1
|
Liao H, Lu D, Reisinger SN, Kleeman EA, van de Garde N, Gubert C, Hannan AJ. Mimicking bacterial infection in male mice changes sperm small RNA profiles and multigenerationally alters offspring behavior and physiology. Brain Behav Immun 2024; 119:520-538. [PMID: 38636562 DOI: 10.1016/j.bbi.2024.04.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/22/2024] [Accepted: 04/16/2024] [Indexed: 04/20/2024] Open
Abstract
Paternal pre-conceptual exposures, including stress, diet, substance abuse, parasite infection, and viral immune activation via Poly I:C, have been reported to influence the brains and behavior of offspring through sperm epigenetic changes. However, the effects of paternal (F0) pre-conceptual exposure to bacterial-induced immune activation on the behavior and physiology of F1 and F2 generations remain unexplored. We examined this using C57BL/6J mice. Eight-week-old males (F0) received a single intraperitoneal injection of the bacterial mimetic lipopolysaccharide (LPS: 5 mg/kg) or 0.9 % saline (vehicle control) before mating with naïve females at four weeks post-injection. Comprehensive behavioral assessments were conducted to investigate anxiety, social behaviors, depressive-like behaviors and cognition in both the F1 and F2 generations within the age range of 8 to 14 weeks. Results demonstrated that only female offspring of LPS-exposed fathers exhibited reduced anxiety levels in the light/dark box, large open field, and novelty-suppressed feeding test. These F1 female offspring also exhibited heightened sociability in the 3-chambered social interaction test and a reduced preference for saccharin in the saccharin preference test. Additionally, the F1 male offspring of LPS-challenged males demonstrated an increased total distance traveled in the light/dark box and a longer distance covered in the light zone. They also exhibited diminished preference for social novelty in the 3-chambered social interaction test and an elevated novel arm preference index in the Y-maze. In the F2 generation, male descendants of LPS-treated fathers showed reduced latency to feed in the novelty-suppressed feeding test. Additionally, the F2 generation of LPS-challenged fathers, but not the F1 generation, displayed enhanced immune response in both sexes after an acute LPS immune challenge (5 mg/kg). Analysis of sperm small noncoding RNA profiles from LPS-treated F0 mice revealed significant changes at 4 weeks after administration of LPS. These changes included three microRNAs, eight PIWI-interacting RNAs, and two transfer RNAs, exhibiting significant upregulation (mmu-miR-146a-5p, mmu-piR-27082 and mmu-piR-29102) or downregulation (mmu-miR-5110, mmu-miR-467e-3p, mmu-piR-22583, mmu-piR-23548, mmu-piR-36341, mmu-piR-50293, mmu-piR-16583, mmu-piR-36507, Mus_musculus_tRNA-Ile-AAT-2-1 and Mus_musculus_tRNA-Tyr-GTA-1-1). Additionally, we detected 52 upregulated small noncoding RNAs (including 9 miRNAs, 41 piRNAs, and 2 tRNAs) and 7 downregulated small noncoding RNAs (3 miRNAs, 3 piRNAs, and 1 tRNA) in the sperm of F1 offspring from LPS-treated males. These findings provide compelling evidence for the involvement of epigenetic mechanisms in the modulation of brain function and immunity, and associated behavioral and immunological traits, across generations, in response to bacterial infection.
Collapse
Affiliation(s)
- Huan Liao
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia.
| | - Da Lu
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia
| | - Sonali N Reisinger
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia
| | - Elizabeth A Kleeman
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia
| | - Nicholas van de Garde
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia
| | - Carolina Gubert
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia
| | - Anthony J Hannan
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia; Department of Anatomy and Physiology, University of Melbourne, Melbourne, Victoria, Australia.
| |
Collapse
|
2
|
Cavalcanti CCL, Manhães-de-Castro R, Chaves WF, Cadena-Burbano EV, Antonio-Santos J, da Silva Aragão R. Influence of maternal high-fat diet on offspring's locomotor activity during anxiety-related behavioral tests: A systematic review. Behav Brain Res 2024; 462:114869. [PMID: 38246396 DOI: 10.1016/j.bbr.2024.114869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 01/16/2024] [Accepted: 01/17/2024] [Indexed: 01/23/2024]
Abstract
The aim of this review was to summarize and discuss the impact of a maternal high-fat diet on the locomotor activity of offspring during anxiety-related behavioral tests. A search was performed in the LILACS, Web of Science, SCOPUS and PUMBED databases, using the following inclusion criteria: studies in which rodent dams were submitted to a high-fat diet during gestation and/or lactation and in which the locomotor activity parameters of offspring were evaluated during an anxiety-related test. Twenty-three articles met these criteria and were included. Most studies, 14 out of 23, found that a maternal high-fat diet did not alter offspring locomotor activity. Six articles found that a maternal high-fat diet increased the locomotor activity of offspring, while three found decreased locomotion. This effect may be associated with the initial response to the test and the fact that it was the first day of exposure to the apparatus.
