1
|
Mitchnick KA, Labardo S, Rosenbaum RS. Dissociations in perceptual discrimination following selective damage to the dentate gyrus versus CA1 subfield of the hippocampus. Cortex 2024; 179:191-214. [PMID: 39197409 DOI: 10.1016/j.cortex.2024.06.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 12/03/2023] [Accepted: 06/05/2024] [Indexed: 09/01/2024]
Abstract
The hippocampus (HPC) is well-known for its involvement in declarative (consciously accessible) memory, but there is evidence that it may also play a role in complex perceptual discrimination. Separate research has demonstrated separable contributions of HPC subregions to component memory processes, with the dentate gyrus (DG) required for mnemonic discrimination of similar inputs and the CA1 subfield required for retention and retrieval, but contributions of these subregions to perceptual processes is understudied. The current study examined the nature and extent of a double dissociation between the dentate gyrus (DG) to discrimination processes and CA1 subfield to retention/retrieval by testing two unique individuals with bilateral damage to the DG (case BL) and CA1 (case BR). We tested BL and BR on a wide range of standardized neuropsychological tests to assess information encoding and retention/retrieval and co-opted many measures to assess perceptual discrimination. Compared to normative data, BL exhibited performance below expectations on most measures requiring perceptual discrimination and on measures of encoding but demonstrated intact retention. Conversely, BR showed no difficulties with perceptual discrimination or verbal encoding but exhibited poor verbal retention, as well as poor encoding and retention of spatial/integrative tasks (e.g., object in a location). These results indicate that, despite its prominent role in memory, the DG is necessary for perceptual discrimination and encoding, whereas CA1 is necessary for retention/retrieval and encoding of spatial information. The pattern of results highlights the critical nature of individual case studies in the nuanced understanding of HPC subfield contributions to different memory processes, as well as the utility of repurposing neuropsychological measures to capture individual differences.
Collapse
Affiliation(s)
- Krista A Mitchnick
- Department of Psychology, York University, Toronto, ON, Canada; Rotman Research Institute at Baycrest Hospital, Toronto, ON, Canada.
| | - Sabrina Labardo
- Department of Psychology, York University, Toronto, ON, Canada.
| | - R Shayna Rosenbaum
- Department of Psychology, York University, Toronto, ON, Canada; Rotman Research Institute at Baycrest Hospital, Toronto, ON, Canada; Centre for Integrative and Applied Neuroscience, York University, Toronto, ON, Canada.
| |
Collapse
|
2
|
Lopez MR, Wasberg SMH, Gagliardi CM, Normandin ME, Muzzio IA. Mystery of the memory engram: History, current knowledge, and unanswered questions. Neurosci Biobehav Rev 2024; 159:105574. [PMID: 38331127 DOI: 10.1016/j.neubiorev.2024.105574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/22/2023] [Accepted: 02/03/2024] [Indexed: 02/10/2024]
Abstract
The quest to understand the memory engram has intrigued humans for centuries. Recent technological advances, including genetic labelling, imaging, optogenetic and chemogenetic techniques, have propelled the field of memory research forward. These tools have enabled researchers to create and erase memory components. While these innovative techniques have yielded invaluable insights, they often focus on specific elements of the memory trace. Genetic labelling may rely on a particular immediate early gene as a marker of activity, optogenetics may activate or inhibit one specific type of neuron, and imaging may capture activity snapshots in a given brain region at specific times. Yet, memories are multifaceted, involving diverse arrays of neuronal subpopulations, circuits, and regions that work in concert to create, store, and retrieve information. Consideration of contributions of both excitatory and inhibitory neurons, micro and macro circuits across brain regions, the dynamic nature of active ensembles, and representational drift is crucial for a comprehensive understanding of the complex nature of memory.
