1
|
Liu J, Hiser C, Li F, Hall R, Garavito RM, Ferguson-Miller S. New TSPO Crystal Structures of Mutant and Heme-Bound Forms with Altered Flexibility, Ligand Binding, and Porphyrin Degradation Activity. Biochemistry 2023; 62:1262-1273. [PMID: 36947867 PMCID: PMC10077581 DOI: 10.1021/acs.biochem.2c00612] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 03/09/2023] [Indexed: 03/24/2023]
Abstract
The ancient protein TSPO (translocator protein 18kD) is found in all kingdoms and was originally identified as a binding site of benzodiazepine drugs. Its physiological function remains unclear, although porphyrins are conserved ligands. Several crystal structures of bacterial TSPO and nuclear magnetic resonance structures of a mouse form have revealed monomer and dimer configurations, but there have been no reports of structures with a physiological ligand. Here, we present the first X-ray structures of Rhodobacter sphaeroides TSPO with a physiological ligand bound. Two different variants (substituting threonine for alanine at position 139 (A139T) and phenylalanine for alanine at position 138 (A138F)) yielded well-diffracting crystals giving structures of both apo- and heme-containing forms. Both variants have wild-type micromolar affinity for heme and protoporphyrin IX, but A139T has very low ability to accelerate the breakdown of porphyrin in the presence of light and oxygen. The binding of heme to one protomer of the dimer of either mutant induces a more rigid structure, both in the heme-binding protomer and the protomer without heme bound, demonstrating an allosteric response. Ensemble refinement of the X-ray data reveals distinct regions of altered flexibility in response to single heme binding to the dimer. The A139T variant shows a more rigid structure overall, which may relate to extra hydrogen bonding of waters captured in the heme crevice. As TSPO has been suggested to have a role in heme delivery from mitochondria to the cytoplasm, the new structures provide potential clues regarding the structural basis of such activity.
Collapse
Affiliation(s)
- Jian Liu
- Department
of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| | - Carrie Hiser
- Department
of Biochemistry and Molecular Biology, Michigan
State University, East Lansing, Michigan 48824, United States
| | - Fei Li
- Amgen
Inc., San Francisco, California 94080, United States
| | - Robert Hall
- Pharmacology
and Chemical Biology, University of Pittsburgh
School of Medicine, Pittsburgh, Pennsylvania 15213, United States
| | - R. Michael Garavito
- Department
of Biochemistry and Molecular Biology, Michigan
State University, East Lansing, Michigan 48824, United States
| | - Shelagh Ferguson-Miller
- Department
of Biochemistry and Molecular Biology, Michigan
State University, East Lansing, Michigan 48824, United States
| |
Collapse
|
2
|
Hines RM, Aquino EA, Khumnark MI, Dávila MP, Hines DJ. Comparative Assessment of TSPO Modulators on Electroencephalogram Activity and Exploratory Behavior. Front Pharmacol 2022; 13:750554. [PMID: 35444539 PMCID: PMC9015213 DOI: 10.3389/fphar.2022.750554] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 03/07/2022] [Indexed: 01/04/2023] Open
Abstract
Network communication in the CNS relies upon multiple neuronal and glial signaling pathways. In addition to synaptic transmission, other organelles such as mitochondria play roles in cellular signaling. One highly conserved mitochondrial signaling mechanism involves the 18 kDa translocator protein (TSPO) of the outer mitochondrial membrane. Originally, TSPO was identified as a binding site for benzodiazepines in the periphery. It was later discovered that TSPO is found in mitochondria, including in CNS cells. TSPO is implicated in multiple cellular processes, including the translocation of cholesterol and steroidogenesis, porphyrin transport, cellular responses to stress, inflammation, and tumor progression. Yet the impacts of modulating TSPO signaling on network activity and behavioral performance have not been characterized. In the present study, we assessed the effects of TSPO modulators PK11195, Ro5-4864, and XBD-173 via electroencephalography (EEG) and the open field test (OFT) at low to moderate doses. Cortical EEG recordings revealed increased power in the δ and θ frequency bands after administration of each of the three modulators, as well as compound- and dose-specific changes in α and γ. Behaviorally, these compounds reduced locomotor activity in the OFT in a dose-dependent manner, with XBD-173 having the subtlest behavioral effects while still strongly modulating the EEG. These findings indicate that TSPO modulators, despite their diversity, exert similar effects on the EEG while displaying a range of sedative/hypnotic effects at moderate to high doses. These findings bring us one step closer to understanding the functions of TSPO in the brain and as a target in CNS disease.
Collapse
Affiliation(s)
| | | | | | | | - Dustin J. Hines
- Department of Psychology, Psychological and Brain Sciences & Interdisciplinary Neuroscience Programs, University of Nevada, Las Vegas, Las Vegas, NV, United States
| |
Collapse
|
3
|
Hiser C, Montgomery BL, Ferguson-Miller S. TSPO protein binding partners in bacteria, animals, and plants. J Bioenerg Biomembr 2021; 53:463-487. [PMID: 34191248 PMCID: PMC8243069 DOI: 10.1007/s10863-021-09905-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 06/12/2021] [Indexed: 12/11/2022]
Abstract
The ancient membrane protein TSPO is phylogenetically widespread from archaea and bacteria to insects, vertebrates, plants, and fungi. TSPO’s primary amino acid sequence is only modestly conserved between diverse species, although its five transmembrane helical structure appears mainly conserved. Its cellular location and orientation in membranes have been reported to vary between species and tissues, with implications for potential diverse binding partners and function. Most TSPO functions relate to stress-induced changes in metabolism, but in many cases it is unclear how TSPO itself functions—whether as a receptor, a sensor, a transporter, or a translocator. Much evidence suggests that TSPO acts indirectly by association with various protein binding partners or with endogenous or exogenous ligands. In this review, we focus on proteins that have most commonly been invoked as TSPO binding partners. We suggest that TSPO was originally a bacterial receptor/stress sensor associated with porphyrin binding as its most ancestral function and that it later developed additional stress-related roles in eukaryotes as its ability to bind new partners evolved.
Collapse
Affiliation(s)
- Carrie Hiser
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48824, USA. .,Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI, 48824, USA.
| | - Beronda L Montgomery
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48824, USA.,Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI, 48824, USA.,Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, 48824, USA
| | - Shelagh Ferguson-Miller
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48824, USA
| |
Collapse
|
4
|
The Interplay of Cholesterol and Ligand Binding in hTSPO from Classical Molecular Dynamics Simulations. Molecules 2021; 26:molecules26051250. [PMID: 33652554 PMCID: PMC7956637 DOI: 10.3390/molecules26051250] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 01/28/2021] [Accepted: 02/03/2021] [Indexed: 12/23/2022] Open
Abstract
The translocator protein (TSPO) is a 18kDa transmembrane protein, ubiquitously present in human mitochondria. It is overexpressed in tumor cells and at the sites of neuroinflammation, thus representing an important biomarker, as well as a promising drug target. In mammalian TSPO, there are cholesterol–binding motifs, as well as a binding cavity able to accommodate different chemical compounds. Given the lack of structural information for the human protein, we built a model of human (h) TSPO in the apo state and in complex with PK11195, a molecule routinely used in positron emission tomography (PET) for imaging of neuroinflammatory sites. To better understand the interactions of PK11195 and cholesterol with this pharmacologically relevant protein, we ran molecular dynamics simulations of the apo and holo proteins embedded in a model membrane. We found that: (i) PK11195 stabilizes hTSPO structural fold; (ii) PK11195 might enter in the binding site through transmembrane helices I and II of hTSPO; (iii) PK11195 reduces the frequency of cholesterol binding to the lower, N–terminal part of hTSPO in the inner membrane leaflet, while this impact is less pronounced for the upper, C–terminal part in the outer membrane leaflet, where the ligand binding site is located; (iv) very interestingly, cholesterol most frequently binds simultaneously to the so-called CRAC and CARC regions in TM V in the free form (residues L150–X–Y152–X(3)–R156 and R135–X(2)–Y138–X(2)–L141, respectively). However, when the protein is in complex with PK11195, cholesterol binds equally frequently to the CRAC–resembling motif that we observed in TM I (residues L17–X(2)–F20–X(3)–R24) and to CRAC in TM V. We expect that the CRAC–like motif in TM I will be of interest in future experimental investigations. Thus, our MD simulations provide insight into the structural features of hTSPO and the previously unknown interplay between PK11195 and cholesterol interactions with this pharmacologically relevant protein.
Collapse
|
5
|
Marginedas-Freixa I, Alvarez CL, Moras M, Hattab C, Bouyer G, Chene A, Lefevre SD, Le Van Kim C, Bihel F, Schwarzbaum PJ, Ostuni MA. Induction of ATP Release, PPIX Transport, and Cholesterol Uptake by Human Red Blood Cells Using a New Family of TSPO Ligands. Int J Mol Sci 2018; 19:ijms19103098. [PMID: 30308949 PMCID: PMC6213633 DOI: 10.3390/ijms19103098] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 10/05/2018] [Accepted: 10/07/2018] [Indexed: 02/07/2023] Open
Abstract
Two main isoforms of the Translocator Protein (TSPO) have been identified. TSPO1 is ubiquitous and is mainly present at the outer mitochondrial membrane of most eukaryotic cells, whereas, TSPO2 is specific to the erythroid lineage, located at the plasma membrane, the nucleus, and the endoplasmic reticulum. The design of specific tools is necessary to determine the molecular associations and functions of TSPO, which remain controversial nowadays. We recently demonstrated that TSPO2 is involved in a supramolecular complex of the erythrocyte membrane, where micromolar doses of the classical TSPO ligands induce ATP release and zinc protoporphyrin (ZnPPIX) transport. In this work, three newly-designed ligands (NCS1016, NCS1018, and NCS1026) were assessed for their ability to modulate the functions of various erythrocyte's and compare them to the TSPO classical ligands. The three new ligands were effective in reducing intraerythrocytic Plasmodium growth, without compromising erythrocyte survival. While NCS1016 and NCS1018 were the most effective ligands in delaying sorbitol-induced hemolysis, NCS1016 induced the highest uptake of ZnPPIX and NCS1026 was the only ligand inhibiting the cholesterol uptake. Differential effects of ligands are probably due, not only, to ligand features, but also to the dynamic interaction of TSPO with various partners at the cell membrane. Further studies are necessary to fully understand the mechanisms of the TSPO's complex activation.
Collapse
Affiliation(s)
- Irene Marginedas-Freixa
- UMR-S1134, Integrated Biology of Red Blood Cells, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Université de la Réunion, Université des Antilles, F-75015 Paris, France.
- Institut National de la Transfusion Sanguine, Laboratoire d'Excellence GR-Ex, F-75015 Paris, France.
| | - Cora L Alvarez
- Instituto de Química y Fisico-Química Biológicas "Prof. Alejandro C. Paladini", UBA, CONICET, Facultad de Farmacia y Bioquímica, Junín 956, C1113AAD Buenos Aires, Argentina.
- Departamento de Biodiversidad y Biología Experimental, Facultad Ciencias Exactas y Naturales, Universidad de Buenos Aires, C1113AAD Buenos Aires, Argentina.
| | - Martina Moras
- UMR-S1134, Integrated Biology of Red Blood Cells, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Université de la Réunion, Université des Antilles, F-75015 Paris, France.
- Institut National de la Transfusion Sanguine, Laboratoire d'Excellence GR-Ex, F-75015 Paris, France.
| | - Claude Hattab
- UMR-S1134, Integrated Biology of Red Blood Cells, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Université de la Réunion, Université des Antilles, F-75015 Paris, France.
- Institut National de la Transfusion Sanguine, Laboratoire d'Excellence GR-Ex, F-75015 Paris, France.
| | - Guillaume Bouyer
- UMR 8227 LBI2M, Comparative Erythrocyte's Physiology, CNRS, Sorbonne Université, Laboratoire d'Excellence GR-Ex, F-29680 Roscoff, France.
| | - Arnaud Chene
- UMR-S1134, Integrated Biology of Red Blood Cells, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Université de la Réunion, Université des Antilles, F-75015 Paris, France.
- Institut National de la Transfusion Sanguine, Laboratoire d'Excellence GR-Ex, F-75015 Paris, France.
| | - Sophie D Lefevre
- UMR-S1134, Integrated Biology of Red Blood Cells, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Université de la Réunion, Université des Antilles, F-75015 Paris, France.
- Institut National de la Transfusion Sanguine, Laboratoire d'Excellence GR-Ex, F-75015 Paris, France.
| | - Caroline Le Van Kim
- UMR-S1134, Integrated Biology of Red Blood Cells, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Université de la Réunion, Université des Antilles, F-75015 Paris, France.