Collapse
Affiliation(s)
| | - Raul Manhães-de-Castro
- Graduate Program in Neuropsychiatry and Behavioral Sciences, Universidade Federal de Pernambuco, 50670-901 PE, Brazil; Graduate Program in Nutrition, Universidade Federal de Pernambuco, 50670-901 Recife, PE, Brazil; Unit of Studies in Nutrition and Plasticity, Universidade Federal de Pernambuco, 50670-901 PE, Brazil
| | - Wenicios Ferreira Chaves
- Graduate Program in Nutrition, Sports Sciences and Metabolism, Universidade Estadual de Campinas, 13484-350 Campinas, SP, Brazil
| | | | - José Antonio-Santos
- Unit of Studies in Nutrition and Plasticity, Universidade Federal de Pernambuco, 50670-901 PE, Brazil; Physical Education and Sports Sciences Unit, Universidade Federal de Pernambuco, 55608-680 Vitória de Santo Antão, PE, Brazil
| | - Raquel da Silva Aragão
- Graduate Program in Nutrition, Universidade Federal de Pernambuco, 50670-901 Recife, PE, Brazil; Unit of Studies in Nutrition and Plasticity, Universidade Federal de Pernambuco, 50670-901 PE, Brazil; Physical Education and Sports Sciences Unit, Universidade Federal de Pernambuco, 55608-680 Vitória de Santo Antão, PE, Brazil.
| |
Collapse
|
3
|
Rocha-Gomes A, Alvarenga E Castro TP, Almeida PR, Balsamão Paes Leme PS, da Silva AA, Riul TR, Bastos CP, Leite HR. High-intensity interval training improves long-term memory and increases hippocampal antioxidant activity and BDNF levels in ovariectomized Wistar rats. Behav Brain Res 2023; 453:114605. [PMID: 37517574 DOI: 10.1016/j.bbr.2023.114605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 07/27/2023] [Accepted: 07/27/2023] [Indexed: 08/01/2023]
Abstract
Menopause is the period in which women cease to produce the hormone estrogen, which can trigger physiological, cognitive, and behavioral changes. In this context, alternatives are needed that can reduce the effects provided by menopause, specifically in terms of cognitive and behavioral aspects. High-intensity interval training (HIIT) is an exercise protocol that has shown the potential to improve cognition by promoting an increase in antioxidant defenses and BDNF levels. Therefore, the aim of this study was to evaluate the effects of HIIT on behavior and hippocampal neurochemistry in ovariectomized adult rats. Four groups of rats were divided into: females without ovariectomy surgery and sedentary (SHAM-SED); females with ovariectomy surgery and sedentary (OVX-SED); females without ovariectomy surgery and trained (SHAM-HIIT); females with ovariectomy surgery and trained (OVX-HIIT). After the surgical procedure and the HIIT protocol, the animals underwent anxiety (elevated plus maze and open field) and memory (novel object recognition) tests. Corticosterone was measured in blood and BDNF levels and redox status were evaluated in the hippocampus. The OVX-SED group showed low BDNF levels and antioxidant enzymes, which may be linked to the observed memory impairments. The HIIT protocol (SHAM-HIIT and OVX-HIIT groups) increased the BDNF levels and antioxidant enzymes in the hippocampus, improving the animals' memory. However, HIIT also led to increased plasma corticosterone and anxiety-like behaviors. The ovariectomy procedure induced memory impairment probably due to reductions in hippocampal BDNF levels and redox imbalance. The HIIT protocol demonstrates promising results as an alternative to improve memory in ovariectomized rats.
Collapse
Affiliation(s)
- Arthur Rocha-Gomes
- Departamento de Farmacologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo (USP), Ribeirão Preto, SP, Brazil.
