1
|
Kim SL, Shin M, Jin BC, Seo S, Ha GW, Kim SW. Acquired Tumor Necrosis Factor-Related Apoptosis-Inducing Ligand (TRAIL) Resistance of Human Colorectal Cancer Cells Is Linked to Histone Acetylation and Is Synergistically Ameliorated by Combination with HDAC Inhibitors. Dig Dis Sci 2024; 69:3305-3317. [PMID: 39090444 DOI: 10.1007/s10620-024-08569-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 07/15/2024] [Indexed: 08/04/2024]
Abstract
BACKGROUND Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is an attractive target for the treatment of various malignancies; however, its therapeutic potential is limited because of the frequent occurrence of tumor cell resistance. In this study, we determined whether TRAIL resistance acquired by repeated administration could be overcome by HDAC inhibition in human colorectal cancer cells. METHODS TRAIL-resistant HCT116 human colorectal cancer cells (HCT116-TR) were generated by repeated treatment with 10 and 25 ng/mL TRAIL twice weekly for 28 days. RESULTS The resulting TRAIL-resistant cells were noncross-resistant to other chemotherapeutic agents. The levels of histone acetylation-related proteins, such as ac-histone H4 and HDAC1, were altered in HCT116-TR cells compared with the parental HCT116 cell line. The combined treatment with TRAIL and HDAC inhibitors significantly increased apoptosis in HCT116-TR cells and indicated a synergistic effect. The mechanism by which HDAC inhibition sensitizes HCT116-TR cells to TRAIL is dependent on the intrinsic pathway. In addition, we found that HDAC inhibition enhanced the sensitivity of cells to TRAIL through mitogen-activated protein kinases/CCAAT/enhancer-binding protein homologs of protein-dependent upregulation of death receptor 5. CONCLUSION These results suggest that histone acetylation is responsible for acquired TRAIL resistance after repeated exposure and acquired resistance to TRAIL may be overcome by combination therapies with HDAC inhibitors.
Collapse
Affiliation(s)
- Se Lim Kim
- Department of Internal Medicine, Jeonbuk National University Medical School, Research Institute of Clinical Medicine of Jeonbuk National University, 20, Geonji-Ro, Deokjin-Gu, Jeonju, Jeonbuk, 54907, Republic of Korea
- Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, Korea
| | - MinWoo Shin
- Department of Internal Medicine, Jeonbuk National University Medical School, Research Institute of Clinical Medicine of Jeonbuk National University, 20, Geonji-Ro, Deokjin-Gu, Jeonju, Jeonbuk, 54907, Republic of Korea
- Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, Korea
| | - Byung Chul Jin
- Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, Korea
| | - SeungYoung Seo
- Department of Internal Medicine, Jeonbuk National University Medical School, Research Institute of Clinical Medicine of Jeonbuk National University, 20, Geonji-Ro, Deokjin-Gu, Jeonju, Jeonbuk, 54907, Republic of Korea
- Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, Korea
| | - Gi Won Ha
- Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, Korea
- Department of Surgery, Jeonbuk National University Medical School, Research Institute of Clinical Medicine of Jeonbuk National University, 20, Geonji-Ro, Deokjin-Gu, Jeonju, Jeonbuk, 54907, Republic of Korea
| | - Sang Wook Kim
- Department of Internal Medicine, Jeonbuk National University Medical School, Research Institute of Clinical Medicine of Jeonbuk National University, 20, Geonji-Ro, Deokjin-Gu, Jeonju, Jeonbuk, 54907, Republic of Korea.
- Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, Korea.
| |
Collapse
|
2
|
Chang HG, Choi YH, Hong J, Choi JW, Yoon AR, Yun CO. GM101 in Combination with Histone Deacetylase Inhibitor Enhances Anti-Tumor Effects in Desmoplastic Microenvironment. Cells 2021; 10:2811. [PMID: 34831034 PMCID: PMC8616263 DOI: 10.3390/cells10112811] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 10/15/2021] [Accepted: 10/18/2021] [Indexed: 12/25/2022] Open
Abstract
Oncolytic adenoviruses (oAds) have been evaluated in numerous clinical trials due to their promising attributes as cancer therapeutics. However, the therapeutic efficacy of oAds was limited due to variable coxsackie and adenovirus receptor (CAR) expression levels and the dense extracellular matrix (ECM) of heterogenic clinical tumors. To overcome these limitations, our present report investigated the therapeutic efficacy of combining GM101, an oAd with excellent tumor ECM degrading properties, and histone deacetylase inhibitor (HDACi). Four different HDACi (suberohydroxamic acid (SBHA), MS-275, trichostatin A (TSA), and valproic acid) candidates in combination with replication-incompetent and GFP-expressing Ad (dAd/GFP) revealed that SBHA and MS-275 exerted more potent enhancement in Ad transduction efficacy than TSA or valproic acid. Further characterization revealed that SBHA and MS-275 effectively upregulated CAR expression in cancer cells, improved the binding of Ad with cancer cell membranes, and led to dynamin 2- and clathrin-mediated endocytosis of Ad. The combination of GM101 with HDACi induced superior cancer cell killing effects compared to any of the monotherapies, without any additional cytotoxicity in normal cell lines. Further, GM101+SBHA and GM101+MS-275 induced more potent antitumor efficacy than any monotherapy in U343 xenograft tumor model. Potent antitumor efficacy was achieved via the combination of GM101 with HDACi, inducing necrotic and apoptotic cancer cell death, inhibiting cancer cell proliferation, degrading ECM in tumor tissue, and thus exerting the highest level of virus dispersion and accumulation. Collectively, these data demonstrate that the combination of GM101 and HDACi can enhance intratumoral dispersion and accumulation of oAd through multifaced mechanisms, making it a promising strategy to address the challenges toward successful clinical development of oAd.
Collapse
Affiliation(s)
- Han-Gyu Chang
- Department of Bioengineering, College of Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Korea; (H.-G.C.); (J.-W.C.)
| | - Yong-Hyeon Choi
- GeneMedicine CO., Ltd., 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Korea; (Y.-H.C.); (J.H.)
| | - JinWoo Hong
- GeneMedicine CO., Ltd., 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Korea; (Y.-H.C.); (J.H.)
| | - Joung-Woo Choi
- Department of Bioengineering, College of Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Korea; (H.-G.C.); (J.-W.C.)
| | - A-Rum Yoon
- Department of Bioengineering, College of Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Korea; (H.-G.C.); (J.-W.C.)
- Institute of Nano Science and Technology (INST), Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Korea
| | - Chae-Ok Yun
- Department of Bioengineering, College of Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Korea; (H.-G.C.); (J.-W.C.)
- GeneMedicine CO., Ltd., 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Korea; (Y.-H.C.); (J.H.)
- Institute of Nano Science and Technology (INST), Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Korea
| |
Collapse
|
3
|
Ramaiah MJ, Tangutur AD, Manyam RR. Epigenetic modulation and understanding of HDAC inhibitors in cancer therapy. Life Sci 2021; 277:119504. [PMID: 33872660 DOI: 10.1016/j.lfs.2021.119504] [Citation(s) in RCA: 130] [Impact Index Per Article: 43.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 03/20/2021] [Accepted: 04/09/2021] [Indexed: 12/15/2022]
Abstract
The role of genetic and epigenetic factors in tumor initiation and progression is well documented. Histone deacetylases (HDACs), histone methyl transferases (HMTs), and DNA methyl transferases. (DNMTs) are the main proteins that are involved in regulating the chromatin conformation. Among these, histone deacetylases (HDAC) deacetylate the histone and induce gene repression thereby leading to cancer. In contrast, histone acetyl transferases (HATs) that include GCN5, p300/CBP, PCAF, Tip 60 acetylate the histones. HDAC inhibitors are potent drug molecules that can induce acetylation of histones at lysine residues and induce open chromatin conformation at tumor suppressor gene loci and thus resulting in tumor suppression. The key processes regulated by HDAC inhibitors include cell-cycle arrest, chemo-sensitization, apoptosis induction, upregulation of tumor suppressors. Even though FDA approved drugs are confined mainly to haematological malignancies, the research on HDAC inhibitors in glioblastoma multiforme and triple negative breast cancer (TNBC) are providing positive results. Thus, several combinations of HDAC inhibitors along with DNA methyl transferase inhibitors and histone methyl transferase inhibitors are in clinical trials. This review focuses on how HDAC inhibitors regulate the expression of coding and non-coding genes with specific emphasis on their anti-cancer potential.
