1
|
Speers LJ, Sissons DJ, Cleland L, Bilkey DK. Hippocampal phase precession is preserved under ketamine, but the range of precession across a theta cycle is reduced. J Psychopharmacol 2023; 37:809-821. [PMID: 37515458 PMCID: PMC10399102 DOI: 10.1177/02698811231187339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/30/2023]
Abstract
BACKGROUND Hippocampal phase precession, which depends on the precise spike timing of place cells relative to local theta oscillations, has been proposed to underlie sequential memory. N-methyl-D-asparate (NMDA) receptor antagonists such as ketamine disrupt memory and also reproduce several schizophrenia-like symptoms, including spatial memory impairments and disorganized cognition. It is possible that these impairments result from disruptions to phase precession. AIMS/METHODS We used an ABA design to test whether an acute, subanesthetic dose (7.5 mg/kg) of ketamine disrupted phase precession in CA1 of male rats as they navigated around a rectangular track for a food reward. RESULTS/OUTCOMES Ketamine did not affect the ability of CA1 place cells to precess despite changes to place cell firing rates, local field potential properties and locomotor speed. However, ketamine reduced the range of phase precession that occurred across a theta cycle. CONCLUSION Phase precession is largely robust to acute NMDA receptor antagonism by ketamine, but the reduced range of precession could have important implications for learning and memory.
Collapse
Affiliation(s)
| | - Daena J Sissons
- Psychology Department, Otago University Dunedin, New Zealand
- Psychology Department, University of Canterbury, Christchurch, New Zealand
| | - Lana Cleland
- Psychology Department, Otago University Dunedin, New Zealand
- Department Psychological Medicine, Otago University, Christchurch, New Zealand
- Department Population Health, Otago University, Christchurch, New Zealand
| | - David K Bilkey
- Psychology Department, Otago University Dunedin, New Zealand
| |
Collapse
|
2
|
Acevedo J, Mugarura NE, Welter AL, Johnson EM, Siegel JA. The Effects of Acute and Repeated Administration of Ketamine on Memory, Behavior, and Plasma Corticosterone Levels in Female Mice. Neuroscience 2023; 512:99-109. [PMID: 36496189 DOI: 10.1016/j.neuroscience.2022.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 10/28/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022]
Abstract
Ketamine is an anesthetic drug that has recently been approved for the treatment of treatment-resistant depression. Females are diagnosed with Major Depressive Disorder at higher rates than males, yet most of the pre-clinical research on ketamine has been conducted in male subjects. Additionally, the literature on the acute and long-term behavioral and cognitive effects of ketamine shows conflicting results. It is important to examine the acute and long-term cognitive and behavioral effects of ketamine exposure at lower sub-anesthetic doses, as the recreational use of the drug at higher doses is associated with cognitive and memory impairments. The current study examined the effects of acute and repeated ketamine exposure on anxiety-like behavior, novel object recognition memory, depression-like behavior, and plasma corticosterone levels in 20 adult female C57BL/6J mice. Mice were exposed acutely or repeatedly for 10 consecutive days to saline or 15 mg/kg ketamine and behavior was measured in the open field test, novel object recognition test, and the Porsolt forced swim test. Plasma corticosterone levels were measured following behavioral testing. Acute ketamine exposure decreased locomotor activity and increased anxiety-like behavior in the open field test compared to controls, while repeated ketamine exposure impaired memory in the novel object recognition test. There were no effects of acute or repeated ketamine exposure on depression-like behavior in the Porsolt forced swim test or on plasma corticosterone levels. These findings suggest that a subanesthetic dose of ketamine alters behavior and cognition in female mice and the effects are dependent on the duration of exposure.