- Institut National de la Transfusion Sanguine, Laboratoire d'Excellence GR-Ex, F-75015 Paris, France.
| | - Frederic Bihel
- UMR7200, Laboratoire d'Innovation Thérapeutique, Faculty of Pharmacy, University of Strasbourg, CNRS, F-67400 Illkirch Graffenstaden, France.
| | - Pablo J Schwarzbaum
- Instituto de Química y Fisico-Química Biológicas "Prof. Alejandro C. Paladini", UBA, CONICET, Facultad de Farmacia y Bioquímica, Junín 956, C1113AAD Buenos Aires, Argentina.
- Departamento de Química Biológica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, C1113AAD Buenos Aires, Argentina.
| | - Mariano A Ostuni
- UMR-S1134, Integrated Biology of Red Blood Cells, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Université de la Réunion, Université des Antilles, F-75015 Paris, France.
- Institut National de la Transfusion Sanguine, Laboratoire d'Excellence GR-Ex, F-75015 Paris, France.
| |
Collapse
|
6
|
Bonsack F, Sukumari-Ramesh S. TSPO: An Evolutionarily Conserved Protein with Elusive Functions. Int J Mol Sci 2018; 19:ijms19061694. [PMID: 29875327 PMCID: PMC6032217 DOI: 10.3390/ijms19061694] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 05/18/2018] [Indexed: 12/22/2022] Open
Abstract
TSPO (18 kDa translocator protein) was identified decades ago in a search for peripheral tissue binding sites for benzodiazepines, and was formerly called the peripheral benzodiazepine receptor. TSPO is a conserved protein throughout evolution and it is implicated in the regulation of many cellular processes, including inflammatory responses, oxidative stress, and mitochondrial homeostasis. TSPO, apart from its broad expression in peripheral tissues, is highly expressed in neuroinflammatory cells, such as activated microglia. In addition, emerging studies employing the ligands of TSPO suggest that TSPO plays an important role in neuropathological settings as a biomarker and therapeutic target. However, the precise molecular function of this protein in normal physiology and neuropathology remains enigmatic. This review provides an overview of recent advances in our understanding of this multifaceted molecule and identifies the knowledge gap in the field for future functional studies.
Collapse
Affiliation(s)
- Frederick Bonsack
- Department of Neurosurgery, Medical College of Georgia, Augusta University, 1120 15th Street, Augusta, GA 30912, USA.
| | - Sangeetha Sukumari-Ramesh
- Department of Neurosurgery, Medical College of Georgia, Augusta University, 1120 15th Street, Augusta, GA 30912, USA.
| |
Collapse
|
7
|
Okazaki Y, Glass J. Protoporphyrin IX regulates peripheral benzodiazepine receptor associated protein 7 (PAP7) and divalent metal transporter 1 (DMT1) in K562 cells. Biochem Biophys Rep 2017; 10:26-31. [PMID: 28955733 PMCID: PMC5614651 DOI: 10.1016/j.bbrep.2017.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 02/17/2017] [Accepted: 02/25/2017] [Indexed: 11/28/2022] Open
Abstract
Background Protoporphyrin IX (PP IX), the immediate precursor to heme, combines with ferrous iron to make this product. The effects of exogenous PP IX on iron metabolism remain to be elucidated. Peripheral-type benzodiazepine receptor (PBR) is implicated in the transport of coproporphyrinogen into the mitochondria for conversion to PP IX. We have demonstrated that PBR-Associated Protein 7 (PAP7) bound to the Iron Responsive Element (IRE) isoform of divalent metal transporter 1 (DMT1). PP IX and PAP7 are ligands for PBR, thus, we hypothesized that PAP7 interact with PP IX via PBR. Methods We have examined in K562 cells, which can be induced to undergo erythroid differentiation by PP IX and hemin, the effects of PP IX on the expression of PAP7 and other proteins involved in cellular iron metabolism, transferrin receptor 1 (TfR1), DMT1, ferritin heavy chain (FTH), c-Myc and C/EBPα by western blot and quantitative real time PCR analyses. Results PP IX significantly decreased mRNA levels of DMT1 (IRE) and (non-IRE) from 4 h. PP IX markedly decreased protein levels of C/EBPα, PAP7 and DMT1. In contrast, hemin, which like PP IX also induces K562 cell differentiation, had no effect on PAP7 or DMT1 expression. Conclusion We hypothesize that PP IX binds to PBR displacing PAP7 protein, which is then degraded, decreasing the interaction of PAP7 with DMT1 (IRE) and resulting in increased turnover of DMT1. General significance These results suggest that exogenous PP IX disrupts iron metabolism by decreasing the protein expression levels of PAP7, DMT1 and C/EBPα. Protoporphyrin IX (PP IX) decreased protein levels of PAP7 and DMT1 in K562. PP IX decreased mRNA levels of DMT1 (IRE) and (non-IRE) isoforms in K562. PP IX decreased protein level of C/EBPα, which transcribes DMT1 mRNA, in K562.
Collapse
Affiliation(s)
- Yasumasa Okazaki
- Feist-Weiller Cancer Center and the Department of Medicine, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA 71130, USA
| | - Jonathan Glass
- Feist-Weiller Cancer Center and the Department of Medicine, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA 71130, USA
| |
Collapse
|
8
|
Overexpression of the 18 kDa translocator protein (TSPO) in the hippocampal dentate gyrus produced anxiolytic and antidepressant-like behavioural effects. Neuropharmacology 2017; 125:117-128. [PMID: 28655607 DOI: 10.1016/j.neuropharm.2017.06.023] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 06/18/2017] [Accepted: 06/22/2017] [Indexed: 12/22/2022]
Abstract
The 18 kDa translocator protein (TSPO) is a five transmembrane domain protein that plays a crucial role in neurosteroid (e.g., allopregnanolone) synthesis by promoting the transport of cholesterol to the inner mitochondrial membrane. This protein is predominantly expressed in steroid-synthesizing tissues, including the central and peripheral nervous system, affecting stress-related disorders such as anxiety and depression. Recent studies have focused on the hippocampal dentate gyrus, which is very important for involvement of anxiety and depression. However, the exact role that TSPO plays in the pathophysiology of anxiety and depression and the involvement of the hippocampal dentate gyrus in regulating these behavioural effects remain elusive. This study used the lentiviral vectors mediating TPSO overexpression to assess the effects of TPSO overexpression in the hippocampal dentate gyrus on anxiolytic and antidepressant-like behavioural effects in mice. The expression of TSPO and the concentration of allopregnanolone in hippocampus tissues (3 mm in diameter around the injection site on both sides) were measured by Western blot and ELISA, respectively. The results indicated that microinjection of the LV-TSPO resulted in a significant increase in TSPO expression and allopregnanolone concentration in the hippocampus. Moreover, TSPO overexpression of the mouse hippocampal dentate gyrus generated significant anxiolytic and antidepressant-like behavioural effects in a series of behavioural models. These effects were completely blocked by the TSPO antagonist PK11195 (3 mg/kg, intraperitoneally) and the 5α-reductase inhibitor finasteride (5 mg/kg,intraperitoneally). Meanwhile, the increased allopregnanolone was also reversed by PK11195 and finasteride. In addition, neither PK11195 nor finasteride had an effect on the expression of TSPO. Overall, our results are the first to suggest that the overexpression of TSPO in the hippocampal dentate gyrus produced anxiolytic and antidepressant-like behavioural effects that are partially mediated by downstream allopregnanolone biosynthesis. Our results suggest that TSPO would be a potential anxiolytic and antidepressant therapeutic target.
Collapse
|
9
|
Busch AWU, WareJoncas Z, Montgomery BL. Tryptophan-Rich Sensory Protein/Translocator Protein (TSPO) from Cyanobacterium Fremyella diplosiphon Binds a Broad Range of Functionally Relevant Tetrapyrroles. Biochemistry 2016; 56:73-84. [PMID: 27990801 DOI: 10.1021/acs.biochem.6b01019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Tryptophan-rich sensory protein/translocator protein (TSPO) is a membrane protein involved in stress adaptation in the cyanobacterium Fremyella diplosiphon. Characterized mammalian and proteobacterial TSPO homologues bind tetrapyrroles and cholesterol ligands. We investigated the ligand binding properties of TSPO from F. diplosiphon (FdTSPO1), which was functionally characterized in prior genetic studies. Two additional TSPO proteins (FdTSPO2 and FdTSPO3) are present in F. diplosiphon; they are similar in size to reported bacterial TSPOs and smaller than FdTSPO1. The longer cyanobacterial TSPO1 is found almost exclusively in filamentous cyanobacteria and has a relatively low degree of homology to bacterial and mammalian TSPO homologues with confirmed tetrapyrrole binding. To probe distinctions of long-form TSPOs, we tested the binding of porphyrin and bilin to FdTSPO1 and measured binding affinities in the low micromolar range, with the highest binding affinity detected for heme. Although tetrapyrrole ligands bound FdTSPO1 with affinities similar to those previously reported for proteobacterial TSPO, binding of cholesterol to FdTSPO1 was particularly poor and was not improved by introducing an amino acid motif known to enhance cholesterol binding in other bacterial TSPO homologues. Additionally, we detected limited binding of bacterial hopanoids to FdTSPO1. Cyanobacterial TSPO1 from the oxygenic photosynthetic F. diplosiphon, thus, binds a range of tetrapyrroles of functional relevance with efficiencies similar to those of mammalian and proteobacterial homologues, but the level of cholesterol binding is greatly reduced compared to that of mammalian TSPO. Furthermore, the ΔFdTSPO1 mutant exhibits altered growth in the presence of biliverdin compared to that of wild-type cells under green light. Together, these results suggest that TSPO molecules may play roles in bilin homeostasis or trafficking in cyanobacteria.
Collapse
Affiliation(s)
- Andrea W U Busch
- Plant Research Laboratory, Department of Energy, Michigan State University , East Lansing, Michigan 48824, United States
| | - Zachary WareJoncas
- Plant Research Laboratory, Department of Energy, Michigan State University , East Lansing, Michigan 48824, United States
| | - Beronda L Montgomery
- Plant Research Laboratory, Department of Energy, Michigan State University , East Lansing, Michigan 48824, United States.,Department of Biochemistry and Molecular Biology, Michigan State University , East Lansing, Michigan 48824, United States.,Department of Microbiology & Molecular Genetics, Michigan State University , East Lansing, Michigan 48824, United States
| |
Collapse
|
10
|
Selvaraj V, Tu LN. Current status and future perspectives: TSPO in steroid neuroendocrinology. J Endocrinol 2016; 231:R1-R30. [PMID: 27422254 DOI: 10.1530/joe-16-0241] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 07/15/2016] [Indexed: 12/21/2022]
Abstract
The mitochondrial translocator protein (TSPO), previously known as the peripheral benzodiazepine receptor (PBR), has received significant attention both as a diagnostic biomarker and as a therapeutic target for different neuronal disease pathologies. Recently, its functional basis believed to be mediating mitochondrial cholesterol import for steroid hormone production has been refuted by studies examining both in vivo and in vitro genetic Tspo-deficient models. As a result, there now exists a fundamental gap in the understanding of TSPO function in the nervous system, and its putative pharmacology in neurosteroid production. In this review, we discuss several recent findings in steroidogenic cells that are in direct contradiction to previous studies, and necessitate a re-examination of the purported role for TSPO in de novo neurosteroid biosynthesis. We critically examine the pharmacological effects of different TSPO-binding drugs with particular focus on studies that measure neurosteroid levels. We highlight the basis of key misconceptions regarding TSPO that continue to pervade the literature, and the need for interpretation with caution to avoid negative impacts. We also summarize the emerging perspectives that point to new directions that need to be investigated for understanding the molecular function of TSPO, only after which the true potential of this therapeutic target in medicine may be realized.
Collapse
Affiliation(s)
- Vimal Selvaraj
- Department of Animal ScienceCornell University, Ithaca, New York, USA
| | - Lan N Tu
- Department of Animal ScienceCornell University, Ithaca, New York, USA
| |
Collapse
|
11
|
Hiding in the Shadows: CPOX Expression and 5-ALA Induced Fluorescence in Human Glioma Cells. Mol Neurobiol 2016; 54:5699-5708. [PMID: 27644131 DOI: 10.1007/s12035-016-0109-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 09/06/2016] [Indexed: 10/21/2022]
Abstract
Protoporphyrin IX (PpIX) is widely used in photodynamic diagnosis. To date, the details of molecular mechanisms underlying PpIX accumulation in malignant cells after 5-ALA administration remain unclear. The fluorescence of PpIX was studied in human glioma cells. Several cell cultures were established from glioma tumor tissue to study the differences between fluorescence-positive and fluorescence-negative human glioma tumors. The cell cultures demonstrated fluorescence profiles similar to those of source tumor tissues, which allows us to use these cultures in experimental research. Dynamics of the rates of synthesis and degradation of fluorescent protoporphyrin IX was studied in the cultures obtained. In addition, the expression of CPOX, an enzyme involved in PpIX synthesis, was evaluated. mRNA levels of heme biosynthesis enzymes were analyzed, and PpIX fluorescence proved to correlate with the CPOX protein level, whereas no such correlation was observed at the mRNA level. Fluorescence intensity decreased at low levels of the enzyme, which indicates its critical role in PpIX fluorescence. Finally, the fluorescence intensity proved to correlate with the proliferative activity.