Collapse
Affiliation(s)
- M Janaki Ramaiah
- Laboratory of Functional genomics and Disease Biology, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur 613401, Tamil Nadu, India.
| | - Anjana Devi Tangutur
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500 007, Telangana, India
| | - Rajasekhar Reddy Manyam
- Department of Computer Science and Engineering, Koneru Lakshmaiah Education Foundation, Vaddeswaram, Andhra Pradesh, India
| |
Collapse
|
4
|
Synergistic Anti-tumour Effects of Quercetin and Oncolytic Adenovirus expressing TRAIL in Human Hepatocellular Carcinoma. Sci Rep 2018; 8:2182. [PMID: 29391509 PMCID: PMC5794998 DOI: 10.1038/s41598-018-20213-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 01/16/2018] [Indexed: 01/13/2023] Open
Abstract
The combination of oncolytic adenoviruses and specific chemotherapy agents is fast emerging as a novel therapeutic approach for resistan the patocellular carcinoma (HCC) cells. A detailed analysis of the network between adenovirus and chemotherapeutic agents can help design an effective strategy to combat HCC. We sought to investigate whether a combined treatment of ZD55-TRAIL and quercetin can have an enhanced cell-killing effect on HCC cells. In-vitro experiments showed that quercetin can enhance ZD55-TRAIL mediated growth inhibition and apoptosis in HCC cells. In addition, we showed that quercetin reduced ZD55-TRAIL mediated NF-κB activation and down-regulated its downstream targets, which in turn promoted the pro-apoptotic action of ZD55-TRAIL. Furthermore, in-vivo experiments in mice injected with HuH-7 cells resulted in significantly greater reduction in tumour growth and volume following combined ZD55-TRAIL and quercetin treatment. In conclusion, we demonstrated that quercetin could sensitize human HCC cells to apoptosis via ZD55-TRAIL in-vitro and in-vivo and presented ZD55-TRAIL and quercetin combination as a suitable anti-HCC therapy.
Collapse
|
5
|
Guimarães DM, Almeida LO, Martins MD, Warner KA, Silva ARS, Vargas PA, Nunes FD, Squarize CH, Nör JE, Castilho RM. Sensitizing mucoepidermoid carcinomas to chemotherapy by targeted disruption of cancer stem cells. Oncotarget 2018; 7:42447-42460. [PMID: 27285758 PMCID: PMC5173147 DOI: 10.18632/oncotarget.9884] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 05/15/2016] [Indexed: 12/23/2022] Open
Abstract
Mucoepidermoid carcinoma (MEC) is the most common malignancy of salivary glands. The response of MEC to chemotherapy is unpredictable, and recent advances in cancer biology suggest the involvement of cancer stem cells (CSCs) in tumor progression and chemoresistance and radioresistance phenotype. We found that histone acetyltransferase inhibitors (HDACi) were capable of disrupting CSCs in MEC. Furthermore, administration of HDACi prior to Cisplatin (two-hit approach) disrupts CSCs and sensitizes tumor cells to Cisplatin. Our findings corroborate to emerging evidence that CSCs play a key role in tumor resistance to chemotherapy, and highlights a pharmacological two-hit approach that disrupts tumor resistance to conventional therapy.
Collapse
Affiliation(s)
- Douglas M Guimarães
- Laboratory of Epithelial Biology, Department of Periodontics and Oral Medicine, University of Michigan, School of Dentistry, Ann Arbor, MI, USA.,Department of Oral Pathology, School of Dentistry, University of Sao Paulo, SP, Brazil
| | - Luciana O Almeida
- Laboratory of Epithelial Biology, Department of Periodontics and Oral Medicine, University of Michigan, School of Dentistry, Ann Arbor, MI, USA
| | - Manoela D Martins
- Laboratory of Epithelial Biology, Department of Periodontics and Oral Medicine, University of Michigan, School of Dentistry, Ann Arbor, MI, USA.,Department of Oral Pathology, School of Dentistry, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Kristy A Warner
- Department of Restorative Sciences, University of Michigan School of Dentistry, Ann Arbor, MI, USA
| | - Alan R S Silva
- Department of Oral Diagnosis, Piracicaba Dental School, State University of Campinas, Campinas, SP, Brazil
| | - Pablo A Vargas
- Department of Oral Diagnosis, Piracicaba Dental School, State University of Campinas, Campinas, SP, Brazil
| | - Fabio D Nunes
- Department of Oral Pathology, School of Dentistry, University of Sao Paulo, SP, Brazil
| | - Cristiane H Squarize
- Laboratory of Epithelial Biology, Department of Periodontics and Oral Medicine, University of Michigan, School of Dentistry, Ann Arbor, MI, USA.,Comprehensive Cancer Center, University of Michigan, Ann Arbor, MI, USA
| | - Jacques E Nör
- Department of Otolaryngology, Medical School, University of Michigan, Ann Arbor, MI, USA.,Department of Restorative Sciences, University of Michigan School of Dentistry, Ann Arbor, MI, USA
| | - Rogerio M Castilho
- Laboratory of Epithelial Biology, Department of Periodontics and Oral Medicine, University of Michigan, School of Dentistry, Ann Arbor, MI, USA
| |
Collapse
|
6
|
Fulda S. Therapeutic opportunities based on caspase modulation. Semin Cell Dev Biol 2017; 82:150-157. [PMID: 29247787 DOI: 10.1016/j.semcdb.2017.12.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 12/05/2017] [Accepted: 12/11/2017] [Indexed: 02/07/2023]
Abstract
Caspases are a family of proteolytic enzymes that play a critical role in the regulation of programmed cell death via apoptosis. Activation of caspases is frequently impaired in human cancers, contributing to cancer formation, progression and therapy resistance. A better understanding of the molecular mechanisms regulating caspase activation in cancer cells is therefore highly important. Thus, targeted modulation of caspase activation and apoptosis represents a promising approach for the development of new therapeutic options to elucidate cancer cell death.
Collapse
Affiliation(s)
- Simone Fulda
- Institute for Experimental Cancer Research in Pediatrics, Goethe-University Frankfurt, Komturstrasse 3a, 60528, Frankfurt, Germany; German Cancer Consortium (DKTK), Partner Site Frankfurt, Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
7
|
Kumar JS, Suman S, Chandna S. Radioresistant Sf9 insect cells readily undergo an intrinsic mode of apoptosis in response to histone deacetylase (HDAC) inhibition. Mol Cell Biochem 2017; 444:207-218. [PMID: 29236219 DOI: 10.1007/s11010-017-3245-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 12/08/2017] [Indexed: 12/25/2022]
Abstract
Insect cell lines have been utilized as an important higher eukaryotic model system to decipher stress responses and cell death mechanisms. Lepidopteran Sf9 cells (derived from the ovaries of Spodoptera frugiperda) display nearly 100 times higher resistance to ionizing radiation in contrast to mammalian cells, which is partly contributed by an unusually high HDAC activity. However, their response to HDAC inhibition remains to be evaluated. In the present study, the effects of HDAC inhibitor (NaBt) on Sf9 cellular/nuclear morphology, cell cycle progression, DNA damage/repair, redox status, and mitochondrial perturbations were evaluated. NaBt-induced apoptosis was evident at 18 h in Sf9 cells at 2 mM concentration, primarily through mitochondrial induction of oxidative stress and subsequent DNA damage. Cell cycle analysis revealed appearance of sub-G1 DNA content at 12 h onwards and DNA fragmentation by 18 h. Initial few hours of treatment caused significant loss in MMP through oxidation of mitochondrial inner membrane protein, i.e., cardiolipin. HDAC inhibition-mediated apoptosis was associated with increased Bax/Bcl2 ratio, mitochondrial cytochrome-c release, and caspase-3 activation. The study thus infers that Sf9 cells, which can withstand very high radiation doses, are quite sensitive to the increase in the chromatin acetylation levels. In addition, HDAC inhibition also sensitized Sf9 cells to radiation-induced DNA damage, further corroborating our recent finding that chromatin compactness contributes significantly to their radioresistance. Therefore, the study demonstrates prominence of prevailing DNA/chromatin protective mechanisms in Lepidopteran insect cells.