Collapse
Affiliation(s)
- M R Lopez
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine and Science, Rochester, MN, United States
| | - S M H Wasberg
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, IA 52242, USA
| | - C M Gagliardi
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, IA 52242, USA
| | - M E Normandin
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, IA 52242, USA
| | - I A Muzzio
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, IA 52242, USA.
| |
Collapse
|
3
|
Read ML, Berry SC, Graham KS, Voets NL, Zhang J, Aggleton JP, Lawrence AD, Hodgetts CJ. Scene-selectivity in CA1/subicular complex: Multivoxel pattern analysis at 7T. Neuropsychologia 2024; 194:108783. [PMID: 38161052 DOI: 10.1016/j.neuropsychologia.2023.108783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 12/21/2023] [Accepted: 12/27/2023] [Indexed: 01/03/2024]
Abstract
Prior univariate functional magnetic resonance imaging (fMRI) studies in humans suggest that the anteromedial subicular complex of the hippocampus is a hub for scene-based cognition. However, it is possible that univariate approaches were not sufficiently sensitive to detect scene-related activity in other subfields that have been implicated in spatial processing (e.g., CA1). Further, as connectivity-based functional gradients in the hippocampus do not respect classical subfield boundary definitions, category selectivity may be distributed across anatomical subfields. Region-of-interest approaches, therefore, may limit our ability to observe category selectivity across discrete subfield boundaries. To address these issues, we applied searchlight multivariate pattern analysis to 7T fMRI data of healthy adults who undertook a simultaneous visual odd-one-out discrimination task for scene and non-scene (including face) visual stimuli, hypothesising that scene classification would be possible in multiple hippocampal regions within, but not constrained to, anteromedial subicular complex and CA1. Indeed, we found that the scene-selective searchlight map overlapped not only with anteromedial subicular complex (distal subiculum, pre/para subiculum), but also inferior CA1, alongside posteromedial (including retrosplenial) and parahippocampal cortices. Probabilistic overlap maps revealed gradients of scene category selectivity, with the strongest overlap located in the medial hippocampus, converging with searchlight findings. This was contrasted with gradients of face category selectivity, which had stronger overlap in more lateral hippocampus, supporting ideas of parallel processing streams for these two categories. Our work helps to map the scene, in contrast to, face processing networks within, and connected to, the human hippocampus.
Collapse
Affiliation(s)
- Marie-Lucie Read
- Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University, Maindy Road, Cardiff, CF24 4HQ, UK
| | - Samuel C Berry
- Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University, Maindy Road, Cardiff, CF24 4HQ, UK; Department of Psychology, Royal Holloway, University of London, Egham, Surrey, TW20 0EX, UK
| | - Kim S Graham
- School of Philosophy, Psychology and Language Sciences, Dugald Stewart Building, University of Edinburgh, 3 Charles Street, Edinburgh, EH8 9AD, UK
| | - Natalie L Voets
- Wellcome Centre for Integrative Neuroimaging, FMRIB Building, John Radcliffe Hospital, Oxford, OX3 9DU2, UK
| | - Jiaxiang Zhang
- Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University, Maindy Road, Cardiff, CF24 4HQ, UK; School of Mathematics and Computer Science, Swansea University, Swansea SA1 8DD, UK
| | - John P Aggleton
- Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University, Maindy Road, Cardiff, CF24 4HQ, UK
| | - Andrew D Lawrence
- Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University, Maindy Road, Cardiff, CF24 4HQ, UK; School of Philosophy, Psychology and Language Sciences, Dugald Stewart Building, University of Edinburgh, 3 Charles Street, Edinburgh, EH8 9AD, UK
| | - Carl J Hodgetts
- Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University, Maindy Road, Cardiff, CF24 4HQ, UK; Department of Psychology, Royal Holloway, University of London, Egham, Surrey, TW20 0EX, UK.
| |
Collapse
|
4
|
Forro T, Klausberger T. Differential behavior-related activity of distinct hippocampal interneuron types during odor-associated spatial navigation. Neuron 2023:S0896-6273(23)00380-X. [PMID: 37279749 DOI: 10.1016/j.neuron.2023.05.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 04/02/2023] [Accepted: 05/10/2023] [Indexed: 06/08/2023]
Abstract
Hippocampal pyramidal cells represent an animal's position in space together with specific contexts and events. However, it is largely unknown how distinct types of GABAergic interneurons contribute to such computations. We recorded from the intermediate CA1 hippocampus of head-fixed mice exhibiting odor-to-place memory associations during navigation in a virtual reality (VR). The presence of an odor cue and its prediction of a different reward location induced a remapping of place cell activity in the virtual maze. Based on this, we performed extracellular recording and juxtacellular labeling of identified interneurons during task performance. The activity of parvalbumin (PV)-expressing basket, but not of PV-expressing bistratified cells, reflected the expected contextual change in the working-memory-related sections of the maze. Some interneurons, including identified cholecystokinin-expressing cells, decreased activity during visuospatial navigation and increased activity during reward. Our findings suggest that distinct types of GABAergic interneuron are differentially involved in cognitive processes of the hippocampus.
