1
|
Yamamori Y, Robinson OJ, Roiser JP. Approach-avoidance reinforcement learning as a translational and computational model of anxiety-related avoidance. eLife 2023; 12:RP87720. [PMID: 37963085 PMCID: PMC10645421 DOI: 10.7554/elife.87720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023] Open
Abstract
Although avoidance is a prevalent feature of anxiety-related psychopathology, differences in the measurement of avoidance between humans and non-human animals hinder our progress in its theoretical understanding and treatment. To address this, we developed a novel translational measure of anxiety-related avoidance in the form of an approach-avoidance reinforcement learning task, by adapting a paradigm from the non-human animal literature to study the same cognitive processes in human participants. We used computational modelling to probe the putative cognitive mechanisms underlying approach-avoidance behaviour in this task and investigated how they relate to subjective task-induced anxiety. In a large online study (n = 372), participants who experienced greater task-induced anxiety avoided choices associated with punishment, even when this resulted in lower overall reward. Computational modelling revealed that this effect was explained by greater individual sensitivities to punishment relative to rewards. We replicated these findings in an independent sample (n = 627) and we also found fair-to-excellent reliability of measures of task performance in a sub-sample retested 1 week later (n = 57). Our findings demonstrate the potential of approach-avoidance reinforcement learning tasks as translational and computational models of anxiety-related avoidance. Future studies should assess the predictive validity of this approach in clinical samples and experimental manipulations of anxiety.
Collapse
Affiliation(s)
- Yumeya Yamamori
- Institute of Cognitive Neuroscience, University College LondonLondonUnited Kingdom
| | - Oliver J Robinson
- Institute of Cognitive Neuroscience, University College LondonLondonUnited Kingdom
- Research Department of Clinical, Educational and Health Psychology, University College LondonLondonUnited Kingdom
| | - Jonathan P Roiser
- Institute of Cognitive Neuroscience, University College LondonLondonUnited Kingdom
| |
Collapse
|
2
|
Gabriel DB, Liley AE, Franks H, Minnes GL, Tutaj M, Dwinell MR, de Jong T, Williams RW, Mulligan MK, Chen H, Simon NW. Divergent risky decision-making and impulsivity behaviors in Lewis rat substrains with low genetic difference. Behav Neurosci 2023; 137:254-267. [PMID: 37104777 PMCID: PMC10524952 DOI: 10.1037/bne0000557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
Substance use disorder (SUD) is associated with a cluster of cognitive disturbances that engender vulnerability to ongoing drug seeking and relapse. Two of these endophenotypes-risky decision-making and impulsivity-are amplified in individuals with SUD and are augmented by repeated exposure to illicit drugs. Identifying genetic factors underlying variability in these behavioral patterns is critical for early identification, prevention, and treatment of SUD-vulnerable individuals. Here, we compared risky decision-making and different facets of impulsivity between two fully inbred substrains of Lewis rats-LEW/NCrl and LEW/NHsd. We performed whole genome sequencing of both substrains to identify almost all relevant variants. We observed substantial differences in risky decision-making and impulsive behaviors. Relative to LEW/NHsd, the LEW/NCrl substrain accepts higher risk options in a decision-making task and higher rates of premature responses in the differential reinforcement of low rates of responding task. These phenotypic differences were more pronounced in females than males. We defined a total of ∼9,000 polymorphisms between these substrains at 40× whole genome short-read coverage. Roughly half of variants are located within a single 1.5 Mb region of Chromosome 8, but none impact protein-coding regions. In contrast, other variants are widely distributed, and of these, 38 are predicted to cause protein-coding variants. In conclusion, Lewis rat substrains differ significantly in risk-taking and impulsivity and only a small number of easily mapped variants are likely to be causal. Sequencing combined with a reduced complexity cross should enable identification of one or more variants underlying multiple complex addiction-relevant behaviors. (PsycInfo Database Record (c) 2023 APA, all rights reserved).
