1
|
Traetta ME, Vecchiarelli HA, Tremblay MÈ. Fundamental Neurochemistry Review: Lipids across microglial states. J Neurochem 2025; 169:e16259. [PMID: 39696753 DOI: 10.1111/jnc.16259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 10/19/2024] [Accepted: 10/22/2024] [Indexed: 12/20/2024]
Abstract
The capacity of immune cells to alter their function based on their metabolism is the basis of the emerging field of immunometabolism. Microglia are the resident innate immune cells of the central nervous system, and it is a current focus of the field to investigate how alterations in their metabolism impact these cells. Microglia have the ability to utilize lipids, such as fatty acids, as energy sources, but also alterations in lipids can impact microglial form and function. Recent studies highlighting different microglial states and transcriptional signatures have highlighted modifications in lipid processing as defining these states. This review highlights these recent studies and uses these altered pathways to discuss the current understanding of lipid biology in microglia. The studies highlighted here review how lipids may alter microglial phagocytic functioning or alter their pro- and anti-inflammatory balance. These studies provide a foundation by which lipid supplementation or diet alterations could influence microglial states and function. Furthermore, targets modulating microglial lipid metabolism may provide new treatment avenues.
Collapse
Affiliation(s)
- Marianela E Traetta
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada
| | - Haley A Vecchiarelli
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada
| | - Marie-Ève Tremblay
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada
- Centre for Advanced Materials and Related Technology (CAMTEC), University of Victoria, Victoria, British Columbia, Canada
- Institute for Aging and Lifelong Health (IALH), University of Victoria, Victoria, British Columbia, Canada
- Département de médecine moléculaire, Université Laval, Québec City, Quebec, Canada
- Axe neurosciences, Centre de recherche du CHU de Québec, Université Laval, Québec City, Quebec, Canada
- Neurology and Neurosurgery Department, McGill University, Montréal, Quebec, Canada
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
2
|
Tian Y, Jing G, Ma M, Yin R, Zhang M. Microglial activation and polarization in type 2 diabetes-related cognitive impairment: A focused review of pathogenesis. Neurosci Biobehav Rev 2024; 165:105848. [PMID: 39142542 DOI: 10.1016/j.neubiorev.2024.105848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 07/29/2024] [Accepted: 08/11/2024] [Indexed: 08/16/2024]
Abstract
Microglia, as immune cells in the central nervous system, are closely related to cognitive impairment associated with type 2 diabetes (T2D). Preliminary explorations have investigated the relationship between T2D-related cognitive impairment and the activation and polarization of microglia. This review summarizes the potential mechanisms of microglial activation and polarization in the context of T2D. It discusses central inflammatory responses, neuronal apoptosis, amyloid-β deposition, and abnormal phosphorylation of Tau protein mediated by microglial activation and polarization, exploring the connections between microglial activation and polarization and T2D-related cognitive impairment from multiple perspectives. Additionally, this review provides references for future treatment targeting microglia in T2D-related cognitive impairment and for clinical translation.
Collapse
Affiliation(s)
- Yue Tian
- Department of Traditional Chinese Medicine, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Guangchan Jing
- Department of Traditional Chinese Medicine, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Mei Ma
- Department of Traditional Chinese Medicine, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Ruiying Yin
- Department of Traditional Chinese Medicine, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Mengren Zhang
- Department of Traditional Chinese Medicine, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China.