Collapse
Affiliation(s)
- Jyoti Swaroop Kumar
- Division of Natural Radiation Response Mechanisms, Institute of Nuclear Medicine and Allied Sciences, Brig. SK Mazumdar Road, Delhi, 110054, India
| | - Shubhankar Suman
- Division of Natural Radiation Response Mechanisms, Institute of Nuclear Medicine and Allied Sciences, Brig. SK Mazumdar Road, Delhi, 110054, India.,Department of Biochemistry and Molecular & Cellular Biology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA
| | - Sudhir Chandna
- Division of Natural Radiation Response Mechanisms, Institute of Nuclear Medicine and Allied Sciences, Brig. SK Mazumdar Road, Delhi, 110054, India.
| |
Collapse
|
8
|
McLoughlin KC, Kaufman AS, Schrump DS. Targeting the epigenome in malignant pleural mesothelioma. Transl Lung Cancer Res 2017; 6:350-365. [PMID: 28713680 DOI: 10.21037/tlcr.2017.06.06] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Malignant pleural mesotheliomas (MPM) are notoriously refractory to conventional treatment modalities. Recent insights regarding epigenetic alterations in MPM provide the preclinical rationale for the evaluation of novel combinatorial regimens targeting the epigenome in these neoplasms.
Collapse
Affiliation(s)
- Kaitlin C McLoughlin
- Thoracic Epigenetics Section, Thoracic and GI Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Andrew S Kaufman
- Thoracic Epigenetics Section, Thoracic and GI Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - David S Schrump
- Thoracic Epigenetics Section, Thoracic and GI Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| |
Collapse
|
9
|
Bakker E, Guazzelli A, Krstic-Demonacos M, Lisanti M, Sotgia F, Mutti L. Current and prospective pharmacotherapies for the treatment of pleural mesothelioma. Expert Opin Orphan Drugs 2017. [DOI: 10.1080/21678707.2017.1325358] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Emyr Bakker
- Biomedical Research Centre, School of Environment and Life Sciences, University of Salford, Salford, UK
| | - Alice Guazzelli
- Biomedical Research Centre, School of Environment and Life Sciences, University of Salford, Salford, UK
| | - Marija Krstic-Demonacos
- Biomedical Research Centre, School of Environment and Life Sciences, University of Salford, Salford, UK
| | - Michael Lisanti
- Biomedical Research Centre, School of Environment and Life Sciences, University of Salford, Salford, UK
| | - Federica Sotgia
- Biomedical Research Centre, School of Environment and Life Sciences, University of Salford, Salford, UK
| | - Luciano Mutti
- Biomedical Research Centre, School of Environment and Life Sciences, University of Salford, Salford, UK
| |
Collapse
|
10
|
Zauderer MG. Standard Chemotherapy Options and Clinical Trials of Novel Agents for Mesothelioma. ASBESTOS AND MESOTHELIOMA 2017. [DOI: 10.1007/978-3-319-53560-9_15] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
11
|
Ma Z, Fan C, Yang Y, Di S, Hu W, Li T, Zhu Y, Han J, Xin Z, Wu G, Zhao J, Li X, Yan X. Thapsigargin sensitizes human esophageal cancer to TRAIL-induced apoptosis via AMPK activation. Sci Rep 2016; 6:35196. [PMID: 27731378 PMCID: PMC5059685 DOI: 10.1038/srep35196] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 09/26/2016] [Indexed: 12/22/2022] Open
Abstract
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a promising anticancer agent for esophageal squamous cell carcinoma (ESCC). Forced expression of CHOP, one of the key downstream transcription factors during endoplasmic reticulum (ER) stress, upregulates the death receptor 5 (DR5) levels and promotes oxidative stress and cell death. In this study, we show that ER stress mediated by thapsigargin promoted CHOP and DR5 synthesis thus sensitizing TRAIL treatment, which induced ESCC cells apoptosis. These effects were reversed by DR5 siRNA in vitro and CHOP siRNA both in vitro and in vivo. Besides, chemically inhibition of AMPK by Compound C and AMPK siRNA weakened the anti-cancer effect of thapsigargin and TRAIL co-treatment. Therefore, our findings suggest ER stress effectively sensitizes human ESCC to TRAIL-mediated apoptosis via the TRAIL-DR5-AMPK signaling pathway, and that activation of ER stress may be beneficial for improving the efficacy of TRAIL-based anti-cancer therapy.
Collapse
Affiliation(s)
- Zhiqiang Ma
- Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical University, 1 Xinsi Road, Xi'an 710038, China
| | - Chongxi Fan
- Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical University, 1 Xinsi Road, Xi'an 710038, China
| | - Yang Yang
- Department of Thoracic and Cardiovascular Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing 210008, Jiangsu, China
- Department of Biomedical Engineering, The Fourth Military Medical University, 169 Changle West Road, Xi'an 710032, China
| | - Shouyin Di
- Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical University, 1 Xinsi Road, Xi'an 710038, China
| | - Wei Hu
- Department of Biomedical Engineering, The Fourth Military Medical University, 169 Changle West Road, Xi'an 710032, China
| | - Tian Li
- Department of Biomedical Engineering, The Fourth Military Medical University, 169 Changle West Road, Xi'an 710032, China
| | - Yifang Zhu
- Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical University, 1 Xinsi Road, Xi'an 710038, China
| | - Jing Han
- Department of Ophthalmology, Tangdu Hospital, The Fourth Military Medical University, 1 Xinsi Road, Xi'an 710038, China
| | - Zhenlong Xin
- Department of Biomedical Engineering, The Fourth Military Medical University, 169 Changle West Road, Xi'an 710032, China
| | - Guiling Wu
- Department of Biomedical Engineering, The Fourth Military Medical University, 169 Changle West Road, Xi'an 710032, China
| | - Jing Zhao
- Department of Thoracic Surgery, Beijing Military General Hospital, 5 DongSi ShiTiao Road 100070, Beijing 100700, China
| | - Xiaofei Li
- Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical University, 1 Xinsi Road, Xi'an 710038, China
| | - Xiaolong Yan
- Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical University, 1 Xinsi Road, Xi'an 710038, China
| |
Collapse
|
12
|
Cha HY, Lee BS, Chang JW, Park JK, Han JH, Kim YS, Shin YS, Byeon HK, Kim CH. Downregulation of Nrf2 by the combination of TRAIL and Valproic acid induces apoptotic cell death of TRAIL-resistant papillary thyroid cancer cells via suppression of Bcl-xL. Cancer Lett 2015; 372:65-74. [PMID: 26721202 DOI: 10.1016/j.canlet.2015.12.016] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Revised: 12/04/2015] [Accepted: 12/10/2015] [Indexed: 11/19/2022]
Abstract
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) represents an effective agent for the treatment of many cancers, though the majority of thyroid cancers are found to be resistant. Therefore it would be necessary to identify agents capable of increasing the sensitivity of these cancers to TRAIL-mediated cell death. Here, we examined the therapeutic effect and its underlying mechanism of combination treatment of TRAIL and histone deacetylase inhibitor, Valproic acid (VPA) in vitro using human papillary thyroid cancer (PTC) cells and in vivo using an orthotopic mouse model of PTC. TRAIL-VPA combination therapy synergistically induced apoptotic cell death in TRAIL-resistant PTC through caspase activation. In addition, downregulation of antioxidant transcription factor, Nrf2 by co-treatment of TRAIL-VPA induces cell death via suppression of Bcl-xL in vitro and in vivo; these effects were further enhanced following siRNA inhibition of these proteins in combination with TRAIL or TRAIL-VPA. Taken together, VPA sensitized TRAIL-resistant PTC cells to apoptotic cell death through involvement of Nrf2 and Bcl-xL. Thus, the combination of VPA and TRAIL may be a promising therapy for TRAIL-resistant PTC.