Collapse
Affiliation(s)
- Thomas Forro
- Division of Cognitive Neurobiology, Center for Brain Research, Medical University of Vienna, 1090 Vienna, Austria.
| | - Thomas Klausberger
- Division of Cognitive Neurobiology, Center for Brain Research, Medical University of Vienna, 1090 Vienna, Austria.
| |
Collapse
|
5
|
Gattas S, Elias GA, Janecek J, Yassa MA, Fortin NJ. Proximal CA1 20-40 Hz power dynamics reflect trial-specific information processing supporting nonspatial sequence memory. eLife 2022; 11:e55528. [PMID: 35532116 PMCID: PMC9170241 DOI: 10.7554/elife.55528] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 05/09/2022] [Indexed: 11/13/2022] Open
Abstract
The hippocampus is known to play a critical role in processing information about temporal context. However, it remains unclear how hippocampal oscillations are involved, and how their functional organization is influenced by connectivity gradients. We examined local field potential activity in CA1 as rats performed a nonspatial odor sequence memory task. We found that odor sequence processing epochs were characterized by distinct spectral profiles and proximodistal CA1 gradients of theta and 20-40 Hz power than track running epochs. We also discovered that 20-40 Hz power was predictive of sequence memory performance, particularly in proximal CA1 and during the plateau of high power observed in trials in which animals had to maintain their decision until instructed to respond. Altogether, these results provide evidence that dynamics of 20-40 Hz power along the CA1 axis are linked to trial-specific processing of nonspatial information critical to order judgments and are consistent with a role for 20-40 Hz power in gating information processing.
Collapse
Affiliation(s)
- Sandra Gattas
- Department of Electrical Engineering and Computer Science, University of CaliforniaIrvineUnited States
- Center for the Neurobiology of Learning and Memory, University of CaliforniaIrvineUnited States
| | - Gabriel A Elias
- Center for the Neurobiology of Learning and Memory, University of CaliforniaIrvineUnited States
- Department of Neurobiology and Behavior, University of CaliforniaIrvineUnited States
| | - John Janecek
- Center for the Neurobiology of Learning and Memory, University of CaliforniaIrvineUnited States
- Department of Neurobiology and Behavior, University of CaliforniaIrvineUnited States
| | - Michael A Yassa
- Center for the Neurobiology of Learning and Memory, University of CaliforniaIrvineUnited States
- Department of Neurobiology and Behavior, University of CaliforniaIrvineUnited States
| | - Norbert J Fortin
- Center for the Neurobiology of Learning and Memory, University of CaliforniaIrvineUnited States
- Department of Neurobiology and Behavior, University of CaliforniaIrvineUnited States
| |
Collapse
|
6
|
Distal CA1 Maintains a More Coherent Spatial Representation than Proximal CA1 When Local and Global Cues Conflict. J Neurosci 2021; 41:9767-9781. [PMID: 34670850 DOI: 10.1523/jneurosci.2938-20.2021] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 09/10/2021] [Accepted: 10/13/2021] [Indexed: 11/21/2022] Open
Abstract
Entorhinal cortical projections show segregation along the transverse axis of CA1, with the medial entorhinal cortex (MEC) sending denser projections to proximal CA1 (pCA1) and the lateral entorhinal cortex (LEC) sending denser projections to distal CA1 (dCA1). Previous studies have reported functional segregation along the transverse axis of CA1 correlated with the functional differences in MEC and LEC. pCA1 shows higher spatial selectivity than dCA1 in these studies. We employ a double rotation protocol, which creates an explicit conflict between the local and the global cues, to understand the differential contributions of these reference frames to the spatial code in pCA1 and dCA1 in male Long-Evans rats. We show that pCA1 and dCA1 respond differently to this local-global cue conflict. pCA1 representation splits as predicted from the strong conflicting inputs it receives from MEC and dCA3. In contrast, dCA1 rotates more in concert with the global cues. In addition, pCA1 and dCA1 display comparable levels of spatial selectivity in this study. This finding differs from the previous studies, perhaps because of richer sensory information available in our behavior arena. Together, these observations indicate that the functional segregation along proximodistal axis of CA1 is not of the amount of spatial selectivity but that of the nature of the different inputs used to create and anchor spatial representations.SIGNIFICANCE STATEMENT Subregions of the hippocampus are thought to play different roles in spatial navigation and episodic memory. It was previously thought that the distal part of area CA1 of the hippocampus carries lesser information about space than proximal CA1 (pCA1). We report that distal CA1 (dCA1) spatial representation moves more in concert with the global cues than pCA1 when the local and the global cues conflict. We also show that spatial selectivity is comparable along the proximodistal axis in this experimental protocol. Thus, different parts of the brain receiving differential outputs from pCA1 and dCA1 receive spatial information in different spatial reference frames encoded using different sets of inputs, rather than different amounts of spatial information as thought earlier.
