1
|
Liang Y, Pan JM, Zhu KC, Xian L, Guo HY, Liu BS, Zhang N, Zhu TF, Zhang DC. Molecular characterization of histone gene in golden pompano (Trachinotus ovatus) and antimicrobial activity of its derived peptides. FISH & SHELLFISH IMMUNOLOGY 2024; 153:109860. [PMID: 39209007 DOI: 10.1016/j.fsi.2024.109860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/08/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
In addition to controlling gene expression, mediating DNA folding into chromatin, and responding to immunological stimuli, histones are also thought to have antimicrobial effects. This study identified the molecular characteristics of core Histone MacroH2A2 (TOMacroH2A2) and Histone H2B 1/2 (TOH2B) from Trachinotus ovatus, and the antimicrobial potential of their derived peptides (To.mh2a and To. h2b). The open reading frames (ORFs) of TOMacroH2A2 and TOH2B from T. ovatus were 1010 bp and 375 bp, encoding polypeptides of 369 and 124 amino acids, respectively. The TOMacroH2A2 included an H2A domain and an A1pp domain, while TOH2B included an H2B domain. The amino acid sequences of TOMacroH2A2 and TOH2B demonstrated high homology with other teleost's sequences of histone macroh2a2 and histone h2b, with homologies exceeding 90 %. Expression analysis showed high expression of TOMacroH2A2 in brain, stomach, heart, and skin tissues and TOH2B in gill, brain, and skin tissues. In addition, the histone-derived peptides To. mh2a and To. h2b, synthesized based on two histone sequences from T. ovatus, exhibited typical physical characteristics of antimicrobial peptides, including positive charges, amphipathicity, hydrophobicity, and rich α-helix structure. Crucially, the vitro antibacterial results demonstrated that To. mh2a and To. h2b can inhibit the growth of various aquatic pathogens including Streptococcus agalactiae, Staphylococcus aureus, Bacillus subtilis, Acinetobacter baumannii, Aeromonas hydrophila, and Escherichia coli to varying degrees. Specifically, To. mh2a and To. h2b were capable of disrupting the cell surface structures of S. aureus and penetrating the cell membrane, leading to the leakage of cellular contents, thereby exerting their antibacterial effects. Furthermore, gel electrophoresis migration assays showed that To. mh2a and To. h2b participated in antimicrobial activity by binding to bacterial genomic DNA and reducing the migration rate of gDNA in a dose-dependent manner. The minimum effective concentration for binding to DNA was approximately 50 μM. In conclusion, our study suggested that To. mh2a and To. h2b can act as antimicrobial peptides, providing a potential strategy for controlling bacterial diseases in T. ovatus.
Collapse
Affiliation(s)
- Yu Liang
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 510300, Guangzhou, Guangdong Province, China
| | - Jin-Min Pan
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 510300, Guangzhou, Guangdong Province, China
| | - Ke-Cheng Zhu
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 510300, Guangzhou, Guangdong Province, China; Sanya Tropical Fisheries Research Institute, Sanya, 572018, China; Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, Guangzhou, Guangdong Province, China
| | - Lin Xian
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 510300, Guangzhou, Guangdong Province, China; Sanya Tropical Fisheries Research Institute, Sanya, 572018, China; Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, Guangzhou, Guangdong Province, China
| | - Hua-Yang Guo
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 510300, Guangzhou, Guangdong Province, China; Sanya Tropical Fisheries Research Institute, Sanya, 572018, China; Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, Guangzhou, Guangdong Province, China
| | - Bao-Suo Liu
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 510300, Guangzhou, Guangdong Province, China; Sanya Tropical Fisheries Research Institute, Sanya, 572018, China; Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, Guangzhou, Guangdong Province, China
| | - Nan Zhang
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 510300, Guangzhou, Guangdong Province, China; Sanya Tropical Fisheries Research Institute, Sanya, 572018, China; Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, Guangzhou, Guangdong Province, China
| | - Teng-Fei Zhu
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 510300, Guangzhou, Guangdong Province, China; Sanya Tropical Fisheries Research Institute, Sanya, 572018, China; Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, Guangzhou, Guangdong Province, China
| | - Dian-Chang Zhang
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 510300, Guangzhou, Guangdong Province, China; Sanya Tropical Fisheries Research Institute, Sanya, 572018, China; Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, Guangzhou, Guangdong Province, China.
| |
Collapse
|
2
|
Muñoz-Camargo C, Cruz JC. From inside to outside: exploring extracellular antimicrobial histone-derived peptides as multi-talented molecules. J Antibiot (Tokyo) 2024; 77:553-568. [PMID: 38871806 PMCID: PMC11347383 DOI: 10.1038/s41429-024-00744-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/23/2024] [Accepted: 05/09/2024] [Indexed: 06/15/2024]
Abstract
The emergence of bacterial resistance to antibiotics poses a global health threat, necessitating innovative solutions. The contemporary challenge lies in bacterial resistance, impacting morbidity, mortality, and global economies. Antimicrobial peptides (AMPs) offer a promising avenue for addressing antibiotic resistance. The Antimicrobial Peptide Database catalogs 3569 peptides from various organisms, representing a rich resource for drug development. Histones, traditionally recognized for their role in nucleosome structures, have gained attention for their extracellular functions, including antimicrobial and immunomodulatory properties. This review aims to thoroughly investigate antimicrobial peptides derived from histones in various organisms, elucidating their mechanisms. In addition, it gives us clues about how extracellular histones might be used in drug delivery systems to fight bacterial infections. This comprehensive analysis emphasizes the importance of histone-derived peptides in developing innovative therapeutic strategies for evolving bacterial challenges.
Collapse
Affiliation(s)
- Carolina Muñoz-Camargo
- Grupo de investigación en Nanobiomateriales, Ingeniería Celular y Bioimpresión (GINIB), Departamento de Ingeniería Biomédica, Universidad de los Andes, Bogotá, Colombia.
| | - Juan C Cruz
- Grupo de investigación en Nanobiomateriales, Ingeniería Celular y Bioimpresión (GINIB), Departamento de Ingeniería Biomédica, Universidad de los Andes, Bogotá, Colombia
| |
Collapse
|
3
|
Li HL, Chen YN, Cai J, Liao T, Zu XY. Identification, Screening and Antibacterial Mechanism Analysis of Novel Antimicrobial Peptides from Sturgeon ( Acipenser ruthenus) Spermary. Mar Drugs 2023; 21:386. [PMID: 37504917 PMCID: PMC10381568 DOI: 10.3390/md21070386] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/27/2023] [Accepted: 06/28/2023] [Indexed: 07/29/2023] Open
Abstract
Fish is an important source of antimicrobial peptides. This study aimed to identify and screen antibacterial peptides with excellent antibacterial activity derived from sturgeon spermary peptides (SSPs) and to analyze their antibacterial activity and mechanism. Liquid chromatography-mass spectrometry/mass spectrometry methods were used to analyze and identify peptide sequences, computational prediction tool and molecular docking methods were used for virtual screening of antimicrobial peptides, and finally, candidate peptides were synthesized by solid-phase synthesis method. The results demonstrate that SSPs have excellent inhibitory activity against Escherichia coli with an inhibitory rate of 76.46%. Most parts of the SSPs were derived from the sturgeon (Acipenser ruthenus) histones, and the coverage of histone H2B was the highest (45%). Two novel peptides (NDEELNKLM and RSSKRRQ) were obtained by in silico prediction tools and molecular docking, which may interact with the DNA gyrase and dihydrofolate reductase of E. coli by forming salt bridges and hydrogen bonds. Compared to the individual peptides, the antibacterial effect was significantly improved by mixing the two peptides in equal proportions. Two novel peptides change the permeability of the E. coli cell membranes and may exert antimicrobial activity by inhibiting the metabolic process of the nucleic acids.
Collapse
Affiliation(s)
- Hai-Lan Li
- Key Laboratory of Cold Chain Logistics Technology for Agro-Product (Ministry of Agriculture and Rural Affairs), Institute of Agro-Products Processing and Nuclear Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Ya-Nan Chen
- Key Laboratory of Cold Chain Logistics Technology for Agro-Product (Ministry of Agriculture and Rural Affairs), Institute of Agro-Products Processing and Nuclear Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
- Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China
| | - Jun Cai
- Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China
| | - Tao Liao
- Key Laboratory of Cold Chain Logistics Technology for Agro-Product (Ministry of Agriculture and Rural Affairs), Institute of Agro-Products Processing and Nuclear Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Xiao-Yan Zu
- Key Laboratory of Cold Chain Logistics Technology for Agro-Product (Ministry of Agriculture and Rural Affairs), Institute of Agro-Products Processing and Nuclear Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| |
Collapse
|
4
|
Jung J, Lee LE, Kim H, Kim JE, Jang SH, Roh JS, Lee B, Robinson WH, Sohn DH, Pyun JC, Song JJ. Extracellular histones aggravate autoimmune arthritis by lytic cell death. Front Immunol 2022; 13:961197. [PMID: 36032105 PMCID: PMC9410568 DOI: 10.3389/fimmu.2022.961197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 07/21/2022] [Indexed: 12/03/2022] Open
Abstract
Although recent studies have demonstrated a proinflammatory effect of extracellular histones in sepsis via endothelial cytotoxicity, little is known about their contribution to autoimmune arthritis. Therefore, we investigated the role of extracellular histones in autoimmune arthritis and their cytotoxic effect on synoviocytes and macrophages. We measured histones in the synovial fluid of patients with rheumatoid arthritis (RA) and evaluated arthritis severity in a serum-transfer arthritis (STA) mouse model with intraperitoneal histone injection. Histone-induced cytotoxicity was measured using SYTOX green staining in the synoviocyte cell line MH7A and macrophages differentiated from the monocytic cell line THP-1, and the production of damage-associated molecular patterns (DAMPs) was measured by HMGB1 and ATP. Furthermore, we performed RNA-seq analysis of THP-1 cells stimulated with H2B-α1 peptide or with its citrullinated form. The levels of histones were elevated in RA synovial fluid, and histones aggravated arthritis in the STA model. Histones induced cytotoxicity and DAMP production in synoviocytes and macrophages. Chondroitin sulfate reduced histone-induced cytotoxicity, while lipopolysaccharides aggravated cytotoxicity. Moreover, the cytotoxicity decreased when the arginines in H2B-α1 were replaced with citrullines, which demonstrated its electrostatic nature. In transcriptome analysis, H2B-α1 changed the gene expression pattern of THP-1 cells involving chemokines, interleukin-1, -4, -10, -13, and toll-like receptor (TLR) signaling pathways. Extracellular histones were increased in RA synovial fluid and aggravated synovitis in STA. They induced lytic cell death through electrostatic interaction with synoviocytes and macrophages, leading to the secretion of DAMPs. These findings suggest that histones play a central role in autoimmune arthritis.