Collapse
Affiliation(s)
- Hyun-Young Cha
- Department of Otolaryngology, School of Medicine, Ajou University, Suwon, Republic of Korea
| | - Bok-Soon Lee
- Department of Otolaryngology, School of Medicine, Ajou University, Suwon, Republic of Korea
| | - Jae Won Chang
- Department of Otolaryngology, School of Medicine, Ajou University, Suwon, Republic of Korea
| | - Ju Kyeong Park
- Department of Otolaryngology, School of Medicine, Ajou University, Suwon, Republic of Korea; Department of Molecular Science and Technology, Ajou University, Suwon, Republic of Korea
| | - Jae Ho Han
- Department of Pathology, School of Medicine, Ajou University, Suwon, Republic of Korea
| | - Yong-Sung Kim
- Department of Molecular Science and Technology, Ajou University, Suwon, Republic of Korea
| | - Yoo Seob Shin
- Department of Otolaryngology, School of Medicine, Ajou University, Suwon, Republic of Korea
| | - Hyung Kwon Byeon
- Department of Otorhinolaryngology, College of Medicine, Yonsei University, Seoul, Republic of Korea
| | - Chul-Ho Kim
- Department of Otolaryngology, School of Medicine, Ajou University, Suwon, Republic of Korea; Department of Molecular Science and Technology, Ajou University, Suwon, Republic of Korea.
| |
Collapse
|
13
|
Yang T, Lan J, Huang Q, Chen X, Sun X, Liu X, Yang P, Jin T, Wang S, Mou X. Embelin sensitizes acute myeloid leukemia cells to TRAIL through XIAP inhibition and NF-κB inactivation. Cell Biochem Biophys 2015; 71:291-7. [PMID: 25358405 DOI: 10.1007/s12013-014-0197-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) shows promising result in cancer therapy and induces apoptosis in a wide variety of tumor cells, without causing toxicity to normal cells. However, many tumor cells including acute myeloid leukemia (AML) showed certain degrees of resistance to TRAIL and the mechanism remains largely unknown. Embelin is a potent XIAP inhibitor which has been shown to inhibit the proliferation of tumor cells and cause cell apoptosis. In this study, we investigated the effects of Embelin on the TRAIL-induced apoptosis and the underlying mechanism. Here, we chose an adenovirus vector as the expression vector for TRAIL, which was named Ad-TRAIL. The results in vitro showed that the co-treatment of Embelin and Ad-TRAIL has synergistically suppressed the proliferation of AML cells. Embelin has the ability to enhance TRAIL-induced apoptosis and activate caspase pathway. More interestingly, we found that the underlying mechanism for these talent skills of Embelin is through reducing the TRAIL-mediated activation of NF-κB and decreasing its transcriptional activity. Furthermore, our results in vivo suggest that combined therapy of Embelin and Ad-TRAIL caused significant growth inhibition of HL-60 xenograft tumors. Our results suggested that Embelin could sensitize AML cell to TRAIL through the repression of NF-κB signal pathway in vitro and in vivo, and combined therapy of Ad-TRAIL and Embelin may be the attractive candidate for clinical application in treatment of AML.
Collapse
Affiliation(s)
- Tianxin Yang
- Department of Hematology, Zhejiang Provincial People's Hospital, Hangzhou, 310014, Zhejiang, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Bononi A, Napolitano A, Pass HI, Yang H, Carbone M. Latest developments in our understanding of the pathogenesis of mesothelioma and the design of targeted therapies. Expert Rev Respir Med 2015; 9:633-54. [PMID: 26308799 DOI: 10.1586/17476348.2015.1081066] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Malignant mesothelioma is an aggressive cancer whose pathogenesis is causally linked to occupational exposure to asbestos. Familial clusters of mesotheliomas have been observed in settings of genetic predisposition. Mesothelioma incidence is anticipated to increase worldwide in the next two decades. Novel treatments are needed, as current treatment modalities may improve the quality of life, but have shown modest effects in improving overall survival. Increasing knowledge on the molecular characteristics of mesothelioma has led to the development of novel potential therapeutic strategies, including: molecular targeted approaches, that is the inhibition of vascular endothelial growth factor with bevacizumab; immunotherapy with chimeric monoclonal antibody, immunotoxin, antibody drug conjugate, vaccine and viruses; inhibition of asbestos-induced inflammation, that is aspirin inhibition of HMGB1 activity may decrease or delay mesothelioma onset and/or growth. We elaborate on the rationale behind new therapeutic strategies, and summarize available preclinical and clinical results, as well as efforts still ongoing.
Collapse
Affiliation(s)
- Angela Bononi
- a 1 University of Hawai'i Cancer Center, University of Hawai'i at Mānoa, Honolulu, Hawai'i, USA
| | - Andrea Napolitano
- a 1 University of Hawai'i Cancer Center, University of Hawai'i at Mānoa, Honolulu, Hawai'i, USA.,b 2 Molecular Biosciences and Bioengineering, University of Hawai'i at Mānoa, Honolulu, Hawai'i, USA
| | - Harvey I Pass
- c 3 Department of Cardiothoracic Surgery, Division of Thoracic Surgery, Langone Medical Center, New York University, New York, USA
| | - Haining Yang
- a 1 University of Hawai'i Cancer Center, University of Hawai'i at Mānoa, Honolulu, Hawai'i, USA
| | - Michele Carbone
- a 1 University of Hawai'i Cancer Center, University of Hawai'i at Mānoa, Honolulu, Hawai'i, USA
| |
Collapse
|
15
|
Krug LM, Kindler HL, Calvert H, Manegold C, Tsao AS, Fennell D, Öhman R, Plummer R, Eberhardt WEE, Fukuoka K, Gaafar RM, Lafitte JJ, Hillerdal G, Chu Q, Buikhuisen WA, Lubiniecki GM, Sun X, Smith M, Baas P. Vorinostat in patients with advanced malignant pleural mesothelioma who have progressed on previous chemotherapy (VANTAGE-014): a phase 3, double-blind, randomised, placebo-controlled trial. Lancet Oncol 2015; 16:447-56. [PMID: 25800891 DOI: 10.1016/s1470-2045(15)70056-2] [Citation(s) in RCA: 141] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND Vorinostat is a histone deacetylase inhibitor that changes gene expression and protein activity. On the basis of the clinical benefit reported in patients with malignant pleural mesothelioma treated in a phase 1 study of vorinostat, we designed this phase 3 trial to investigate whether vorinostat given as a second-line or third-line therapy improved patients' overall survival. METHODS This double-blind, randomised, placebo-controlled trial was done in 90 international centres. Patients with measurable advanced malignant pleural mesothelioma and disease progression after one or two previous systemic regimens were eligible. After stratification for Karnofsky performance status, histology, and number of previous chemotherapy regimens, patients were randomly assigned (1:1) by use of an interactive voice response system with a block size of four to either treatment with vorinostat or placebo. Patients received oral vorinostat 300 mg (or matching placebo) twice daily on days 1, 2, 3, 8, 9, 10, 15, 16, and 17 of a 21-day cycle. The primary endpoints were overall survival and safety and tolerability of vorinostat. The primary efficacy comparison was done in the intention-to-treat population, and safety and tolerability was assessed in the treated population. This trial is registered with ClinicalTrials.gov, number NCT00128102. FINDINGS From July 12, 2005, to Feb 14, 2011, 661 patients were enrolled and randomly assigned to receive either vorinostat (n=329) or placebo (n=332) and included in the intention-to-treat analysis. Median overall survival for vorinostat was 30·7 weeks (95% CI 26·7-36·1) versus 27·1 weeks (23·1-31·9) for placebo (hazard ratio 0·98, 95% CI 0·83-1·17, p=0·86). The most common grade 3 or worse adverse events for patients treated with vorinostat were fatigue or malaise (51 [16%] patients in the vorinostat group vs 25 [8%] in the placebo group]) and dyspnoea (35 [11%] vs 45 [14%]). INTERPRETATION In this randomised trial, vorinostat given as a second-line or third-line therapy did not improve overall survival and cannot be recommended as a therapy for patients with advanced malignant pleural mesothelioma. FUNDING Merck & Co.