Collapse
|
7
|
Grande X, Berron D, Maass A, Bainbridge WA, Düzel E. Content-specific vulnerability of recent episodic memories in Alzheimer's disease. Neuropsychologia 2021; 160:107976. [PMID: 34314781 PMCID: PMC8434425 DOI: 10.1016/j.neuropsychologia.2021.107976] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 07/21/2021] [Accepted: 07/22/2021] [Indexed: 11/21/2022]
Abstract
Endel Tulving's episodic memory framework emphasizes the multifaceted re-experiencing of personal events. Indeed, decades of research focused on the experiential nature of episodic memories, usually treating recent episodic memory as a coherent experiential quality. However, recent insights into the functional architecture of the medial temporal lobe show that different types of mnemonic information are segregated into distinct neural pathways in brain circuits empirically associated with episodic memory. Moreover, recent memories do not fade as a whole under conditions of progressive neurodegeneration in these brain circuits, notably in Alzheimer's disease. Instead, certain memory content seem particularly vulnerable from the moment of their encoding while other content can remain memorable consistently across individuals and contexts. We propose that these observations are related to the content-specific functional architecture of the medial temporal lobe and consequently to a content-specific impairment of memory at different stages of the neurodegeneration. To develop Endel Tulving's inspirational legacy further and to advance our understanding of how memory function is affected by neurodegenerative conditions such as Alzheimer's disease, we postulate that it is compelling to focus on the representational content of recent episodic memories. The functional anatomy of episodic memory segregates different memory content. Alzheimer's disease may cause content-specific loss of recent memories Content-specific memorability across individuals changes with Alzheimer's disease. Content-specific assessment could provide new insights into episodic memory in health and disease
Collapse
Affiliation(s)
- Xenia Grande
- German Center for Neurodegenerative Diseases, Magdeburg, Germany; Institute of Cognitive Neurology and Dementia Research, Otto von Guericke University Magdeburg, Germany.
| | - David Berron
- German Center for Neurodegenerative Diseases, Magdeburg, Germany; Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Lund, Sweden
| | - Anne Maass
- German Center for Neurodegenerative Diseases, Magdeburg, Germany
| | | | - Emrah Düzel
- German Center for Neurodegenerative Diseases, Magdeburg, Germany; Institute of Cognitive Neurology and Dementia Research, Otto von Guericke University Magdeburg, Germany; Institute of Cognitive Neuroscience, University College London, United Kingdom.
| |
Collapse
|
8
|
Meyer MAA, Radulovic J. Functional differentiation in the transverse plane of the hippocampus: An update on activity segregation within the DG and CA3 subfields. Brain Res Bull 2021; 171:35-43. [PMID: 33727088 PMCID: PMC8068647 DOI: 10.1016/j.brainresbull.2021.03.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 03/03/2021] [Accepted: 03/04/2021] [Indexed: 12/01/2022]
Abstract
Decades of neuroscience research in rodents have established an essential role of the hippocampus in the processing of episodic memories. Based on accumulating evidence of functional segregation in the hippocampus along the longitudinal axis, this role has been primarily ascribed to the dorsal hippocampus. More recent findings, however, demonstrate that functional segregation also occurs along transverse axis of the hippocampus, within the hippocampal subfields CA1, CA2, CA3, and the dentate gyrus (DG). Because the functional heterogeneity within CA1 has been addressed in several recent articles, here we discuss behavioral findings and putative mechanisms supporting generation of asymmetrical activity patterns along the transverse axis of DG and CA3. While transverse subnetworks appear to discretely contribute to the processing of spatial, non-spatial, temporal, and social components of episodic memories, integration of these components also occurs, especially in the CA3 subfield and possibly downstream, in the cortical targets of the hippocampus.