Collapse
Affiliation(s)
- Jaeyong Jung
- Department of Materials Science and Engineering, Yonsei University, Seoul, South Korea
| | - Lucy Eunju Lee
- Division of Rheumatology, Department of Internal Medicine, Dongguk University Ilsan Hospital, Goyang, South Korea
- Division of Rheumatology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, South Korea
| | - Hanna Kim
- Division of Rheumatology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, South Korea
| | - Ji Eun Kim
- Division of Rheumatology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, South Korea
| | - Sung Hoon Jang
- Division of Rheumatology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, South Korea
| | - Jong Seong Roh
- Department of Herbal Prescription, College of Korean Medicine, Daegu Haany University, Gyeongsan, South Korea
| | - Beomgu Lee
- Department of Microbiology and Immunology, Pusan National University School of Medicine, Yangsan, South Korea
| | - William H. Robinson
- VA Palo Alto Health Care System, Palo Alto, CA, United States
- Division of Immunology and Rheumatology, Stanford University, Stanford, CA, United States
| | - Dong Hyun Sohn
- Department of Microbiology and Immunology, Pusan National University School of Medicine, Yangsan, South Korea
- *Correspondence: Jason Jungsik Song, ; Dong Hyun Sohn, ; Jae-Chul Pyun,
| | - Jae-Chul Pyun
- Department of Materials Science and Engineering, Yonsei University, Seoul, South Korea
- *Correspondence: Jason Jungsik Song, ; Dong Hyun Sohn, ; Jae-Chul Pyun,
| | - Jason Jungsik Song
- Division of Rheumatology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, South Korea
- Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, South Korea
- *Correspondence: Jason Jungsik Song, ; Dong Hyun Sohn, ; Jae-Chul Pyun,
| |
Collapse
|
5
|
Duong L, Gross SP, Siryaporn A. Developing Antimicrobial Synergy With AMPs. FRONTIERS IN MEDICAL TECHNOLOGY 2022; 3:640981. [PMID: 35047912 PMCID: PMC8757689 DOI: 10.3389/fmedt.2021.640981] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 02/12/2021] [Indexed: 12/03/2022] Open
Abstract
Antimicrobial peptides (AMPs) have been extensively studied due to their vast natural abundance and ability to kill microbes. In an era critically lacking in new antibiotics, manipulating AMPs for therapeutic application is a promising option. However, bacterial pathogens resistant to AMPs remain problematic. To improve AMPs antimicrobial efficacy, their use in conjunction with other antimicrobials has been proposed. How might this work? AMPs kill bacteria by forming pores in bacterial membranes or by inhibiting bacterial macromolecular functions. What remains unknown is the duration for which AMPs keep bacterial pores open, and the extent to which bacteria can recover by repairing these pores. In this mini-review, we discuss various antimicrobial synergies with AMPs. Such synergies might arise if the antimicrobial agents helped to keep bacterial pores open for longer periods of time, prevented pore repair, perturbed bacterial intracellular functions at greater levels, or performed other independent bacterial killing mechanisms. We first discuss combinations of AMPs, and then focus on histones, which have antimicrobial activity and co-localize with AMPs on lipid droplets and in neutrophil extracellular traps (NETs). Recent work has demonstrated that histones can enhance AMP-induced membrane permeation. It is possible that histones, histone fragments, and histone-like peptides could amplify the antimicrobial effects of AMPs, giving rise to antimicrobial synergy. If so, clarifying these mechanisms will thus improve our overall understanding of the antimicrobial processes and potentially contribute to improved drug design.
Collapse
Affiliation(s)
- Leora Duong
- Department of Molecular Biology & Biochemistry, University of California, Irvine, Irvine, CA, United States
| | - Steven P Gross
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA, United States.,Department of Physics & Astronomy, University of California, Irvine, Irvine, CA, United States
| | - Albert Siryaporn
- Department of Molecular Biology & Biochemistry, University of California, Irvine, Irvine, CA, United States.,Department of Physics & Astronomy, University of California, Irvine, Irvine, CA, United States
| |
Collapse
|
6
|
Agak GW, Mouton A, Teles RM, Weston T, Morselli M, Andrade PR, Pellegrini M, Modlin RL. Extracellular traps released by antimicrobial TH17 cells contribute to host defense. J Clin Invest 2021; 131:141594. [PMID: 33211671 DOI: 10.1172/jci141594] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 11/12/2020] [Indexed: 12/19/2022] Open
Abstract
TH17 cell subpopulations have been defined that contribute to inflammation and homeostasis, yet the characteristics of TH17 cells that contribute to host defense against infection are not clear. To elucidate the antimicrobial machinery of the TH17 subset, we studied the response to Cutibacterium acnes, a skin commensal that is resistant to IL-26, the only known TH17-secreted protein with direct antimicrobial activity. We generated C. acnes-specific antimicrobial TH17 clones (AMTH17) with varying antimicrobial activity against C. acnes, which we correlated by RNA sequencing to the expression of transcripts encoding proteins that contribute to antimicrobial activity. Additionally, we validated that AMTH17-mediated killing of C. acnes and bacterial pathogens was dependent on the secretion of granulysin, granzyme B, perforin, and histone H2B. We found that AMTH17 cells can release fibrous structures composed of DNA decorated with histone H2B that entangle C. acnes that we call T cell extracellular traps (TETs). Within acne lesions, H2B and IL-17 colocalized in CD4+ T cells, in proximity to TETs in the extracellular space composed of DNA decorated with H2B. This study identifies a functionally distinct subpopulation of TH17 cells with an ability to form TETs containing secreted antimicrobial proteins that capture and kill bacteria.
Collapse
Affiliation(s)
- George W Agak
- Division of Dermatology, Department of Medicine, David Geffen School of Medicine, UCLA, Los Angeles, California, USA
| | - Alice Mouton
- Department of Ecology and Evolutionary Biology, UCLA, Los Angeles, California, USA
| | - Rosane Mb Teles
- Division of Dermatology, Department of Medicine, David Geffen School of Medicine, UCLA, Los Angeles, California, USA
| | - Thomas Weston
- Department of Medicine, David Geffen School of Medicine, UCLA, Los Angeles, California, USA
| | - Marco Morselli
- Department of Molecular, Cell and Developmental Biology, and.,Institute for Quantitative and Computational Biosciences - The Collaboratory, UCLA, Los Angeles, California, USA
| | - Priscila R Andrade
- Division of Dermatology, Department of Medicine, David Geffen School of Medicine, UCLA, Los Angeles, California, USA
| | - Matteo Pellegrini
- Department of Molecular, Cell and Developmental Biology, and.,Institute for Quantitative and Computational Biosciences - The Collaboratory, UCLA, Los Angeles, California, USA
| | - Robert L Modlin
- Division of Dermatology, Department of Medicine, David Geffen School of Medicine, UCLA, Los Angeles, California, USA.,Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine, UCLA, Los Angeles, California, USA
| |
Collapse
|
7
|
Barros ADL, Lima AP, Fachin-Espinar MT, Nunez CV. Evaluation of benzocaine-based anesthetic gel in anuran skins extracts: A case study using the frog Lithodytes lineatus (Anura: Leptodactylidae). PLoS One 2020; 15:e0243654. [PMID: 33290419 PMCID: PMC7723253 DOI: 10.1371/journal.pone.0243654] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 11/20/2020] [Indexed: 11/24/2022] Open
Abstract
Extracts made from the skin of dead Lithodytes lineatus frog individuals with the application of the benzocaine-based anesthetic gel, introduced into the oral cavity, were analyzed by 1H Nuclear Magnetic Resonance to investigate whether the application of this product (oral) can make studies that use extracts from the skins of these animals unfeasible. For comparison, we used skins of another species of anuran following the same death protocol. No trace of the benzocaine substance was found in the 1H-NMR spectra of the skin extracts from any of the tested anuran species. Still, using the hierarchical clustering model, it was possible to observe the formation of well-defined groups between the skin extracts of anurans and the anesthetic used to kill these animals. Our results suggest that the lethal dose of benzocaine in gel used inside the mouth of frogs may have no influence on potential results regarding the chemical composition or even bioassays using extracts made from the skin of these animals killed under this protocol since there was no detection of this substance for the analyzed samples.