| | | | - Pedro Rodrigues Almeida
- Programa de Pós-Graduação em Reabilitação e Desempenho Funcional, Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Diamantina, MG, Brazil
| | - Paula Silveira Balsamão Paes Leme
- Programa de Pós-Graduação em Reabilitação e Desempenho Funcional, Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Diamantina, MG, Brazil
| | - Alexandre Alves da Silva
- Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Diamantina, MG, Brazil
| | - Tania Regina Riul
- Programa de Pós-Graduação em Ciências da Nutrição, Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Diamantina, MG, Brazil
| | - Cristiane Perácio Bastos
- Departamento de Enfermagem, Faculdade de Ciências Humanas de Curvelo (FACIC), Curvelo, MG, Brazil
| | - Hércules Ribeiro Leite
- Programa de Pós-Graduação em Ciências da Reabilitação, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| |
Collapse
|
4
|
Giovana Maciel Reis C, Rocha-Gomes A, Escobar Teixeira A, Gomes de Oliveira D, Mainy Oliveira Santiago C, Alves da Silva A, Regina Riul T, de Jesus Oliveira E. Short-term Cafeteria Diet Is Associated with Fat Mass Accumulation, Systemic and Amygdala Inflammation, and Anxiety-like Behavior in Adult Male Wistar Rats. Neuroscience 2023; 515:37-52. [PMID: 36773840 DOI: 10.1016/j.neuroscience.2023.02.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/31/2023] [Accepted: 02/03/2023] [Indexed: 02/12/2023]
Abstract
Obesity is linked to metabolic, hormonal and biochemical alterations, and is also a risk factor for behavioral disorders. Evidence suggests that these disorders may be related to the consumption of hypercaloric diets, fat mass accumulation and changes in inflammation and redox status. Although much is known about the chronic effects of hypercaloric diets on mental health, few studies have evaluated the consequences of short-term exposure of these diets on behavior. The aim of this study was to evaluate nutritional, behavioral (anxiety-like), inflammatory and redox status parameters in adult male Wistar rats exposed to short-term cafeteria diet. Adult Wistar male rats (90 days-old; n = 12/group) received, during 14 days, the diets: Control- standard diet; Simple Cafeteria Diet (SCD)- homogeneous cafeteria diet. Varied Cafeteria Diet (VCD)- cafeteria diet with rotation and variation. Nutritional analyzes and tests for anxiety-like behaviors were performed, in addition to inflammatory and redox status measurements in blood and amygdala. The SCD group showed higher fat energy intake, while the VCD group consumed more energy from carbohydrates. SCD and VCD showed higher fat mass accumulation, in addition to higher levels of TNFα, INFγ, TBARS and FRAP in the blood. Also, SCD and VCD groups reported high levels of TNFα in the amygdala. Regarding behavioral evaluations, SCD and VCD groups showed anxiogenesis in the elevated plus maze, light-dark box, and open field tests. Therefore, the two cafeteria diets induced obesity and systemic inflammation, which in turn, resulted in an increase in amygdala TNFα levels and anxiety-like behaviors in Wistar rats.
Collapse
Affiliation(s)
- Clarisse Giovana Maciel Reis
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina-MG, Brazil; Laboratório de Nutrição Experimental - LabNutrex - Departamento de Nutrição. Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina-MG, Brazil
| | - Arthur Rocha-Gomes
- Departamento de Farmacologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo (USP), Brazil
| | - Amanda Escobar Teixeira
- Laboratório de Nutrição Experimental - LabNutrex - Departamento de Nutrição. Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina-MG, Brazil
| | - Dalila Gomes de Oliveira
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina-MG, Brazil; Laboratório de Nutrição Experimental - LabNutrex - Departamento de Nutrição. Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina-MG, Brazil
| | - Camilla Mainy Oliveira Santiago
- Laboratório de Nutrição Experimental - LabNutrex - Departamento de Nutrição. Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina-MG, Brazil; Programa de Pós-Graduação em Ciências da Nutrição, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina-MG, Brazil
| | - Alexandre Alves da Silva
- Laboratório de Nutrição Experimental - LabNutrex - Departamento de Nutrição. Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina-MG, Brazil; Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina-MG, Brazil
| | - Tania Regina Riul
- Laboratório de Nutrição Experimental - LabNutrex - Departamento de Nutrição. Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina-MG, Brazil; Programa de Pós-Graduação em Ciências da Nutrição, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina-MG, Brazil
| | - Eduardo de Jesus Oliveira
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina-MG, Brazil.
| |
Collapse
|
5
|
Intrauterine Inflammation Leads to Select Sex- and Age-Specific Behavior and Molecular Differences in Mice. Int J Mol Sci 2022; 24:ijms24010032. [PMID: 36613475 PMCID: PMC9819857 DOI: 10.3390/ijms24010032] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 11/30/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022] Open
Abstract
Sex-specific differences in behavior have been observed in anxiety and learning in children exposed to prenatal inflammation; however, whether these behaviors manifest differently by age is unknown. This study assesses possible behavioral changes due to in utero inflammation as a function of age in neonatal, juvenile, and adult animals and presents potential molecular targets for observed differences. CD-1 timed pregnant dams were injected in utero with lipopolysaccharide (LPS, 50 μg/animal) or saline at embryonic day 15. No differences in stress responses were measured by neonatal ultrasonic vocalizations between LPS- and saline-exposed groups of either sex. By contrast, prenatal inflammation caused a male-specific increase in anxiety in mature but not juvenile animals. Juvenile LPS-exposed females had decreased movement in open field testing that was not present in adult animals. We additionally observed improved memory retrieval after in utero LPS in the juvenile animals of both sexes, which in males may be related to a perseverative phenotype. However, there was an impairment of long-term memory in only adult LPS-exposed females. Finally, gene expression analyses revealed that LPS induced sex-specific changes in genes involved in hippocampal neurogenesis. In conclusion, intrauterine inflammation has age- and sex-specific effects on anxiety and learning that may correlate to sex-specific disruption of gene expression associated with neurogenesis in the hippocampus.