Collapse
Affiliation(s)
- Mariah A A Meyer
- Department of Psychiatry and Behavioral Sciences, Northwestern University, Feinberg School of Medicine, Chicago, IL, United States.
| | - Jelena Radulovic
- Department of Psychiatry and Behavioral Sciences, Northwestern University, Feinberg School of Medicine, Chicago, IL, United States; Department of Neuroscience, Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, Bronx, NY, United States.
| |
Collapse
|
9
|
Lan S, Holbrook A, Elias GA, Fortin NJ, Ombao H, Shahbaba B. Flexible Bayesian Dynamic Modeling of Correlation and Covariance Matrices. BAYESIAN ANALYSIS 2020; 15:1199-1228. [PMID: 33868547 PMCID: PMC8048134 DOI: 10.1214/19-ba1173] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Modeling correlation (and covariance) matrices can be challenging due to the positive-definiteness constraint and potential high-dimensionality. Our approach is to decompose the covariance matrix into the correlation and variance matrices and propose a novel Bayesian framework based on modeling the correlations as products of unit vectors. By specifying a wide range of distributions on a sphere (e.g. the squared-Dirichlet distribution), the proposed approach induces flexible prior distributions for covariance matrices (that go beyond the commonly used inverse-Wishart prior). For modeling real-life spatio-temporal processes with complex dependence structures, we extend our method to dynamic cases and introduce unit-vector Gaussian process priors in order to capture the evolution of correlation among components of a multivariate time series. To handle the intractability of the resulting posterior, we introduce the adaptive Δ-Spherical Hamiltonian Monte Carlo. We demonstrate the validity and flexibility of our proposed framework in a simulation study of periodic processes and an analysis of rat's local field potential activity in a complex sequence memory task.
Collapse
Affiliation(s)
- Shiwei Lan
- School of Mathematical and Statistical Sciences, Arizona State University, Tempe, AZ 85287
| | - Andrew Holbrook
- David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, CA 90095
| | - Gabriel A. Elias
- Center for the Neurobiology of Learning and Memory, Department of Neurobiology and Behavior, University of California-Irvine, Irvine, CA 92697
| | - Norbert J. Fortin
- Center for the Neurobiology of Learning and Memory, Department of Neurobiology and Behavior, University of California-Irvine, Irvine, CA 92697
| | - Hernando Ombao
- Statistics Program, King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia
| | - Babak Shahbaba
- Department of Statistics, University of California-Irvine, Irvine, CA 92697
| |
Collapse
|
10
|
Hu L, Guindani M, Fortin NJ, Ombao H. A Hierarchical Bayesian Model for Differential Connectivity in Multi-trial Brain Signals. ECONOMETRICS AND STATISTICS 2020; 15:117-135. [PMID: 33163735 PMCID: PMC7643916 DOI: 10.1016/j.ecosta.2020.03.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
There is a strong interest in the neuroscience community to measure brain connectivity and develop methods that can differentiate connectivity across patient groups and across different experimental stimuli. The development of such statistical tools is critical to understand the dynamics of functional relationships among brain structures supporting memory encoding and retrieval. However, the challenge comes from the need to incorporate within-condition similarity with between-conditions heterogeneity in modeling connectivity, as well as how to provide a natural way to conduct trial- and condition-level inference on effective connectivity. A Bayesian hierarchical vector autoregressive (BH-VAR) model is proposed to characterize brain connectivity and infer differences in connectivity across conditions. Within-condition connectivity similarity and between-conditions connectivity heterogeneity are accounted for by the priors on trial-specific models. In addition to the fully Bayesian framework, an alternative two-stage computation approach is also proposed which still allows straightforward uncertainty quantification of between-trial conditions via MCMC posterior sampling, but provides a fast approximate procedure for the estimation of trial-specific VAR parameters. A novel aspect of the approach is the use of a frequency-specific measure, partial directed coherence (PDC), to characterize effective connectivity under the Bayesian framework. More specifically, PDC allows inferring directionality and explaining the extent to which the present oscillatory activity at a certain frequency in a sender channel influences the future oscillatory activity in a specific receiver channel relative to all possible receivers in the brain network. The proposed model is applied to a large electrophysiological dataset collected as rats performed a complex sequence memory task. This unique dataset includes local field potentials (LFPs) activity recorded from an array of electrodes across hippocampal region CA1 while animals were presented with multiple trials from two main conditions. The proposed modeling approach provided novel insights into hippocampal connectivity during memory performance. Specifically, it separated CA1 into two functional units, a lateral and a medial segment, each showing stronger functional connectivity to itself than to the other. This approach also revealed that information primarily flowed in a lateral-to-medial direction across trials (within-condition), and suggested this effect was stronger on one trial condition than the other (between-conditions effect). Collectively, these results indicate that the proposed model is a promising approach to quantify the variation of functional connectivity, both within- and between-conditions, and thus should have broad applications in neuroscience research.