Collapse
Affiliation(s)
- Lee M Krug
- Memorial Sloan Kettering Cancer Center, Weill Cornell Medical College, New York, NY, USA.
| | | | | | | | | | | | - Ronny Öhman
- University Hospital of Skåne/Lund, Lund, Sweden
| | | | | | | | - Rabab M Gaafar
- National Cancer Institute, Cairo University, Cairo, Egypt
| | | | | | - Quincy Chu
- Cross Cancer Institute/University of Alberta, Edmonton, Alberta, Canada
| | - Wieneke A Buikhuisen
- Netherlands Cancer Institute and the Academic Medical Center, Amsterdam, Netherlands
| | | | - Xing Sun
- Merck & Co, Kenilworth, NJ, USA; Sanofi US, Sanofi, Bridgewater, NJ, USA
| | | | - Paul Baas
- Cross Cancer Institute/University of Alberta, Edmonton, Alberta, Canada; The Academic Medical Center, Amsterdam, Netherlands
| |
Collapse
|
16
|
Fulda S. Targeting extrinsic apoptosis in cancer: Challenges and opportunities. Semin Cell Dev Biol 2015; 39:20-5. [PMID: 25617598 DOI: 10.1016/j.semcdb.2015.01.006] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Accepted: 01/13/2015] [Indexed: 12/18/2022]
Abstract
Apoptosis is a form of programmed cell death that plays a critical role in the regulation of various physiological and pathophysiological processes. Since apoptosis is typically disturbed in human cancers, therapeutic targeting of apoptosis represents a promising avenue for the development of novel therapeutic approaches. This strategy is particularly relevant, since many currently used anticancer therapies utilize apoptosis signaling pathways to exert their antitumor activities. A better understanding of these signaling networks and their deregulation in human cancers is anticipated to open new perspectives for the development of apoptosis-targeted therapies for the treatment of cancer.
Collapse
Affiliation(s)
- Simone Fulda
- Institute for Experimental Cancer Research in Pediatrics, Goethe-University, Komturstr. 3a, 60528 Frankfurt, Germany; German Cancer Consortium (DKTK), Heidelberg, Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
17
|
Weinlander E, Somnay Y, Harrison AD, Wang C, Cheng YQ, Jaskula-Sztul R, Yu XM, Chen H. The novel histone deacetylase inhibitor thailandepsin A inhibits anaplastic thyroid cancer growth. J Surg Res 2014; 190:191-7. [PMID: 24679699 PMCID: PMC4063213 DOI: 10.1016/j.jss.2014.02.042] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Revised: 02/20/2014] [Accepted: 02/22/2014] [Indexed: 11/22/2022]
Abstract
BACKGROUND Anaplastic thyroid cancer (ATC) remains refractory to available surgical and medical interventions. Histone deacetylase (HDAC) inhibitors are an emerging targeted therapy with antiproliferative activity in a variety of thyroid cancer cell lines. Thailandepsin A (TDP-A) is a novel class I HDAC inhibitor whose efficacy remains largely unknown in ATC. Therefore, we aimed to characterize the effect of TDP-A on ATC. METHODS Human-derived ATC cells were treated with TDP-A. IC50 was determined by a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) rapid colorimetric assay, and cell proliferation was measured by viable cell count. Molecular mechanisms of cell growth inhibition were investigated by Western blot analysis of canonical apoptosis markers, intrinsic and extrinsic apoptosis regulators, and cell cycle regulatory proteins. Cell cycle staging was determined with propidium iodide flow cytometry. RESULTS TDP-A dose- and time-dependently reduced cell proliferation. Increased cleavage of the apoptosis markers Caspase-9, Caspase-3, and poly adenosine diphosphate ribose polymerase were observed with TDP-A treatment. Levels of the intrinsic apoptosis pathway proteins BAD, Bcl-XL, and BAX remained unchanged. Importantly, the extrinsic apoptosis activator cleaved Caspase-8 increased dose-dependently, and the antiapoptotic proteins Survivin and Bcl-2 decreased. Among the cell cycle regulatory proteins, levels of CDK inhibitors p21/WAF1 and p27/KIP increased. Flow cytometry showed that ATC cells were arrested in G2/M phase with diminished S phase after TDP-A treatment. CONCLUSIONS TDP-A induces a notable dose- and time-dependent antiproliferative effect on ATC, which is mainly attributed to extrinsic apoptosis with concomitant cell cycle arrest. TDP-A therefore warrants further preclinical and clinical investigations.
Collapse
Affiliation(s)
- Eric Weinlander
- Endocrine Surgery Research Laboratories, Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Yash Somnay
- Endocrine Surgery Research Laboratories, Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - April D Harrison
- Endocrine Surgery Research Laboratories, Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Cheng Wang
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin
| | - Yi-Qiang Cheng
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin; UNT System College of Pharmacy, University of North Texas Health Science Center, Fort Worth, Texas
| | - Renata Jaskula-Sztul
- Endocrine Surgery Research Laboratories, Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Xiao-Min Yu
- Endocrine Surgery Research Laboratories, Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin.
| | - Herbert Chen
- Endocrine Surgery Research Laboratories, Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin.
| |
Collapse
|
18
|
Bu Q, Cui L, Li J, Du X, Zou W, Ding K, Pan J. SAHA and S116836, a novel tyrosine kinase inhibitor, synergistically induce apoptosis in imatinib-resistant chronic myelogenous leukemia cells. Cancer Biol Ther 2014; 15:951-62. [PMID: 24759597 DOI: 10.4161/cbt.28931] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Limited treatment options are available for chronic myelogenous leukemia (CML) patients who develop imatinib mesylate (IM) resistance. Here we proposed a novel combination regimen, a co-administration of S116836, a novel small molecule multi-targeted tyrosine kinase inhibitor that was synthesized by rational design, and histone deacetylases inhibitor (HDACi) suberoylanilide hydroxamic acid (SAHA), to overcome IM resistance in CML. S116836 at low concentrations used in the present study mildly downregulates auto-tyrosine phosphorylation of Bcr-Abl. SAHA, an FDA-approved HDACi drug, at 1 μM has modest anti-tumor activity in treating CML. However, we found a synergistic interaction between SAHA and S116836 in Bcr-Abl-positive CML cells that were sensitive or resistant to IM. Exposure of KBM5 and KBM5-T315I cells to minimal or non-toxic concentrations of SAHA and S116836 synergistically reduced cell viability and induced cell death. Co-treatment with SAHA and S116838 repressed the expressions of anti-apoptosis proteins, such as Mcl-1 and XIAP, but promoted Bim expression and mitochondrial damage. Of importance, treatment with both drugs significantly reduced cell viability of primary human CML cells, as compared with either agent alone. Taken together, our findings suggest that SAHA exerts synergistically with S116836 at a non-toxic concentration to promote apoptosis in the CML, including those resistant to imatinib or dasatinib.
Collapse
Affiliation(s)
- Qiangui Bu
- Department of Pathophysiology; Zhongshan School of Medicine; Sun Yat-sen University; Guangzhou, PR China
| | - Lijing Cui
- Department of Pathophysiology; Zhongshan School of Medicine; Sun Yat-sen University; Guangzhou, PR China
| | - Juan Li
- Department of Hematology; The First Affiliated Hospital; Sun Yat-sen University; Guangzhou, PR China
| | - Xin Du
- Department of Hematology; Guangdong Provincial People's Hospital; Guangzhou, PR China
| | - Waiyi Zou
- Department of Hematology; The First Affiliated Hospital; Sun Yat-sen University; Guangzhou, PR China
| | - Ke Ding
- Key Laboratory of Regenerative Biology and Institute of Chemical Biology; Guangzhou Institute of Biomedicine and Health; Chinese Academy of Sciences; Guangzhou, PR China
| | - Jingxuan Pan
- Department of Pathophysiology; Zhongshan School of Medicine; Sun Yat-sen University; Guangzhou, PR China; State Key Laboratory of Ophthalmology; Zhongshan Ophthalmic Center; Sun Yat-sen University; Guangzhou, PR China; Collaborative Innovation Center for Cancer Medicine; State Key Laboratory of Oncology in South China; Sun Yat-Sen University Cancer Center; Guangzhou, PR China
| |
Collapse
|
19
|
Tumor-necrosis-factor-related apoptosis-inducing ligand (TRAIL). ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 818:167-80. [PMID: 25001536 DOI: 10.1007/978-1-4471-6458-6_8] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The concept to exploit death receptors for cancer therapy is very attractive, since these cell surface receptors have a direct connection to the intracellular cell death machinery. Among the death receptor superfamily, the tumor-necrosis-factor-related apoptosis-inducing ligand (TRAIL) receptor/ligand system is of special interest. TRAIL receptor agonists have recently entered the stage of clinical evaluation for the treatment of human cancers. Further insights into the regulatory mechanisms of TRAIL signaling will help to better understand the determinants of TRAIL sensitivity versus resistance of human cancers.