Collapse
Affiliation(s)
- Jonathan Acevedo
- The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, 1124 W Carson St, Torrance, CA 90502, USA.
| | - Naomi E Mugarura
- Neuroscience Program, University of St. Thomas, 2115 Summit Ave, Saint Paul, MN 55105, USA.
| | - Alex L Welter
- Neuroscience Program, University of St. Thomas, 2115 Summit Ave, Saint Paul, MN 55105, USA.
| | - Emily M Johnson
- Neuroscience Program, University of St. Thomas, 2115 Summit Ave, Saint Paul, MN 55105, USA.
| | - Jessica A Siegel
- Department of Biochemistry and Biophysics, The College of Science, Oregon State University, 1500 SW Jefferson Way, Corvallis, OR 97331, USA.
| |
Collapse
|
3
|
Huston JP, Chao OY. Probing the nature of episodic memory in rodents. Neurosci Biobehav Rev 2023; 144:104930. [PMID: 36544301 DOI: 10.1016/j.neubiorev.2022.104930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 10/21/2022] [Accepted: 10/24/2022] [Indexed: 12/15/2022]
Abstract
Episodic memory (EM) specifies the experience of retrieving information of an event at the place and time of occurrence. Whether non-human animals are capable of EM remains debated, whereas evidence suggests that they have a memory system akin to EM. We here trace the development of various behavioral paradigms designed to study EM in non-human animals, in particular the rat. We provide an in-depth description of the available behavioral tests which combine three spontaneous object exploration paradigms, namely novel object preference (for measuring memory for "what"), novel location preference (for measuring memory for "where") and temporal order memory (memory for "when"), into a single trial to gauge a memory akin to EM. Most important, we describe a variation of such a test in which each memory component interacts with the others, demonstrating an integration of diverse mnemonic information. We discuss why a behavioral model of EM must be able to assess the ability to integrate "what", "where" and "when" information into a single experience. We attempt an interpretation of the various tests and review the studies that have applied them in areas such as pharmacology, neuroanatomy, circuit analysis, and sleep. Finally, we anticipate future directions in the search for neural mechanisms of EM in the rat and outline model experiments and methodologies in this pursuit.
Collapse
Affiliation(s)
- Joseph P Huston
- Center for Behavioral Neuroscience, Institute of Experimental Psychology, University of Düsseldorf, 40225 Düsseldorf, Germany.
| | - Owen Y Chao
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN 55812, USA
| |
Collapse
|
4
|
Asiminas A, Lyon SA, Langston RF, Wood ER. Developmental trajectory of episodic-like memory in rats. Front Behav Neurosci 2022; 16:969871. [PMID: 36523755 PMCID: PMC9745197 DOI: 10.3389/fnbeh.2022.969871] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 11/08/2022] [Indexed: 08/17/2023] Open
Abstract
Introduction Episodic memory formation requires the binding of multiple associations to a coherent episodic representation, with rich detail of times, places, and contextual information. During postnatal development, the ability to recall episodic memories emerges later than other types of memory such as object recognition. However, the precise developmental trajectory of episodic memory, from weaning to adulthood has not yet been established in rats. Spontaneous object exploration tasks do not require training, and allow repeated testing of subjects, provided novel objects are used on each trial. Therefore, these tasks are ideally suited for the study of the ontogeny of episodic memory and its constituents (e.g., object, spatial, and contextual memory). Methods In the present study, we used four spontaneous short-term object exploration tasks over two days: object (OR), object-context (OCR), object-place (OPR), and object-place-context (OPCR) recognition to characterise the ontogeny of episodic-like memory and its components in three commonly used outbred rat strains (Lister Hooded, Long Evans Hooded, and Sprague Dawley). Results In longitudinal studies starting at 3-4 weeks of age, we observed that short term memory for objects was already present at the earliest time point we tested, indicating that it is established before the end of the third week of life (consistent with several other reports). Object-context memory developed during the fifth week of life, while both object-in-place and the episodic-like object-place-context memory developed around the seventh postnatal week. To control for the effects of previous experience in the development of associative memory, we confirmed these developmental trajectories using a cross-sectional protocol. Discussion Our work provides robust evidence for different developmental trajectories of recognition memory in rats depending on the content and/or complexity of the associations and emphasises the utility of spontaneous object exploration tasks to assess the ontogeny of memory systems with high temporal resolution.