Collapse
Affiliation(s)
- André de Lima Barros
- Departamento de Ecologia, Instituto Nacional de Pesquisas da Amazônia–INPA, Manaus, Amazonas, Brasil
- Laboratório de Bioprospecção e Biotecnologia—LABB, Instituto Nacional de Pesquisas da Amazônia–INPA, Manaus, Amazonas, Brasil
- * E-mail:
| | - Albertina Pimentel Lima
- Departamento de Ecologia, Instituto Nacional de Pesquisas da Amazônia–INPA, Manaus, Amazonas, Brasil
| | - Maria Teresa Fachin-Espinar
- Laboratório de Bioprospecção e Biotecnologia—LABB, Instituto Nacional de Pesquisas da Amazônia–INPA, Manaus, Amazonas, Brasil
| | - Cecilia Veronica Nunez
- Laboratório de Bioprospecção e Biotecnologia—LABB, Instituto Nacional de Pesquisas da Amazônia–INPA, Manaus, Amazonas, Brasil
| |
Collapse
|
8
|
Wu XM, Cao L, Nie P, Chang MX. Histone H2A cooperates with RIP2 to induce the expression of antibacterial genes and MHC related genes. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2019; 101:103455. [PMID: 31336107 DOI: 10.1016/j.dci.2019.103455] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 07/19/2019] [Accepted: 07/19/2019] [Indexed: 06/10/2023]
Abstract
An octamer consisting of two copies of histones H2A, H2B, H3 and H4 is the nucleosome core. It is well established that histone derived antimicrobial peptides (AMPs) have anti-microbial properties in various invertebrate and vertebrate species. Different from well-known histone H2A-derived AMPs, the antimicrobial properties of the complete histone H2A are rather limited. In the present study, we report the functional characterization of the complete histone H2A from zebrafish. The expression of zebrafish histone H2A was higher in embryos than in larvae, and inducible in response to bacterial infection. Furthermore, the expression of zebrafish histone H2A was decreased by RIP2 deficiency with and/or without bacterial infection. During Edwardsiella piscicida infection, the overexpression of zebrafish histone H2A inhibited bacterial proliferation and increased the survival rate of zebrafish larvae. The overexpression of zebrafish histone H2A demonstrated an increased transcription of many antibacterial genes and MHC related genes, which was dependent on RIP2, an adaptor protein for signal propagation of the NLRs-mediated antibacterial immune response. In line with this, zebrafish histone H2A cooperated with RIP2 to induce the transcription of many antibacterial genes and MHC related genes. All together, these results firstly demonstrate the antibacterial property of the complete histone H2A against gram-negative bacteria E. piscicida in vivo and the correlation between zebrafish histone H2A and RIP2 adaptor protein on the transcriptional regulation of antibacterial genes and MHC related genes.
Collapse
Affiliation(s)
- Xiao Man Wu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province, China; University of Chinese Academy of Sciences, Beijing, China
| | - Lu Cao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province, China; University of Chinese Academy of Sciences, Beijing, China
| | - Pin Nie
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province, China; Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, Wuhan, Hubei Province, China; University of Chinese Academy of Sciences, Beijing, China
| | - Ming Xian Chang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province, China; Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, Wuhan, Hubei Province, China; The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
9
|
The Effect of Atractylodes macrocephala Polysaccharides on Rabbit’s Host Defense Peptide (RSRAH) mRNA Expression. Int J Pept Res Ther 2019. [DOI: 10.1007/s10989-019-09988-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
10
|
Mariano DOC, Messias MDG, Spencer PJ, Pimenta DC. Protein identification from the parotoid macrogland secretion of Duttaphrynus melanostictus. J Venom Anim Toxins Incl Trop Dis 2019; 25:e20190029. [PMID: 31467513 PMCID: PMC6707386 DOI: 10.1590/1678-9199-jvatitd-2019-0029] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 07/11/2019] [Indexed: 11/24/2022] Open
Abstract
Background: Bufonid parotoid macrogland secretion contains several low molecular mass
molecules, such as alkaloids and steroids. Nevertheless, its protein content
is poorly understood. Herein, we applied a sample preparation methodology
that allows the analysis of viscous matrices in order to examine its
proteins. Methods: Duttaphrynus melanostictus parotoid macrogland secretion
was submitted to ion-exchange batch sample preparation, yielding two
fractions: salt-displaced fraction and acid-displaced fraction. Each sample
was then fractionated by anionic-exchange chromatography, followed by
in-solution proteomic analysis. Results: Forty-two proteins could be identified, such as acyl-CoA-binding protein,
alcohol dehydrogenase, calmodulin, galectin and histone. Moreover,
de novo analyses yielded 153 peptides, whereas BLAST
analyses corroborated some of the proteomic-identified proteins.
Furthermore, the de novo peptide analyses indicate the
presence of proteins related to apoptosis, cellular structure, catalysis and
transport processes. Conclusions: Proper sample preparation allowed the proteomic and de novo
identification of different proteins in the D.
melanostictus parotoid macrogland secretion. These results may
increase the knowledge about the universe of molecules that compose
amphibian skin secretion, as well as to understand their
biological/physiological role in the granular gland.
Collapse
Affiliation(s)
| | | | - Patrick Jack Spencer
- Biotechnology Center, Nuclear and Energy Research Institute (IPEN), São Paulo, SP, Brazil
| | | |
Collapse
|
11
|
|
12
|
Mariano DOC, Di Giacomo Messias M, Prezotto-Neto JP, Spencer PJ, Pimenta DC. Biochemical Analyses of Proteins from Duttaphrynus melanostictus (Bufo melanostictus) Skin Secretion: Soluble Protein Retrieval from a Viscous Matrix by Ion-Exchange Batch Sample Preparation. Protein J 2018; 37:380-389. [DOI: 10.1007/s10930-018-9780-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
13
|
Adav SS, Subbaiaih RS, Kerk SK, Lee AY, Lai HY, Ng KW, Sze SK, Schmidtchen A. Studies on the Proteome of Human Hair - Identification of Histones and Deamidated Keratins. Sci Rep 2018; 8:1599. [PMID: 29371649 PMCID: PMC5785504 DOI: 10.1038/s41598-018-20041-9] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 01/12/2018] [Indexed: 11/30/2022] Open
Abstract
Human hair is laminar-fibrous tissue and an evolutionarily old keratinization product of follicle trichocytes. Studies on the hair proteome can give new insights into hair function and lead to the development of novel biomarkers for hair in health and disease. Human hair proteins were extracted by detergent and detergent-free techniques. We adopted a shotgun proteomics approach, which demonstrated a large extractability and variety of hair proteins after detergent extraction. We found an enrichment of keratin, keratin-associated proteins (KAPs), and intermediate filament proteins, which were part of protein networks associated with response to stress, innate immunity, epidermis development, and the hair cycle. Our analysis also revealed a significant deamidation of keratin type I and II, and KAPs. The hair shafts were found to contain several types of histones, which are well known to exert antimicrobial activity. Analysis of the hair proteome, particularly its composition, protein abundances, deamidated hair proteins, and modification sites, may offer a novel approach to explore potential biomarkers of hair health quality, hair diseases, and aging.
Collapse
Affiliation(s)
- Sunil S Adav
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Singapore.
| | - Roopa S Subbaiaih
- Lee Kong Chian School of Medicine, Nanyang Technological University, 59 Nanyang Drive, Singapore, 636921, Singapore
| | - Swat Kim Kerk
- Lee Kong Chian School of Medicine, Nanyang Technological University, 59 Nanyang Drive, Singapore, 636921, Singapore
| | - Amelia Yilin Lee
- Lee Kong Chian School of Medicine, Nanyang Technological University, 59 Nanyang Drive, Singapore, 636921, Singapore
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, Singapore
| | - Hui Ying Lai
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, Singapore
- Nanyang Environment and Water Research Institute, (Environmental Chemistry and Materials Centre), Interdisciplinary Graduate School, Nanyang Technological University, Singapore, Singapore
| | - Kee Woei Ng
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, Singapore
- Nanyang Environment and Water Research Institute, (Environmental Chemistry and Materials Centre), Interdisciplinary Graduate School, Nanyang Technological University, Singapore, Singapore
- Skin Research Institute of Singapore, Singapore, Singapore
| | - Siu Kwan Sze
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Singapore
| | - Artur Schmidtchen
- Lee Kong Chian School of Medicine, Nanyang Technological University, 59 Nanyang Drive, Singapore, 636921, Singapore
- Division of Dermatology, Department of Clinical Sciences, Lund University, Lund, Sweden
- Wound Healing Center, Bispebjerg Hospital, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
14
|
Kong X, Wu X, Pei C, Zhang J, Zhao X, Li L, Nie G, Li X. H2A and Ca-L-hipposin gene: Characteristic analysis and expression responses to Aeromonas hydrophila infection in Carassius aurutus. FISH & SHELLFISH IMMUNOLOGY 2017; 63:344-352. [PMID: 28223110 DOI: 10.1016/j.fsi.2017.02.028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 02/13/2017] [Accepted: 02/17/2017] [Indexed: 06/06/2023]
Abstract
Antimicrobial peptide is an important component of the host innate immune system and thus serves a crucial function in host defense against microbial invasion. In this study, H2A and derived antimicrobial peptide Ca-L-hipposin were cloned and characterized in Carassius aurutus. The gene H2A full-length cDNA is 908 bp and includes a 5'-terminal untranslated region (UTR) of 55 bp and a 3'-terminal UTR of 466 bp with a canonical polyadenylation signal sequence AATAA, as well as an open reading frame (ORF) of 387 bp encoding a polypeptide of 128 amino acids, with a molecular weight of 13.7 kDa, an isoelectric point of 10.7, and 94% homology with Danio rerio H2A. The secondary structure of H2A includes the α-spiral with 51 amino acids with a composition ratio of 39.8%, as well as a β-corner with 15 amino acids in a composition ratio of 11.7%. The online software ExPaSy predicted that a peptide sequence with 51 amino acids from the 2nd to 52nd amino acids in histone H2A can be produced through hydrolization by protease chymotrypsin, which indicates a difference of only three amino acids, compared with the antimicrobial peptide hipposin in Hippoglossus hippoglossus with a homology of 94%. Ca-L-hipposin includes 51 amino acids with a molecular weight of 5.4 kDa and an isoelectric point of 12.0, the secondary structure of which contains an α-helix of 17 amino acids accounting for 33.3% and a β-corner of 8 amino acids accounting for 15.7%. H2A was extensively expressed in the mRNA levels of various tissues, with higher expression levels in kidney and spleen. After C. aurutus was challenged with Aeromonas hydrophila, the mRNA expression levels of H2A were upregulated in the kidney, spleen, and liver. H2A serves an important function in the defense against the invasion of A. hydrophila. In addition, sequence characteristics reveal that Ca-L-hipposin could be a potential antimicrobial peptide for use in killing pathogenic bacteria in aquaculture.