Collapse
|
20
|
Vandermeers F, Neelature Sriramareddy S, Costa C, Hubaux R, Cosse JP, Willems L. The role of epigenetics in malignant pleural mesothelioma. Lung Cancer 2013; 81:311-318. [PMID: 23790315 DOI: 10.1016/j.lungcan.2013.05.014] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Revised: 05/18/2013] [Accepted: 05/22/2013] [Indexed: 12/31/2022]
Affiliation(s)
- Fabian Vandermeers
- Molecular and Cellular Epigenetics (GIGA-Cancer) and Molecular Biology (GxABT), University of Liège (ULg), Liège, Belgium
| | - Sathya Neelature Sriramareddy
- Molecular and Cellular Epigenetics (GIGA-Cancer) and Molecular Biology (GxABT), University of Liège (ULg), Liège, Belgium
| | - Chrisostome Costa
- Molecular and Cellular Epigenetics (GIGA-Cancer) and Molecular Biology (GxABT), University of Liège (ULg), Liège, Belgium
| | - Roland Hubaux
- Molecular and Cellular Epigenetics (GIGA-Cancer) and Molecular Biology (GxABT), University of Liège (ULg), Liège, Belgium
| | - Jean-Philippe Cosse
- Molecular and Cellular Epigenetics (GIGA-Cancer) and Molecular Biology (GxABT), University of Liège (ULg), Liège, Belgium
| | - Luc Willems
- Molecular and Cellular Epigenetics (GIGA-Cancer) and Molecular Biology (GxABT), University of Liège (ULg), Liège, Belgium.
| |
Collapse
|
21
|
Seo OW, Kim JH, Lee KS, Lee KS, Kim JH, Won MH, Ha KS, Kwon YG, Kim YM. Kurarinone promotes TRAIL-induced apoptosis by inhibiting NF-κB-dependent cFLIP expression in HeLa cells. Exp Mol Med 2013; 44:653-64. [PMID: 22932446 PMCID: PMC3509182 DOI: 10.3858/emm.2012.44.11.074] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
This study was designed to investigate the effects of the prenylated flavonoid kurarinone on TNF-related apoptosis inducing ligand (TRAIL)-induced apoptosis and its underlying mechanism. A low dose of kurarinone had no significant effect on apoptosis, but this compound markedly promoted tumor cell death through elevation of Bid cleavage, cytochrome c release and caspase activation in HeLa cells treated with TRAIL. Caspase inhibitors inhibited kurarinone-mediated cell death, which indicates that the cytotoxic effect of this compound is mediated by caspase-dependent apoptosis. The cytotoxic effect of kurarinone was not associated with expression levels of Bcl-2 and IAP family proteins, such as Bcl-2, Bcl-xL, Bid, Bad, Bax, XIAP, cIAP-1 and cIAP-2. In addition, this compound did not regulate the death-inducing receptors DR4 and DR5. On the other hand, kurarinone significantly inhibited TRAIL-induced IKK activation, IκB degradation and nuclear translocation of NF-κB, as well as effectively suppressed cellular FLICE-inhibitory protein long form (cFLIPL) expression. The synergistic effects of kurarinone on TRAIL-induced apoptosis were mimicked when kurarinone was replaced by the NF-κB inhibitor withaferin A or following siRNA-mediated knockdown of cFLIPL. Moreover, cFLIP overexpression effectively antagonized kurarinone-mediated TRAIL sensitization. These data suggest that kurarinone sensitizes TRAIL-induced tumor cell apoptosis via suppression of NF-κB-dependent cFLIP expression, indicating that this compound can be used as an anti-tumor agent in combination with TRAIL.
Collapse
Affiliation(s)
- Ok Won Seo
- Vascular Homeostasis Laboratory, Departments of Molecular and Cellular Biochemistry and Institute of Medical Sciences School of Medicine Kangwon National University
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Fulda S. Histone deacetylase (HDAC) inhibitors and regulation of TRAIL-induced apoptosis. Exp Cell Res 2012; 318:1208-12. [DOI: 10.1016/j.yexcr.2012.02.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2011] [Revised: 02/06/2012] [Accepted: 02/06/2012] [Indexed: 10/28/2022]
|
23
|
Sonnemann J, Trommer N, Becker S, Wittig S, Grauel D, Palani CD, Beck JF. Histone deacetylase inhibitor-mediated sensitization to TRAIL-induced apoptosis in childhood malignancies is not associated with upregulation of TRAIL receptor expression, but with potentiated caspase-8 activation. Cancer Biol Ther 2012; 13:417-24. [PMID: 22313685 DOI: 10.4161/cbt.19293] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) has great potential for the treatment of cancer because it targets tumor cells while sparing normal cells. Several cancers, however, fail to respond to TRAIL's antineoplastic effects. These resistant tumors require cotreatment with sensitizing agents in order for TRAIL to exert anticancer activity. Histone deacetylase inhibitors (HDACi) have been recognized as potent TRAIL sensitizers. In searching for the determinants of TRAIL responsiveness, HDACi-mediated TRAIL sensitization has been predominantly attributed to TRAIL receptor upregulation. This explanation, however, has been challenged by a few studies. The aim of the present study was to explore the relevance of TRAIL receptor expression for HDACi-mediated TRAIL sensitization in childhood tumors, i.e., in medulloblastoma, Ewing's sarcoma and osteosarcoma. In previous studies, we had shown that TRAIL and HDACi were synergistic in inducing apoptosis in medulloblastoma and Ewing's sarcoma. In the present study, we demonstrate that HDACi cooperated with TRAIL in eliciting cell death in osteosarcoma. However, HDACi treatment did not alter or even reduced cell surface expression of TRAIL receptors in the three childhood tumors. In gaining insight into the apoptotic pathway involved in TRAIL sensitization, HDACi were found to potentiate TRAIL-induced caspase-8 activation. Taken together, our findings suggest that HDACi-mediated TRAIL sensitization is not the result of TRAIL receptor upregulation, but the result of a receptor-proximal event in childhood tumor cells.
Collapse
Affiliation(s)
- Jürgen Sonnemann
- Department of Pediatric Hematology and Oncology, Jena University Hospital, Children's Clinic, Jena, Germany.
| | | | | | | | | | | | | |
Collapse
|
24
|
Kim HB, Kim MJ, Lee SH, Lee JW, Bae JH, Kim DW, Dao TT, Oh WK, Kang CD, Kim SH. Amurensin G, a novel SIRT1 inhibitor, sensitizes TRAIL-resistant human leukemic K562 cells to TRAIL-induced apoptosis. Biochem Pharmacol 2012; 84:402-10. [PMID: 22483777 DOI: 10.1016/j.bcp.2012.03.014] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2012] [Revised: 03/21/2012] [Accepted: 03/21/2012] [Indexed: 12/14/2022]
Abstract
Many types of cancer cells remain resistant towards TRAIL-induced cytotoxicity by the blockade of apoptotic signaling cascades. Thus, sensitizers are needed to enhance the effect of TRAIL-based cancer therapies. Although synergistic tumor cell death has been reported when various HDAC inhibitors were administered with TRAIL in a variety of human cancers, the effect of inhibitors of Class III HDAC such as SIRT1 have not been reported. We reported here for the first time that inhibition of SIRT1 augmented the cytotoxic and apoptotic effects of TRAIL on human leukemic K562 cells. Knockdown of SIRT1 or treatment with amurensin G, a potent new SIRT1 inhibitor, up-regulated the levels of DR5 and c-Myc and down-regulated the level of c-FLIP(L/S). Furthermore, knockdown of SIRT1 or treatment with amurensin G augmented the molecular responses to TRAIL, including activation of caspase-8, -9 and -3, PARP cleavage, up-regulation of Bax, and down-regulation of Bcl-2. Amurensin G-enhanced TRAIL-induced apoptosis was abrogated by caspase inhibitor Z-VAD-FMK. These findings suggest that the suppression of SIRT1 with siRNA or amurensin G sensitize the TRAIL-resistant K562 cell to TRAIL-induced apoptosis, possibly by the up-regulation of c-Myc and DR5 surface expression and the down-regulations of c-FLIP and Mcl-1. In addition, amurensin G, a potent new SIRT1 inhibitor, would be used as a sensitizer of TRAIL in TRAIL-resistant leukemic cells.