Collapse
Affiliation(s)
- Antonis Asiminas
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
- Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh, United Kingdom
- Patrick Wild Centre, University of Edinburgh, Edinburgh, United Kingdom
- Center for Translational Neuromedicine, University of Copenhagen, Copenhagen, Denmark
| | - Stephanie A. Lyon
- Cellular and Systems Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, United Kingdom
| | - Rosamund F. Langston
- Cellular and Systems Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, United Kingdom
| | - Emma R. Wood
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
- Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh, United Kingdom
- Patrick Wild Centre, University of Edinburgh, Edinburgh, United Kingdom
- Centre for Brain Development and Repair, Bengaluru, India
| |
Collapse
|
5
|
Dias ALA, de Oliveira Golzio AMF, de Lima Santos BH, da Silva Stiebbe Salvadori MG, Dos Santos SG, da Silva MS, de Almeida RN, Barbosa FF. Post-learning caffeine administration improves 'what-when' and 'what-where' components of episodic-like memory in rats. Behav Brain Res 2022; 433:113982. [PMID: 35779707 DOI: 10.1016/j.bbr.2022.113982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 05/30/2022] [Accepted: 06/27/2022] [Indexed: 11/02/2022]
Abstract
Episodic-like memory (ELM) consists in the capacity of nonhuman animals to remember 'where' and 'when' a specific episode occurred ('what'). Previous studies have showed that Wistar rats can form an ELM, but not after a 24 h retention delay. On the other hand, it has been demonstrated that caffeine can improve episodic memory consolidation in humans. Therefore, we verified whether acute post-sample caffeine administration could improve ELM consolidation in Wistar rats, as well if it could be related to neurochemical changes in the prefrontal cortex and hippocampus - regions related to episodic-like memory processing. 46 Male Wistar Rats, approximately 3 months-old, were divided into four groups as follows: untreated (n = 11), saline (n = 11), caffeine 10 mg ∕kg i.p (n = 12); caffeine 15 mg∕kgi.p (n = 12) and tested in WWWhen/ELM task. The animals treated with caffeine in different dosages (10 mg/kg and 15 mg/kg) discriminated temporally and spatially the objects, respectively. These groups also showed a dopamine renewal rate in the hippocampus, suggesting that there was an increase in the turnover compared with the groups with no caffeine administration. We can conclude that caffeine leads to an improvement in the consolidation of the temporal ('what-when') and spatial ('what-where') aspects of episodic-like memory.
Collapse
Affiliation(s)
| | | | | | - Mirian Graciela da Silva Stiebbe Salvadori
- Departamento de Psicologia, Programa de Pós-Graduação em Neurociência Cognitiva e Comportamento, Centro de Ciências Humanas, Letras e Artes, Universidade Federal da Paraíba, Brazil
| | - Sócrates Golzio Dos Santos
- Departamento de Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Federal da Paraíba, Brazil
| | - Marcelo Sobral da Silva
- Departamento de Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Federal da Paraíba, Brazil
| | - Reinaldo Nóbrega de Almeida
- Programa de Produtos Naturais e Sintéticos Bioativos, Centro de Ciências da Saúde, Universidade Federal da Paraíba, Brazil
| | - Flavio Freitas Barbosa
- Departamento de Psicologia, Programa de Pós-Graduação em Neurociência Cognitiva e Comportamento, Centro de Ciências Humanas, Letras e Artes, Universidade Federal da Paraíba, Brazil.
| |
Collapse
|
6
|
Chronic administration of ketamine induces cognitive deterioration by restraining synaptic signaling. Mol Psychiatry 2021; 26:4702-4718. [PMID: 32488127 DOI: 10.1038/s41380-020-0793-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 05/06/2020] [Accepted: 05/18/2020] [Indexed: 12/20/2022]
Abstract
The discovery of the rapid antidepressant effects of ketamine has arguably been the most important advance in depression treatment. Recently, it was reported that repeated long-term ketamine administration is effective in preventing relapse of depression, which may broaden the clinical use of ketamine. However, long-term treatment with ketamine produces cognitive impairments, and the underlying molecular mechanisms for these impairments are largely unknown. Here, we found that chronic in vivo exposure to ketamine for 28 days led to decreased expression of the glutamate receptor subunits GluA1, GluA2, GluN2A, and GluN2B; decreased expression of the synaptic proteins Syn and PSD-95; decreased dendrite spine density; impairments in long-term potentiation (LTP) and synaptic transmission in the hippocampal CA1 area; and deterioration of learning and memory in mice. Furthermore, the reduced glutamate receptor subunit and synaptic protein expression and the LTP deficits were still observed on day 28 after the last injection of ketamine. We found that the expression and phosphorylation of CaMKIIβ, ERK1/2, CREB, and NF-κB were inhibited by ketamine. The reductions in glutamate receptor subunit expression and dendritic spine density and the deficits in LTP, synaptic transmission, and cognition were alleviated by overexpression of CaMKIIβ. Our study indicates that inhibition of CaMKIIβ-ERK1/2-CREB/NF-κB signaling may mediate chronic ketamine use-associated cognitive impairments by restraining synaptic signaling. Hypofunction of the glutamatergic system might be the underlying mechanism accounting for chronic ketamine use-associated cognitive impairments. Our findings may suggest possible strategies to alleviate ketamine use-associated cognitive deficits and broaden the clinical use of ketamine in depression treatment.