Collapse
Affiliation(s)
- Xianghui Kong
- College of Fisheries, Henan Normal University, Xinxiang 453007, China.
| | - Xiangmin Wu
- College of Fisheries, Henan Normal University, Xinxiang 453007, China
| | - Chao Pei
- College of Fisheries, Henan Normal University, Xinxiang 453007, China
| | - Jie Zhang
- College of Fisheries, Henan Normal University, Xinxiang 453007, China
| | - Xianliang Zhao
- College of Fisheries, Henan Normal University, Xinxiang 453007, China
| | - Li Li
- College of Fisheries, Henan Normal University, Xinxiang 453007, China
| | - Guoxing Nie
- College of Fisheries, Henan Normal University, Xinxiang 453007, China
| | - Xuejun Li
- College of Fisheries, Henan Normal University, Xinxiang 453007, China
| |
Collapse
|
15
|
Bishop BM, Juba ML, Russo PS, Devine M, Barksdale SM, Scott S, Settlage R, Michalak P, Gupta K, Vliet K, Schnur JM, van Hoek ML. Discovery of Novel Antimicrobial Peptides from Varanus komodoensis (Komodo Dragon) by Large-Scale Analyses and De-Novo-Assisted Sequencing Using Electron-Transfer Dissociation Mass Spectrometry. J Proteome Res 2017; 16:1470-1482. [PMID: 28164707 DOI: 10.1021/acs.jproteome.6b00857] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Komodo dragons are the largest living lizards and are the apex predators in their environs. They endure numerous strains of pathogenic bacteria in their saliva and recover from wounds inflicted by other dragons, reflecting the inherent robustness of their innate immune defense. We have employed a custom bioprospecting approach combining partial de novo peptide sequencing with transcriptome assembly to identify cationic antimicrobial peptides from Komodo dragon plasma. Through these analyses, we identified 48 novel potential cationic antimicrobial peptides. All but one of the identified peptides were derived from histone proteins. The antimicrobial effectiveness of eight of these peptides was evaluated against Pseudomonas aeruginosa (ATCC 9027) and Staphylococcus aureus (ATCC 25923), with seven peptides exhibiting antimicrobial activity against both microbes and one only showing significant potency against P. aeruginosa. This study demonstrates the power and promise of our bioprospecting approach to cationic antimicrobial peptide discovery, and it reveals the presence of a plethora of novel histone-derived antimicrobial peptides in the plasma of the Komodo dragon. These findings may have broader implications regarding the role that intact histones and histone-derived peptides play in defending the host from infection. Data are available via ProteomeXChange with identifier PXD005043.
Collapse
Affiliation(s)
- Barney M Bishop
- Department of Chemistry and Biochemistry, George Mason University , 10920 George Mason Circle, 4C7, Manassas, Virginia, 20110, United States
| | - Melanie L Juba
- Department of Chemistry and Biochemistry, George Mason University , 10920 George Mason Circle, 4C7, Manassas, Virginia, 20110, United States
| | - Paul S Russo
- Center for Applied Proteomics and Molecular Medicine, George Mason University , 10920 George Mason Circle, 1A9, Manassas, Virginia 20110, United States
| | - Megan Devine
- Department of Chemistry and Biochemistry, George Mason University , 10920 George Mason Circle, 4C7, Manassas, Virginia, 20110, United States
| | - Stephanie M Barksdale
- School of Systems Biology, George Mason University , 10920 George Mason Circle, 1H8, Manassas, Virginia 20110, United States
| | - Shaylyn Scott
- Department of Chemistry and Biochemistry, George Mason University , 10920 George Mason Circle, 4C7, Manassas, Virginia, 20110, United States
| | - Robert Settlage
- Advanced Research Computing, Virginia Polytechnic Institute and State University , 620 Drillfield Drive, Blacksburg, Virginia 24061, United States
| | - Pawel Michalak
- Biocomplexity Institute, Virginia Polytechnic Institute and State University , 1015 Life Science Circle, Blacksburg, Virginia 24061, United States
| | - Kajal Gupta
- College of Science, George Mason University , 4400 University Drive, 5C3, Fairfax, Virginia 22030, United States
| | - Kent Vliet
- Department of Biology, University of Florida , 876 Newell Drive, PO Box 118525, Gainesville, Florida 32511, United States
| | - Joel M Schnur
- College of Science, George Mason University , 4400 University Drive, 5C3, Fairfax, Virginia 22030, United States
| | - Monique L van Hoek
- School of Systems Biology, George Mason University , 10920 George Mason Circle, 1H8, Manassas, Virginia 20110, United States
| |
Collapse
|
16
|
Hoeksema M, van Eijk M, Haagsman HP, Hartshorn KL. Histones as mediators of host defense, inflammation and thrombosis. Future Microbiol 2016; 11:441-53. [PMID: 26939619 DOI: 10.2217/fmb.15.151] [Citation(s) in RCA: 107] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Histones are known for their ability to bind to and regulate expression of DNA. However, histones are also present in cytoplasm and extracellular fluids where they serve host defense functions and promote inflammatory responses. Histones are a major component of neutrophil extracellular traps that contribute to bacterial killing but also to inflammatory injury. Histones can act as antimicrobial peptides and directly kill bacteria, fungi, parasites and viruses, in vitro and in a variety of animal hosts. In addition, histones can trigger inflammatory responses in some cases acting through Toll-like receptors or inflammasome pathways. Extracellular histones mediate organ injury (lung, liver), sepsis physiology, thrombocytopenia and thrombin generation and some proteins can bind histones and reduce these potentially harmful effects.
Collapse
Affiliation(s)
- Marloes Hoeksema
- Department of Medicine, Boston University School of Medicine, Boston, MA, USA.,Department of Infectious Diseases & Immunology, Faculty of Veterinary Medicine, Utrecht University, The Netherlands
| | - Martin van Eijk
- Department of Infectious Diseases & Immunology, Faculty of Veterinary Medicine, Utrecht University, The Netherlands
| | - Henk P Haagsman
- Department of Infectious Diseases & Immunology, Faculty of Veterinary Medicine, Utrecht University, The Netherlands
| | - Kevan L Hartshorn
- Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| |
Collapse
|
17
|
Smith VJ, Dyrynda EA. Antimicrobial proteins: From old proteins, new tricks. Mol Immunol 2015; 68:383-98. [PMID: 26320628 DOI: 10.1016/j.molimm.2015.08.009] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2015] [Revised: 08/07/2015] [Accepted: 08/10/2015] [Indexed: 01/19/2023]
Abstract
This review describes the main types of antimicrobial peptides (AMPs) synthesised by crustaceans, primarily those identified in shrimp, crayfish, crab and lobster. It includes an overview of their range of microbicidal activities and the current landscape of our understanding of their gene expression patterns in different body tissues. It further summarises how their expression might change following various types of immune challenges. The review further considers proteins or protein fragments from crustaceans that have antimicrobial properties but are more usually associated with other biological functions, or are derived from such proteins. It discusses how these unconventional AMPs might be generated at, or delivered to, sites of infection and how they might contribute to crustacean host defence in vivo. It also highlights recent work that is starting to reveal the extent of multi-functionality displayed by some decapod AMPs, particularly their participation in other aspects of host protection. Examples of such activities include proteinase inhibition, phagocytosis, antiviral activity and haematopoiesis.
Collapse
Affiliation(s)
- Valerie J Smith
- Scottish Oceans Institute, School of Biology, University of St Andrews, St Andrews, Fife, KY16 8LB Scotland, UK.
| | - Elisabeth A Dyrynda
- Centre for Marine Biodiversity & Biotechnology, School of Life Sciences, Heriot Watt University, Edinburgh, EH14 4AS Scotland, UK
| |
Collapse
|
18
|
Characterization of antibacterial activity from protein hydrolysates of the macroalga Saccharina longicruris and identification of peptides implied in bioactivity. J Funct Foods 2015. [DOI: 10.1016/j.jff.2015.06.026] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
19
|
Middle-down electron capture dissociation and electron transfer dissociation for histone analysis. J Anal Sci Technol 2015. [DOI: 10.1186/s40543-015-0060-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Abstract
The post-translational modifications (PTMs) of histones play a major role in activating or silencing gene transcription. To gain better understanding of the interplay between the PTMs that occur on histones, they are extensively studied using mass spectrometry techniques. Due to the abundance of lysines and arginines, the typical trypsin digestion has been found less favorable and GluC-digests have been explored as an alternative to yield larger peptides amenable to middle-down approaches. In addition, the use of weak cation exchange hydrophilic interaction liquid chromatography (WCX-HILIC) and the use of electron-based fragmentation techniques were found to be advantageous for the in-depth characterization of histone variants containing multiple PTMs.
As a test model, we used histones from MEL (murine erythroleukemia) cells treated with butyric acid or DMSO. After acid extraction, histone pellets were dried and fractionated using a reversed-phase C3 column. For middle-down analysis, selected histone fractions were digested using GluC. The digested samples were separated on a WCX-HILIC capillary column packed in-house with PolyCAT A resin, coupled to a linear trap quadrupole Fourier transformation ion cyclotron resonance (LTQFT-ICR) instrument. Raw data was acquired on the LTQFT-ICR using electron capture dissociation (ECD). After deconvolution of the raw data, we generated heatmaps to illustrate differential maps between differentially treated histone samples. We also explored the innovative use of Skyline to quantify histone tails. In addition, we report some preliminary data using a synthetic histone peptide acquired on an Orbitrap Fusion using electron transfer dissociation (ETD). Both, ECD and ETD methods are capable of comprehensively analyzing complex histone variations not accessible with conventional techniques.
Collapse
|
20
|
Host Defense Peptides from Asian Frogs as Potential Clinical Therapies. Antibiotics (Basel) 2015; 4:136-59. [PMID: 27025618 PMCID: PMC4790330 DOI: 10.3390/antibiotics4020136] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Revised: 02/28/2015] [Accepted: 03/04/2015] [Indexed: 01/12/2023] Open
Abstract
Host defense peptides (HDPs) are currently major focal points of medical research as infectious microbes are gaining resistance to existing drugs. They are effective against multi-drug resistant pathogens due to their unique primary target, biological membranes, and their peculiar mode of action. Even though HDPs from 60 Asian frog species belonging to 15 genera have been characterized, research into these peptides is at a very early stage. The purpose of this review is to showcase the status of peptide research in Asia. Here we provide a summary of HDPs from Asian frogs.