Collapse
Affiliation(s)
| | - Anna E. Liley
- Department of Psychology, University of Memphis, Memphis TN 38152
| | - Hunter Franks
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis TN 38105
| | - Grace L. Minnes
- Department of Psychology, University of Memphis, Memphis TN 38152
| | - Monika Tutaj
- Department of Physiology, Medical College of Wisconsin, Milwaukee WI 53226
| | - Melinda R. Dwinell
- Department of Physiology, Medical College of Wisconsin, Milwaukee WI 53226
| | - Tristan de Jong
- Department of Pharmacology, Addiction and Toxicology, University of Tennessee Health Science Center, Memphis TN 38163
| | - Robert W. Williams
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis TN 38163
| | - Megan K. Mulligan
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis TN 38163
| | - Hao Chen
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis TN 38163
| | | |
Collapse
|
3
|
Eleftheriou C, Clarke T, Poon V, Zechner M, Duguid I. Visiomode: An open-source platform for building rodent touchscreen-based behavioral assays. J Neurosci Methods 2023; 386:109779. [PMID: 36621552 PMCID: PMC10375831 DOI: 10.1016/j.jneumeth.2022.109779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 12/22/2022] [Accepted: 12/23/2022] [Indexed: 01/06/2023]
Abstract
BACKGROUND Touchscreen-based behavioral assays provide a robust method for assessing cognitive behavior in rodents, offering great flexibility and translational potential. The development of touchscreen assays presents a significant programming and mechanical engineering challenge, where commercial solutions can be prohibitively expensive and open-source solutions are underdeveloped, with limited adaptability. NEW METHOD Here, we present Visiomode (www.visiomode.org), an open-source platform for building rodent touchscreen-based behavioral tasks. Visiomode leverages the inherent flexibility of touchscreens to offer a simple yet adaptable software and hardware platform. The platform is built on the Raspberry Pi computer combining a web-based interface and powerful plug-in system with an operant chamber that can be adapted to generate a wide range of behavioral tasks. RESULTS As a proof of concept, we use Visiomode to build both simple stimulus-response and more complex visual discrimination tasks, showing that mice display rapid sensorimotor learning including switching between different motor responses (i.e., nose poke versus reaching). COMPARISON WITH EXISTING METHODS Commercial solutions are the 'go to' for rodent touchscreen behaviors, but the associated costs can be prohibitive, limiting their uptake by the wider neuroscience community. While several open-source solutions have been developed, efforts so far have focused on reducing the cost, rather than promoting ease of use and adaptability. Visiomode addresses these unmet needs providing a low-cost, extensible platform for creating touchscreen tasks. CONCLUSIONS Developing an open-source, rapidly scalable and low-cost platform for building touchscreen-based behavioral assays should increase uptake across the science community and accelerate the investigation of cognition, decision-making and sensorimotor behaviors both in health and disease.
Collapse
Affiliation(s)
- Constantinos Eleftheriou
- Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh EH8 9XD, UK; Centre for Discovery Brain Sciences and Patrick Wild Centre, Edinburgh Medical School: Biomedical Sciences, University of Edinburgh, Edinburgh EH8 9XD, UK.
| | - Thomas Clarke
- Centre for Discovery Brain Sciences and Patrick Wild Centre, Edinburgh Medical School: Biomedical Sciences, University of Edinburgh, Edinburgh EH8 9XD, UK
| | - V Poon
- Centre for Discovery Brain Sciences and Patrick Wild Centre, Edinburgh Medical School: Biomedical Sciences, University of Edinburgh, Edinburgh EH8 9XD, UK
| | - Marie Zechner
- The Roslin Institute, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, Scotland, UK
| | - Ian Duguid
- Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh EH8 9XD, UK; Centre for Discovery Brain Sciences and Patrick Wild Centre, Edinburgh Medical School: Biomedical Sciences, University of Edinburgh, Edinburgh EH8 9XD, UK.
| |
Collapse
|
6
|
Abstract
Deficits in decision making are at the heart of many psychiatric diseases, such as substance abuse disorders and attention deficit hyperactivity disorder. Consequently, rodent models of decision making are germane to understanding the neural mechanisms underlying adaptive choice behavior and how such mechanisms can become compromised in pathological conditions. A critical factor that must be integrated with reward value to ensure optimal decision making is the occurrence of consequences, which can differ based on probability (risk of punishment) and temporal contiguity (delayed punishment). This article will focus on two models of decision making that involve explicit punishment, both of which recapitulate different aspects of consequences during human decision making. We will discuss each behavioral protocol, the parameters to consider when designing an experiment, and finally how such animal models can be utilized in studies of psychiatric disease. © 2020 Wiley Periodicals LLC. Basic Protocol 1: Behavioral training Support Protocol: Equipment testing Alternate Protocol: Reward discrimination Basic Protocol 2: Risky decision-making task (RDT) Basic Protocol 3: Delayed punishment decision-making task (DPDT).