Collapse
|
6
|
Cirulli F, De Simone R, Musillo C, Ajmone-Cat MA, Berry A. Inflammatory Signatures of Maternal Obesity as Risk Factors for Neurodevelopmental Disorders: Role of Maternal Microbiota and Nutritional Intervention Strategies. Nutrients 2022; 14:nu14153150. [PMID: 35956326 PMCID: PMC9370669 DOI: 10.3390/nu14153150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/18/2022] [Accepted: 07/28/2022] [Indexed: 02/01/2023] Open
Abstract
Obesity is a main risk factor for the onset and the precipitation of many non-communicable diseases. This condition, which is associated with low-grade chronic systemic inflammation, is of main concern during pregnancy leading to very serious consequences for the new generations. In addition to the prominent role played by the adipose tissue, dysbiosis of the maternal gut may also sustain the obesity-related inflammatory milieu contributing to create an overall suboptimal intrauterine environment. Such a condition here generically defined as “inflamed womb” may hold long-term detrimental effects on fetal brain development, increasing the vulnerability to mental disorders. In this review, we will examine the hypothesis that maternal obesity-related gut dysbiosis and the associated inflammation might specifically target fetal brain microglia, the resident brain immune macrophages, altering neurodevelopmental trajectories in a sex-dependent fashion. We will also review some of the most promising nutritional strategies capable to prevent or counteract the effects of maternal obesity through the modulation of inflammation and oxidative stress or by targeting the maternal microbiota.
Collapse
Affiliation(s)
- Francesca Cirulli
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; or
- Correspondence: (F.C.); (A.B.)
| | - Roberta De Simone
- National Center for Drug Research and Evaluation, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; (R.D.S.); (M.A.A.-C.)
| | - Chiara Musillo
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; or
- PhD Program in Behavioral Neuroscience, Department of Psychology, Sapienza University of Rome, 00185 Rome, Italy
| | - Maria Antonietta Ajmone-Cat
- National Center for Drug Research and Evaluation, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; (R.D.S.); (M.A.A.-C.)
| | - Alessandra Berry
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; or
- Correspondence: (F.C.); (A.B.)
| |
Collapse
|
7
|
Santiago CMO, de Oliveira DG, Rocha‐Gomes A, Oliveira G, Bernardes EDO, Dias PL, Reis ÍG, Severiano CM, da Silva AA, Lessa MR, Dessimoni Pinto NAV, Riul TR. Unripe banana flour (
Musa cavendishii
) promotes increased hypothalamic antioxidant activity, reduced caloric intake, and abdominal fat accumulation in rats on a high‐fat diet. J Food Biochem 2022; 46:e14341. [DOI: 10.1111/jfbc.14341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 06/17/2022] [Accepted: 06/27/2022] [Indexed: 11/30/2022]
Affiliation(s)
- Camilla M. O. Santiago
- Programa de Pós‐Graduação em Ciências da Nutrição Universidade Federal dos Vales do Jequitinhonha e Mucuri Diamantina Minas Gerais Brazil
- Laboratório de Nutrição Experimental, LabNutrex, Departamento de Nutrição Universidade Federal dos Vales do Jequitinhonha e Mucuri Diamantina Minas Gerais Brazil
| | - Dalila G. de Oliveira
- Laboratório de Nutrição Experimental, LabNutrex, Departamento de Nutrição Universidade Federal dos Vales do Jequitinhonha e Mucuri Diamantina Minas Gerais Brazil
- Programa de Pós‐Graduação em Ciências Farmacêuticas Universidade Federal dos Vales do Jequitinhonha e Mucuri Diamantina Minas Gerais Brazil
| | - Arthur Rocha‐Gomes
- Laboratório de Nutrição Experimental, LabNutrex, Departamento de Nutrição Universidade Federal dos Vales do Jequitinhonha e Mucuri Diamantina Minas Gerais Brazil
| | - Gabriel A. Oliveira
- Laboratório de Nutrição Experimental, LabNutrex, Departamento de Nutrição Universidade Federal dos Vales do Jequitinhonha e Mucuri Diamantina Minas Gerais Brazil
| | - Eduardo de Oliveira Bernardes
- Laboratório de Nutrição Experimental, LabNutrex, Departamento de Nutrição Universidade Federal dos Vales do Jequitinhonha e Mucuri Diamantina Minas Gerais Brazil
| | - Patrick L. Dias
- Laboratório de Nutrição Experimental, LabNutrex, Departamento de Nutrição Universidade Federal dos Vales do Jequitinhonha e Mucuri Diamantina Minas Gerais Brazil
| | - Ítalo G. Reis
- Programa de Pós‐Graduação em Ciências da Nutrição Universidade Federal dos Vales do Jequitinhonha e Mucuri Diamantina Minas Gerais Brazil
- Laboratório de Nutrição Experimental, LabNutrex, Departamento de Nutrição Universidade Federal dos Vales do Jequitinhonha e Mucuri Diamantina Minas Gerais Brazil
| | - Cecília M. Severiano
- Laboratório de Nutrição Experimental, LabNutrex, Departamento de Nutrição Universidade Federal dos Vales do Jequitinhonha e Mucuri Diamantina Minas Gerais Brazil
| | - Alexandre A. da Silva
- Laboratório de Nutrição Experimental, LabNutrex, Departamento de Nutrição Universidade Federal dos Vales do Jequitinhonha e Mucuri Diamantina Minas Gerais Brazil
- Programa de Pós‐Graduação em Ciências da Saúde Universidade Federal dos Vales do Jequitinhonha e Mucuri Diamantina Minas Gerais Brazil