Collapse
|
21
|
Howe CG, Gamble MV. Enzymatic cleavage of histone H3: a new consideration when measuring histone modifications in human samples. Clin Epigenetics 2015; 7:7. [PMID: 25628766 PMCID: PMC4307743 DOI: 10.1186/s13148-014-0041-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 12/22/2014] [Indexed: 11/25/2022] Open
Abstract
Histone modifications are increasingly being used as biomarkers of cancer prognosis and survival. However, we identified a cleavage product of histone H3 in human peripheral blood mononuclear cells, which interferes with measures of certain H3 modifications. Therefore, the potential for enzymatic cleavage of histones should be considered when measuring histone modifications in human samples. Furthermore, the enzymatic cleavage of human H3 is itself a fascinating area of research and two important questions remain to be answered: 1) Does cleavage of human H3 occur in vivo, as it does in other organisms? and 2) Does it serve a biologically important function?
Collapse
Affiliation(s)
- Caitlin G Howe
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, 650 W. 168th Street, Room 1618, New York, NY 10032 USA
| | - Mary V Gamble
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, 722 W. 168th Street, Room 1107E, New York, NY 10032 USA
| |
Collapse
|
22
|
Talbert PB, Henikoff S. Environmental responses mediated by histone variants. Trends Cell Biol 2014; 24:642-50. [PMID: 25150594 DOI: 10.1016/j.tcb.2014.07.006] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Revised: 07/22/2014] [Accepted: 07/24/2014] [Indexed: 01/19/2023]
Abstract
Fluctuations in the ambient environment can trigger chromatin disruptions, involving replacement of nucleosomes or exchange of their histone subunits. Unlike canonical histones, which are available only during S-phase, replication-independent histone variants are present throughout the cell cycle and are adapted for chromatin repair. The H2A.Z variant mediates responses to environmental perturbations including fluctuations in temperature and seasonal variation. Phosphorylation of histone H2A.X rapidly marks double-strand DNA breaks for chromatin repair, which is mediated by both H2A and H3 histone variants. Other histones are used as weapons in conflicts between parasites and their hosts, which suggests broad involvement of histone variants in environmental responses beyond chromatin repair.
Collapse
Affiliation(s)
- Paul B Talbert
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; Howard Hughes Medical Institute, Seattle, WA 98109, USA
| | - Steven Henikoff
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; Howard Hughes Medical Institute, Seattle, WA 98109, USA.
| |
Collapse
|
23
|
Dráb T, Kračmerová J, Hanzlíková E, Černá T, Litváková R, Pohlová A, Tichá M, Přikryl P, Liberda J. The antimicrobial action of histones in the reproductive tract of cow. Biochem Biophys Res Commun 2014; 443:987-90. [DOI: 10.1016/j.bbrc.2013.12.077] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Accepted: 12/15/2013] [Indexed: 01/21/2023]
|
24
|
Murphy EC, Mohanty T, Frick IM. FAF and SufA: proteins of Finegoldia magna that modulate the antibacterial activity of histones. J Innate Immun 2013; 6:394-404. [PMID: 24335013 DOI: 10.1159/000356432] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Accepted: 10/14/2013] [Indexed: 11/19/2022] Open
Abstract
Many bacterial pathogens have developed methods to overcome the defences of the host innate immune system. One such defence is the release of antimicrobial peptides (AMPs). Histones have been found to function as AMPs, in addition to their main biological function of packaging and organising DNA into nucleosomes. In this study, the Gram-positive anaerobic coccus Finegoldia magna was found to bind histones by Western blot and immunoprecipitation analysis. F. magna, which is normally a commensal of the skin and mucous membranes, is also known to act as an opportunistic pathogen and has been isolated from various clinical infection sites. It was found to bind to histones extracted from human skin epidermis through its surface and extracellular adhesion protein FAF. Through FAF binding, F. magna was protected from histone bactericidal activity. Furthermore, the histones were found to be degraded by SufA, a subtilisin-like extracellular serine protease of F. magna. Hence, the results of the present study will give more insight into how F. magna persists both as a commensal organism at the basement membrane of the skin and as an opportunistic pathogen during infection.
Collapse
Affiliation(s)
- Elizabeth C Murphy
- Division of Infection Medicine, Department of Clinical Sciences, Lund University, Lund, Sweden
| | | | | |
Collapse
|
25
|
Morita S, Tagai C, Shiraishi T, Miyaji K, Iwamuro S. Differential mode of antimicrobial actions of arginine-rich and lysine-rich histones against Gram-positive Staphylococcus aureus. Peptides 2013; 48:75-82. [PMID: 23932939 DOI: 10.1016/j.peptides.2013.07.025] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Revised: 07/30/2013] [Accepted: 07/30/2013] [Indexed: 11/28/2022]
Abstract
We previously reported the activities and modes of action of arginine (Arg)-rich histones H3 and H4 against Gram-negative bacteria. In the present study, we investigated the properties of the Arg-rich histones against Gram-positive bacteria in comparison with those of lysine (Lys)-rich histone H2B. In a standard microdilution assay, calf thymus histones H2B, H3, and H4 showed growth inhibitory activity against Staphylococcus aureus with minimum effective concentration values of 4.0, 4.0, and 5.6 μM, respectively. Laser confocal microscopic analyses revealed that both the Arg-rich and Lys-rich histones associated with the surface of S. aureus. However, while the morphology of S. aureus treated with histone H2B appeared intact, those treated with the histones H3 and H4 closely resembled each other, and the cells were blurred. Electrophoretic mobility shift assay results revealed these histones have binding affinity to lipoteichoic acid (LTA), one of major cell surface components of Gram-positive bacteria. Scanning electron microscopic analyses demonstrated that while histone H2B elicited no obvious changes in cell morphology, histones H3 and H4 disrupted the cell membrane structure with bleb formation in a manner similar to general antimicrobial peptides. Consequently, our results suggest that bacterial cell surface LTA initially attracts both the Arg- and Lys-rich histones, but the modes of antimicrobial action of these histones are different; the former involves cell membrane disruption and the latter involves the cell integrity disruption.
Collapse
Affiliation(s)
- Shuu Morita
- Department of Biology, Faculty of Science, Toho University, 2-2-1 Miyama, Funabashi, Chiba 274-8510, Japan
| | | | | | | | | |
Collapse
|
26
|
Yan H, Liu Y, Tang J, Mo G, Song Y, Yan X, Wei L, Lai R. A Novel Antimicrobial Peptide from Skin Secretions of the Tree FrogTheloderma kwangsiensis. Zoolog Sci 2013; 30:704-9. [DOI: 10.2108/zsj.30.704] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
27
|
Zhang H, Wei L, Zou C, Bai JJ, Song Y, Liu H. Purification and Characterization of a Tachykinin-Like Peptide from Skin Secretions of the Tree Frog,Theloderma kwangsiensis. Zoolog Sci 2013; 30:529-33. [DOI: 10.2108/zsj.30.529] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
28
|
Brinkmann V, Zychlinsky A. Neutrophil extracellular traps: is immunity the second function of chromatin? ACTA ACUST UNITED AC 2013; 198:773-83. [PMID: 22945932 PMCID: PMC3432757 DOI: 10.1083/jcb.201203170] [Citation(s) in RCA: 724] [Impact Index Per Article: 65.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Neutrophil extracellular traps (NETs) are made of processed chromatin bound to granular and selected cytoplasmic proteins. NETs are released by white blood cells called neutrophils, maybe as a last resort, to control microbial infections. This release of chromatin is the result of a unique form of cell death, dubbed “NETosis.” Here we review our understanding of how NETs are made, their function in infections and as danger signals, and their emerging importance in autoimmunity and coagulation.
Collapse
Affiliation(s)
- Volker Brinkmann
- Microscopy Core Facility, Max Planck Institute for Infection Biology, 10117 Berlin, Germany.
| | | |
Collapse
|
29
|
Tambor V, Kacerovsky M, Lenco J, Bhat G, Menon R. Proteomics and bioinformatics analysis reveal underlying pathways of infection associated histologic chorioamnionitis in pPROM. Placenta 2013; 34:155-61. [DOI: 10.1016/j.placenta.2012.11.028] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Revised: 11/04/2012] [Accepted: 11/26/2012] [Indexed: 10/27/2022]
|
30
|
Nam BH, Seo JK, Go HJ, Lee MJ, Kim YO, Kim DG, Lee SJ, Park NG. Purification and characterization of an antimicrobial histone H1-like protein and its gene from the testes of olive flounder, Paralichthys olivaceus. FISH & SHELLFISH IMMUNOLOGY 2012; 33:92-98. [PMID: 22538352 DOI: 10.1016/j.fsi.2012.04.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2011] [Revised: 03/28/2012] [Accepted: 04/10/2012] [Indexed: 05/31/2023]
Abstract
An approximately 21 kDa antimicrobial protein was purified from an acidified testis extract of olive flounder, Paralichthys olivaceus, by ion-exchange and C(18) reversed-phase HPLC. A comparison of the N-terminal amino acid sequence with those of other known antimicrobial polypeptides revealed high homology between this antimicrobial protein and other histone H1 molecules; thus, it was designated flounder histone H1-like protein (fH1LP). fH1LP showed potent antimicrobial activity against Gram-positive bacteria, including Bacillus subtilis, Staphylococcus aureus, and Streptococcus iniae (minimal effective concentrations [MECs], 2.8-30.0 μg/ml), Gram-negative bacteria, including Aeromonas hydrophila, Escherichia coli D31, Vibrio parahaemolyticus (MECs, 1.4-12.0 μg/ml), and Candida albicans (MEC, 2.0 μg/ml). cDNA cloning and tissue distribution studies of fH1LP indicated that it is constitutively expressed in testis and ovary. The fH1LP expression level was significantly dependent on developmental stage, and decreased dramatically after hatching. However, lipopolysaccharide stimulation did not induce fH1LP mRNA in other immune organs, including the kidney and spleen. These results suggest that fH1LP plays an important role in innate immunity in fish during reproduction, including mating, fertilization, and hatching.
Collapse
Affiliation(s)
- Bo-Hye Nam
- Biotechnology Research Division, National Fisheries Research and Development Institute, 408-1 Sirang-ri, Gijang-eup, Gijang-Gun, Busan 619-902, Republic of Korea.
