adverse effect of selective serotonin reuptake inhibitor (SSRI), such as digestive symptoms. Therefore, we propose that DOP should be considered as an attractive target for the development of novel psychotropic drugs, without producing the adverse effects associated with benzodiazepine anxiolytics and SSRI antidepressants. Very recently, we developed another delta agonist NC-2800 with a different structure. NC-2800 is now in the preclinical stage using the CiCLE fund supported by AMED (Japanese Agency for Medical Research and Development).
Collapse
Affiliation(s)
- Hiroshi Nagase
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, 1-1-1, Tennodai, Tsukuba, Ibaraki, 305-8575, Japan.
| | - Akiyoshi Saitoh
- Laboratory of Pharmacology, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba, 278-8510, Japan
| |
Collapse
|
16
|
Sugiyama A, Yamada M, Furuie H, Gotoh L, Saitoh A, Nagase H, Oka JI, Yamada M. Systemic administration of a delta opioid receptor agonist, KNT-127, facilitates extinction learning of fear memory in rats. J Pharmacol Sci 2019; 139:174-179. [DOI: 10.1016/j.jphs.2019.01.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 12/27/2018] [Accepted: 01/09/2019] [Indexed: 11/29/2022] Open
|
17
|
Saitoh A, Soda A, Kayashima S, Yoshizawa K, Oka JI, Nagase H, Yamada M. A delta opioid receptor agonist, KNT-127, in the prelimbic medial prefrontal cortex attenuates glial glutamate transporter blocker-induced anxiety-like behavior in mice. J Pharmacol Sci 2018; 138:176-183. [DOI: 10.1016/j.jphs.2018.09.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 09/04/2018] [Accepted: 09/20/2018] [Indexed: 11/16/2022] Open
|