Collapse
|
7
|
Guinjoan SM, Bär KJ, Camprodon JA. Cognitive effects of rapid-acting treatments for resistant depression: Just adverse, or contributing to clinical efficacy? J Psychiatr Res 2021; 140:512-521. [PMID: 34157590 PMCID: PMC8319118 DOI: 10.1016/j.jpsychires.2021.06.026] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 06/07/2021] [Accepted: 06/13/2021] [Indexed: 12/28/2022]
Abstract
Major Depressive Disorder is a major public health problem and has a high rate of treatment resistance. Fear conditioning has been proposed as a potential mechanism sustaining negative affect in mood disorders. With the aim of exploring cognitive effects of rapid-acting antidepressant treatments as a potential mechanism of action that can be targeted by neuromodulation, we performed a narrative review of the extant literature on effects of electroconvulsive therapy, ketamine or esketamine, and sleep deprivation on emotional/fear memory retrieval-reconsolidation. We explore interference with reconsolidation as a potential common pathway that explains in part the efficacy of rapid-acting antidepressant treatments with disparate mechanisms of action. We propose the testable hypothesis that fear learning circuits can be specifically targeted by neuromodulation to attempt rapid amelioration of depressive symptoms (especially repetitive negative thinking) while limiting unspecific, untoward cognitive side effects.
Collapse
Affiliation(s)
- Salvador M. Guinjoan
- Principal Investigator, Laureate Institute for Brain Research, Tulsa, Oklahoma, United States of America,Schools of Medicine and Psychology, University of Buenos Aires, CONICET, Argentina,Mailing Address: Salvador M. Guinjoan, Laureate Institute for Brain Research, 6655 South Yale Avenue, Tulsa, Oklahoma 74136-3326, United States of America,
| | - Karl-Jürgen Bär
- Chief, Departments of Psychosomatic Medicine and Gerontopsychiatry and Psychotherapy, University Hospital Jena, Jena, Germany
| | - Joan A. Camprodon
- Director, Division of Neuropsychiatry, Massachusetts General Hospital and Harvard Medical School
| |
Collapse
|
8
|
Stress, memory, and implications for major depression. Behav Brain Res 2021; 412:113410. [PMID: 34116119 DOI: 10.1016/j.bbr.2021.113410] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 06/04/2021] [Accepted: 06/06/2021] [Indexed: 12/22/2022]
Abstract
The stress response comprises a phylogenetically conserved set of cognitive, physiological, and behavioral responses that evolved as a survival strategy. In this context, the memory of stressful events would be adaptive as it could avoid re-exposure to an adverse event, otherwise the event would be facilitated in positively stressful or non-distressful conditions. However, the interaction between stress and memory comprises complex responses, some of them which are not yet completely understood, and which depend on several factors such as the memory system that is recruited, the nature and duration of the stressful event, as well as the timing in which this interaction takes place. In this narrative review, we briefly discuss the mechanisms of the stress response, the main memory systems, and its neural correlates. Then, we show how stress, through the action of its biochemical mediators, influences memory systems and mnemonic processes. Finally, we make use of major depressive disorder to explore the possible implications of non-adaptive interactions between stress and memory to psychiatric disorders, as well as possible roles for memory studies in the field of psychiatry.