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Mori T, Kitani Y, Ogihara J, Sugiyama M, Yamamoto G, Kishida O, Nishimura K. Histological and MS spectrometric analyses of the modified tissue of bulgy form tadpoles induced by salamander predation. Biol Open 2012; 1:308-17. [PMID: 23213421 PMCID: PMC3509453 DOI: 10.1242/bio2012604] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The rapid induction of a defensive morphology by a prey species in face of a predation risk is an intriguing in ecological context; however, the physiological mechanisms that underlie this phenotypic plasticity remain uncertain. Here we investigated the phenotypic changes shown by Rana pirica tadpoles in response to a predation threat by larvae of the salamander Hynobius retardatus. One such response is the bulgy morph phenotype, a relatively rapid swelling in size by the tadpoles that begins within 4 days and reaches a maximum at 8 to 10 days. We found that although the total volume of bodily fluid increased significantly (P<0.01) in bulgy morph tadpoles, osmotic pressure was maintained at the same level as control tadpoles by a significant increase (P<0.01) in Na and Cl ion concentrations. In our previous report, we identified a novel frog gene named pirica that affects the waterproofing of the skin membrane in tadpoles. Our results support the hypothesis that predator-induced expression of pirica on the skin membrane causes retention of absorbed water. Midline sections of bulgy morph tadpoles showed the presence of swollen connective tissue beneath the skin that was sparsely composed of cells containing hyaluronic acid. Mass spectrographic (LC-MS/MS) analysis identified histone H3 and 14-3-3 zeta as the most abundant constituents in the liquid aspirated from the connective tissue of bulgy tadpoles. Immunohistochemistry using antibodies against these proteins showed the presence of non-chromatin associated histone H3 in the swollen connective tissue. Histones and 14-3-3 proteins are also involved in antimicrobial activity and secretion of antibacterial proteins, respectively. Bulgy tadpoles have a larger surface area than controls, and their skin often has bite wounds inflicted by the larval salamanders. Thus, formation of the bulgy morph may also require and be supported by activation of innate immune systems.
Collapse
Affiliation(s)
- Tsukasa Mori
- Nihon University College of Bioresource Sciences , Kameino 1866, Fujisawa 252-0880 , Japan
| | | | | | | | | | | | | |
Collapse
|
32
|
Tagai C, Morita S, Shiraishi T, Miyaji K, Iwamuro S. Antimicrobial properties of arginine- and lysine-rich histones and involvement of bacterial outer membrane protease T in their differential mode of actions. Peptides 2011; 32:2003-9. [PMID: 21930170 DOI: 10.1016/j.peptides.2011.09.005] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2011] [Revised: 09/03/2011] [Accepted: 09/03/2011] [Indexed: 01/03/2023]
Abstract
There is growing evidence of the antimicrobial properties of histones and histone-derived peptides; however, most of them are specific to lysine (Lys)-rich histones (H1, H2A, and H2B). In the present study, we focused on arginine (Arg)-rich histones (H3 and H4) and investigated their antimicrobial properties in comparison with those of histone H2B. In a standard microdilution assay, calf thymus histones H2B, H3, and H4 showed growth inhibitory activity against the bacterial outer membrane protease T (OmpT) gene-expressing Escherichia coli strain JCM5491 with calculated 50% growth inhibitory concentrations of 3.8, 10, and 12.7 μM, respectively. A lysate prepared from the JCM5491 cells was capable of strongly, moderately, and slightly fragmenting histones H2B, H3, and H4, respectively. While the lysate prepared from the cells of the ompT-deleted E. coli strain BL21(DE3) did not digest these histones, the ompT-transformed BL21(DE3), termed BL21/OmpT(+), cell lysate digested the histones more strongly than the JCM5491 cell lysate. Laser confocal and scanning electron microscopic analyses demonstrated that while histone H2B penetrated the cell membrane of JCM5491 or BL21/OmpT(+) cells, histones H3 and H4 remained on the cell surface and subsequently disrupted the cell membrane structure with bleb formation in a manner similar to general antimicrobial peptides. The BL21(DE3) cells treated with each histone showed no bleb formation, but cell integrity was affected and the cell surface was corrugated. Consequently, it is suggested that OmpT is involved in the antimicrobial properties of Arg- and Lys-rich histones and that the modes of antimicrobial action of these histones are different.
Collapse
Affiliation(s)
- Chihiro Tagai
- Department of Biology, Faculty of Science, Toho University, Funabashi, Chiba, Japan
| | | | | | | | | |
Collapse
|
33
|
De Lucca AJ, Heden LO, Ingber B, Bhatnagar D. Antifungal properties of wheat histones (H1-H4) and purified wheat histone H1. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2011; 59:6933-6939. [PMID: 21595494 DOI: 10.1021/jf201646x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Wheat ( Triticum spp.) histones H1, H2, H3, and H4 were extracted, and H1 was further purified. The effect of these histones on specific fungi that may or may not be pathogenic to wheat was determined. These fungi included Aspergillus flavus , Aspergillus fumigatus , Aspergillus niger , Fusarium oxysporum , Fusarium verticillioides , Fusarium solani , Fusarium graminearum , Penicillium digitatum , Penicillium italicum , and Greeneria uvicola . Non-germinated and germinating conidia of these fungi were bioassayed separately. The non-germinated and germinating conidia of all Fusarium species were highly susceptible to the mixture (H1-H4) as well as pure H1, with viability losses of 99-100% found to be significant (p < 0.001) at ≤10 μM or less for the histone mixture and pure H1. F. graminearum was the most sensitive to histone activity. The histones were inactive against all of the non-germinated Penicillium spp. conidia. However, they significantly reduced the viability of the germinating conidia of the Penicillium spp. conidia, with 95% loss at 2.5 μM. Non-germinated and germinating conidia viability of the Aspergillus spp. and G. uvicola were unaffected when exposed to histones up to 10 μM. Results indicate that Fusarium spp. pathogenic to wheat are susceptible to wheat histones, indicating that these proteins may be a resistance mechanism in wheat against fungal infection.
Collapse
Affiliation(s)
- Anthony J De Lucca
- Southern Regional Research Center, Agricultural Research Service, United States Department of Agriculture, New Orleans, LA 70124, USA.
| | | | | | | |
Collapse
|
34
|
Conlon JM. Structural diversity and species distribution of host-defense peptides in frog skin secretions. Cell Mol Life Sci 2011; 68:2303-15. [PMID: 21560068 PMCID: PMC11114843 DOI: 10.1007/s00018-011-0720-8] [Citation(s) in RCA: 134] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2011] [Revised: 04/26/2011] [Accepted: 04/26/2011] [Indexed: 01/24/2023]
Abstract
Cationic peptides that adopt an amphipathic α-helical conformation in a membrane-mimetic environment are synthesized in the skins of many frog species. These peptides often display cytolytic activities against bacteria and fungi consistent with the idea that they play a role in the host's system of defense against pathogenic microorganisms, but their importance in the survival strategy of the animal is not clearly understood. Despite the common misconception that antimicrobial peptides are synthesized in the skins of all anurans, the species distribution is sporadic, suggesting that their production may confer some evolutionary advantage to the organism but is not necessary for survival. The low potency of many frog skin antimicrobial peptides is consistent with the hypothesis that cutaneous symbiotic bacteria may provide the major system of defense against pathogenic microorganisms in the environment with antimicrobial peptides assuming a supplementary role in some species.
Collapse
Affiliation(s)
- J Michael Conlon
- Department of Biochemistry, Faculty of Medicine and Health Sciences, United Arab Emirates University, 17666, Al-Ain, United Arab Emirates.
| |
Collapse
|
35
|
König E, Bininda-Emonds ORP. Evidence for convergent evolution in the antimicrobial peptide system in anuran amphibians. Peptides 2011; 32:20-5. [PMID: 20955747 DOI: 10.1016/j.peptides.2010.10.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2010] [Revised: 10/06/2010] [Accepted: 10/06/2010] [Indexed: 12/01/2022]
Abstract
Amphibians are characterized in part by their highly specialized and glandular skin that enables key physiological functions such as cutaneous respiration and defense against a variety of micro- and macroscopic predators via toxic components (e.g., alkaloids and bufodienolids), biogenic amines, neuropeptides and antimicrobial peptides (AMPs). To date, DNA sequence information regarding AMP genes in anurans is restricted to only a few anuran families and largely to "higher frogs" (Neobatrachia). Here, we analyze the DNA information for the signal sequences of the AMP precursors in anuran amphibians available to the end of 2009 in an explicit phylogenetic framework to characterize the evolution of this large, diverse gene family. Comparison of cDNA sequences suggests that there are at least three different motifs within the signal peptide sequence of the AMP-precursor corresponding to the evolutionary lineages Neobatrachia, Bombinatoridae (Bombina spp.) and Pipidae (Xenopus laevis). The signal sequences are strongly conserved within each lineage (as previously noted for Neobatrachia), but highly divergent between them. Together with the lack of a linear relationship between the degree of sequence divergence and evolutionary time, we hypothesize that the anuran AMP system has evolved convergently on at least three occasions. However, additional sampling, especially among the largely poorly sampled non-neobatrachian lineages, is required to confirm this hypothesis and could reveal the existence of additional signal sequence motifs.
Collapse
Affiliation(s)
- Enrico König
- Institut für Spezielle Zoologie und Evolutionsbiologie mit Phyletischem Museum, Friedrich-Schiller-Universität Jena, Erbertstrasse 1, 07743 Jena, Germany.
| | | |
Collapse
|
36
|
Seo JK, Stephenson J, Crawford JM, Stone KL, Noga EJ. American oyster, Crassostrea virginica, expresses a potent antibacterial histone H2B protein. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2010; 12:543-551. [PMID: 19949827 DOI: 10.1007/s10126-009-9240-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2009] [Accepted: 10/27/2009] [Indexed: 05/28/2023]
Abstract
An antibacterial protein was purified from acidified gill extract of a bivalve mollusk, the American oyster (Crassostrea virginica). Protein isolation was best accomplished by briefly boiling the tissues in a weak acetic acid solution. Adding protease inhibitors while boiling did not have a major effect on activity recovery. In contrast, use of only protease inhibitors (without boiling) resulted in virtually no recovery of this activity. The amino acid sequence of this antibacterial protein was identified as a histone H2B and was designated cvH2B. cvH2B had potent activity against gram-negative bacteria, including the human pathogens Vibrio parahaemolyticus and Vibrio vulnificus, which commonly reside in oyster tissues. We estimated that the concentration of this protein was well within the concentration that was inhibitory to these bacterial pathogens in vitro. This is the first report of the antimicrobial function of histone H2B from any mollusk.