| | - Mayara R. Lessa
- Laboratório de Nutrição Experimental, LabNutrex, Departamento de Nutrição Universidade Federal dos Vales do Jequitinhonha e Mucuri Diamantina Minas Gerais Brazil
| | - Nisia A. V. Dessimoni Pinto
- Programa de Pós‐Graduação em Ciências da Nutrição Universidade Federal dos Vales do Jequitinhonha e Mucuri Diamantina Minas Gerais Brazil
| | - Tania R. Riul
- Programa de Pós‐Graduação em Ciências da Nutrição Universidade Federal dos Vales do Jequitinhonha e Mucuri Diamantina Minas Gerais Brazil
- Laboratório de Nutrição Experimental, LabNutrex, Departamento de Nutrição Universidade Federal dos Vales do Jequitinhonha e Mucuri Diamantina Minas Gerais Brazil
| |
Collapse
|
8
|
Mizera J, Kazek G, Pomierny B, Bystrowska B, Niedzielska-Andres E, Pomierny-Chamiolo L. Maternal High-Fat diet During Pregnancy and Lactation Disrupts NMDA Receptor Expression and Spatial Memory in the Offspring. Mol Neurobiol 2022; 59:5695-5721. [PMID: 35773600 DOI: 10.1007/s12035-022-02908-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 05/30/2022] [Indexed: 10/17/2022]
Abstract
The problem of an unbalanced diet, overly rich in fats, affects a significant proportion of the population, including women of childbearing age. Negative metabolic and endocrine outcomes for offspring associated with maternal high-fat diet during pregnancy and/or lactation are well documented in the literature. In this paper, we present our findings on the little-studied effects of this diet on NMDA receptors and cognitive functions in offspring. The subject of the study was the rat offspring born from dams fed a high-fat diet before mating and throughout pregnancy and lactation. Using a novel object location test, spatial memory impairment was detected in adolescent offspring as well as in young adult female offspring. The recognition memory of the adolescent and young adult offspring remained unaltered. We also found multiple alterations in the expression of the NMDA receptor subunits, NMDA receptor-associated scaffolding proteins, and selected microRNAs that regulate the activity of the NMDA receptor in the medial prefrontal cortex and the hippocampus of the offspring. Sex-dependent changes in glutamate levels were identified in extracellular fluid obtained from the medial prefrontal cortex and the hippocampus of the offspring. The obtained results indicate that a maternal high-fat diet during pregnancy and lactation can induce in the offspring memory disturbances accompanied by alterations in NMDA receptor expression.
Collapse
Affiliation(s)
- Jozef Mizera
- Department of Toxicology, Jagiellonian University Medical College, Medyczna 9, 30-688, Kraków, PL, Poland
| | - Grzegorz Kazek
- Department of Pharmacodynamics, Jagiellonian University Medical College, Medyczna 9, 30-688, Kraków, PL, Poland
| | - Bartosz Pomierny
- Department of Biochemical Toxicology, Jagiellonian University Medical College, Medyczna 9, 30-688, Kraków, PL, Poland
| | - Beata Bystrowska
- Department of Biochemical Toxicology, Jagiellonian University Medical College, Medyczna 9, 30-688, Kraków, PL, Poland
| | - Ewa Niedzielska-Andres
- Department of Toxicology, Jagiellonian University Medical College, Medyczna 9, 30-688, Kraków, PL, Poland.
| | - Lucyna Pomierny-Chamiolo
- Department of Toxicology, Jagiellonian University Medical College, Medyczna 9, 30-688, Kraków, PL, Poland.
| |
Collapse
|
9
|
Dai YJ, Liu WB, Abasubong KP, Zhang DD, Li XF, Xiao K, Wang X, Jiang GZ. The Mechanism of Lipopolysaccharide Escaping the Intestinal Barrier in Megalobrama amblycephala Fed a High-Fat Diet. Front Nutr 2022; 9:853409. [PMID: 35464002 PMCID: PMC9023073 DOI: 10.3389/fnut.2022.853409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 03/07/2022] [Indexed: 11/21/2022] Open
Abstract
With the popularity of western food characterized by excessive fat and sugars, obesity has currently been a public health issue. Low-grade chronic inflammation accompanied by obesity increases the risk of multiple epidemics such as diabetes, cancer and cardiovascular diseases. Here, we show that feeding Megalobrama amblycephala with a high-fat diet (HFD) drives obesity-related chronic inflammation and the penetration of lipopolysaccharide (LPS). Interference with antibiotics inhibits the produce of LPS and this alleviates the sustained release of pro-inflammatory factors induced by HFD. LPS penetration is attributed to weakened intestinal mucus barrier after high-fat exposure. Mechanically, the consumption of HFD inhibits the secretion of mucin 2 (MUC2) due to the induction of endoplasmic reticulum stress mediated by the inositol-requiring enzyme 1 (IRE1) /X box-binding protein 1 (XBP1) pathway in goblet cells. Furthermore, excessive lipid exacerbates the leakage of LPS across the intestinal epithelial cell barrier via the transcellular pathway. Mechanically, lipid increases the internalization of LPS in intestinal epithelial cells depending on the activation of fatty acid translocase (FAT/CD36). These results demonstrate that HFD causes the penetration of LPS due to the weakened intestinal mucosal barrier and the assistance of CD36.