Collapse
|
9
|
Davis MT, DellaGiogia N, Maruff P, Pietrzak RH, Esterlis I. Acute cognitive effects of single-dose intravenous ketamine in major depressive and posttraumatic stress disorder. Transl Psychiatry 2021; 11:205. [PMID: 33833217 PMCID: PMC8032778 DOI: 10.1038/s41398-021-01327-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 01/19/2021] [Accepted: 03/17/2021] [Indexed: 02/02/2023] Open
Abstract
Intravenous (IV) subanesthetic doses of ketamine have been shown to reduce psychiatric distress in both major depressive (MDD) and posttraumatic stress disorder (PTSD). However, the effect of ketamine on cognitive function in these disorders is not well understood. To address this gap, we examined the effect of a single dose of IV ketamine on cognition in individuals with MDD and/or PTSD relative to healthy controls (HC). Psychiatric (n = 29; 15 PTSD, 14 MDD) and sex- age- and IQ matched HC (n = 29) groups were recruited from the community. A single subanesthetic dose of IV ketamine was administered. Mood and cognitive measures were collected prior to, 2 h and 1 day post-ketamine administration. MDD/PTSD individuals evidenced a large-magnitude improvement in severity of depressive symptoms at both 2-hours and 1 day post-ketamine administration (p's < .001, Cohen d's = 0.80-1.02). Controlling for baseline performance and years of education, IV ketamine induced declines in attention (ATTN), executive function (EF), and verbal memory (VM) 2 h post-administration, all of which had resolved by 1 day post-ketamine across groups. The magnitude of cognitive decline was significantly larger in MDD/PTSD relative to HC on attention only (p = .012, d = 0.56). Ketamine did not affect working memory (WM) performance. Cognitive function (baseline, change from baseline to post-ketamine) was not associated with antidepressant response to ketamine. Results suggest that while ketamine may have an acute deleterious effect on some cognitive domains in both MDD/PTSD and HC individuals, most notably attention, this reduction is transient and there is no evidence of ketamine-related cognitive dysfunction at 1 day post-administration.
Collapse
Affiliation(s)
- Margaret T Davis
- Yale University School of Medicine, Department of Psychiatry, New Haven, USA
- Yale University, Department of Psychology, New Haven, USA
- U.S. Department of Veterans Affairs, National Center for Posttraumatic Stress Disorder, Washington, DC, USA
| | - Nicole DellaGiogia
- Yale University School of Medicine, Department of Psychiatry, New Haven, USA
| | | | - Robert H Pietrzak
- Yale University School of Medicine, Department of Psychiatry, New Haven, USA
- U.S. Department of Veterans Affairs, National Center for Posttraumatic Stress Disorder, Washington, DC, USA
| | - Irina Esterlis
- Yale University School of Medicine, Department of Psychiatry, New Haven, USA.
- Yale University, Department of Psychology, New Haven, USA.
- U.S. Department of Veterans Affairs, National Center for Posttraumatic Stress Disorder, Washington, DC, USA.
| |
Collapse
|
10
|
Yang W, Chini M, Pöpplau JA, Formozov A, Dieter A, Piechocinski P, Rais C, Morellini F, Sporns O, Hanganu-Opatz IL, Wiegert JS. Anesthetics fragment hippocampal network activity, alter spine dynamics, and affect memory consolidation. PLoS Biol 2021; 19:e3001146. [PMID: 33793545 PMCID: PMC8016109 DOI: 10.1371/journal.pbio.3001146] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 02/15/2021] [Indexed: 02/07/2023] Open
Abstract
General anesthesia is characterized by reversible loss of consciousness accompanied by transient amnesia. Yet, long-term memory impairment is an undesirable side effect. How different types of general anesthetics (GAs) affect the hippocampus, a brain region central to memory formation and consolidation, is poorly understood. Using extracellular recordings, chronic 2-photon imaging, and behavioral analysis, we monitor the effects of isoflurane (Iso), medetomidine/midazolam/fentanyl (MMF), and ketamine/xylazine (Keta/Xyl) on network activity and structural spine dynamics in the hippocampal CA1 area of adult mice. GAs robustly reduced spiking activity, decorrelated cellular ensembles, albeit with distinct activity signatures, and altered spine dynamics. CA1 network activity under all 3 anesthetics was different to natural sleep. Iso anesthesia most closely resembled unperturbed activity during wakefulness and sleep, and network alterations recovered more readily than with Keta/Xyl and MMF. Correspondingly, memory consolidation was impaired after exposure to Keta/Xyl and MMF, but not Iso. Thus, different anesthetics distinctly alter hippocampal network dynamics, synaptic connectivity, and memory consolidation, with implications for GA strategy appraisal in animal research and clinical settings.