Collapse
|
12
|
TSPO ligands stimulate ZnPPIX transport and ROS accumulation leading to the inhibition of P. falciparum growth in human blood. Sci Rep 2016; 6:33516. [PMID: 27641616 PMCID: PMC5027585 DOI: 10.1038/srep33516] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 08/30/2016] [Indexed: 11/08/2022] Open
Abstract
After invading red blood cells (RBCs), Plasmodium falciparum (Pf) can export its own proteins to the host membrane and activate endogenous channels that are present in the membrane of RBCs. This transport pathway involves the Voltage Dependent Anion Channel (VDAC). Moreover, ligands of the VDAC partner TranSlocator PrOtein (TSPO) were demonstrated to inhibit the growth of the parasite. We studied the expression of TSPO and VDAC isoforms in late erythroid precursors, examined the presence of these proteins in membranes of non-infected and infected human RBCs, and evaluated the efficiency of TSPO ligands in inhibiting plasmodium growth, transporting the haem analogue Zn-protoporphyrin-IX (ZnPPIX) and enhancing the accumulation of reactive oxygen species (ROS). TSPO and VDAC isoforms are differentially expressed on erythroid cells in late differentiation states. TSPO2 and VDAC are present in the membranes of mature RBCs in a unique protein complex that changes the affinity of TSPO ligands after Pf infection. TSPO ligands dose-dependently inhibited parasite growth, and this inhibition was correlated to ZnPPIX uptake and ROS accumulation in the infected RBCs. Our results demonstrate that TSPO ligands can induce Pf death by increasing the uptake of porphyrins through a TSPO2-VDAC complex, which leads to an accumulation of ROS.
Collapse
|
13
|
Fukuda Y, Cheong PL, Lynch J, Brighton C, Frase S, Kargas V, Rampersaud E, Wang Y, Sankaran VG, Yu B, Ney PA, Weiss MJ, Vogel P, Bond PJ, Ford RC, Trent RJ, Schuetz JD. The severity of hereditary porphyria is modulated by the porphyrin exporter and Lan antigen ABCB6. Nat Commun 2016; 7:12353. [PMID: 27507172 PMCID: PMC4987512 DOI: 10.1038/ncomms12353] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 06/23/2016] [Indexed: 01/10/2023] Open
Abstract
Hereditary porphyrias are caused by mutations in genes that encode haem biosynthetic enzymes with resultant buildup of cytotoxic metabolic porphyrin intermediates. A long-standing open question is why the same causal porphyria mutations exhibit widely variable penetrance and expressivity in different individuals. Here we show that severely affected porphyria patients harbour variant alleles in the ABCB6 gene, also known as Lan, which encodes an ATP-binding cassette (ABC) transporter. Plasma membrane ABCB6 exports a variety of disease-related porphyrins. Functional studies show that most of these ABCB6 variants are expressed poorly and/or have impaired function. Accordingly, homozygous disruption of the Abcb6 gene in mice exacerbates porphyria phenotypes in the Fechm1Pas mouse model, as evidenced by increased porphyrin accumulation, and marked liver injury. Collectively, these studies support ABCB6 role as a genetic modifier of porphyria and suggest that porphyrin-inducing drugs may produce excessive toxicities in individuals with the rare Lan(−) blood type. Accumulation of intermediates of haem biosynthesis, porphyrins, is harmful and usually inherited, but it is unclear how the same mutation may make some individuals more ill than others. Here, the authors show that a porphyrin transporter ABCB6 is a modulator of porphyria, and that patients with functionally defective ABCB6 show more severe symptoms.
Collapse
Affiliation(s)
- Yu Fukuda
- Department of Pharmaceutical Sciences, St Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | - Pak Leng Cheong
- Department of Medical Genomics, Royal Prince Alfred Hospital, Sydney, New South Wales 2050, Australia.,Sydney Medical School, University of Sydney, Sydney, New South Wales 2006, Australia
| | - John Lynch
- Department of Pharmaceutical Sciences, St Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | - Cheryl Brighton
- Department of Pharmaceutical Sciences, St Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | - Sharon Frase
- Department of Tissue Cell Biology, St Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | - Vasileios Kargas
- Department of Structural Biology, Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, UK
| | - Evadnie Rampersaud
- Department of Computational Biology, St Jude Children's Research Hospital, Memphis, Tennessee 38105, USA.,Department of Hematology, St Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | - Yao Wang
- Department of Pharmaceutical Sciences, St Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | - Vijay G Sankaran
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, Massachusetts 02115, USA
| | - Bing Yu
- Department of Medical Genomics, Royal Prince Alfred Hospital, Sydney, New South Wales 2050, Australia.,Sydney Medical School, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Paul A Ney
- New York Blood Center, New York, New York 10065, USA
| | - Mitchell J Weiss
- Department of Hematology, St Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | - Peter Vogel
- Department of Pathology, St Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | - Peter J Bond
- Bioinformatics Institute, 30 Biopolis Street, Singapore 138671, Singapore.,Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543, Singapore
| | - Robert C Ford
- Department of Structural Biology, Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, UK
| | - Ronald J Trent
- Department of Medical Genomics, Royal Prince Alfred Hospital, Sydney, New South Wales 2050, Australia.,Sydney Medical School, University of Sydney, Sydney, New South Wales 2006, Australia
| | - John D Schuetz
- Department of Pharmaceutical Sciences, St Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| |
Collapse
|
14
|
Tetrapyrroles as Endogenous TSPO Ligands in Eukaryotes and Prokaryotes: Comparisons with Synthetic Ligands. Int J Mol Sci 2016; 17:ijms17060880. [PMID: 27271616 PMCID: PMC4926414 DOI: 10.3390/ijms17060880] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 05/17/2016] [Accepted: 05/19/2016] [Indexed: 12/26/2022] Open
Abstract
The 18 kDa translocator protein (TSPO) is highly 0conserved in eukaryotes and prokaryotes. Since its discovery in 1977, numerous studies established the TSPO’s importance for life essential functions. For these studies, synthetic TSPO ligands typically are applied. Tetrapyrroles present endogenous ligands for the TSPO. Tetrapyrroles are also evolutionarily conserved and regulate multiple functions. TSPO and tetrapyrroles regulate each other. In animals TSPO-tetrapyrrole interactions range from effects on embryonic development to metabolism, programmed cell death, response to stress, injury and disease, and even to life span extension. In animals TSPOs are primarily located in mitochondria. In plants TSPOs are also present in plastids, the nuclear fraction, the endoplasmic reticulum, and Golgi stacks. This may contribute to translocation of tetrapyrrole intermediates across organelles’ membranes. As in animals, plant TSPO binds heme and protoporphyrin IX. TSPO-tetrapyrrole interactions in plants appear to relate to development as well as stress conditions, including salt tolerance, abscisic acid-induced stress, reactive oxygen species homeostasis, and finally cell death regulation. In bacteria, TSPO is important for switching from aerobic to anaerobic metabolism, including the regulation of photosynthesis. As in mitochondria, in bacteria TSPO is located in the outer membrane. TSPO-tetrapyrrole interactions may be part of the establishment of the bacterial-eukaryote relationships, i.e., mitochondrial-eukaryote and plastid-plant endosymbiotic relationships.
Collapse
|
15
|
Li F, Liu J, Liu N, Kuhn LA, Garavito RM, Ferguson-Miller S. Translocator Protein 18 kDa (TSPO): An Old Protein with New Functions? Biochemistry 2016; 55:2821-31. [PMID: 27074410 DOI: 10.1021/acs.biochem.6b00142] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Translocator protein 18 kDa (TSPO) was previously known as the peripheral benzodiazepine receptor (PBR) in eukaryotes, where it is mainly localized to the mitochondrial outer membrane. Considerable evidence indicates that it plays regulatory roles in steroidogenesis and apoptosis and is involved in various human diseases, such as metastatic cancer, Alzheimer's and Parkinson's disease, inflammation, and anxiety disorders. Ligands of TSPO are widely used as diagnostic tools and treatment options, despite there being no clear understanding of the function of TSPO. An ortholog in the photosynthetic bacterium Rhodobacter was independently discovered as the tryptophan-rich sensory protein (TspO) and found to play a role in the response to changes in oxygen and light conditions that regulate photosynthesis and respiration. As part of this highly conserved protein family found in all three kingdoms, the rat TSPO is able to rescue the knockout phenotype in Rhodobacter, indicating functional as well as structural conservation. Recently, a major breakthrough in the field was achieved: the determination of atomic-resolution structures of TSPO from different species by several independent groups. This now allows us to reexamine the function of TSPO with a molecular perspective. In this review, we focus on recently determined structures of TSPO and their implications for potential functions of this ubiquitous multifaceted protein. We suggest that TSPO is an ancient bacterial receptor/stress sensor that has developed additional interactions, partners, and roles in its mitochondrial outer membrane environment in eukaryotes.
Collapse
Affiliation(s)
- Fei Li
- Department of Biochemistry and Molecular Biology, Michigan State University , East Lansing, Michigan 48824, United States
| | - Jian Liu
- Department of Biochemistry and Molecular Biology, Michigan State University , East Lansing, Michigan 48824, United States
| | - Nan Liu
- Department of Biochemistry and Molecular Biology, Michigan State University , East Lansing, Michigan 48824, United States.,Department of Computer Science and Engineering, Michigan State University , East Lansing, Michigan 48824-1319, United States.,Department of Chemistry, Michigan State University , East Lansing, Michigan 48824-1319, United States
| | - Leslie A Kuhn
- Department of Biochemistry and Molecular Biology, Michigan State University , East Lansing, Michigan 48824, United States.,Department of Computer Science and Engineering, Michigan State University , East Lansing, Michigan 48824-1319, United States
| | - R Michael Garavito
- Department of Biochemistry and Molecular Biology, Michigan State University , East Lansing, Michigan 48824, United States
| | - Shelagh Ferguson-Miller
- Department of Biochemistry and Molecular Biology, Michigan State University , East Lansing, Michigan 48824, United States
| |
Collapse
|
16
|
Busch AWU, Montgomery BL. The Tryptophan-Rich Sensory Protein (TSPO) is Involved in Stress-Related and Light-Dependent Processes in the Cyanobacterium Fremyella diplosiphon. Front Microbiol 2015; 6:1393. [PMID: 26696996 PMCID: PMC4677103 DOI: 10.3389/fmicb.2015.01393] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 11/23/2015] [Indexed: 11/20/2022] Open
Abstract
The tryptophan-rich sensory protein (TSPO) is a membrane protein, which is a member of the 18 kDa translocator protein/peripheral-type benzodiazepine receptor (MBR) family of proteins that is present in most organisms and is also referred to as Translocator protein 18 kDa. Although TSPO is associated with stress- and disease-related processes in organisms from bacteria to mammals, full elucidation of the functional role of the TSPO protein is lacking for most organisms in which it is found. In this study, we describe the regulation and function of a TSPO homolog in the cyanobacterium Fremyella diplosiphon, designated FdTSPO. Accumulation of the FdTSPO transcript is upregulated by green light and in response to nutrient deficiency and stress. A F. diplosiphon TSPO deletion mutant (i.e., ΔFdTSPO) showed altered responses compared to the wild type (WT) strain under stress conditions, including salt treatment, osmotic stress, and induced oxidative stress. Under salt stress, the FdTSPO transcript is upregulated and a ΔFdTSPO mutant accumulates lower levels of reactive oxygen species (ROS) and displays increased growth compared to WT. In response to osmotic stress, FdTSPO transcript levels are upregulated and ΔFdTSPO mutant cells exhibit impaired growth compared to the WT. By comparison, methyl viologen-induced oxidative stress results in higher ROS levels in the ΔFdTSPO mutant compared to the WT strain. Taken together, our results provide support for the involvement of membrane-localized FdTSPO in mediating cellular responses to stress in F. diplosiphon and represent detailed functional analysis of a cyanobacterial TSPO. This study advances our understanding of the functional roles of TSPO homologs in vivo.