Collapse
Affiliation(s)
- Lechuan Hu
- Department of Statistics, University of California, Irvine,
USA
| | | | - Norbert J. Fortin
- Department of Neurobiology and Behavior, University of
California, Irvine, USA
| | - Hernando Ombao
- Statistics Program, King Abdullah University of Science and
Technology (KAUST), Saudi Arabia
| |
Collapse
|
11
|
Paw-Min-Thein-Oo, Sakimoto Y, Kida H, Mitsushima D. Proximodistal Heterogeneity in Learning-promoted Pathway-specific Plasticity at Dorsal CA1 Synapses. Neuroscience 2020; 437:184-195. [PMID: 32360699 DOI: 10.1016/j.neuroscience.2020.04.040] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 04/22/2020] [Accepted: 04/23/2020] [Indexed: 01/28/2023]
Abstract
Contextual learning requires the delivery of AMPA receptors to CA1 synapses in the dorsal hippocampus. However, proximodistal heterogeneity of pathway-specific plasticity remains unclear. Here, we examined the proximodistal heterogeneity in learning-induced plasticity at the CA1 synapses with inputs from the entorhinal cortex layer III (ECIII) or from CA3. We subjected male rats to an inhibitory avoidance task and prepared acute hippocampal slices for whole-cell patch clamp experiments, where we stimulated ECIII-CA1 or CA3-CA1 input fibers to analyze evoked excitatory postsynaptic currents (EPSCs). Compared to untrained controls, trained rats exhibited higher AMPA/NMDA current ratios at CA3-CA1 synapses of proximal and intermediate, but not distal CA1 neurons, which suggested that region-specific plasticity occurred after learning. Moreover, trained rats exhibited higher AMPA/NMDA current ratios at ECIII-CA1 synapses of intermediate and distal, but not proximal CA1 neurons. These findings suggested the presence of proximodistal heterogeneity in pathway-specific postsynaptic plasticity. Regarding presynaptic plasticity, training slightly, but significantly increased the paired-pulse ratios of CA3-CA1 synapses of proximal and intermediate, but not distal CA1 neurons. Moreover, trained rats exhibited higher paired-pulse ratios at ECIII-CA1 synapses of intermediate and distal, but not proximal CA1 neurons, which suggested region-specific presynaptic plasticity. Finally, learning was clearly prevented by the bilateral microinjection of a plasticity blocker in the proximal or intermediate, but not distal CA1 subfields, which suggested functional heterogeneity along the proximodistal axis. Understanding region- and pathway-specific plasticity at dorsal CA1 synapses could aid in controlling encoded memory.
Collapse
Affiliation(s)
- Paw-Min-Thein-Oo
- Department of Physiology, Yamaguchi University Graduate School of Medicine, Yamaguchi 755-8505, Japan
| | - Yuya Sakimoto
- Department of Physiology, Yamaguchi University Graduate School of Medicine, Yamaguchi 755-8505, Japan
| | - Hiroyuki Kida
- Department of Physiology, Yamaguchi University Graduate School of Medicine, Yamaguchi 755-8505, Japan
| | - Dai Mitsushima
- Department of Physiology, Yamaguchi University Graduate School of Medicine, Yamaguchi 755-8505, Japan; The Research Institute for Time Studies, Yamaguchi University, Yamaguchi 753-8511, Japan.