Collapse
Affiliation(s)
- Wei Yang
- Research Group Synaptic Wiring and Information Processing, Center for Molecular Neurobiology Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Mattia Chini
- Institute of Developmental Neurophysiology, Center for Molecular Neurobiology Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jastyn A. Pöpplau
- Institute of Developmental Neurophysiology, Center for Molecular Neurobiology Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Andrey Formozov
- Research Group Synaptic Wiring and Information Processing, Center for Molecular Neurobiology Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Alexander Dieter
- Research Group Synaptic Wiring and Information Processing, Center for Molecular Neurobiology Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Patrick Piechocinski
- Research Group Synaptic Wiring and Information Processing, Center for Molecular Neurobiology Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Cynthia Rais
- Research Group Synaptic Wiring and Information Processing, Center for Molecular Neurobiology Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Fabio Morellini
- Research Group Behavioral Biology, Center for Molecular Neurobiology Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Olaf Sporns
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, Indiana, United States of America
- Indiana University Network Science Institute, Indiana University, Bloomington, Indiana, United States of America
| | - Ileana L. Hanganu-Opatz
- Institute of Developmental Neurophysiology, Center for Molecular Neurobiology Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - J. Simon Wiegert
- Research Group Synaptic Wiring and Information Processing, Center for Molecular Neurobiology Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- * E-mail:
| |
Collapse
|
11
|
de França Malheiros MAS, Castelo-Branco R, de Medeiros PHS, de Lima Marinho PE, da Silva Rodrigues Meurer Y, Barbosa FF. Conspecific Presence Improves Episodic-Like Memory in Rats. Front Behav Neurosci 2021; 14:572150. [PMID: 33519391 PMCID: PMC7844209 DOI: 10.3389/fnbeh.2020.572150] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 12/22/2020] [Indexed: 11/13/2022] Open
Abstract
A number of studies have provided evidence that animals, including rats, remember past episodes. However, few experiments have addressed episodic-like memory from a social perspective. In the present study, we evaluated Wistar rats in the WWWhen/ELM task as single setups and in dyads, applying a long retention interval. We also investigated behaviors that could subserve the emergence of this type of memory. We found that only rats tested in the social setting were able to recollect an integrated episodic-like memory that lasted 24 h. Additionally, rats in dyads presented higher levels of exploration during the task. When exposed to the testing environment, the dyads exhibited affiliative behavior toward each other and presented fewer anxiety-like responses. Our findings indicate that the presence of a conspecific could act as a facilitating factor in memory evaluations based on spontaneous exploration of objects and provide empirical support for applying more naturalistic settings in investigations of episodic-like memory in rats.