Collapse
Affiliation(s)
- Andrea W. U. Busch
- Department of Energy – Plant Research Laboratory, Michigan State University, East LansingMI, USA
| | - Beronda L. Montgomery
- Department of Energy – Plant Research Laboratory, Michigan State University, East LansingMI, USA
- Department of Biochemistry and Molecular Biology, Michigan State University, East LansingMI, USA
| |
Collapse
|
17
|
Zhao AH, Tu LN, Mukai C, Sirivelu MP, Pillai VV, Morohaku K, Cohen R, Selvaraj V. Mitochondrial Translocator Protein (TSPO) Function Is Not Essential for Heme Biosynthesis. J Biol Chem 2015; 291:1591-1603. [PMID: 26627829 DOI: 10.1074/jbc.m115.686360] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Indexed: 01/08/2023] Open
Abstract
Function of the mammalian translocator protein (TSPO; previously known as the peripheral benzodiazepine receptor) remains unclear because its presumed role in steroidogenesis and mitochondrial permeability transition established using pharmacological methods has been refuted in recent genetic studies. Protoporphyrin IX (PPIX) is considered a conserved endogenous ligand for TSPO. In bacteria, TSPO was identified to regulate tetrapyrrole metabolism and chemical catalysis of PPIX in the presence of light, and in vertebrates, TSPO function has been linked to porphyrin transport and heme biosynthesis. Positive correlation between high TSPO expression in cancer cells and susceptibility to photodynamic therapy based on their increased ability to convert the precursor 5-aminolevulinic acid (ALA) to PPIX appeared to reinforce this mechanism. In this study, we used TSPO knock-out (Tspo(-/-)) mice, primary cells, and different tumor cell lines to examine the role of TSPO in erythropoiesis, heme levels, PPIX biosynthesis, phototoxic cell death, and mitochondrial bioenergetic homeostasis. In contrast to expectations, our results demonstrate that TSPO deficiency does not adversely affect erythropoiesis, heme biosynthesis, bioconversion of ALA to PPIX, and porphyrin-mediated phototoxic cell death. TSPO expression levels in cancer cells do not correlate with their ability to convert ALA to PPIX. In fibroblasts, we observed that TSPO deficiency decreased the oxygen consumption rate and mitochondrial membrane potential (ΔΨm) indicative of a cellular metabolic shift, without a negative impact on porphyrin biosynthetic capability. Based on these findings, we conclude that mammalian TSPO does not have a critical physiological function related to PPIX and heme biosynthesis.
Collapse
Affiliation(s)
- Amy H Zhao
- From the Department of Animal Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, New York 14853
| | - Lan N Tu
- From the Department of Animal Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, New York 14853
| | - Chinatsu Mukai
- the Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, New York 14853, and
| | - Madhu P Sirivelu
- the Department of Clinical Pathology, College of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Viju V Pillai
- From the Department of Animal Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, New York 14853
| | - Kanako Morohaku
- From the Department of Animal Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, New York 14853
| | - Roy Cohen
- the Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, New York 14853, and
| | - Vimal Selvaraj
- From the Department of Animal Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, New York 14853,.
| |
Collapse
|
18
|
Sachar M, Anderson KE, Ma X. Protoporphyrin IX: the Good, the Bad, and the Ugly. J Pharmacol Exp Ther 2015; 356:267-75. [PMID: 26588930 DOI: 10.1124/jpet.115.228130] [Citation(s) in RCA: 141] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 11/20/2015] [Indexed: 01/10/2023] Open
Abstract
Protoporphyrin IX (PPIX) is ubiquitously present in all living cells in small amounts as a precursor of heme. PPIX has some biologic functions of its own, and PPIX-based strategies have been used for cancer diagnosis and treatment (the good). PPIX serves as the substrate for ferrochelatase, the final enzyme in heme biosynthesis, and its homeostasis is tightly regulated during heme synthesis. Accumulation of PPIX in human porphyrias can cause skin photosensitivity, biliary stones, hepatobiliary damage, and even liver failure (the bad and the ugly). In this work, we review the mechanisms that are associated with the broad aspects of PPIX. Because PPIX is a hydrophobic molecule, its disposition is by hepatic rather than renal excretion. Large amounts of PPIX are toxic to the liver and can cause cholestatic liver injury. Application of PPIX in cancer diagnosis and treatment is based on its photodynamic effects.
Collapse
Affiliation(s)
- Madhav Sachar
- Department of Pharmaceutical Sciences, Center for Pharmacogenetics, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania (M.S., X.M.); and Department of Preventive Medicine and Community Health, University of Texas Medical Branch, Galveston, Texas (K.E.A.)
| | - Karl E Anderson
- Department of Pharmaceutical Sciences, Center for Pharmacogenetics, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania (M.S., X.M.); and Department of Preventive Medicine and Community Health, University of Texas Medical Branch, Galveston, Texas (K.E.A.)
| | - Xiaochao Ma
- Department of Pharmaceutical Sciences, Center for Pharmacogenetics, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania (M.S., X.M.); and Department of Preventive Medicine and Community Health, University of Texas Medical Branch, Galveston, Texas (K.E.A.)
| |
Collapse
|
19
|
Azarashvili T, Krestinina O, Baburina Y, Odinokova I, Grachev D, Papadopoulos V, Akatov V, Lemasters JJ, Reiser G. Combined effect of G3139 and TSPO ligands on Ca(2+)-induced permeability transition in rat brain mitochondria. Arch Biochem Biophys 2015; 587:70-7. [PMID: 26498031 DOI: 10.1016/j.abb.2015.10.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Revised: 10/15/2015] [Accepted: 10/16/2015] [Indexed: 02/06/2023]
Abstract
Permeability of the mitochondrial outer membrane is determined by the activity of voltage-dependent anion channels (VDAC) which are regulated by many factors and proteins. One of the main partner-regulator of VDAC is the 18 kDa translocator protein (TSPO), whose role in the regulation of membrane permeability is not completely understood. We show that TSPO ligands, 1 μM PPIX and PK11195 at concentrations of 50 μM, accelerate opening of permeability transition pores (mPTP) in Ca(2+)-overloaded rat brain mitochondria (RBM). By contrast, PK11195 at 100 nM and anti-TSPO antibodies suppressed pore opening. Participation of VDAC in these processes was demonstrated by blocking VDAC with G3139, an 18-mer phosphorothioate oligonucleotides, which sensitized mitochondria to Ca(2+)-induced mPTP opening. Despite the inhibitory effect of 100 nM PK11195 and anti-TSPO antibodies alone, their combination with G3139 considerably stimulated the mPTP opening. Thus, 100 nM PK11195 and anti-TSPO antibody can modify permeability of the VDAC channel and mPTP. When VDAC channels are closed and TSPO is blocked, permeability of the VDAC for calcium seems to be the highest, which leads to accelerated pore opening.
Collapse
Affiliation(s)
- T Azarashvili
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Institutskaya Str., Pushchino, Moscow Region, 142290, Russia.
| | - O Krestinina
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Institutskaya Str., Pushchino, Moscow Region, 142290, Russia.
| | - Yu Baburina
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Institutskaya Str., Pushchino, Moscow Region, 142290, Russia.
| | - I Odinokova
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Institutskaya Str., Pushchino, Moscow Region, 142290, Russia.
| | - D Grachev
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Institutskaya Str., Pushchino, Moscow Region, 142290, Russia.
| | - V Papadopoulos
- The Research Institute of the McGill University Health Center, and Departments of Medicine, Biochemistry, Pharmacology and Therapeutics, McGill University, 2155 Guy Street, Montreal, Que., H3H 2R9, Canada.
| | - V Akatov
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Institutskaya Str., Pushchino, Moscow Region, 142290, Russia.
| | - J J Lemasters
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Institutskaya Str., Pushchino, Moscow Region, 142290, Russia; Departments of Drug Discovery & Biomedical Sciences and Biochemistry & Molecular Biology, Medical University of South Carolina, DD504 Drug Discovery Bldg., 70 President St., MSC 140, Charleston, SC, 29425, USA.
| | - G Reiser
- Institut für Neurobiochemie, Otto-von-Guericke-Universität Magdeburg, Medizinische Fakultät, Leipziger Str. 44, 39120, Magdeburg, Germany.
| |
Collapse
|
20
|
Li F, Liu J, Garavito RM, Ferguson-Miller S. Evolving understanding of translocator protein 18 kDa (TSPO). Pharmacol Res 2015; 99:404-9. [PMID: 25882248 DOI: 10.1016/j.phrs.2015.03.022] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Revised: 03/25/2015] [Accepted: 03/27/2015] [Indexed: 02/01/2023]
Abstract
The translocator protein 18 kDa (TSPO) has been the focus of intense research by the biomedical community and the pharmaceutical industry because of its apparent involvement in many disease-related processes. These include steroidogenesis, apoptosis, inflammation, neurological disease and cancer, resulting in the use of TSPO as a biomarker and its potential as a drug target. Despite more than 30 years of study, the precise function of TSPO remains elusive. A recent breakthrough in determining the high-resolution crystal structures of bacterial homologs of mitochondrial TSPO provides new insight into the structural and functional properties at a molecular level and new opportunities for investigating the significance of this ancient and highly conserved protein family. The availability of atomic level structural information from different species also provides a platform for structure-based drug development. Here we briefly review current knowledge regarding TSPO and the implications of the new structures with respect to hypotheses and controversies in the field.
Collapse
Affiliation(s)
- Fei Li
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Jian Liu
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - R Michael Garavito
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Shelagh Ferguson-Miller
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA.
| |
Collapse
|
21
|
Guo Y, Kalathur RC, Liu Q, Kloss B, Bruni R, Ginter C, Kloppmann E, Rost B, Hendrickson WA. Protein structure. Structure and activity of tryptophan-rich TSPO proteins. Science 2015; 347:551-5. [PMID: 25635100 DOI: 10.1126/science.aaa1534] [Citation(s) in RCA: 143] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Translocator proteins (TSPOs) bind steroids and porphyrins, and they are implicated in many human diseases, for which they serve as biomarkers and therapeutic targets. TSPOs have tryptophan-rich sequences that are highly conserved from bacteria to mammals. Here we report crystal structures for Bacillus cereus TSPO (BcTSPO) down to 1.7 Å resolution, including a complex with the benzodiazepine-like inhibitor PK11195. We also describe BcTSPO-mediated protoporphyrin IX (PpIX) reactions, including catalytic degradation to a previously undescribed heme derivative. We used structure-inspired mutations to investigate reaction mechanisms, and we showed that TSPOs from Xenopus and man have similar PpIX-directed activities. Although TSPOs have been regarded as transporters, the catalytic activity in PpIX degradation suggests physiological importance for TSPOs in protection against oxidative stress.
Collapse
Affiliation(s)
- Youzhong Guo
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - Ravi C Kalathur
- The New York Consortium on Membrane Protein Structure (NYCOMPS), New York Structural Biology Center, 89 Convent Avenue, New York, NY 10027, USA
| | - Qun Liu
- The New York Consortium on Membrane Protein Structure (NYCOMPS), New York Structural Biology Center, 89 Convent Avenue, New York, NY 10027, USA. New York Structural Biology Center, Synchrotron Beamlines, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Brian Kloss
- The New York Consortium on Membrane Protein Structure (NYCOMPS), New York Structural Biology Center, 89 Convent Avenue, New York, NY 10027, USA
| | - Renato Bruni
- The New York Consortium on Membrane Protein Structure (NYCOMPS), New York Structural Biology Center, 89 Convent Avenue, New York, NY 10027, USA
| | - Christopher Ginter
- The New York Consortium on Membrane Protein Structure (NYCOMPS), New York Structural Biology Center, 89 Convent Avenue, New York, NY 10027, USA
| | - Edda Kloppmann
- The New York Consortium on Membrane Protein Structure (NYCOMPS), New York Structural Biology Center, 89 Convent Avenue, New York, NY 10027, USA. Department of Informatics, Bioinformatics and Computational Biology, Technische Universität München, Garching 85748, Germany
| | - Burkhard Rost
- The New York Consortium on Membrane Protein Structure (NYCOMPS), New York Structural Biology Center, 89 Convent Avenue, New York, NY 10027, USA. Department of Informatics, Bioinformatics and Computational Biology, Technische Universität München, Garching 85748, Germany
| | - Wayne A Hendrickson
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA. The New York Consortium on Membrane Protein Structure (NYCOMPS), New York Structural Biology Center, 89 Convent Avenue, New York, NY 10027, USA. New York Structural Biology Center, Synchrotron Beamlines, Brookhaven National Laboratory, Upton, NY 11973, USA. Department of Physiology and Cellular Biophysics, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
22
|
The translocator protein as a potential molecular target for improved treatment efficacy in photodynamic therapy. Future Med Chem 2015; 6:775-92. [PMID: 24941872 DOI: 10.4155/fmc.14.37] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Since its serendipitous discovery over 30 years ago, the translocator protein (18 kDa) has been demonstrated to play an important role in a multitude of critical biological processes. Although implemented as a novel therapeutic and diagnostic tool for a variety of disease states, its most promising role is as a molecular target for anticancer treatments such as photodynamic therapy (PDT). This review gives an overview of the attempts made by researchers to design porphyrin-based photosensitizers for use as anticancer therapeutics in PDT as well as improved imaging agents for diagnostic purposes. With a better understanding of the structure and function of the translocator protein, the synthesis of porphyrins for use in PDT with optimum binding affinities will become ever more possible.