Collapse
|
10
|
Vargas-Rodríguez I, Reyes-Castro LA, Pacheco-López G, Lomas-Soria C, Zambrano E, Díaz-Ruíz A, Diaz-Cintra S. POSTNATAL EXPOSURE TO LIPOPOLYSACCHARIDE COMBINED WITH HIGH-FAT DIET CONSUMPTION INDUCES IMMUNE TOLERANCE WITHOUT PREVENTION IN SPATIAL WORKING MEMORY IMPAIRMENT. Behav Brain Res 2022; 423:113776. [PMID: 35120930 DOI: 10.1016/j.bbr.2022.113776] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 01/21/2022] [Accepted: 01/30/2022] [Indexed: 02/05/2023]
Abstract
High-fat diet (HFD) consumption has been related to metabolic alterations, such as obesity and cardiovascular problems, and has pronounced effects on brain plasticity and memory impairment. HFD exposure has a pro-inflammatory effect associated with microglial cell modifications in the hippocampus, a region involved in the working memory process. Immune tolerance can protect from inflammation in periphery induced by HFD consumption, when the immune response is desensitized in development period with lipopolysaccharide (LPS) exposure, maybe this previously state can change the course of the diseases associated to HFDs but is not known if can protect the hippocampus's inflammatory response. In the present study, male mice were injected with LPS (100μg.kg-1 body weight) on postnatal day 3 and fed with HFD for 16 weeks after weaning. Ours results indicated that postnatal exposure to LPS in the early postnatal developmental stage combined with HFD consumption prevented glycemia, insulin, HOMA-IR, microglial process, and increased pro-inflammatory cytokines mRNA expression, without changes in body weight gain and spatial working memory with respect vehicle + HFD group. These findings suggest that HFD consumption after postnatal LPS exposure induces hippocampal immune tolerance, without prevention in spatial working memory impairment on male mice.
Collapse
Affiliation(s)
- Isaac Vargas-Rodríguez
- Departamento de Neurobiología del Desarrollo y Neurofisiología. Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, C.P. 76230, México
| | - Luis Antonio Reyes-Castro
- Departamento de Biología de la Reproducción, Instituto Nacional de Ciencias Médicas y Nutrición, Salvador Zubirán, México 14080
| | - Gustavo Pacheco-López
- División de Ciencias de Biológicas y de la Salud, Universidad Autónoma Metropolitana, Unidad Lerma, Estado de México, C.P. 52005, México
| | - Consuelo Lomas-Soria
- Departamento de Biología de la Reproducción, Instituto Nacional de Ciencias Médicas y Nutrición, Salvador Zubirán, México 14080; CONACyT-Cátedras, Departamento de Biología de la Reproducción. Instituto Nacional de Ciencias Médicas y Nutrición, Salvador Zubirán, México 14080
| | - Elena Zambrano
- Departamento de Biología de la Reproducción, Instituto Nacional de Ciencias Médicas y Nutrición, Salvador Zubirán, México 14080
| | - Araceli Díaz-Ruíz
- Departamento de Neuroquímica, Instituto Nacional de Neurologı́a y Neurocirugı́a, Manuel Velasco Suárez S.S.A, México, CP, 14269, México
| | - Sofía Diaz-Cintra
- Departamento de Neurobiología del Desarrollo y Neurofisiología. Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, C.P. 76230, México.