| |
Collapse
|
12
|
Masurkar AV, Tian C, Warren R, Reyes I, Lowes DC, Brann DH, Siegelbaum SA. Postsynaptic integrative properties of dorsal CA1 pyramidal neuron subpopulations. J Neurophysiol 2020; 123:980-992. [PMID: 31967926 PMCID: PMC7099474 DOI: 10.1152/jn.00397.2019] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 01/21/2020] [Accepted: 01/21/2020] [Indexed: 11/22/2022] Open
Abstract
The population activity of CA1 pyramidal neurons (PNs) segregates along anatomical axes with different behaviors, suggesting that CA1 PNs are functionally subspecialized based on somatic location. In dorsal CA1, spatial encoding is biased toward CA2 (CA1c) and in deep layers of the radial axis. In contrast, nonspatial coding peaks toward subiculum (CA1a) and in superficial layers. While preferential innervation by spatial vs. nonspatial input from entorhinal cortex (EC) may contribute to this specialization, it cannot fully explain the range of in vivo responses. Differences in intrinsic properties thus may play a critical role in modulating such synaptic input differences. In this study we examined the postsynaptic integrative properties of dorsal CA1 PNs in six subpopulations along the transverse (CA1c, CA1b, CA1a) and radial (deep, superficial) axes. Our results suggest that active and passive properties of deep and superficial neurons evolve over the transverse axis to promote the functional specialization of CA1c vs. CA1a as dictated by their cortical input. We also find that CA1b is not merely an intermediate mix of its neighbors, but uniquely balances low excitability with superior input integration of its mixed input, as may be required for its proposed role in sequence encoding. Thus synaptic input and intrinsic properties combine to functionally compartmentalize CA1 processing into at least three transverse axis regions defined by the processing schemes of their composite radial axis subpopulations.NEW & NOTEWORTHY There is increasing interest in CA1 pyramidal neuron heterogeneity and the functional relevance of this diversity. We find that active and passive properties evolve over the transverse and radial axes in dorsal CA1 to promote the functional specialization of CA1c and CA1a for spatial and nonspatial memory, respectively. Furthermore, CA1b is not a mean of its neighbors, but features low excitability and superior integrative capabilities, relevant to its role in nonspatial sequence encoding.
Collapse
Affiliation(s)
- Arjun V Masurkar
- Center for Cognitive Neurology, Department of Neurology, New York University School of Medicine, New York, New York
| | - Chengju Tian
- Center for Cognitive Neurology, Department of Neurology, New York University School of Medicine, New York, New York
| | - Richard Warren
- Department of Neuroscience, Columbia University, New York, New York
| | - Isabel Reyes
- Center for Cognitive Neurology, Department of Neurology, New York University School of Medicine, New York, New York
| | - Daniel C Lowes
- Department of Neuroscience, Columbia University, New York, New York
| | - David H Brann
- Department of Neuroscience, Columbia University, New York, New York
| | - Steven A Siegelbaum
- Department of Neuroscience, Columbia University, New York, New York
- Department of Pharmacology, Columbia University, New York, New York
- Kavli Institute for Brain Science, Columbia University, New York, New York
| |
Collapse
|
13
|
Effects of circadian rhythm disorder on the hippocampus of SHR and WKY rats. Neurobiol Learn Mem 2019; 168:107141. [PMID: 31857218 DOI: 10.1016/j.nlm.2019.107141] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Revised: 12/13/2019] [Accepted: 12/13/2019] [Indexed: 01/25/2023]
Abstract
The present study investigated the effects of circadian rhythm disorder (CRD) on the hippocampus of SHR and WKY rats. Male SHR rats (n = 27) and WKY rats (n = 27) were randomly divided into six groups: SHR and WKY normal (N)CR, SHR and WKY CRD 16/8 (CRD16/8), and SHR and WKY CRD 12/12 (CRD12/12). Activity patterns were adjusted using different photoperiods over 90 days and any changes were recorded. Rats were tested in the Morris water maze and in a novel object recognition experiment; serologic analysis, magnetic resonance imaging (diffusion tensor imaging + arterial spin labeling), hippocampal Nissl staining, Fluoro-Jade B staining, and immunohistochemistry were also performed. The results showed that both types of inverted photoperiod reduced CR amplitude and prolonged the circadian period. CRD and hypertension reduced memory performance and novel object recognition and preference. The decreases in memory and preference indices were greater in rats in the CRD12/12 group compared to the CRD16/8 group. CRD and hypertension decreased fractional anisotropy values, the number of neurons and astrocytes in the hippocampus, and the expression of brain-derived neurotrophic factor and synapsin 1; it also enhanced the degeneration of neurons and microglia and reduced blood flow in the hippocampus, and increased nuclear factor κB, caspase, neuron-specific enolase, and interleukin-6 levels. These findings reveal a biological basis for the link between CRD and cognitive decline, which has implications for CRD caused by shift work and other factors.