Collapse
|
23
|
Leneveu-Jenvrin C, Connil N, Bouffartigues E, Papadopoulos V, Feuilloley MGJ, Chevalier S. Structure-to-function relationships of bacterial translocator protein (TSPO): a focus on Pseudomonas. Front Microbiol 2014; 5:631. [PMID: 25477872 PMCID: PMC4237140 DOI: 10.3389/fmicb.2014.00631] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2014] [Accepted: 11/04/2014] [Indexed: 12/21/2022] Open
Abstract
The translocator protein (TSPO), which was previously designated as the peripheral-type benzodiazepine receptor, is a 3.5 billion year-old evolutionarily conserved protein expressed by most Eukarya, Archae and Bacteria, but its organization and functions differ remarkably. By taking advantage of the genomic data available on TSPO, we focused on bacterial TSPO and attempted to define functions of TSPO in Pseudomonas via in silico approaches. A tspo ortholog has been identified in several fluorescent Pseudomonas. This protein presents putative binding motifs for cholesterol and PK 11195, which is a specific drug ligand of mitochondrial TSPO. While it is a common surface distribution, the sense of insertion and membrane localization differ between α- and γ-proteobacteria. Experimental published data and STRING analysis of common TSPO partners in fluorescent Pseudomonas indicate a potential role of TSPO in the oxidative stress response, iron homeostasis and virulence expression. In these bacteria, TSPO could also take part in signal transduction and in the preservation of membrane integrity.
Collapse
Affiliation(s)
- Charlène Leneveu-Jenvrin
- Laboratory of Microbiology Signals and Microenvironment EA 4312, University of Rouen Evreux, France
| | - Nathalie Connil
- Laboratory of Microbiology Signals and Microenvironment EA 4312, University of Rouen Evreux, France
| | - Emeline Bouffartigues
- Laboratory of Microbiology Signals and Microenvironment EA 4312, University of Rouen Evreux, France
| | - Vassilios Papadopoulos
- Department of Medicine, Research Institute of the McGill University Health Centre, McGill University Montreal, QC, Canada
| | - Marc G J Feuilloley
- Laboratory of Microbiology Signals and Microenvironment EA 4312, University of Rouen Evreux, France
| | - Sylvie Chevalier
- Laboratory of Microbiology Signals and Microenvironment EA 4312, University of Rouen Evreux, France
| |
Collapse
|
24
|
Hinsen K, Vaitinadapoule A, Ostuni MA, Etchebest C, Lacapere JJ. Construction and validation of an atomic model for bacterial TSPO from electron microscopy density, evolutionary constraints, and biochemical and biophysical data. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2014; 1848:568-80. [PMID: 25450341 DOI: 10.1016/j.bbamem.2014.10.028] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Revised: 10/01/2014] [Accepted: 10/20/2014] [Indexed: 11/30/2022]
Abstract
The 18 kDa protein TSPO is a highly conserved transmembrane protein found in bacteria, yeast, animals and plants. TSPO is involved in a wide range of physiological functions, among which the transport of several molecules. The atomic structure of monomeric ligand-bound mouse TSPO in detergent has been published recently. A previously published low-resolution structure of Rhodobacter sphaeroides TSPO, obtained from tubular crystals with lipids and observed in cryo-electron microscopy, revealed an oligomeric structure without any ligand. We analyze this electron microscopy density in view of available biochemical and biophysical data, building a matching atomic model for the monomer and then the entire crystal. We compare its intra- and inter-molecular contacts with those predicted by amino acid covariation in TSPO proteins from evolutionary sequence analysis. The arrangement of the five transmembrane helices in a monomer of our model is different from that observed for the mouse TSPO. We analyze possible ligand binding sites for protoporphyrin, for the high-affinity ligand PK 11195, and for cholesterol in TSPO monomers and/or oligomers, and we discuss possible functional implications.
Collapse
Affiliation(s)
- Konrad Hinsen
- Centre de Biophysique Moléculaire (CNRS), Rue Charles Sadron, 45071 Orléans Cedex, France; Synchrotron SOLEIL, Division Expériences, Saint Aubin, B.P. 48, 91192 Gif-sur-Yvette Cedex, France.
| | - Aurore Vaitinadapoule
- INSERM, UMR-S1134, 6 rue Alexandre Cabanel, Université Paris 7 Denis Diderot, F-75015 Paris, France; Université Paris Diderot, Sorbonne Paris Cité, Paris, France; Institut National de la Transfusion Sanguine (INTS), Paris, France; GR-Ex, Laboratoire d'Excellence, Paris, France; National Centre for Biological Sciences (NCBS), Tata Institute for Fundamental Research, GKVK Campus, Bangalore, Karnataka, India; Dynamique des Structures et des Interactions des des Macromolécules Biologiques, France.
| | - Mariano A Ostuni
- INSERM, UMR-S1134, 6 rue Alexandre Cabanel, Université Paris 7 Denis Diderot, F-75015 Paris, France; Université Paris Diderot, Sorbonne Paris Cité, Paris, France; Institut National de la Transfusion Sanguine (INTS), Paris, France; GR-Ex, Laboratoire d'Excellence, Paris, France.
| | - Catherine Etchebest
- INSERM, UMR-S1134, 6 rue Alexandre Cabanel, Université Paris 7 Denis Diderot, F-75015 Paris, France; Université Paris Diderot, Sorbonne Paris Cité, Paris, France; Institut National de la Transfusion Sanguine (INTS), Paris, France; GR-Ex, Laboratoire d'Excellence, Paris, France; Dynamique des Structures et des Interactions des des Macromolécules Biologiques, France.
| | - Jean-Jacques Lacapere
- Sorbonne Universités, UPMC Univ Paris 06, Laboratoire de Biomolécules (LBM), 4 Place Jussieu, F-75005 Paris, France; Ecole Normale Supérieure - PSL Research University, Département de Chimie, 24, rue Lhomond, 75005 Paris, France; CNRS, UMR 7203 LBM, F-75005 Paris, France.
| |
Collapse
|
25
|
Li F, Xia Y, Meiler J, Ferguson-Miller S. Characterization and modeling of the oligomeric state and ligand binding behavior of purified translocator protein 18 kDa from Rhodobacter sphaeroides. Biochemistry 2013; 52:5884-99. [PMID: 23952237 PMCID: PMC3756528 DOI: 10.1021/bi400431t] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
![]()
Translocator
Protein 18 kDa (TSPO), previously known as the peripheral-type
benzodiazepine receptor (PBR), is a mitochondrial outer membrane protein
that has been identified as a key player in cholesterol and porphyrin
transport, apoptotic signaling, and cancer development, as well as
neurological inflammation and disease. Despite a number of TSPO ligands
whose effects have been studied with respect to these varied biological
activities, the nature of their interactions with TSPO and the molecular
mechanism of their effects remain controversial, in part because of
the lack of an atomic-resolution structure. We expressed and purified
the homologue of mammalian TSPO from Rhodobacter sphaeroides (RsTSPO), as well as a mutant form in a proposed
drug binding loop, RsTSPOW38C. We characterized their
binding behaviors with endogenous ligands and a series of compounds
that affect apoptosis by using a sensitive tryptophan fluorescence
quenching assay. Our results show that RsTSPO behaves
as a dimer in the purified state and binds with low micromolar affinity
to many of these ligands, including retinoic acid, curcumin, and a
known Bcl-2 inhibitor, gossypol, suggesting a possible direct role
for TSPO in their regulation of apoptosis. A computational model of
the RsTSPO dimer is constructed using EM-Fold, Rosetta,
and a cryo-electron microscopy density map. Binding behaviors of known
ligands are discussed in the context of the model with respect to
regions that may be involved in binding.
Collapse
Affiliation(s)
- Fei Li
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824, United States
| | | | | | | |
Collapse
|
26
|
Yoon I, Li JZ, Shim YK. Advance in photosensitizers and light delivery for photodynamic therapy. Clin Endosc 2013; 46:7-23. [PMID: 23423543 PMCID: PMC3572355 DOI: 10.5946/ce.2013.46.1.7] [Citation(s) in RCA: 233] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Revised: 12/14/2012] [Accepted: 12/14/2012] [Indexed: 01/28/2023] Open
Abstract
The brief history of photodynamic therapy (PDT) research has been focused on photosensitizers (PSs) and light delivery was introduced recently. The appropriate PSs were developed from the first generation PS Photofrin (QLT) to the second (chlorins or bacteriochlorins derivatives) and third (conjugated PSs on carrier) generations PSs to overcome undesired disadvantages, and to increase selective tumor accumulation and excellent targeting. For the synthesis of new chlorin PSs chlorophyll a is isolated from natural plants or algae, and converted to methyl pheophorbide a (MPa) as an important starting material for further synthesis. MPa has various active functional groups easily modified for the preparation of different kinds of PSs, such as methyl pyropheophorbide a, purpurin-18, purpurinimide, and chlorin e6 derivatives. Combination therapy, such as chemotherapy and photothermal therapy with PDT, is shortly described here. Advanced light delivery system is shown to establish successful clinical applications of PDT. Phtodynamic efficiency of the PSs with light delivery was investigated in vitro and/or in vivo.
Collapse
Affiliation(s)
- Il Yoon
- PDT Research Institute, Inje University School of Nano System Engineering, Gimhae, Korea
| | | | | |
Collapse
|
27
|
Wang HJ, Fan J, Papadopoulos V. Translocator protein (Tspo) gene promoter-driven green fluorescent protein synthesis in transgenic mice: an in vivo model to study Tspo transcription. Cell Tissue Res 2012; 350:261-75. [PMID: 22868914 DOI: 10.1007/s00441-012-1478-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Accepted: 06/26/2012] [Indexed: 12/11/2022]
Abstract
Translocator protein (TSPO), previously known as the peripheral-type benzodiazepine receptor, is a ubiquitous drug- and cholesterol-binding protein primarily found in the outer mitochondrial membrane as part of a mitochondrial cholesterol transport complex. TSPO is present at higher levels in steroid-synthesizing and rapidly proliferating tissues and its biological role has been mainly linked to mitochondrial function, steroidogenesis and cell proliferation/apoptosis. Aberrant TSPO levels have been linked to multiple diseases, including cancer, endocrine disorders, brain injury, neurodegeneration, ischemia-reperfusion injury and inflammatory diseases. Investigation of the functions of this protein in vitro and in vivo have been mainly carried out using high-affinity drug ligands, such as isoquinoline carboxamides and benzodiazepines and more recently, gene silencing methods. To establish a model to study the regulation of Tspo transcription in vivo, we generated a transgenic mouse model expressing green fluorescent protein (GFP) from Aequorea coerulescens under control of the Tspo promoter region (Tspo-AcGFP). The expression profiles of Tspo-AcGFP, endogenous TSPO and Tspo mRNA were found to be well-correlated. Tspo-AcGFP synthesis in the transgenic mice was seen in almost every tissue examined and as with TSPO in wild-type mice, Tspo-AcGFP was highly expressed in steroidogenic cells of the endocrine and reproductive systems, epithelial cells of the digestive system, skeletal muscle and other organs. In summary, this transgenic Tspo-AcGFP mouse model recapitulates endogenous Tspo expression patterns and could be a useful, tractable tool for monitoring the transcriptional regulation and function of Tspo in live animal experiments.
Collapse
Affiliation(s)
- Hui-Jie Wang
- The Research Institute of the McGill University Health Center, McGill University, Montréal, Québec, H3A 1A4, Canada
| | | | | |
Collapse
|
28
|
Downs CA, Ostrander GK, Rougee L, Rongo T, Knutson S, Williams DE, Mendiola W, Holbrook J, Richmond RH. The use of cellular diagnostics for identifying sub-lethal stress in reef corals. ECOTOXICOLOGY (LONDON, ENGLAND) 2012; 21:768-82. [PMID: 22215560 DOI: 10.1007/s10646-011-0837-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/11/2011] [Indexed: 05/17/2023]
Abstract
Coral reefs throughout the world are exhibiting documented declines in coral cover and species diversity, which have been linked to anthropogenic stressors including land-based sources of pollution. Reductions in coastal water and substratum quality are affecting coral survivorship, reproduction and recruitment, and hence, the persistence of coral reefs. One major obstacle in effectively addressing these declines is the lack of tools that can identify cause-and-effect relationships between stressors and specific coral reef losses, while a second problem is the inability to measure the efficacy of mitigation efforts in a timely fashion. We examined corals from six coral reefs on Guam, Mariana Islands, which were being affected by different environmental stressors (e.g. PAH's, pesticides, PCB's and sedimentation). Cellular diagnostic analysis differentiated the cellular-physiological condition of these corals. Examination of protein expression provided insight into their homeostatic responses to chemical and physical stressors in exposed corals prior to outright mortality, providing improved opportunities for developing locally-based management responses. This approach adds critically needed tools for addressing the effects of multiple stressors on corals and will allow researchers to move beyond present assessment and monitoring techniques that simply document the loss of coral abundance and diversity.