Collapse
Affiliation(s)
- Hak-Bong Kim
- Department of Biochemistry and Medical Research Institute, Pusan National University School of Medicine, Yangsan 626-870, South Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Hurwitz JL, Stasik I, Kerr EM, Holohan C, Redmond KM, McLaughlin KM, Busacca S, Barbone D, Broaddus VC, Gray SG, O'Byrne KJ, Johnston PG, Fennell DA, Longley DB. Vorinostat/SAHA-induced apoptosis in malignant mesothelioma is FLIP/caspase 8-dependent and HR23B-independent. Eur J Cancer 2011; 48:1096-107. [PMID: 22154545 DOI: 10.1016/j.ejca.2011.11.009] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2011] [Revised: 11/06/2011] [Accepted: 11/08/2011] [Indexed: 11/16/2022]
Abstract
INTRODUCTION Malignant pleural mesothelioma (MPM) is a rapidly fatal malignancy that is increasing in incidence. The caspase 8 inhibitor FLIP is an anti-apoptotic protein over-expressed in several cancer types including MPM. The histone deacetylase (HDAC) inhibitor Vorinostat (SAHA) is currently being evaluated in relapsed mesothelioma. We examined the roles of FLIP and caspase 8 in regulating SAHA-induced apoptosis in MPM. METHODS The mechanism of SAHA-induced apoptosis was assessed in 7 MPM cell lines and in a multicellular spheroid model. SiRNA and overexpression approaches were used, and cell death was assessed by flow cytometry, Western blotting and clonogenic assays. RESULTS RNAi-mediated FLIP silencing resulted in caspase 8-dependent apoptosis in MPM cell line models. SAHA potently down-regulated FLIP protein expression in all 7 MPM cell lines and in a multicellular spheroid model of MPM. In 6/7 MPM cell lines, SAHA treatment resulted in significant levels of apoptosis induction. Moreover, this apoptosis was caspase 8-dependent in all six sensitive cell lines. SAHA-induced apoptosis was also inhibited by stable FLIP overexpression. In contrast, down-regulation of HR23B, a candidate predictive biomarker for HDAC inhibitors, significantly inhibited SAHA-induced apoptosis in only 1/6 SAHA-sensitive MPM cell lines. Analysis of MPM patient samples demonstrated significant inter-patient variations in FLIP and caspase 8 expressions. In addition, SAHA enhanced cisplatin-induced apoptosis in a FLIP-dependent manner. CONCLUSIONS These results indicate that FLIP is a major target for SAHA in MPM and identifies FLIP, caspase 8 and associated signalling molecules as candidate biomarkers for SAHA in this disease.
Collapse
Affiliation(s)
- Jane L Hurwitz
- Centre for Cancer Research and Cell Biology, School of Medicine, Dentistry and Biomedical Science, Queen's University Belfast, Northern Ireland, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Shin H, Lee YS, Lee YC. Sodium butyrate-induced DAPK-mediated apoptosis in human gastric cancer cells. Oncol Rep 2011; 27:1111-5. [PMID: 22160140 PMCID: PMC3583600 DOI: 10.3892/or.2011.1585] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2011] [Accepted: 11/21/2011] [Indexed: 12/13/2022] Open
Abstract
Epigenetic mechanisms of histone acetylation/deacetylation play an important role in the regulation of gene expression associated with the cell cycle and apoptosis. Recently, sodium butyrate, a histone deacetylase (HDAC) inhibitor, has been shown to exhibit anticancer effects via differentiation and apoptosis of cancer cells. Sodium butyrate may be a potential anticancer chemotherapeutic drug; however, the precise mechanism underlying the anticancer effects of sodium butyrate has not been clearly elucidated. In the present study, we investigated the role of death-associated protein kinase (DAPK) on the apoptosis of human gastric cancer cells induced by sodium butyrate. We observed that sodium butyrate induced apoptosis in human gastric cancer cells. Treatment with the HDAC inhibitor sodium butyrate increased the expression of caspase-3 and DAPK1/2 genes but decreased the expression of Bcl-2 in human gastric cancer cells. The expression of DAPK3, p53 and p21 were not altered by sodium butyrate treatment. Analysis of the general expression patterns revealed that sodium butyrate increased the expression of DAPK1/2 but decreased the expression of FAK and induced changes in the proliferation of apoptosis-related genes in human gastric cancer cells. These data suggest that DAPK expression prompts apoptosis by reducing the FAK protein level in sodium butyrate-induced apoptosis of human gastric cancer cells.
Collapse
Affiliation(s)
- Hyunsoo Shin
- Department of Internal Medicine, Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | | | | |
Collapse
|
27
|
Jeon HS, Lee SY, Lee EJ, Yun SC, Cha EJ, Choi E, Na MJ, Park JY, Kang J, Son JW. Combining microRNA-449a/b with a HDAC inhibitor has a synergistic effect on growth arrest in lung cancer. Lung Cancer 2011; 76:171-6. [PMID: 22078727 DOI: 10.1016/j.lungcan.2011.10.012] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2011] [Revised: 09/14/2011] [Accepted: 10/18/2011] [Indexed: 10/15/2022]
Abstract
Histone deacetylases (HDACs) play a crucial role in tumorigenesis. Over-expression of HDACs has been reported in lung cancer. The mechanism of highly expressed HDAC1 in lung cancer has yet not been determined. In the present study, we showed that miR-449a/b regulates HDAC1 by directly binding with the 3' untranslated region of the HDAC1. The expression of miR-449a/b was down-regulated and the expression of HDAC1 was up-regulated in primary lung cancer. The down expression of miR-449a/b might be one mechanism for over-expression of HDAC1 in lung cancer. miR-449a/b inhibited cell growth and anchorage-independent growth. Furthermore, co-treatment with miR-449a and HDAC inhibitors had a significant growth reduction compared with HDAC inhibitor mono-treatment. These results suggest that miR-449a/b may have a tumor suppressor function and might be a potential therapeutic candidate in patients with primary lung cancer.
Collapse
Affiliation(s)
- Hyo Sung Jeon
- Department of Biochemistry, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Ramalingam SS, Kummar S, Sarantopoulos J, Shibata S, LoRusso P, Yerk M, Holleran J, Lin Y, Beumer JH, Harvey RD, Ivy SP, Belani CP, Egorin MJ. Phase I study of vorinostat in patients with advanced solid tumors and hepatic dysfunction: a National Cancer Institute Organ Dysfunction Working Group study. J Clin Oncol 2010; 28:4507-12. [PMID: 20837947 PMCID: PMC2988640 DOI: 10.1200/jco.2010.30.2307] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2010] [Accepted: 08/02/2010] [Indexed: 11/20/2022] Open
Abstract
PURPOSE Vorinostat is the first US Food and Drug Administration-approved histone deacetylase inhibitor and is indicated for the treatment of refractory cutaneous T-cell lymphoma. We conducted a phase I study to determine the maximum-tolerated dose and pharmacokinetics of vorinostat in patients with hepatic dysfunction. PATIENTS AND METHODS Patients had solid malignancies and acceptable bone marrow and renal function. Hepatic dysfunction was categorized as mild, moderate, or severe by the National Cancer Institute Organ Dysfunction Working Group criteria. Fifteen patients with normal liver function were enrolled as controls. All patients received a single 400-mg dose of vorinostat for pharmacokinetic studies. One week later, daily vorinostat dosing was begun and continued until toxicity or disease progression occurred. The daily vorinostat dose was escalated within each hepatic dysfunction category. Vorinostat plasma concentrations were quantitated by a validated liquid chromatography-tandem mass spectrometry assay and modeled noncompartmentally. RESULTS Fifty-seven patients were enrolled (median age, 59 years; females, n = 24); 42 patients had hepatic dysfunction (16 mild, 15 moderate, and 11 severe). Eight of nine patients with dose-limiting toxicity had grade 4 thrombocytopenia. The recommended vorinostat doses in mild, moderate, and severe hepatic dysfunction were 300, 200, and 100 mg, respectively, on the daily continuous schedule. There were no significant differences in vorinostat pharmacokinetic parameters among the normal or hepatic dysfunction categories. Disease stabilization was noted in 12 patients. Of five patients with adenoid cystic carcinoma, one patient had a partial response, and four patients had stable disease. A patient with papillary thyroid carcinoma had stable disease for more than 2 years. CONCLUSION Patients with varying degrees of hepatic dysfunction require appropriate dose reduction even though vorinostat pharmacokinetics are unaltered.