Collapse
Affiliation(s)
- Maria Augustta Sobral de França Malheiros
- Laboratory of Psychopharmaology, Federal University of Paraíba, João Pessoa, Brazil.,Memory and Cognition Studies Laboratory, Department of Psychology, Federal University of Paraíba, João Pessoa, Brazil
| | - Rochele Castelo-Branco
- Laboratory of Psychopharmaology, Federal University of Paraíba, João Pessoa, Brazil.,Memory and Cognition Studies Laboratory, Department of Psychology, Federal University of Paraíba, João Pessoa, Brazil
| | - Paulo Henrique Santos de Medeiros
- Laboratory of Psychopharmaology, Federal University of Paraíba, João Pessoa, Brazil.,Memory and Cognition Studies Laboratory, Department of Psychology, Federal University of Paraíba, João Pessoa, Brazil
| | - Pedro Emmílio de Lima Marinho
- Laboratory of Psychopharmaology, Federal University of Paraíba, João Pessoa, Brazil.,Memory and Cognition Studies Laboratory, Department of Psychology, Federal University of Paraíba, João Pessoa, Brazil
| | - Ywlliane da Silva Rodrigues Meurer
- Laboratory of Psychopharmaology, Federal University of Paraíba, João Pessoa, Brazil.,Memory and Cognition Studies Laboratory, Department of Psychology, Federal University of Paraíba, João Pessoa, Brazil
| | - Flávio Freitas Barbosa
- Laboratory of Psychopharmaology, Federal University of Paraíba, João Pessoa, Brazil.,Memory and Cognition Studies Laboratory, Department of Psychology, Federal University of Paraíba, João Pessoa, Brazil
| |
Collapse
|
12
|
Song B, Zhu J. A Novel Application of Ketamine for Improving Perioperative Sleep Disturbances. Nat Sci Sleep 2021; 13:2251-2266. [PMID: 34992482 PMCID: PMC8715868 DOI: 10.2147/nss.s341161] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 12/04/2021] [Indexed: 01/20/2023] Open
Abstract
Perioperative sleep disturbances are commonly observed before, during, and after surgery and can be caused by several factors, such as preoperative negative moods, general anesthetics, surgery trauma, and pain. Over the past decade, the fast-acting antidepressant effects of the N-methyl-D-aspartate (NMDA) receptor antagonist ketamine represent one of the most attractive discoveries in the field of psychiatry, such as antidepressant and anxiolytic effects. It is also widely used as a short-acting anesthetic and analgesic. Recent research has revealed new possible applications for ketamine, such as for perioperative sleep disorders and circadian rhythm disorders. Here, we summarize the risk factors for perioperative sleep disturbances, outcomes of perioperative sleep disturbances, and mechanism of action of ketamine in improving perioperative sleep quality.
Collapse
Affiliation(s)
- Bijia Song
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China
| | - Junchao Zhu
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China
| |
Collapse
|
13
|
Repeated ketamine administration induces recognition memory impairment together with morphological changes in neurons from ventromedial prefrontal cortex, dorsal striatum, and hippocampus. Behav Pharmacol 2020; 31:633-640. [DOI: 10.1097/fbp.0000000000000571] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
14
|
Matveychuk D, Thomas RK, Swainson J, Khullar A, MacKay MA, Baker GB, Dursun SM. Ketamine as an antidepressant: overview of its mechanisms of action and potential predictive biomarkers. Ther Adv Psychopharmacol 2020; 10:2045125320916657. [PMID: 32440333 PMCID: PMC7225830 DOI: 10.1177/2045125320916657] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 03/02/2020] [Indexed: 12/15/2022] Open
Abstract
Ketamine, a drug introduced in the 1960s as an anesthetic agent and still used for that purpose, has garnered marked interest over the past two decades as an emerging treatment for major depressive disorder. With increasing evidence of its efficacy in treatment-resistant depression and its potential anti-suicidal action, a great deal of investigation has been conducted on elucidating ketamine's effects on the brain. Of particular interest and therapeutic potential is the ability of ketamine to exert rapid antidepressant properties as early as several hours after administration. This is in stark contrast to the delayed effects observed with traditional antidepressants, often requiring several weeks of therapy for a clinical response. Furthermore, ketamine appears to have a unique mechanism of action involving glutamate modulation via actions at the N-methyl-D-aspartate (NMDA) and α -amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors, as well as downstream activation of brain-derived neurotrophic factor (BDNF) and mechanistic target of rapamycin (mTOR) signaling pathways to potentiate synaptic plasticity. This paper provides a brief overview of ketamine with regard to pharmacology/pharmacokinetics, toxicology, the current state of clinical trials on depression, postulated antidepressant mechanisms and potential biomarkers (biochemical, inflammatory, metabolic, neuroimaging sleep-related and cognitive) for predicting response to and/or monitoring of therapeutic outcome with ketamine.