Collapse
Affiliation(s)
- Craig A Downs
- Haereticus Environmental Laboratory, PO Box 92, Clifford, VA 24533, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Ulrich DL, Lynch J, Wang Y, Fukuda Y, Nachagari D, Du G, Sun D, Fan Y, Tsurkan L, Potter PM, Rehg JE, Schuetz JD. ATP-dependent mitochondrial porphyrin importer ABCB6 protects against phenylhydrazine toxicity. J Biol Chem 2012; 287:12679-90. [PMID: 22294697 DOI: 10.1074/jbc.m111.336180] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Abcb6 is a mammalian mitochondrial ATP-binding cassette (ABC) transporter that regulates de novo porphyrin synthesis. In previous studies, haploinsufficient (Abcb6(+/-)) embryonic stem cells showed impaired porphyrin synthesis. Unexpectedly, Abcb6(-/-) mice derived from these stem cells appeared phenotypically normal. We hypothesized that other ATP-dependent and/or -independent mechanisms conserve porphyrins. Here, we demonstrate that Abcb6(-/-) mice lack mitochondrial ATP-driven import of coproporphyrin III. Gene expression analysis revealed that loss of Abcb6 results in up-regulation of compensatory porphyrin and iron pathways, associated with elevated protoporphyrin IX (PPIX). Phenylhydrazine-induced stress caused higher mortality in Abcb6(-/-) mice, possibly because of sustained elevation of PPIX and an inability to convert PPIX to heme despite elevated ferrochelatase levels. Therefore, Abcb6 is the sole ATP-dependent porphyrin importer, and loss of Abcb6 produces up-regulation of heme and iron pathways necessary for normal development. However, under extreme demand for porphyrins (e.g. phenylhydrazine stress), these adaptations appear inadequate, which suggests that under these conditions Abcb6 is important for optimal survival.
Collapse
Affiliation(s)
- Dagny L Ulrich
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Ricchelli F, Šileikytė J, Bernardi P. Shedding light on the mitochondrial permeability transition. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2011; 1807:482-90. [DOI: 10.1016/j.bbabio.2011.02.012] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2011] [Revised: 02/21/2011] [Accepted: 02/28/2011] [Indexed: 01/18/2023]
|
31
|
Vanhee C, Zapotoczny G, Masquelier D, Ghislain M, Batoko H. The Arabidopsis multistress regulator TSPO is a heme binding membrane protein and a potential scavenger of porphyrins via an autophagy-dependent degradation mechanism. THE PLANT CELL 2011; 23:785-805. [PMID: 21317376 PMCID: PMC3077796 DOI: 10.1105/tpc.110.081570] [Citation(s) in RCA: 158] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2010] [Revised: 12/22/2010] [Accepted: 01/05/2011] [Indexed: 05/18/2023]
Abstract
TSPO, a stress-induced, posttranslationally regulated, early secretory pathway-localized plant cell membrane protein, belongs to the TspO/MBR family of regulatory proteins, which can bind porphyrins. This work finds that boosting tetrapyrrole biosynthesis enhanced TSPO degradation in Arabidopsis thaliana and that TSPO could bind heme in vitro and in vivo. This binding required the His residue at position 91 (H91), but not that at position 115 (H115). The H91A and double H91A/H115A substitutions stabilized TSPO and rendered the protein insensitive to heme-regulated degradation, suggesting that heme binding regulates At-TSPO degradation. TSPO degradation was inhibited in the autophagy-defective atg5 mutant and was sensitive to inhibitors of type III phosphoinositide 3-kinases, which regulate autophagy in eukaryotic cells. Mutation of the two Tyr residues in a putative ubiquitin-like ATG8 interacting motif of At-TSPO did not affect heme binding in vitro but stabilized the protein in vivo, suggesting that downregulation of At-TSPO requires an active autophagy pathway, in addition to heme. Abscisic acid-dependent TSPO induction was accompanied by an increase in unbound heme levels, and downregulation of TSPO coincided with the return to steady state levels of unbound heme, suggesting that a physiological consequence of active TSPO downregulation may be heme scavenging. In addition, overexpression of TSPO attenuated aminolevulinic acid-induced porphyria in plant cells. Taken together, these data support a role for TSPO in porphyrin binding and scavenging during stress in plants.
Collapse
Affiliation(s)
| | | | | | | | - Henri Batoko
- Institute of Life Sciences, Molecular Physiology Group, Université Catholique de Louvain, Croix du Sud 4-15, 1348 Louvain-la-Neuve, Belgium
| |
Collapse
|
32
|
Ozaki H, Zoghbi SS, Hong J, Verma A, Pike VW, Innis RB, Fujita M. In vivo binding of protoporphyrin IX to rat translocator protein imaged with positron emission tomography. Synapse 2011; 64:649-53. [PMID: 20336621 DOI: 10.1002/syn.20779] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In vitro experiments have shown that protoporphyrin IX (PPIX) binds to the translocator protein 18 kDa (TSPO), which transports cholesterol across the outer mitochondrial membrane. The purpose of this study was to examine whether binding of PPIX to TSPO can also be detected in vivo using positron emission tomography and [(11)C]PBR28, a radioligand that binds with high affinity and selectivity to TSPO. Rats were injected with a high dose of 5-aminolevulinic acid (ALA, 200 mg/kg i.v.), which is a precursor for PPIX. ALA-pretreatment significantly decreased the uptake of [(11)C]PBR28 in TSPO-rich organs such as heart, kidneys, lungs, parotid glands, and spleen by 57-80%. As a control experiment, injection of a receptor saturating does of PK 11195, which is selective for TSPO, produced a pattern of displacement similar to that after ALA but with greater magnitude (88-97%). This study provides the first evidence that PPIX binds in vivo to TSPO. Although PPIX at physiological concentrations would likely occupy an insignificant percentage of TSPOs, it does reach high-enough concentrations in porphyria to occupy and have pharmacological effects via this target.
Collapse
Affiliation(s)
- Harushige Ozaki
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | | | | | | | | | | | | |
Collapse
|
33
|
Rupprecht R, Papadopoulos V, Rammes G, Baghai TC, Fan J, Akula N, Groyer G, Adams D, Schumacher M. Translocator protein (18 kDa) (TSPO) as a therapeutic target for neurological and psychiatric disorders. Nat Rev Drug Discov 2011; 9:971-88. [PMID: 21119734 DOI: 10.1038/nrd3295] [Citation(s) in RCA: 727] [Impact Index Per Article: 55.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The translocator protein (18 kDa) (TSPO) is localized primarily in the outer mitochondrial membrane of steroid-synthesizing cells, including those in the central and peripheral nervous system. One of its main functions is the transport of the substrate cholesterol into mitochondria, a prerequisite for steroid synthesis. TSPO expression may constitute a biomarker of brain inflammation and reactive gliosis that could be monitored by using TSPO ligands as neuroimaging agents. Moreover, initial clinical trials have indicated that TSPO ligands might be valuable in the treatment of neurological and psychiatric disorders. This Review focuses on the biology and pathophysiology of TSPO and the potential of currently available TSPO ligands for the diagnosis and treatment of neurological and psychiatric disorders.
Collapse
Affiliation(s)
- Rainer Rupprecht
- Department of Psychiatry and Psychotherapy, Ludwig-Maximilians University, Nussbaumstrasse 7, 80336 Munich, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Midzak A, Akula N, Lecanu L, Papadopoulos V. Novel androstenetriol interacts with the mitochondrial translocator protein and controls steroidogenesis. J Biol Chem 2011; 286:9875-87. [PMID: 21209087 DOI: 10.1074/jbc.m110.203216] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Steroid hormones are metabolically derived from multiple enzymatic transformations of cholesterol. The controlling step in steroid hormone biogenesis is the delivery of cholesterol from intracellular stores to the cytochrome P450 enzyme CYP11A1 in the mitochondrial matrix. The 18-kDa translocator protein (TSPO) plays an integral part in this mitochondrial cholesterol transport. Consistent with its role in intracellular cholesterol movement, TSPO possesses a cholesterol recognition/interaction amino acid consensus (CRAC) motif that has been demonstrated to bind cholesterol. To further investigate the TSPO CRAC motif, we performed molecular modeling studies and identified a novel ligand, 3,17,19-androsten-5-triol (19-Atriol) that inhibits cholesterol binding at the CRAC motif. 19-Atriol could bind a synthetic CRAC peptide and rapidly inhibited hormonally induced steroidogenesis in MA-10 mouse Leydig tumor cells and constitutive steroidogenesis in R2C rat Leydig tumor cells at low micromolar concentrations. Inhibition at these concentrations was not due to toxicity or inhibition of the CYP11A1 enzyme and was reversed upon removal of the compound. In addition, 19-Atriol was an even more potent inhibitor of PK 11195-stimulated steroidogenesis, with activity in the high nanomolar range. This was accomplished without affecting PK 11195 binding or basal steroidogenesis. Finally, 19-Atriol inhibited mitochondrial import and processing of the steroidogenic acute regulatory protein without any effect on TSPO protein levels. In conclusion, we have identified a novel androstenetriol that can interact with the CRAC domain of TSPO, can control hormonal and constitutive steroidogenesis, and may prove to be a useful tool in the therapeutic control of diseases of excessive steroid formation.
Collapse
Affiliation(s)
- Andrew Midzak
- Research Institute of the McGill University Health Centre, Montreal, Quebec H3G 1A4, Canada
| | | | | | | |
Collapse
|
35
|
Sileikyte J, Petronilli V, Zulian A, Dabbeni-Sala F, Tognon G, Nikolov P, Bernardi P, Ricchelli F. Regulation of the inner membrane mitochondrial permeability transition by the outer membrane translocator protein (peripheral benzodiazepine receptor). J Biol Chem 2010; 286:1046-53. [PMID: 21062740 DOI: 10.1074/jbc.m110.172486] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
We studied the properties of the permeability transition pore (PTP) in rat liver mitochondria and in mitoplasts retaining inner membrane ultrastructure and energy-linked functions. Like mitochondria, mitoplasts readily underwent a permeability transition following Ca(2+) uptake in a process that maintained sensitivity to cyclosporin A. On the other hand, major differences between mitochondria and mitoplasts emerged in PTP regulation by ligands of the outer membrane translocator protein of 18 kDa, TSPO, formerly known as the peripheral benzodiazepine receptor. Indeed, (i) in mitoplasts, the PTP could not be activated by photo-oxidation after treatment with dicarboxylic porphyrins endowed with protoporphyrin IX configuration, which bind TSPO in intact mitochondria; and (ii) mitoplasts became resistant to the PTP-inducing effects of N,N-dihexyl-2-(4-fluorophenyl)indole-3-acetamide and of other selective ligands of TSPO. Thus, the permeability transition is an inner membrane event that is regulated by the outer membrane through specific interactions with TSPO.
Collapse
Affiliation(s)
- Justina Sileikyte
- Department of Biomedical Sciences, Consiglio Nazionale delle Ricerche Institute of Neuroscience, University of Padova, I-35121 Padova, Italy
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Three-dimensional structure of TspO by electron cryomicroscopy of helical crystals. Structure 2010; 18:677-87. [PMID: 20541505 PMCID: PMC2911597 DOI: 10.1016/j.str.2010.03.001] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2009] [Revised: 02/08/2010] [Accepted: 03/02/2010] [Indexed: 11/24/2022]
Abstract
The 18 kDa TSPO protein is a polytopic mitochondrial outer membrane protein involved in a wide range of physiological functions and pathologies, including neurodegeneration and cancer. The pharmacology of TSPO has been extensively studied, but little is known about its biochemistry, oligomeric state, and structure. We have expressed, purified, and characterized a homologous protein, TspO from Rhodobacter sphaeroides, and reconstituted it as helical crystals. Using electron cryomicroscopy and single-particle helical reconstruction, we have determined a three-dimensional structure of TspO at 10 Å resolution. The structure suggests that monomeric TspO comprises five transmembrane α helices that form a homodimer, which is consistent with the dimeric state observed in detergent solution. Furthermore, the arrangement of transmembrane domains of individual TspO subunits indicates a possibility of two substrate translocation pathways per dimer. The structure provides the first insight into the molecular architecture of TSPO/PBR protein family that will serve as a framework for future studies.