Collapse
|
14
|
Christian KM, Ming GL, Song H. Adult neurogenesis and the dentate gyrus: Predicting function from form. Behav Brain Res 2019; 379:112346. [PMID: 31722241 DOI: 10.1016/j.bbr.2019.112346] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 11/05/2019] [Accepted: 11/05/2019] [Indexed: 12/11/2022]
Abstract
Hypotheses about the functional properties of the dentate gyrus and adult dentate neurogenesis have been shaped by early observations of the anatomy of this region, mostly in rodents. This has led to the development of a few core propositions that have guided research over the past several years, including the predicted role of this region in pattern separation and the local transformation of inputs from the entorhinal cortex. We now have the opportunity to review these predictions and update these anatomical observations based on recently developed techniques that reveal the complex structure, connectivity, and dynamic properties of distinct cell populations in the dentate gyrus at a higher resolution. Cumulative evidence suggests that the dentate gyrus and adult-born granule cells play a role in some forms of behavioral discriminations, but there are still many unanswered questions about how the dentate gyrus processes information to support the disambiguation of stimuli.
Collapse
Affiliation(s)
- Kimberly M Christian
- Department of Neuroscience, University of Pennsylvania, Philadelphia, PA, 19104, USA; Mahoney Institute for Neurosciences, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| | - Guo-Li Ming
- Department of Neuroscience, University of Pennsylvania, Philadelphia, PA, 19104, USA; Mahoney Institute for Neurosciences, University of Pennsylvania, Philadelphia, PA, 19104, USA; Department of Developmental and Cell Biology, University of Pennsylvania, Philadelphia, PA, 19104, USA; Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA; Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, 19104, USA; Institute for Epigenetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Hongjun Song
- Department of Neuroscience, University of Pennsylvania, Philadelphia, PA, 19104, USA; Mahoney Institute for Neurosciences, University of Pennsylvania, Philadelphia, PA, 19104, USA; Department of Developmental and Cell Biology, University of Pennsylvania, Philadelphia, PA, 19104, USA; Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA; Institute for Epigenetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
15
|
Knauer B, Yoshida M. Switching between persistent firing and depolarization block in individual rat CA1 pyramidal neurons. Hippocampus 2019; 29:817-835. [PMID: 30794330 DOI: 10.1002/hipo.23078] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 12/22/2018] [Accepted: 01/15/2019] [Indexed: 11/07/2022]
Abstract
The hippocampal formation plays a role in mnemonic tasks and epileptic discharges in vivo. In vitro, these functions and malfunctions may relate to persistent firing (PF) and depolarization block (DB), respectively. Pyramidal neurons of the CA1 field have previously been reported to engage in either PF or DB during cholinergic stimulation. However, it is unknown whether these cells constitute disparate populations of neurons. Furthermore, it is unclear which cell-specific peculiarities may mediate their diverse response properties. However, it has not been shown whether individual CA1 pyramidal neurons can switch between PF and DB states. Here, we used whole cell patch clamp in the current clamp mode on in vitro CA1 pyramidal neurons from acutely sliced rat tissue to test various intrinsic properties which may provoke individual cells to switch between PF and DB. We found that individual cells could switch from PF to DB, in a cholinergic agonist concentration dependent manner and depending on the parameters of stimulation. We also demonstrate involvement of TRPC and potassium channels in this switching. Finally, we report that the probability for DB was more pronounced in the proximal than in the distal half of CA1. These findings offer a potential mechanism for the stronger spatial modulation in proximal, compared to distal CA1, as place field formation was shown to be affected by DB. Taken together, our results suggest that PF and DB are not mutually exclusive response properties of individual neurons. Rather, a cell's response mode depends on a variety of intrinsic properties, and modulation of these properties enables switching between PF and DB.
Collapse
Affiliation(s)
- Beate Knauer
- International Graduate School of Neuroscience, Ruhr University Bochum, Bochum, Germany
- Faculty of Psychology, Mercator Research Group - Structure of Memory, Ruhr University Bochum, Bochum, Germany
- Institute of Pathophysiology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Motoharu Yoshida
- Faculty of Psychology, Mercator Research Group - Structure of Memory, Ruhr University Bochum, Bochum, Germany
- Leibniz Institute for Neurobiology (LIN), Magdeburg, Germany
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
- Center for Behavioral Brain Sciences, Magdeburg, Germany
| |
Collapse
|