| |
Collapse
|
11
|
Li F, Xiang H, Gu Y, Ye T, Lu X, Huang C. Innate immune stimulation by monophosphoryl lipid A prevents chronic social defeat stress-induced anxiety-like behaviors in mice. J Neuroinflammation 2022; 19:12. [PMID: 34996472 PMCID: PMC8742352 DOI: 10.1186/s12974-021-02377-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 12/29/2021] [Indexed: 02/06/2023] Open
Abstract
Background Innate immune pre-stimulation can prevent the development of depression-like behaviors in chronically stressed mice; however, whether the same stimulation prevents the development of anxiety-like behaviors in animals remains unclear. We addressed this issue using monophosphoryl lipid A (MPL), a derivative of lipopolysaccharide (LPS) that lacks undesirable properties of LPS but still keeps immune-enhancing activities. Methods The experimental mice were pre-injected intraperitoneally with MPL before stress exposure. Depression was induced through chronic social defeat stress (CSDS). Behavioral tests were conducted to identify anxiety-like behaviors. Real-time polymerase chain reaction (PCR) and biochemical assays were employed to examine the gene and protein expression levels of pro-inflammatory markers. Results A single MPL injection at the dose of 400 and 800 μg/kg 1 day before stress exposure prevented CSDS-induced anxiety-like behaviors, and a single MPL injection (400 μg/kg) five but not 10 days before stress exposure produced similar effect. The preventive effect of MPL on anxiety-like behaviors was also observed in CSDS mice who received a second MPL injection 10 days after the first MPL injection or a 4 × MPL injection 10 days before stress exposure. MPL pre-injection also prevented the production of pro-inflammatory cytokines in the hippocampus and medial prefrontal cortex in CSDS mice, and inhibiting the central immune response by minocycline pretreatment abrogated the preventive effect of MPL on CSDS-induced anxiety-like behaviors and pro-inflammatory cytokine productions in the brain. Conclusions Pre-stimulation of the innate immune system by MPL can prevent chronic stress-induced anxiety-like behaviors and neuroinflammatory responses in the brain in mice.
Collapse
Affiliation(s)
- Fu Li
- Department of Pharmacy, Changzhou Geriatric Hospital Affiliated to Soochow University, Changzhou No.7 People's Hospital, 288# Yanling East Road, Changzhou, 213000, Jiangsu, China
| | - Haitao Xiang
- Department of Neurosurgery, Suzhou Kowloon Hospital, Shanghai Jiaotong University School of Medicine, #118 Wansheng Street, Suzhou, 215028, Jiangsu, China
| | - Yue Gu
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Jiangsu, 226001, Nantong, China
| | - Ting Ye
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Jiangsu, 226001, Nantong, China
| | - Xu Lu
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Jiangsu, 226001, Nantong, China.
| | - Chao Huang
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Jiangsu, 226001, Nantong, China.
| |
Collapse
|
12
|
Leal PEDPT, da Silva AA, Rocha-Gomes A, Riul TR, Cunha RA, Reichetzeder C, Villela DC. High-Salt Diet in the Pre- and Postweaning Periods Leads to Amygdala Oxidative Stress and Changes in Locomotion and Anxiety-Like Behaviors of Male Wistar Rats. Front Behav Neurosci 2022; 15:779080. [PMID: 35058757 PMCID: PMC8763963 DOI: 10.3389/fnbeh.2021.779080] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 11/15/2021] [Indexed: 12/24/2022] Open
Abstract
High-salt (HS) diets have recently been linked to oxidative stress in the brain, a fact that may be a precursor to behavioral changes, such as those involving anxiety-like behavior. However, to the best of our knowledge, no study has evaluated the amygdala redox status after consuming a HS diet in the pre- or postweaning periods. This study aimed to evaluate the amygdala redox status and anxiety-like behaviors in adulthood, after inclusion of HS diet in two periods: preconception, gestation, and lactation (preweaning); and only after weaning (postweaning). Initially, 18 females and 9 male Wistar rats received a standard (n = 9 females and 4 males) or a HS diet (n = 9 females and 5 males) for 120 days. After mating, females continued to receive the aforementioned diets during gestation and lactation. Weaning occurred at 21-day-old Wistar rats and the male offspring were subdivided: control-control (C-C)—offspring of standard diet fed dams who received a standard diet after weaning (n = 9–11), control-HS (C-HS)—offspring of standard diet fed dams who received a HS diet after weaning (n = 9–11), HS-C—offspring of HS diet fed dams who received a standard diet after weaning (n = 9–11), and HS-HS—offspring of HS diet fed dams who received a HS diet after weaning (n = 9–11). At adulthood, the male offspring performed the elevated plus maze and open field tests. At 152-day-old Wistar rats, the offspring were euthanized and the amygdala was removed for redox state analysis. The HS-HS group showed higher locomotion and rearing frequency in the open field test. These results indicate that this group developed hyperactivity. The C-HS group had a higher ratio of entries and time spent in the open arms of the elevated plus maze test in addition to a higher head-dipping frequency. These results suggest less anxiety-like behaviors. In the analysis of the redox state, less activity of antioxidant enzymes and higher levels of the thiobarbituric acid reactive substances (TBARS) in the amygdala were shown in the amygdala of animals that received a high-salt diet regardless of the period (pre- or postweaning). In conclusion, the high-salt diet promoted hyperactivity when administered in the pre- and postweaning periods. In animals that received only in the postweaning period, the addition of salt induced a reduction in anxiety-like behaviors. Also, regardless of the period, salt provided amygdala oxidative stress, which may be linked to the observed behaviors.