Collapse
Affiliation(s)
- Caitlin A Orsini
- Department of Psychology, The University of Texas at Austin, Austin, Texas
| | - Nicholas W Simon
- Department of Psychology, University of Memphis, Memphis, Tennessee
| |
Collapse
|
7
|
Fendt M, Kreutzmann JC, Jovanovic T. Learning safety to reduce fear: Recent insights and potential implications. Behav Brain Res 2021; 411:113402. [PMID: 34089756 DOI: 10.1016/j.bbr.2021.113402] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Markus Fendt
- Otto-von-Guericke University Magdeburg, Institute for Pharmacology and Toxicology, Leipziger Str. 44, D-39120, Magdeburg, Germany.
| | - Judith C Kreutzmann
- Otto-von-Guericke University Magdeburg, Institute for Pharmacology and Toxicology, Leipziger Str. 44, D-39120, Magdeburg, Germany.
| | - Tanja Jovanovic
- Wayne State University, School of Medicine, Psychiatry and Behavioral Neuroscience, 245 Tolan Park Medical Building, 3901 Chrysler Service Drive, Detroit, MI, 48201, USA
| |
Collapse
|
8
|
Piantadosi PT, Halladay LR, Radke AK, Holmes A. Advances in understanding meso-cortico-limbic-striatal systems mediating risky reward seeking. J Neurochem 2021; 157:1547-1571. [PMID: 33704784 PMCID: PMC8981567 DOI: 10.1111/jnc.15342] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 03/04/2021] [Accepted: 03/06/2021] [Indexed: 02/06/2023]
Abstract
The risk of an aversive consequence occurring as the result of a reward-seeking action can have a profound effect on subsequent behavior. Such aversive events can be described as punishers, as they decrease the probability that the same action will be produced again in the future and increase the exploration of less risky alternatives. Punishment can involve the omission of an expected rewarding event ("negative" punishment) or the addition of an unpleasant event ("positive" punishment). Although many individuals adaptively navigate situations associated with the risk of negative or positive punishment, those suffering from substance use disorders or behavioral addictions tend to be less able to curtail addictive behaviors despite the aversive consequences associated with them. Here, we discuss the psychological processes underpinning reward seeking despite the risk of negative and positive punishment and consider how behavioral assays in animals have been employed to provide insights into the neural mechanisms underlying addictive disorders. We then review the critical contributions of dopamine signaling to punishment learning and risky reward seeking, and address the roles of interconnected ventral striatal, cortical, and amygdala regions to these processes. We conclude by discussing the ample opportunities for future study to clarify critical gaps in the literature, particularly as related to delineating neural contributions to distinct phases of the risky decision-making process.