Collapse
Affiliation(s)
- Jung-Kil Seo
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, 4700 Hillsborough Street, Raleigh, NC 27606, USA
| | | | | | | | | |
Collapse
|
37
|
Wellman-Labadie O, Lemaire S, Mann K, Picman J, Hincke MT. Antimicrobial activity of lipophilic avian eggshell surface extracts. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2010; 58:10156-10161. [PMID: 20804124 DOI: 10.1021/jf101954g] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
The avian eggshell cuticle is the waxy outermost layer of the mineralized eggshell in direct contact with the environment. In this study, lipophilic eggshell surface extracts from three domestic species were evaluated for their antimicrobial activity. Chicken and goose extracts demonstrated potent bactericidal activity against both Gram-positive and Gram-negative bacteria, while activity could not be detected for duck eggshell surface extracts. Using the chicken as a model species, evaluation of albumen, fecal material, and uropygial gland extracts eliminated these as a potential source of the observed activity. Results suggest that lipophilic components are incorporated into the egg during its formation and play a role in antimicrobial defense. This study represents the first successful extraction and evaluation of lipophilic antimicrobial components from the avian egg.
Collapse
Affiliation(s)
- Olivier Wellman-Labadie
- Department of Medicine, University of British Columbia, 835 West 10th Avenue, Vancouver, BC, Canada V5Z 4E8.
| | | | | | | | | |
Collapse
|
38
|
Cunha-Filho GA, Resck IS, Cavalcanti BC, Pessoa CÓ, Moraes MO, Ferreira JR, Rodrigues FA, dos Santos ML. Cytotoxic profile of natural and some modified bufadienolides from toad Rhinella schneideri parotoid gland secretion. Toxicon 2010; 56:339-48. [DOI: 10.1016/j.toxicon.2010.03.021] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2009] [Revised: 03/13/2010] [Accepted: 03/23/2010] [Indexed: 11/24/2022]
|
39
|
Anderson DC, Green GR, Smith K, Selker EU. Extensive and varied modifications in histone H2B of wild-type and histone deacetylase 1 mutant Neurospora crassa. Biochemistry 2010; 49:5244-57. [PMID: 20462202 DOI: 10.1021/bi100391w] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
DNA methylation is deficient in a histone deacetylase 1 (HDA1) mutant (hda-1) strain of Neurospora crassa with inactivated histone deacetylase 1. Difference two-dimensional (2D) gels identified the primary histone deacetylase 1 target as histone H2B. Acetylation was identified by LC-MS/MS at five different lysines in wild-type H2B and at 11 lysines in hda-1 H2B, suggesting Neurospora H2B is a complex combination of different acetylated species. Individual 2D gel spots were shifted by single lysine acetylations. FTICR MS-observed methylation ladders identify an ensemble of 20-25 or more modified forms for each 2D gel spot. Twelve different lysines or arginines were methylated in H2B from the wild type or hda-1; only two were in the N-terminal tail. Arginines were modified by monomethylation, dimethylation, or deimination. H2B from wild-type and hda-1 ensembles may thus differ by acetylation at multiple sites, and by additional modifications. Combined with asymmetry-generated diversity in H2B structural states in nucleosome core particles, the extensive modifications identified here can create substantial histone-generated structural diversity in nucleosome core particles.
Collapse
Affiliation(s)
- D C Anderson
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon 97403, USA.
| | | | | | | |
Collapse
|
40
|
The contribution of skin antimicrobial peptides to the system of innate immunity in anurans. Cell Tissue Res 2010; 343:201-12. [PMID: 20640445 DOI: 10.1007/s00441-010-1014-4] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2010] [Accepted: 06/08/2010] [Indexed: 10/19/2022]
Abstract
Cationic peptides with the propensity to adopt an amphipathic α-helical conformation in a membrane-mimetic environment are synthesized in the skins of many species of anurans (frogs and toads). These peptides frequently display cytolytic activities against a range of pathogenic bacteria and fungi consistent with the idea that they play a role in the host's system of innate immunity. However, the importance of the peptides in the survival strategy of the animal is not clearly understood. It is a common misconception that antimicrobial peptides are synthesized in the skins of all anurans. In fact, the species distribution is sporadic suggesting that their production may confer some evolutionary advantage to the organism but is not necessary for survival. Although growth inhibitory activity against the chytrid fungus Batrachochytrium dendrobatidis, responsible for anuran population declines worldwide, has been demonstrated in vitro, the ability of frog skin antimicrobial peptides to protect the animal in the wild appears to be limited and there is no clear correlation between their production by a species and its resistance to fatal chytridiomycosis. The low potency of many frog skin antimicrobial peptides is consistent with the hypothesis that cutaneous symbiotic bacteria may provide the major system of defense against pathogenic microorganisms in the environment with antimicrobial peptides assuming a supplementary role in some species.
Collapse
|
41
|
Smith VJ, Desbois AP, Dyrynda EA. Conventional and unconventional antimicrobials from fish, marine invertebrates and micro-algae. Mar Drugs 2010; 8:1213-62. [PMID: 20479976 PMCID: PMC2866484 DOI: 10.3390/md8041213] [Citation(s) in RCA: 129] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2010] [Revised: 04/02/2010] [Accepted: 04/12/2010] [Indexed: 12/31/2022] Open
Abstract
All eukaryotic organisms, single-celled or multi-cellular, produce a diverse array of natural anti-infective agents that, in addition to conventional antimicrobial peptides, also include proteins and other molecules often not regarded as part of the innate defences. Examples range from histones, fatty acids, and other structural components of cells to pigments and regulatory proteins. These probably represent very ancient defence factors that have been re-used in new ways during evolution. This review discusses the nature, biological role in host protection and potential biotechnological uses of some of these compounds, focusing on those from fish, marine invertebrates and marine micro-algae.
Collapse
Affiliation(s)
- Valerie J Smith
- Scottish Oceans Institute, University of St Andrews, St Andrews, KY16 8LB, Scotland, UK.
| | | | | |
Collapse
|
42
|
Tsao HS, Spinella SA, Lee AT, Elmore DE. Design of novel histone-derived antimicrobial peptides. Peptides 2009; 30:2168-73. [PMID: 19770014 DOI: 10.1016/j.peptides.2009.09.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2009] [Revised: 09/05/2009] [Accepted: 09/08/2009] [Indexed: 11/18/2022]
Abstract
Previous studies have identified several naturally occurring antimicrobial peptides derived from histone proteins. This research aimed to design novel histone-derived antimicrobial peptides (HDAPs). To this end, three novel peptides (DesHDAP1, DesHDAP2, and DesHDAP3) were designed based on a histone-DNA crystal structure and structural properties of buforin II, the best characterized naturally occurring HDAP. Molecular dynamics simulations and circular dichroism spectroscopy were used to further support the predicted structure and potential nucleic acid interactions of these three designed peptides. The antibacterial activity of the three peptides was then verified experimentally against a series of bacterial strains using a radial diffusion assay. One of these peptides is the first known fragment of histone H3 with antibacterial properties. Optical density measurements of bacterial cells exposed to the designed peptides implied that at least two of the novel peptides can induce cell death without causing significant membrane permeabilization, as observed for buforin II. The antibacterial potency of these designed HDAPs does not appear to correlate with their overall alpha-helical content, unlike previous observations for analogs of buforin II. However, the most potent designed peptide, DesHDAP1, shares a markedly similar circular dichroism spectrum with buforin II. These results demonstrate the potential of using histone structures as a framework for designing novel antimicrobial peptides. As well, these studies represent an important starting point for a broader characterization of properties shared by HDAPs.
Collapse
Affiliation(s)
- Hoi See Tsao
- Department of Chemistry, Wellesley College, 106 Central St, Wellesley, MA 02481, United States
| | | | | | | |
Collapse
|
43
|
Conlon JM, Iwamuro S, King JD. Dermal Cytolytic Peptides and the System of Innate Immunity in Anurans. Ann N Y Acad Sci 2009; 1163:75-82. [DOI: 10.1111/j.1749-6632.2008.03618.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
44
|
Cho JH, Sung BH, Kim SC. Buforins: histone H2A-derived antimicrobial peptides from toad stomach. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2008; 1788:1564-9. [PMID: 19041293 DOI: 10.1016/j.bbamem.2008.10.025] [Citation(s) in RCA: 144] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2008] [Revised: 10/27/2008] [Accepted: 10/31/2008] [Indexed: 10/21/2022]
Abstract
Antimicrobial peptides (AMPs) constitute an important component of the innate immune system in a variety of organisms. Buforin I is a 39-amino acid AMP that was first isolated from the stomach tissue of the Asian toad Bufo bufo gargarizans. Buforin II is a 21-amino acid peptide that is derived from buforin I and displays an even more potent antimicrobial activity than its parent AMP. Both peptides share complete sequence identity with the N-terminal region of histone H2A that interacts directly with nucleic acids. Buforin I is generated from histone H2A by pepsin-directed proteolysis in the cytoplasm of gastric gland cells. After secretion into the gastric lumen, buforin I remains adhered to the mucous biofilm that lines the stomach, thus providing a protective antimicrobial coat. Buforins, which house a helix-hinge-helix domain, kill a microorganism by entering the cell without membrane permeabilization and thus binding to nucleic acids. The proline hinge is crucial for the cell penetrating activity of buforins. Buforins also are known to possess anti-endotoxin and anticancer activities, thus making these peptides attractive reagents for pharmaceutical applications. This review describes the role of buforins in innate host defense; future research paradigms; and use of these agents as human therapeutics.