Collapse
Affiliation(s)
- Pedro Ernesto de Pinho Tavares Leal
- Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, Brazil
- Laboratório de Nutrição Experimental – LabNutrex, Departamento de Nutrição, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, Brazil
| | - Alexandre Alves da Silva
- Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, Brazil
- Laboratório de Nutrição Experimental – LabNutrex, Departamento de Nutrição, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, Brazil
| | - Arthur Rocha-Gomes
- Laboratório de Nutrição Experimental – LabNutrex, Departamento de Nutrição, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, Brazil
| | - Tania Regina Riul
- Laboratório de Nutrição Experimental – LabNutrex, Departamento de Nutrição, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, Brazil
- Programa de Pós-Graduação em Ciências da Nutrição, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, Brazil
| | - Rennan Augusto Cunha
- Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, Brazil
| | - Christoph Reichetzeder
- Department of Nutritional Toxicology, Institute of Nutritional Science, University of Potsdam, Potsdam, Germany
- Christoph Reichetzeder,
| | - Daniel Campos Villela
- Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, Brazil
- *Correspondence: Daniel Campos Villela,
| |
Collapse
|
13
|
Rocha-Gomes A, Teixeira AE, Santiago CMO, Oliveira DGD, Silva AAD, Lacerda ACR, Riul TR, Mendonça VA, Rocha-Vieira E, Leite HR. Prenatal LPS exposure increases hippocampus IL-10 and prevents short-term memory loss in the male adolescent offspring of high-fat diet fed dams. Physiol Behav 2022; 243:113628. [PMID: 34695488 DOI: 10.1016/j.physbeh.2021.113628] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 10/18/2021] [Accepted: 10/20/2021] [Indexed: 11/25/2022]
Abstract
Lipopolysaccharide (LPS) tolerance can reduce the neuroinflammation caused by high fat maternal diets; however, there are no reports that have evaluated the effects of prenatal LPS exposure on the memories of the offspring of high-fat diet fed dams. This study evaluated the effects of prenatal LPS exposure on the inflammatory parameters and redox status in the brain, as well as the object recognition memory of adolescent offspring of Wistar rat dams that were treated with a high-fat diet during gestation and lactation. Female pregnant Wistar rats randomly received a standard diet (17.5% fat) or a high-fat diet (45.0% fat) during gestation and lactation. On gestation days 8, 10, and 12, half of the females in each group were intraperitoneally treated with LPS (0.1 mg.kg-1). After weaning, the male offspring were placed in cages in standard conditions, and at 6 weeks old, animals underwent the novel object recognition test (for short- and long-term memory). The offspring of the high-fat diet fed dams showed increased hippocampus IL-6 levels (21-days-old) and impaired short-term memories. These effects were avoided in the offspring of high-fat diet fed dams submitted to prenatal LPS exposure, which showed greater hippocampus IL-10 levels (at 21- and 50-days-old), increased antioxidant activity (50-days-old) in the hippocampus and prefrontal cortex, without memory impairments (short- and long-term memory). IL-6 has been consistently implicated in memory deficits and as an endogenous mechanism for limiting plasticity, while IL-10 regulates glial activation and has a strong association with improvements in cognitive function. Prenatal LPS exposure preventing the increase of IL-6 in the hippocampus and the impairment to short-term object recognition memory caused by the high-fat maternal diet.
Collapse
Affiliation(s)
- Arthur Rocha-Gomes
- Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas, Sociedade Brasileira de Fisiologia, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, MG, 39100-000 Brasil; Laboratório de Nutrição Experimental - LabNutrex - Departamento de Nutrição. Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, MG, Brasil.
| | - Amanda Escobar Teixeira
- Laboratório de Nutrição Experimental - LabNutrex - Departamento de Nutrição. Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, MG, Brasil
| | - Camilla Mainy Oliveira Santiago
- Laboratório de Nutrição Experimental - LabNutrex - Departamento de Nutrição. Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, MG, Brasil; Programa de Pós-Graduação em Ciências da Nutrição, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, MG, Brasil
| | - Dalila Gomes de Oliveira
- Laboratório de Nutrição Experimental - LabNutrex - Departamento de Nutrição. Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, MG, Brasil
| | - Alexandre Alves da Silva
- Laboratório de Nutrição Experimental - LabNutrex - Departamento de Nutrição. Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, MG, Brasil
| | - Ana Cristina Rodrigues Lacerda
- Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas, Sociedade Brasileira de Fisiologia, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, MG, 39100-000 Brasil
| | - Tania Regina Riul
- Laboratório de Nutrição Experimental - LabNutrex - Departamento de Nutrição. Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, MG, Brasil; Programa de Pós-Graduação em Ciências da Nutrição, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, MG, Brasil
| | - Vanessa Amaral Mendonça
- Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas, Sociedade Brasileira de Fisiologia, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, MG, 39100-000 Brasil
| | - Etel Rocha-Vieira
- Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas, Sociedade Brasileira de Fisiologia, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, MG, 39100-000 Brasil
| | - Hércules Ribeiro Leite
- Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas, Sociedade Brasileira de Fisiologia, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, MG, 39100-000 Brasil; Departamento de Fisioterapia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901 Brasil.
| |
Collapse
|