| |
Collapse
|
3
|
Li J, Yin M, Wang Z, Xiong Y, Fang X, Fang H. Fingolimod alleviates type 2 diabetes associated cognitive decline by regulating autophagy and neuronal apoptosis via AMPK/mTOR pathway. Brain Res 2024; 1846:149241. [PMID: 39284560 DOI: 10.1016/j.brainres.2024.149241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 08/23/2024] [Accepted: 09/13/2024] [Indexed: 09/29/2024]
Abstract
This study aimed to reveal the role of fingolimod (FTY720) in mice with type 2 diabetes-associated cognitive decline and explore its potential neuroprotective mechanism. Mice were divided into five groups: normal control, normal control + FTY720 (1.0 mg/kg/day), type 2 diabetes mellitus, type 2 diabetes mellitus + low-dose FTY720 (0.5 mg/kg/day), and type 2 diabetes mellitus + high-dose FTY720 (1.0 mg/kg/day). Different doses of FTY720 were administered daily for 8 weeks after the induction of type 2 diabetes using a four-week high-fat diet feeding combined with continuous low-dose intraperitoneal injections of streptozotocin. After 8 weeks of treatment, the body weights and fasting blood glucose levels of mice from the five groups were compared. Morris water maze and new object recognition tests were used to evaluate cognitive function. Pathological changes in the hippocampal CA1 region were observed using haematoxylin-eosin and Nissl staining, and the ultrastructure of the hippocampal neurones was assessed using transmission electron microscopy. The expression levels of autophagy- and apoptosis-related proteins, such as LC3, Beclin-1, P62, Bax, and Bcl-2, in the mice hippocampus were detected by western blotting. Simultaneously, AMPK/mTOR signaling pathway proteins were detected to understand the potential mechanism. FTY720 had no significant effect on the body weight or fasting blood glucose levels in mice with type 2 diabetes. However, both FTY720 doses improved the cognitive function and hippocampal damage. In addition, the results suggested that FTY720 dramatically decreased P62 and Bax levels and increased LC3 II/LC3 I ratio, Beclin-1, and Bcl-2 expression in the hippocampus of type 2 diabetic mice. FTY720 also affected the expression of the AMPK/mTOR signaling pathway. Thus, FTY720 improved cognitive function and hippocampal pathological changes in type 2 diabetic mice without affecting fasting blood glucose levels. Our results show that FTY720 may exert neuroprotective effects in vivo by enhancing hippocampal autophagy and inhibiting apoptosis via the AMPK/mTOR signaling pathway.
Collapse
Affiliation(s)
- Jie Li
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang 050000, China.
| | - Mingjie Yin
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang 050000, China.
| | - Zhen Wang
- Department of Orthopedics, Handan First Hospital, Handan 056000, China.
| | - Yifei Xiong
- Graduate School, North China University of Science and Technology, Tangshan 063000, China.
| | - Xuedi Fang
- Graduate School, North China University of Science and Technology, Tangshan 063000, China.
| | - Hui Fang
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang 050000, China; Department of Endocrinology, Tangshan Gongren Hospital of Hebei Medical University, Tangshan 063000, China.
| |
Collapse
|
4
|
Li J, Nan X, Ma Y, Wang Z, Fang H. Therapeutic Potential of Fingolimod in Diabetes Mellitus and Its Chronic Complications. Diabetes Metab Syndr Obes 2024; 17:507-516. [PMID: 38318451 PMCID: PMC10840523 DOI: 10.2147/dmso.s385016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 01/19/2024] [Indexed: 02/07/2024] Open
Abstract
Diabetes mellitus is a metabolic disease characterized by elevated blood glucose due to a deficiency of insulin secretion and/or action. Long-term poor blood glucose control may lead to chronic damage and dysfunction of the heart, kidneys, eyes, and other organs. Therefore, it is important to develop treatments for diabetes and its chronic complications. Fingolimod is a structural sphingosine analogue and sphingosine-1-phosphate receptor modulator currently used for the treatment of relapsing-remitting multiple sclerosis. Several studies have shown that it has beneficial effects on the improvement of diabetes and its chronic complications. This paper reviews the therapeutic potential of Fingolimod in diabetes and its chronic complications, aiming to further guide future treatment strategies.