Collapse
Affiliation(s)
- Ju Hyun Cho
- Department of Biology, Research Institute of Life Science, Gyeongsang National University, Jinju 660-701, Republic of Korea
| | | | | |
Collapse
|
45
|
Robalino J, Carnegie RB, O'Leary N, Ouvry-Patat SA, de la Vega E, Prior S, Gross PS, Browdy CL, Chapman RW, Schey KL, Warr G. Contributions of functional genomics and proteomics to the study of immune responses in the Pacific white leg shrimp Litopenaeus vannamei. Vet Immunol Immunopathol 2008; 128:110-8. [PMID: 19070907 DOI: 10.1016/j.vetimm.2008.10.329] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The need for better control of infectious diseases in shrimp aquaculture and the ecological importance of crustacea in marine ecosystems have prompted interest in the study of crustacean immune systems, particularly those of shrimp. As shrimp and other crustacea are poorly understood from the immunological point of view, functional genomic and proteomic approaches have been applied as a means of quickly obtaining molecular information regarding immune responses in these organisms. In this article, a series of results derived from transcriptomic and proteomic studies in shrimp (Litopenaeus vannamei) are discussed. Expressed Sequence Tag analysis, differential expression cloning through Suppression Subtractive Hybridization, expression profiling using microarrays, and proteomic studies using mass spectrometry, have provided a wealth of useful data and opportunities for new avenues of research. Examples of new research directions arising from these studies in shrimp include the molecular diversity of antimicrobial effectors, the role of double stranded RNA as an inducer of antiviral immunity, and the possible overlap between antibacterial and antiviral responses in the shrimp.
Collapse
Affiliation(s)
- Javier Robalino
- Marine Biomedicine and Environmental Sciences Center, Medical University of South Carolina, Hollings Marine Laboratory, United States
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Kawasaki H, Koyama T, Conlon JM, Yamakura F, Iwamuro S. Antimicrobial action of histone H2B in Escherichia coli: evidence for membrane translocation and DNA-binding of a histone H2B fragment after proteolytic cleavage by outer membrane proteinase T. Biochimie 2008; 90:1693-702. [PMID: 18706965 DOI: 10.1016/j.biochi.2008.07.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2008] [Accepted: 07/15/2008] [Indexed: 11/16/2022]
Abstract
Previous studies have led to the isolation of histone H2B with antibacterial properties from an extract of the skin of the Schlegel's green tree frog Rhacophorus schlegelii and it is now demonstrated that the intact peptide is released into norepinephrine-stimulated skin secretions. In order to investigate the mechanism of action of this peptide, a maltose-binding protein (MBP)-fused histone H2B (MBP-H2B) conjugate was prepared and subjected to antimicrobial assay. The fusion protein showed bacteriostatic activity against Escherichia coli strain JCM5491 with a minimum inhibitory concentration of 11 microM. The lysate prepared from JCM5491 cells was capable of fragmenting MBP-H2B within the histone H2B region, but the lysate from the outer membrane proteinase T (OmpT) gene-deleted BL21(DE3) cells was not. FITC-labeled MBP-H2B (FITC-MBP-H2B) penetrated into the bacterial cell membrane of JCM5491 and ompT-transformed BL21(DE3) cells, but not into ompT-deleted BL21(DE3) cells. Gel retardation assay using MBP-H2B-deletion mutants indicated that MBP-H2B bound to DNA at a site within the N-terminal region of histone H2B. Consequently, it is proposed that the antimicrobial action of histone H2B involves, at least in part, penetration of an OmpT-produced N-terminal histone H2B fragment into the bacterial cell membrane with subsequent inhibition of cell functions.
Collapse
Affiliation(s)
- Hiroaki Kawasaki
- Department of Biology, Faculty of Science, Toho University, Funabashi, Chiba, Japan
| | | | | | | | | |
Collapse
|
47
|
Kawasaki H, Iwamuro S, Goto Y, Nielsen PF, Conlon JM. Characterization of a hemolytic protein, identified as histone H4, from the skin of the Japanese tree frog Hyla japonica (Hylidae). Comp Biochem Physiol B Biochem Mol Biol 2007; 149:120-5. [PMID: 17905622 DOI: 10.1016/j.cbpb.2007.08.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2007] [Revised: 08/28/2007] [Accepted: 08/28/2007] [Indexed: 01/09/2023]
Abstract
An extract of the skin of the Japanese tree frog, Hyla japonica Günther, 1859 (Anura: Hylidae) did not inhibit the growth of the bacteria Escherichia coli or Staphylococcus aureus, but contained a protein that was strongly hemolytic against human erythrocytes. The protein was purified to near homogeneity by reverse-phase HPLC, and its N-terminal amino acid sequence (SGRGKGGKGL...) identified it as histone H4. The complete primary structure of the 102-amino-acid-residue histone H4 was determined by a combination of molecular cloning of genomic and complementary DNAs encoding the protein. The molecular mass of the purified histone H4 determined by electrospray mass spectrometry was 71+/-2 Daltons greater than that predicted from the deduced amino acid sequence of the protein. The +71 mass units is consistent with the proposal that the protein isolated from the skin was post-translationally modified by addition of one acetyl and two methyl groups. The stem-loop structure at the 3' flanking region of the H. japonica histone H4 gene, which acts as a transcription termination signal, contained a nucleotide sequence (5'-GGCTCTCCTCAGAGCC-3') with unusual structural features not seen in other histone genes.
Collapse
Affiliation(s)
- Hiroaki Kawasaki
- Department of Biology, Faculty of Science, Toho University, Funabashi, Chiba 274-8510, Japan
| | | | | | | | | |
Collapse
|
48
|
Li GH, Mine Y, Hincke MT, Nys Y. Isolation and characterization of antimicrobial proteins and peptide from chicken liver. J Pept Sci 2007; 13:368-78. [PMID: 17431854 DOI: 10.1002/psc.851] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Endogenous antimicrobial peptides and proteins are crucial components of the innate immune system and play an essential role in the defense against infection. Antimicrobial activity was detected in the acid extract of livers harvested from healthy adult White Leghorn hens, Gallus gallus. Two antimicrobial proteins and one antimicrobial polypeptide were isolated from the liver extract by cation-exchange and gel filtration chromatography, followed by two-step reverse-phase high-performance liquid chromatography (RP-HPLC). These antimicrobial components were identified as histones H2A and H2B.V, and histone H2B C-terminal fragment using peptide mass fingerprinting and partial sequencing by tandem nanoelectrospray mass spectrometry. The proteins and the peptide identified in the present study, which exhibited antimicrobial activity against both Gram-positive and Gram-negative bacteria, were thermostable and showed salt-resistant activity. The antimicrobial properties of histones and histone fragment in chicken provide further evidence that histones, in addition to their role in nucleosome formation, may play an important role in innate host defense against intracellular or extracellular microbe invasion in a wide range of animal species.
Collapse
Affiliation(s)
- Guan-Hong Li
- Department of Food Science, University of Guelph, Guelph, Ontario, Canada N1G 2W1, Canada
| | | | | | | |
Collapse
|
49
|
Silphaduang U, Hincke MT, Nys Y, Mine Y. Antimicrobial proteins in chicken reproductive system. Biochem Biophys Res Commun 2006; 340:648-55. [PMID: 16389069 DOI: 10.1016/j.bbrc.2005.12.054] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2005] [Accepted: 12/05/2005] [Indexed: 11/30/2022]
Abstract
Antimicrobial activity was detected in the ovary and oviduct tissues of healthy mature White Leghorn hens, Gallus gallus. Two antimicrobial proteins were purified to homogeneity using acid extraction followed by multiple steps of chromatography and the pure proteins were further characterized biochemically. Peptide mixtures obtained after enzymatic digestion of the chicken antimicrobial proteins were analyzed using peptide mass fingerprinting and partial sequencing by tandem nanoelectrospray mass spectrometry and the proteins were identified as histones H1 and H2B. Chicken histone antimicrobial proteins were active against both Gram-positive and Gram-negative bacteria. The abundance of these proteins in the reproductive tissues and their broad-spectrum antimicrobial nature may indicate their defensive role against pathogens during the follicle development in the ovary and egg formation in the oviduct. The discovery of antimicrobial histones in chicken reproductive system provides further evidence that histones may play a role in innate immunity against microorganisms in a wide range of animal species.
Collapse
Affiliation(s)
- Umaporn Silphaduang
- Department of Food Science, University of Guelph, Guelph, Ont., Canada N1G 2W1
| | | | | | | |
Collapse
|
50
|
Rollins-Smith LA, King JD, Nielsen PF, Sonnevend A, Conlon JM. An antimicrobial peptide from the skin secretions of the mountain chicken frog Leptodactylus fallax (Anura:Leptodactylidae). ACTA ACUST UNITED AC 2005; 124:173-8. [PMID: 15544856 DOI: 10.1016/j.regpep.2004.07.013] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2004] [Revised: 07/05/2004] [Accepted: 07/08/2004] [Indexed: 11/23/2022]
Abstract
A 25 amino-acid-residue, C-terminally alpha-amidated peptide with antimicrobial activity, which has been termed fallaxin, was isolated in high yield from the norepinephrine-stimulated skin secretions of the mountain chicken frog Leptodactylus fallax (Anura:Leptodactylidae). The amino acid sequence of the peptide (Gly-Val-Val-Asp-Ile-Leu-Lys-Gly-Ala-Ala-Lys-Asp-Ile-Ala-Gly-His-Leu-Ala-Ser-Lys-Val-Met-Asn-Lys-Leu.NH2) shows structural similarity with members of the ranatuerin-2 family previously isolated from the skins of frogs of the genus Rana that are only distantly related to the Leptodactylidae. This observation is consistent with the hypothesis that many frog skin antimicrobial peptides are related evolutionarily, having arisen from multiple duplications of an ancestral gene that existed before the radiation of the different families. Fallaxin inhibited the growth of reference strains of Gram-negative bacteria (Escherichia coli, Pseudomonas aeruginosa, Enterobacter cloacae, Klebsiella pneumoniae) but with relatively low potency (MIC> or =20 microM) and was inactive against the Gram-positive bacterium (Staphylococcus aureus) and the yeast Candida albicans. The hemolytic activity of fallaxin was very low (HC50>200 microM). A second peptide, comprising residues (1-22) of fallaxin, was also isolated from the skin secretions but this component was inactive against the microorganisms tested.
Collapse
Affiliation(s)
- Louise A Rollins-Smith
- Departments of Microbiology and Immunology and of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | | | | | | | | |
Collapse
|