Collapse
|
37
|
Bugaj AM, Billert H, Kołodziejska P, Limaszewska A, Stochmal Z. Effect of disodium N,N-dialanyl protoporphyrinate, diarginine protoporphyrinate and diarginine N,N-dialanyl protoporphyrinate on respiratory burst of human neutrophils in vitro. J PORPHYR PHTHALOCYA 2010. [DOI: 10.1142/s1088424610001921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The effect of three amino acid protoporphyrin IX (PPIX) derivatives evaluated as sensitizers in photodynamic therapy — disodium N,N -dialanyl protoporphyrinate ( PP(Ala)2Na2), diarginine protoporphyrinate (PPArg2) and diarginine N,N -dialanyl protoporphyrinate (PP(Ala)2Arg2) – non-irradiated and pre-irradiated with UV-A, on respiratory burst of non-stimulated and opsonized zymosan stimulated neutrophils was studied. A potential synergistic effect of diazepam (7-chloro-1-methyl-5-phenyl-1,3-dihydro-2H-1,4-benzodiazepin-2-one) was also examined. PP(Ala)2Na2showed strong pro-oxidant effect towards non-stimulated neutrophils, while PPArg2and PP(Ala)2Arg2revealed no significant effect. In the case of stimulated neutrophils all studied porphyrins showed antioxidant effect, although for PP(Ala)2Na2this effect was significantly weaker than that of PPArg2and PP(Ala)2Arg2. After pre-irradiation with UV-A (λ = 365 nm, fluence 2.0 J.cm-2, fluence rate 6.7 mW.cm-2) the antioxidant activity of all studied sensitizers towards non-stimulated granulocytes did not change significantly when compared to effects of non-irradiated porphyrins, while in the case of stimulated cells, only PPArg2caused significant decrease of respiratory burst. Non-irradiated diazepam showed significant antioxidant effect and enhanced antioxidant effect of all studied porphyrins towards stimulated neutrophils, while after UV-A pre-irradiation it revealed no significant antioxidant effect on non-stimulated and stimulated neutrophils, both alone and in combination with porphyrin sensitizers.
Collapse
Affiliation(s)
- Andrzej M. Bugaj
- University of Health, Beauty and Education, Poznań, Poland
- Department of Clinical Pharmacy and Biopharmacy, Karol Marcinkowski University of Medical Sciences, Poznań, Poland
| | - Hanna Billert
- Department of Experimental Anesthesiology, Karol Marcinkowski University of Medical Sciences, Poznań, Poland
| | - Patrycja Kołodziejska
- Department of Clinical Pharmacy and Biopharmacy, Karol Marcinkowski University of Medical Sciences, Poznań, Poland
| | - Alina Limaszewska
- Department of Clinical Pharmacy and Biopharmacy, Karol Marcinkowski University of Medical Sciences, Poznań, Poland
| | | |
Collapse
|
38
|
Guillaumot D, Guillon S, Déplanque T, Vanhee C, Gumy C, Masquelier D, Morsomme P, Batoko H. The Arabidopsis TSPO-related protein is a stress and abscisic acid-regulated, endoplasmic reticulum-Golgi-localized membrane protein. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2009; 60:242-56. [PMID: 19548979 DOI: 10.1111/j.1365-313x.2009.03950.x] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The Arabidopsis gene At2g47770 encodes a membrane-bound protein designated AtTSPO (Arabidopsis thaliana TSPO-related). AtTSPO is related to the bacterial outer membrane tryptophan-rich sensory protein (TspO) and the mammalian mitochondrial 18-kDa translocator protein (18 kDa TSPO), members of the group of TspO/MBR domain-containing membrane proteins. In this study we show that AtTSPO is mainly detected in dry seeds, but can be induced in vegetative tissues by osmotic or salt stress or abscisic acid (ABA) treatment, corroborating available transcriptome data. Using subcellular fractionation, immunocytochemistry and fluorescent protein tagging approaches we present evidence that AtTSPO is targeted to the secretory pathway in plants. Induced or constitutively expressed AtTSPO can be detected in the endoplasmic reticulum and the Golgi stacks of plant cells. AtTSPO tagged with fluorescent protein in transgenic plants (Arabidopsis and tobacco) was mainly detected in the Golgi stacks of leaf epidermal cells. Constitutive expression of AtTSPO resulted in increased sensitivity to NaCl, but not to osmotic stress, and in reduced greening of cultured Arabidopsis cells under light growing conditions. Transgenic Arabidopsis plants overexpressing AtTSPO were more sensitive to ABA-induced growth inhibition, indicating that constitutive expression of AtTSPO may enhance ABA sensitivity. AtTSPO is rapidly downregulated during seed imbibition, and the ABA-dependent induction in plant is transient. Downregulation of AtTSPO seems to be boosted by treatment with aminolevulinic acid. Taken together, these results suggest that AtTSPO is a highly regulated protein, induced by abiotic stress to modulate, at least in part, transient intracellular ABA-dependent stress perception and/or signalling.
Collapse
Affiliation(s)
- Damien Guillaumot
- Institut des Sciences de la Vie, Molecular Physiology Group, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Rampon C, Bouzaffour M, Ostuni MA, Dufourcq P, Girard C, Freyssinet JM, Lacapere JJ, Schweizer-Groyer G, Vriz S. Translocator protein (18 kDa) is involved in primitive erythropoiesis in zebrafish. FASEB J 2009; 23:4181-92. [PMID: 19723704 DOI: 10.1096/fj.09-129262] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The translocator protein (18 kDa) (TSPO), also known as peripheral-type benzodiazepine receptor, is directly or indirectly associated with many biological processes. Although extensively characterized, the specific function of TSPO during development remains unclear. It has been reported that TSPO is involved in a variety of mechanisms, including cell proliferation, apoptosis, regulation of mitochondrial functions, cholesterol transport and steroidogenesis, and porphyrin transport and heme synthesis. Although the literature has reported a murine knockout model, the experiment did not generate information because of early lethality. We then used the zebrafish model to address the function of tspo during development. Information about spatiotemporal expression showed that tspo has a maternal and a zygotic contribution which, during somatogenesis, seems to be erythroid restricted to the intermediate cell mass. Genetic and pharmacological approaches used to invalidate Tspo function resulted in embryos with specific erythropoietic cell depletion. Although unexpected, this lack of blood cells is independent of the Tspo cholesterol binding site and reveals a new in vivo key role for Tspo during erythropoiesis.
Collapse
Affiliation(s)
- Christine Rampon
- CNRS UMR 8542, Chaire des Processes Morphogénètiques, Collège de France, 11 Place Marcelin Berthelot, 75231 Paris Cedex 05, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
El Alaoui A, Schmidt F, Sarr M, Decaudin D, Florent JC, Johannes L. Synthesis and properties of a mitochondrial peripheral benzodiazepine receptor conjugate. ChemMedChem 2009; 3:1687-95. [PMID: 18846592 DOI: 10.1002/cmdc.200800249] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Peripheral benzodiazepine receptors are potential targets for cancer therapeutics through the use of specific ligands such as the pro-apoptotic benzodiazepine RO5-4864. However, the poor water solubility of this compound has been a limitation to its application in vivo. Herein we describe an efficient synthesis for the conjugation, via a cleavable linker arm, of RO5-4864 to a novel tumour-delivery tool, the B-subunit of Shiga toxin (STxB). The conjugate is water soluble and specifically targets cancer cells that overexpress the glycolipid Gb3, the cellular Shiga toxin receptor that is found on several human tumours. After internalisation via retrograde transport, the prodrug is cleaved inside cells to release the active principle. Delivery by STxB therefore increases the cytotoxic activity of RO5-4864 and its tumour specificity.
Collapse
Affiliation(s)
- Abdessamad El Alaoui
- Institut Curie, Centre de Recherche, Conception, Synthèse et Vectorisation de Biomolécules, 26 rue d'Ulm, 75248 Paris, France
| | | | | | | | | | | |
Collapse
|
41
|
Bombalska A, Graczyk A. Interactions of protoporphyrin IX and its derivatives with benzodiazepine receptor. Photodiagnosis Photodyn Ther 2009; 6:46-51. [DOI: 10.1016/j.pdpdt.2009.01.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2008] [Revised: 01/15/2009] [Accepted: 01/20/2009] [Indexed: 11/30/2022]
|
42
|
Nakazawa F, Alev C, Shin M, Nakaya Y, Jakt LM, Sheng G. PBRL, a putative peripheral benzodiazepine receptor, in primitive erythropoiesis. Gene Expr Patterns 2009; 9:114-21. [DOI: 10.1016/j.gep.2008.09.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2008] [Revised: 09/17/2008] [Accepted: 09/17/2008] [Indexed: 10/21/2022]
|
43
|
Scarf AM, Ittner LM, Kassiou M. The Translocator Protein (18 kDa): Central Nervous System Disease and Drug Design. J Med Chem 2009; 52:581-92. [DOI: 10.1021/jm8011678] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Alana M. Scarf
- Brain and Mind Research Institute, 100 Mallett Street, Camperdown, NSW 2050, Australia, and Department of Pharmacology, School of Medical Sciences, Discipline of Medical Radiation Sciences, and School of Chemistry, University of Sydney, NSW 2006, Australia
| | - Lars M. Ittner
- Brain and Mind Research Institute, 100 Mallett Street, Camperdown, NSW 2050, Australia, and Department of Pharmacology, School of Medical Sciences, Discipline of Medical Radiation Sciences, and School of Chemistry, University of Sydney, NSW 2006, Australia
| | - Michael Kassiou
- Brain and Mind Research Institute, 100 Mallett Street, Camperdown, NSW 2050, Australia, and Department of Pharmacology, School of Medical Sciences, Discipline of Medical Radiation Sciences, and School of Chemistry, University of Sydney, NSW 2006, Australia
| |
Collapse
|
44
|
Dooley KA, Fraenkel PG, Langer NB, Schmid B, Davidson AJ, Weber G, Chiang K, Foott H, Dwyer C, Wingert RA, Zhou Y, Paw BH, Zon LI. montalcino, A zebrafish model for variegate porphyria. Exp Hematol 2008; 36:1132-42. [PMID: 18550261 DOI: 10.1016/j.exphem.2008.04.008] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2007] [Revised: 02/27/2008] [Accepted: 04/15/2008] [Indexed: 11/25/2022]
Abstract
OBJECTIVE Inherited or acquired mutations in the heme biosynthetic pathway leads to a debilitating class of diseases collectively known as porphyrias, with symptoms that can include anemia, cutaneous photosensitivity, and neurovisceral dysfunction. In a genetic screen for hematopoietic mutants, we isolated a zebrafish mutant, montalcino (mno), which displays hypochromic anemia and porphyria. The objective of this study was to identify the defective gene and characterize the phenotype of the zebrafish mutant. MATERIALS AND METHODS Genetic linkage analysis was utilized to identify the region harboring the mno mutation. Candidate gene analysis together with reverse transcriptase polymerase chain reaction was utilized to identify the genetic mutation, which was confirmed via allele-specific oligo hybridizations. Whole mount in situ hybridizations and o-dianisidine staining were used to characterize the phenotype of the mno mutant. mRNA and morpholino microinjections were performed to phenocopy and/or rescue the mutant phenotype. RESULTS Homozygous mno mutant embryos have a defect in the protoporphyrinogen oxidase (ppox) gene, which encodes the enzyme that catalyzes the oxidation of protoporphyrinogen. Homozygous mutant embryos are deficient in hemoglobin, and by 36 hours post-fertilization are visibly anemic and porphyric. The hypochromic anemia of mno embryos was partially rescued by human ppox, providing evidence for the conservation of function between human and zebrafish ppox. CONCLUSION In humans, mutations in ppox result in variegate porphyria. At present, effective treatment for acute attacks requires the administration intravenous hemin and/or glucose. Thus, mno represents a powerful model for investigation, and a tool for future screens aimed at identifying chemical modifiers of variegate porphyria.
Collapse
Affiliation(s)
- Kimberly A Dooley
- Division of Hematology/Oncology, Children's Hospital, Howard Hughes Medical Institute, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Bisland SK, Goebel EA, Hassanali NS, Johnson C, Wilson BC. Increased expression of mitochondrial benzodiazepine receptors following low-level light treatment facilitates enhanced protoporphyrin IX production in glioma-derived cells in vitro. Lasers Surg Med 2008; 39:678-84. [PMID: 17886284 DOI: 10.1002/lsm.20544] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
BACKGROUND AND OBJECTIVES This study investigates whether low-level light treatment (LLLT) can enhance the expression of peripheral-type mitochondrial benzodiazepine receptors (PBRs) on glioma-derived tumor cells, and by doing so promote the synthesis of protoporphyrin IX (PpIX) and increase the photodynamic therapy (PDT)-induced cell kill using 5-aminolevulinic acid (ALA). The endogenous photosensitizer, PpIX and related metabolites including coproporphyrin III are known to traffic into or out of the mitochondria via the PBRs situated on the outer mitochondrial membrane. Cells of astrocytic derivation within the brain express PBRs, while neurons express the central-type of benzodiazepine receptor. STUDY DESIGN Astrocytoma-derived CNS-1 cells were exposed to a range of differing low-level light protocols immediately prior to PDT. LLLT involved using broad-spectrum red light of 600-800 nm or monochromatic laser light specific to 635 or 905 nm wavelength. Cells (5 x 10(5)) were exposed to a range of LLLT doses (0, 1, or 5 J/cm(2)) using a fixed intensity of 10 mW/cm(2) and subsequently harvested for cell viability, immunofluorescence, or Western blot analysis of PBR expression. The amount of PpIX within the cells was determined using chemical extraction techniques. RESULTS Results confirm the induction of PBR following LLLT is dependent on the dose and wavelength of light used. Broad-spectrum red light provided the greatest cell kill following PDT, although LLLT with 635 nm or 905 nm also increased cell kill as compared to PDT alone. All LLLT regimens increased PBR expression compared to controls with corresponding increases in PpIX production. CONCLUSIONS These data suggest that by selectively increasing PBR expression in tumor cells, LLLT facilitates enhanced tumor cell kill using ALA-PDT. This may further improve the selectivity and efficacy of PDT treatment of brain tumors.