Collapse
Affiliation(s)
- Jie Li
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, 050000, People’s Republic of China
- Department of Endocrinology, Tangshan Gongren Hospital, Tangshan, 063000, People’s Republic of China
| | - Xinyu Nan
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, 050000, People’s Republic of China
| | - Yixuan Ma
- Graduate School, Hebei North University, Zhangjiakou, 075000, People’s Republic of China
| | - Zhen Wang
- Department of Orthopedics, Handan First Hospital, Handan, 056000, People’s Republic of China
| | - Hui Fang
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, 050000, People’s Republic of China
- Department of Endocrinology, Tangshan Gongren Hospital, Tangshan, 063000, People’s Republic of China
| |
Collapse
|
5
|
Sood A, Fernandes V, Preeti K, Rajan S, Khatri DK, Singh SB. S1PR2 inhibition mitigates cognitive deficit in diabetic mice by modulating microglial activation via Akt-p53-TIGAR pathway. Int Immunopharmacol 2024; 126:111278. [PMID: 38011768 DOI: 10.1016/j.intimp.2023.111278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/07/2023] [Accepted: 11/20/2023] [Indexed: 11/29/2023]
Abstract
Cognitive deficit is one of the challenging complications of type 2 diabetes. Sphingosine 1- phosphate receptors (S1PRs) have been implicated in various neurodegenerative and metabolic disorders. The association of S1PRs and cognition in type 2 diabetes remains elusive. Microglia-mediated neuronal damage could be the thread propagating cognitive deficit. The effects of S1PR2 inhibition on cognition in high-fat diet and streptozotocin-induced diabetic mice were examined in this work. We further assessed microglial activation and putative microglial polarisation routes. Cognitive function loss was observed after four months of diabetes induction in Type 2 diabetes animal model. JTE013, an S1PR2 inhibitor, was used to assess neuroprotection against cognitive decline and neuroinflammation in vitro and in vivo diabetes model. JTE013 (10 mg/kg) improved synaptic plasticity by upregulating psd95 and synaptophysin while reducing cognitive decline and neuroinflammation. It further enhanced anti-inflammatory microglia in the hippocampus and prefrontal cortex (PFC), as evidenced by increased Arg-1, CD206, and YM-1 levels and decreased iNOS, CD16, and MHCII levels. TIGAR, TP53-induced glycolysis and apoptosis regulator, might facilitate the anti-inflammatory microglial phenotype by promoting oxidative phosphorylation and decreasing apoptosis. However, since p53 is a TIGAR suppressor, inhibiting p53 could be beneficial. S1PR2 inhibition increased p-Akt and TIGAR levels and reduced the levels of p53 in the PFC and hippocampus of type 2 diabetic mice, thereby decreasing apoptosis. In vitro, palmitate was used to imitate sphingolipid dysregulation in BV2 cells, followed by conditioned media exposure to Neuro2A cells. JTE013 rescued the palmitate-induced neuronal apoptosis by promoting the anti-inflammatory microglia. In the present study, we demonstrate that the inhibition of S1PR2 improves cognitive function and skews microglia toward anti-inflammatory phenotype in type 2 diabetic mice, thereby promising to be a potential therapy for neuroinflammation.
Collapse
Affiliation(s)
- Anika Sood
- Department of Pharmacology and Toxicology, NIPER Hyderabad, Hyderabad, Telangana 500037, India
| | - Valencia Fernandes
- Department of Pharmacology and Toxicology, NIPER Hyderabad, Hyderabad, Telangana 500037, India
| | - Kumari Preeti
- Department of Pharmacology and Toxicology, NIPER Hyderabad, Hyderabad, Telangana 500037, India
| | - Shruti Rajan
- Department of Pharmacology and Toxicology, NIPER Hyderabad, Hyderabad, Telangana 500037, India
| | - Dharmendra Kumar Khatri
- Department of Pharmacology and Toxicology, NIPER Hyderabad, Hyderabad, Telangana 500037, India.
| | - Shashi Bala Singh
- Department of Pharmacology and Toxicology, NIPER Hyderabad, Hyderabad, Telangana 500037, India.