Collapse
Affiliation(s)
- Patrick T. Piantadosi
- Laboratory of Behavioral and Genomic Neuroscience, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD, USA
| | - Lindsay R. Halladay
- Department of Psychology, Santa Clara University, Santa Clara, California 95053, USA
| | - Anna K. Radke
- Department of Psychology and Center for Neuroscience and Behavior, Miami University, Oxford, OH, USA
| | - Andrew Holmes
- Laboratory of Behavioral and Genomic Neuroscience, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD, USA
| |
Collapse
|
9
|
Sullivan JA, Dumont JR, Memar S, Skirzewski M, Wan J, Mofrad MH, Ansari HZ, Li Y, Muller L, Prado VF, Prado MAM, Saksida LM, Bussey TJ. New frontiers in translational research: Touchscreens, open science, and the mouse translational research accelerator platform. GENES BRAIN AND BEHAVIOR 2020; 20:e12705. [PMID: 33009724 DOI: 10.1111/gbb.12705] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 09/03/2020] [Accepted: 09/29/2020] [Indexed: 12/18/2022]
Abstract
Many neurodegenerative and neuropsychiatric diseases and other brain disorders are accompanied by impairments in high-level cognitive functions including memory, attention, motivation, and decision-making. Despite several decades of extensive research, neuroscience is little closer to discovering new treatments. Key impediments include the absence of validated and robust cognitive assessment tools for facilitating translation from animal models to humans. In this review, we describe a state-of-the-art platform poised to overcome these impediments and improve the success of translational research, the Mouse Translational Research Accelerator Platform (MouseTRAP), which is centered on the touchscreen cognitive testing system for rodents. It integrates touchscreen-based tests of high-level cognitive assessment with state-of-the art neurotechnology to record and manipulate molecular and circuit level activity in vivo in animal models during human-relevant cognitive performance. The platform also is integrated with two Open Science platforms designed to facilitate knowledge and data-sharing practices within the rodent touchscreen community, touchscreencognition.org and mousebytes.ca. Touchscreencognition.org includes the Wall, showcasing touchscreen news and publications, the Forum, for community discussion, and Training, which includes courses, videos, SOPs, and symposia. To get started, interested researchers simply create user accounts. We describe the origins of the touchscreen testing system, the novel lines of research it has facilitated, and its increasingly widespread use in translational research, which is attributable in part to knowledge-sharing efforts over the past decade. We then identify the unique features of MouseTRAP that stand to potentially revolutionize translational research, and describe new initiatives to partner with similar platforms such as McGill's M3 platform (m3platform.org).
Collapse
Affiliation(s)
- Jacqueline A Sullivan
- Department of Philosophy, The University of Western Ontario, Ontario, Canada.,Rotman Institute of Philosophy, The University of Western Ontario, Ontario, Canada.,Brain and Mind Institute, The University of Western Ontario, Ontario, Canada
| | - Julie R Dumont
- BrainsCAN, The University of Western Ontario, Ontario, Canada.,Robarts Research Institute, The University of Western Ontario, Ontario, Canada
| | - Sara Memar
- Robarts Research Institute, The University of Western Ontario, Ontario, Canada
| | - Miguel Skirzewski
- BrainsCAN, The University of Western Ontario, Ontario, Canada.,Robarts Research Institute, The University of Western Ontario, Ontario, Canada
| | - Jinxia Wan
- Division of Sciences, State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing, China.,PKU-IDG/McGovern Institute for Brain Research, Beijing, China
| | - Maryam H Mofrad
- Brain and Mind Institute, The University of Western Ontario, Ontario, Canada.,Department of Applied Mathematics, The University of Western Ontario, Ontario, Canada
| | | | - Yulong Li
- Division of Sciences, State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing, China.,PKU-IDG/McGovern Institute for Brain Research, Beijing, China.,Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Lyle Muller
- Brain and Mind Institute, The University of Western Ontario, Ontario, Canada.,Department of Applied Mathematics, The University of Western Ontario, Ontario, Canada
| | - Vania F Prado
- Robarts Research Institute, The University of Western Ontario, Ontario, Canada.,Department of Anatomy and Cell Biology, The University of Western Ontario, Ontario, Canada.,Department of Physiology and Pharmacology, The University of Western Ontario, Ontario, Canada
| | - Marco A M Prado
- Robarts Research Institute, The University of Western Ontario, Ontario, Canada.,Department of Anatomy and Cell Biology, The University of Western Ontario, Ontario, Canada.,Department of Physiology and Pharmacology, The University of Western Ontario, Ontario, Canada
| | - Lisa M Saksida
- Brain and Mind Institute, The University of Western Ontario, Ontario, Canada.,BrainsCAN, The University of Western Ontario, Ontario, Canada.,Robarts Research Institute, The University of Western Ontario, Ontario, Canada.,Department of Physiology and Pharmacology, The University of Western Ontario, Ontario, Canada
| | - Timothy J Bussey
- Brain and Mind Institute, The University of Western Ontario, Ontario, Canada.,BrainsCAN, The University of Western Ontario, Ontario, Canada.,Robarts Research Institute, The University of Western Ontario, Ontario, Canada.,Department of Physiology and Pharmacology, The University of Western Ontario, Ontario, Canada.,Department of Psychiatry, The University of Western Ontario, Ontario, Canada
| |
Collapse
|