Collapse
Affiliation(s)
- Dmitriy Matveychuk
- Department of Psychiatry, Neurochemical Research Unit, University of Alberta, Edmonton, Alberta, Canada
| | - Rejish K. Thomas
- Grey Nuns Community Hospital and Department of Psychiatry, University of Alberta, Edmonton, Alberta, Canada
| | - Jennifer Swainson
- Misericordia Community Hospital and Department of Psychiatry, University of Alberta, Edmonton, Alberta, Canada
| | - Atul Khullar
- Grey Nuns Community Hospital and Department of Psychiatry, University of Alberta, Edmonton, Alberta, Canada
| | - Mary-Anne MacKay
- Department of Psychiatry, Neurochemical Research Unit, University of Alberta, Edmonton, Alberta, Canada
| | - Glen B. Baker
- Department of Psychiatry, Neurochemical Research Unit, University of Alberta, 12-105B Clin Sci Bldg, Edmonton, Alberta T6G 2G3, Canada
| | - Serdar M. Dursun
- Department of Psychiatry, Neurochemical Research Unit, University of Alberta, Edmonton, Alberta, Canada
- Grey Nuns Community Hospital, Edmonton, Alberta, Canada
| |
Collapse
|
15
|
Ding R, Tan Y, Du A, Wen G, Ren X, Yao H, Ren W, Liu H, Wang X, Yu H, Yao J, Li B, Zhang G, Lu Y, Wu X. Redistribution of Monocarboxylate 1 and 4 in Hippocampus and Spatial Memory Impairment Induced by Long-term Ketamine Administration. Front Behav Neurosci 2020; 14:60. [PMID: 32362817 PMCID: PMC7181955 DOI: 10.3389/fnbeh.2020.00060] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 03/30/2020] [Indexed: 12/15/2022] Open
Abstract
The monocarboxylate transporters (MCTs) MCT1, MCT2, and MCT4 are essential components of the astrocyte-neuron lactate shuttle (ANLS), which is a fundamental element of brain energetics. Decreased expression of MCTs can induce cognitive dysfunction of the brain. In the present study, we established a mouse model of long-term ketamine administration by subjecting mice to a 6-month course of a daily intraperitoneal injection of ketamine. These mice demonstrated learning and memory deficits and a significant decline in MCT1 and MCT4 proteins in the hippocampal membrane fraction, while cytoplasmic MCT1 and MCT4 protein levels were significantly increased. In contrast, the levels of global MCT2 protein were significantly increased. Analysis of mRNA levels found no changes in MCT1/4 transcripts, although the expression of MCT2 mRNA was significantly increased. We suggest that redistribution of hippocampal MCT1 and MCT4, but not MCT2 up-regulation, may be related to learning and memory deficits induced by long-term ketamine administration.
Collapse
Affiliation(s)
- Runtao Ding
- School of Forensic Medicine, China Medical University, Shenyang, China.,Department of Forensic and Medical Laboratory, Jining Medical University, Jining, China
| | - Yaqing Tan
- School of Forensic Medicine, China Medical University, Shenyang, China
| | - Ao Du
- School of Forensic Medicine, China Medical University, Shenyang, China
| | - Gehua Wen
- School of Forensic Medicine, China Medical University, Shenyang, China
| | - Xinghua Ren
- School of Forensic Medicine, China Medical University, Shenyang, China
| | - Hui Yao
- School of Forensic Medicine, China Medical University, Shenyang, China
| | - Weishu Ren
- School of Forensic Medicine, China Medical University, Shenyang, China
| | - Huairu Liu
- School of Forensic Medicine, China Medical University, Shenyang, China
| | - Xiaolong Wang
- School of Forensic Medicine, China Medical University, Shenyang, China
| | - Hao Yu
- School of Forensic Medicine, China Medical University, Shenyang, China
| | - Jun Yao
- School of Forensic Medicine, China Medical University, Shenyang, China
| | - Baoman Li
- School of Forensic Medicine, China Medical University, Shenyang, China
| | - Guohua Zhang
- School of Forensic Medicine, China Medical University, Shenyang, China
| | - Yan Lu
- Key Laboratory of Health Ministry in Congenital Malformation, The Affiliated Shengjing Hospital of China Medical University, Shenyang, China
| | - Xu Wu
- School of Forensic Medicine, China Medical University, Shenyang, China
| |
Collapse
|