| |
Collapse
|
6
|
Martín-Hernández D, Muñoz-López M, Tendilla-Beltrán H, Caso JR, García-Bueno B, Menchén L, Leza JC. Immune System and Brain/Intestinal Barrier Functions in Psychiatric Diseases: Is Sphingosine-1-Phosphate at the Helm? Int J Mol Sci 2023; 24:12634. [PMID: 37628815 PMCID: PMC10454107 DOI: 10.3390/ijms241612634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/07/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
Over the past few decades, extensive research has shed light on immune alterations and the significance of dysfunctional biological barriers in psychiatric disorders. The leaky gut phenomenon, intimately linked to the integrity of both brain and intestinal barriers, may play a crucial role in the origin of peripheral and central inflammation in these pathologies. Sphingosine-1-phosphate (S1P) is a bioactive lipid that regulates both the immune response and the permeability of biological barriers. Notably, S1P-based drugs, such as fingolimod and ozanimod, have received approval for treating multiple sclerosis, an autoimmune disease of the central nervous system (CNS), and ulcerative colitis, an inflammatory condition of the colon, respectively. Although the precise mechanisms of action are still under investigation, the effectiveness of S1P-based drugs in treating these pathologies sparks a debate on extending their use in psychiatry. This comprehensive review aims to delve into the molecular mechanisms through which S1P modulates the immune system and brain/intestinal barrier functions. Furthermore, it will specifically focus on psychiatric diseases, with the primary objective of uncovering the potential of innovative therapies based on S1P signaling.
Collapse
Affiliation(s)
- David Martín-Hernández
- Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense de Madrid (UCM), Instituto de Investigación Hospital 12 de Octubre (i+12), Instituto Universitario de Investigación en Neuroquímica (IUIN), 28040 Madrid, Spain; (M.M.-L.); (J.R.C.); (B.G.-B.); (J.C.L.)
- Centro de Investigación Biomédica en Red de Salud Mental, Instituto de Salud Carlos III (CIBERSAM, ISCIII), 28029 Madrid, Spain
| | - Marina Muñoz-López
- Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense de Madrid (UCM), Instituto de Investigación Hospital 12 de Octubre (i+12), Instituto Universitario de Investigación en Neuroquímica (IUIN), 28040 Madrid, Spain; (M.M.-L.); (J.R.C.); (B.G.-B.); (J.C.L.)
- Centro de Investigación Biomédica en Red de Salud Mental, Instituto de Salud Carlos III (CIBERSAM, ISCIII), 28029 Madrid, Spain
| | - Hiram Tendilla-Beltrán
- Laboratorio de Neuropsiquiatría, Instituto de Fisiología, Benemérita Universidad Autónoma de Puebla (BUAP), 72570 Puebla, Mexico;
| | - Javier R. Caso
- Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense de Madrid (UCM), Instituto de Investigación Hospital 12 de Octubre (i+12), Instituto Universitario de Investigación en Neuroquímica (IUIN), 28040 Madrid, Spain; (M.M.-L.); (J.R.C.); (B.G.-B.); (J.C.L.)
- Centro de Investigación Biomédica en Red de Salud Mental, Instituto de Salud Carlos III (CIBERSAM, ISCIII), 28029 Madrid, Spain
| | - Borja García-Bueno
- Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense de Madrid (UCM), Instituto de Investigación Hospital 12 de Octubre (i+12), Instituto Universitario de Investigación en Neuroquímica (IUIN), 28040 Madrid, Spain; (M.M.-L.); (J.R.C.); (B.G.-B.); (J.C.L.)
- Centro de Investigación Biomédica en Red de Salud Mental, Instituto de Salud Carlos III (CIBERSAM, ISCIII), 28029 Madrid, Spain
| | - Luis Menchén
- Servicio de Aparato Digestivo, Hospital General Universitario Gregorio Marañón, Departamento de Medicina, Universidad Complutense, Instituto de Investigación Sanitaria Gregorio Marañón, 28007 Madrid, Spain;
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Instituto de Salud Carlos III (CIBEREHD, ISCIII), 28029 Madrid, Spain
| | - Juan C. Leza
- Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense de Madrid (UCM), Instituto de Investigación Hospital 12 de Octubre (i+12), Instituto Universitario de Investigación en Neuroquímica (IUIN), 28040 Madrid, Spain; (M.M.-L.); (J.R.C.); (B.G.-B.); (J.C.L.)
- Centro de Investigación Biomédica en Red de Salud Mental, Instituto de Salud Carlos III (CIBERSAM, ISCIII), 28029 Madrid, Spain
| |
Collapse
|