Collapse
Affiliation(s)
- S K Bisland
- Division of Biophysics and Bioimaging, University of Toronto, Ontario Cancer Institute, University Health Network, Toronto, Ontario, Canada M5G 2M9.
| | | | | | | | | |
Collapse
|
46
|
Furre IE, Shahzidi S, Luksiene Z, Møller MTN, Borgen E, Morgan J, Tkacz-Stachowska K, Nesland JM, Peng Q. Targeting PBR by Hexaminolevulinate-Mediated Photodynamic Therapy Induces Apoptosis through Translocation of Apoptosis-Inducing Factor in Human Leukemia Cells. Cancer Res 2005; 65:11051-60. [PMID: 16322255 DOI: 10.1158/0008-5472.can-05-0510] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Photodynamic therapy (PDT) with endogenous protoporphyrin IX derived from 5-aminolevulinic acid or its derivatives has been established for treatments of several premalignancies and malignancies; however, the mechanism of the modality is not fully elucidated. The mitochondrial permeability transition pore consists mainly of the mitochondrial outer membrane voltage-dependent anion channel and the peripheral benzodiazepine receptor (PBR) and the mitochondrial inner membrane adenine nucleotide translocator (ANT). These mitochondrial proteins are responsible for the permeability transition that leads to apoptosis. In the present study, the human leukemia cell line, Reh, was treated with PDT using hexaminolevulinate (HAL). More than 80% of apoptotic Reh cells were found after HAL-mediated PDT (HAL-PDT) with high-molecular-weight (50 kbp) DNA fragmentation. Addition of PK11195 or Ro5-4864, two ligands of PBR, during HAL-PDT significantly inhibited the apoptotic effect. Bongkrekic acid, a ligand for ANT, also reduced the PDT effect. Although the mitochondrial transmembrane potential collapsed, neither cytosolic translocation of mitochondrial cytochrome c nor activation of caspase-9, caspase-8, caspase-3, and poly(ADP-ribose) polymerase were found. However, nuclear translocation of mitochondrial apoptosis-inducing factor (AIF) was shown by both immunoblotting and immunocytochemistry. Because AIF is the sole one among all proapoptotic factors involved in caspase-dependent and caspase-independent pathways that induces the high-molecular-weight DNA fragmentation, we conclude that HAL-PDT specifically targets PBR, leading to apoptosis of the Reh cells through nuclear translocation of mitochondrial AIF. This study suggests PBR as a possible novel therapeutic target for HAL-based PDT of cancer.
Collapse
Affiliation(s)
- Ingegerd Eggen Furre
- Department of Pathology, The Norwegian Radium Hospital, University of Oslo, Oslo, Norway
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Sutter AP, Maaser K, Höpfner M, Huether A, Schuppan D, Scherübl H. Cell cycle arrest and apoptosis induction in hepatocellular carcinoma cells by HMG-CoA reductase inhibitors. Synergistic antiproliferative action with ligands of the peripheral benzodiazepine receptor. J Hepatol 2005; 43:808-16. [PMID: 16083991 DOI: 10.1016/j.jhep.2005.04.010] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2004] [Revised: 03/03/2005] [Accepted: 04/04/2005] [Indexed: 12/04/2022]
Abstract
BACKGROUND/AIMS Hepatocellular carcinoma (HCC) is the fifth most common cause of cancer deaths worldwide. Inhibitors of cholesterol biosynthesis ('statins') have been proposed as promising adjunctive anticancer agents to treat HCC, but their mode of action is yet poorly characterized. We additionally investigated the potential benefit of a combination of peripheral benzodiazepine receptor (PBR) ligands and statins. METHODS We analyzed the growth inhibitory effects of PBR ligands, statins, and their combination in two human HCC cell lines. Moreover, we investigated the regulation of cellular cholesterol levels and the expression of 3-hydroxy-3-methylglutaryl coenzyme-A reductase (HMG-CoAR), the target of statins. RESULTS Statins inhibited the proliferation of HCC cells by inducing apoptosis and G1/S cell cycle arrest. Statin-induced apoptosis was characterized by a breakdown of the mitochondrial membrane potential, caspase activation and nuclear degradation. Furthermore, activation of ERK1/2 was downregulated while p38MAPK was activated. Synergistic growth inhibition was obtained by the combination of the PBR ligand FGIN-1-27 with statins. PBR ligands induced a decrease of HMG-CoAR expression. This downregulation may be responsible for the enhanced sensitivity of HCC cells to statins. CONCLUSIONS Our data shed light on the signaling cascades mediating statin-induced growth inhibition of HCC cells. Moreover, PBR ligands sensitized HCC cells to statins, suggesting a new strategy to treat HCC.
Collapse
Affiliation(s)
- Andreas P Sutter
- Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, Medical Clinic I, Berlin, Germany
| | | | | | | | | | | |
Collapse
|
48
|
Castano AP, Demidova TN, Hamblin MR. Mechanisms in photodynamic therapy: Part three-Photosensitizer pharmacokinetics, biodistribution, tumor localization and modes of tumor destruction. Photodiagnosis Photodyn Ther 2005; 2:91-106. [PMID: 25048669 DOI: 10.1016/s1572-1000(05)00060-8] [Citation(s) in RCA: 338] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2005] [Revised: 06/02/2005] [Accepted: 06/05/2005] [Indexed: 01/30/2023]
Abstract
Photodynamic therapy (PDT) has been known for over a hundred years, but is only now becoming widely used. Originally developed as cancer therapy, some of its most successful applications are for non-malignant disease. The majority of mechanistic research into PDT, however, is still directed towards anti-cancer applications. In the final part of series of three reviews, we will cover the possible reasons for the well-known tumor localizing properties of photosensitizers (PS). When PS are injected into the bloodstream they bind to various serum proteins and this can affect their phamacokinetics and biodistribution. Different PS can have very different pharmacokinetics and this can directly affect the illumination parameters. Intravenously injected PS undergo a transition from being bound to serum proteins, then bound to endothelial cells, then bound to the adventitia of the vessels, then bound either to the extracellular matrix or to the cells within the tumor, and finally to being cleared from the tumor by lymphatics or blood vessels, and excreted either by the kidneys or the liver. The effect of PDT on the tumor largely depends at which stage of this continuous process light is delivered. The anti-tumor effects of PDT are divided into three main mechanisms. Powerful anti-vascular effects can lead to thrombosis and hemorrhage in tumor blood vessels that subsequently lead to tumor death via deprivation of oxygen and nutrients. Direct tumor cell death by apoptosis or necrosis can occur if the PS has been allowed to be taken up by tumor cells. Finally the acute inflammation and release of cytokines and stress response proteins induced in the tumor by PDT can lead to an influx of leukocytes that can both contribute to tumor destruction as well as to stimulate the immune system to recognize and destroy tumor cells even at distant locations.
Collapse
Affiliation(s)
- Ana P Castano
- BAR414, Wellman Center for Photomedicine, Massachusetts General Hospital, 40 Blossom Street, Boston, MA 02114, USA; Department of Dermatology, Harvard Medical School, USA
| | - Tatiana N Demidova
- BAR414, Wellman Center for Photomedicine, Massachusetts General Hospital, 40 Blossom Street, Boston, MA 02114, USA; Cell, Molecular and Developmental Biology Program, Tufts University, USA
| | - Michael R Hamblin
- BAR414, Wellman Center for Photomedicine, Massachusetts General Hospital, 40 Blossom Street, Boston, MA 02114, USA; Department of Dermatology, Harvard Medical School, USA; Harvard-MIT Division of Health Sciences and Technology, USA
| |
Collapse
|
49
|
Knudsen TB, Green ML. Response characteristics of the mitochondrial DNA genome in developmental health and disease. ACTA ACUST UNITED AC 2005; 72:313-29. [PMID: 15662705 DOI: 10.1002/bdrc.20028] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
This review focuses on mitochondrial biology in mammalian development; specifically, the dynamics of information transfer from nucleus to mitochondrion in the regulation of mitochondrial DNA genomic expression, and the reverse signaling of mitochondrion to nucleus as an adaptive response to the environment. Data from recent studies suggest that the capacity of embryonic cells to react to oxygenation involves a tradeoff between factors that influence prenatal growth/development and postnatal growth/function. For example, mitochondrial DNA replication and metabolic set points in nematodes may be determined by mitochondrial activity early in life. The mitochondrial drug PK11195, a ligand of the peripheral benzodiazepine receptor, has antiteratogenic and antidisease action in several developmental contexts in mice. Protein malnutrition during early life in rats can program mitochondrial DNA levels in adult tissues and, in humans, epidemiological data suggest an association between impaired fetal growth and insulin resistance. Taken together, these findings raise the provocative hypothesis that environmental programming of mitochondrial status during early life may be linked with diseases that manifest during adulthood. Genetic defects that affect mitochondrial function may involve the mitochondrial DNA genome directly (maternal inheritance) or indirectly (Mendelian inheritance) through nuclear-coded mitochondrial proteins. In a growing number of cases, the depletion of, or deletion in, mitochondrial DNA is seen to be secondary to mutation of key nuclear-coded mitochondrial proteins that affect mitochondrial DNA replication, expression, or stability. These defects of intergenomic regulation may disrupt the normal cross-talk or structural compartmentation of signals that ultimately regulate mitochondrial DNA integrity and copy number, leading to depletion of mitochondrial DNA.
Collapse
Affiliation(s)
- Thomas B Knudsen
- Department of Molecular, Cellular and Craniofacial Biology, School of Dentistry, Birth Defects Center, University of Louisville, Louisville, Kentucky 40202, USA.
| | | |
Collapse
|
50
|
Verdecia MA, Larkin RM, Ferrer JL, Riek R, Chory J, Noel JP. Structure of the Mg-chelatase cofactor GUN4 reveals a novel hand-shaped fold for porphyrin binding. PLoS Biol 2005; 3:e151. [PMID: 15884974 PMCID: PMC1084334 DOI: 10.1371/journal.pbio.0030151] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2004] [Accepted: 03/01/2005] [Indexed: 11/18/2022] Open
Abstract
In plants, the accumulation of the chlorophyll precursor Mg-protoporphyrin IX (Mg-Proto) in the plastid regulates the expression of a number of nuclear genes with functions related to photosynthesis. Analysis of the plastid-to-nucleus signaling activity of Mg-Proto in Arabidopsis thaliana led to the discovery of GUN4, a novel porphyrin-binding protein that also dramatically enhances the activity of Mg-chelatase, the enzyme that synthesizes Mg-Proto. GUN4 may also play a role in both photoprotection and the cellular shuttling of tetrapyrroles. Here we report a 1.78-Å resolution crystal structure of Synechocystis GUN4, in which the porphyrin-binding domain adopts a unique three dimensional fold with a “cupped hand” shape. Biophysical and biochemical analyses revealed the specific site of interaction between GUN4 and Mg-Proto and the energetic determinants for the GUN4 • Mg-Proto interaction. Our data support a novel protective function for GUN4 in tetrapyrrole trafficking. The combined structural and energetic analyses presented herein form the physical-chemical basis for understanding GUN4 biological activity, including its role in the stimulation of Mg-chelatase activity, as well as in Mg-Proto retrograde signaling. The structure of GUN4 offers hints for understanding its role in regulating the biosynthesis of chlorophyll
Collapse
Affiliation(s)
- Mark A Verdecia
- 1Chemical Biology and Proteomics Laboratory, Salk Institute for Biological StudiesLa Jolla, CaliforniaUnited States of America
| | - Robert M Larkin
- 2Howard Hughes Medical Institute, Plant Molecular and Cellular Biology LaboratorySalk Institute for Biological Studies, La Jolla, CaliforniaUnited States of America
| | | | - Roland Riek
- 1Chemical Biology and Proteomics Laboratory, Salk Institute for Biological StudiesLa Jolla, CaliforniaUnited States of America
| | - Joanne Chory
- 2Howard Hughes Medical Institute, Plant Molecular and Cellular Biology LaboratorySalk Institute for Biological Studies, La Jolla, CaliforniaUnited States of America
| | - Joseph P Noel
- 1Chemical Biology and Proteomics Laboratory, Salk Institute for Biological StudiesLa Jolla, CaliforniaUnited States of America
| |
Collapse
|