Collapse
|
29
|
Histone deacetylase inhibitors in malignant pleural mesothelioma: preclinical rationale and clinical trials. J Thorac Oncol 2010; 5:275-9. [PMID: 20035240 DOI: 10.1097/jto.0b013e3181c5e366] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Malignant pleural mesothelioma (MPM) is a rare and aggressive cancer of the mesothelium with only a limited range of treatment options that are largely ineffective in improving survival. Recent efforts have turned toward the analysis of specific, dysregulated biologic pathways for insight into new treatment targets. Epigenetic regulation of tumor suppressor genes through chromatin condensation and decondensation has emerged as an important mechanism that leads to tumorogenesis. A family of histone acetyltransferases and deacetylases regulates this balance, with the latter facilitating chromatin condensation, thus preventing gene transcription, resulting in the loss of heterozygosity of tumor suppressors. Inhibition of this process, coupled with a similar inhibition of nonhistone protein deacetylation, ultimately leads to the promotion of apoptosis, cell cycle arrest, and inhibition of angiogenesis. An increasing amount of preclinical data highlighting the effectiveness of histone deacetylase inhibition in MPM cell lines and mouse xenograft models has led to a number of early phase clinical trials in patients with MPM. The results of these efforts have led to a multicenter, randomized, placebo-controlled phase III study of the histone deacetylase inhibitor vorinostat in patients with advanced MPM, offering hope for a new and effective therapy in patients with this disease.
Collapse
|
30
|
Kauh J, Fan S, Xia M, Yue P, Yang L, Khuri FR, Sun SY. c-FLIP degradation mediates sensitization of pancreatic cancer cells to TRAIL-induced apoptosis by the histone deacetylase inhibitor LBH589. PLoS One 2010; 5:e10376. [PMID: 20442774 PMCID: PMC2860986 DOI: 10.1371/journal.pone.0010376] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2010] [Accepted: 04/07/2010] [Indexed: 11/19/2022] Open
Abstract
Great efforts have been made to develop novel and efficacious therapeutics against pancreatic cancer to improve the treatment outcomes. Tumor-necrosis factor-related apoptosis-inducing ligand (TRAIL) is such a therapeutic cytokine with selective killing effect toward malignant cells. However, some human pancreatic cancers are intrinsically resistant to TRAIL-mediated apoptosis or therapy. In this study, we have shown that the histone deacetylase inhibitor LBH589 can synergize with TRAIL to augment apoptosis even in TRAIL-resistant cells. LBH589 decreased c-FLIP levels in every tested cell line and survivin levels in some of the tested cell lines. Enforced expression of ectopic c-FLIP, but not survivin, abolished the cooperative induction of apoptosis by the combination of LBH589 and TRAIL, indicating that c-FLIP downregulation plays a critical role in LBH589 sensitization of pancreatic cancer cells to TRAIL. Moreover, LBH589 decreased c-FLIP stability and the presence of the proteasome inhibitor MG132 prevented c-FLIP from reduction by LBH589. Correspondingly, we detected increased levels of ubiqutinated c-FLIP in LBH589-treated cells. These data thus indicate that LBH589 promotes ubiqutin/proteasome-mediated degradation of c-FLIP, leading to downregulation of c-FLIP. Collectively, LBH589 induces c-FLIP degradation and accordingly sensitizes pancreatic cancer cells to TRAIL-induced apoptosis, highlighting a novel therapeutic regimen against pancreatic cancer.
Collapse
Affiliation(s)
- John Kauh
- Department of Hematology and Medical Oncology, Emory University School of Medicine and Winship Cancer Institute, Atlanta, Georgia, United States of America
| | - Songqing Fan
- Department of Hematology and Medical Oncology, Emory University School of Medicine and Winship Cancer Institute, Atlanta, Georgia, United States of America
| | - Mingjing Xia
- Department of Hematology and Medical Oncology, Emory University School of Medicine and Winship Cancer Institute, Atlanta, Georgia, United States of America
| | - Ping Yue
- Department of Hematology and Medical Oncology, Emory University School of Medicine and Winship Cancer Institute, Atlanta, Georgia, United States of America
| | - Lily Yang
- Department of Surgery, Emory University School of Medicine and Winship Cancer Institute, Atlanta, Georgia, United States of America
| | - Fadlo R. Khuri
- Department of Hematology and Medical Oncology, Emory University School of Medicine and Winship Cancer Institute, Atlanta, Georgia, United States of America
| | - Shi-Yong Sun
- Department of Hematology and Medical Oncology, Emory University School of Medicine and Winship Cancer Institute, Atlanta, Georgia, United States of America
- * E-mail:
| |
Collapse
|
31
|
Close P, Creppe C, Gillard M, Ladang A, Chapelle JP, Nguyen L, Chariot A. The emerging role of lysine acetylation of non-nuclear proteins. Cell Mol Life Sci 2010; 67:1255-64. [PMID: 20082207 PMCID: PMC11115803 DOI: 10.1007/s00018-009-0252-7] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2009] [Revised: 12/08/2009] [Accepted: 12/28/2009] [Indexed: 12/11/2022]
Abstract
Lysine acetylation is a post-translational modification that critically regulates gene transcription by targeting histones as well as a variety of transcription factors in the nucleus. More recent reports have also demonstrated that numerous proteins located outside the nucleus are also acetylated and that this modification has profound consequences on their functions. This review describes the latest findings on the substrates acetylated outside the nucleus and on the acetylases and deacetylates that catalyse these modifications. Protein acetylation is emerging as a major mechanism by which key proteins are regulated in many physiological processes such as migration, metabolism and aging as well as in pathological circumstances such as cancer and neurodegenerative disorders.
Collapse
Affiliation(s)
- Pierre Close
- Interdisciplinary Cluster for Applied Genoproteomics (GIGA-R), University of Liège, C.H.U. Sart-Tilman, 4000 Liège, Belgium
- GIGA-Signal Transduction, Laboratory of Medical Chemistry, GIGA-R Tour GIGA, University of Liège, +2 B34, C.H.U. Sart-Tilman, 4000 Liège, Belgium
| | - Catherine Creppe
- Interdisciplinary Cluster for Applied Genoproteomics (GIGA-R), University of Liège, C.H.U. Sart-Tilman, 4000 Liège, Belgium
- GIGA-Signal Transduction, Laboratory of Medical Chemistry, GIGA-R Tour GIGA, University of Liège, +2 B34, C.H.U. Sart-Tilman, 4000 Liège, Belgium
| | - Magali Gillard
- Interdisciplinary Cluster for Applied Genoproteomics (GIGA-R), University of Liège, C.H.U. Sart-Tilman, 4000 Liège, Belgium
- GIGA-Signal Transduction, Laboratory of Medical Chemistry, GIGA-R Tour GIGA, University of Liège, +2 B34, C.H.U. Sart-Tilman, 4000 Liège, Belgium
| | - Aurélie Ladang
- Interdisciplinary Cluster for Applied Genoproteomics (GIGA-R), University of Liège, C.H.U. Sart-Tilman, 4000 Liège, Belgium
- GIGA-Signal Transduction, Laboratory of Medical Chemistry, GIGA-R Tour GIGA, University of Liège, +2 B34, C.H.U. Sart-Tilman, 4000 Liège, Belgium
| | - Jean-Paul Chapelle
- Interdisciplinary Cluster for Applied Genoproteomics (GIGA-R), University of Liège, C.H.U. Sart-Tilman, 4000 Liège, Belgium
- GIGA-Signal Transduction, Laboratory of Medical Chemistry, GIGA-R Tour GIGA, University of Liège, +2 B34, C.H.U. Sart-Tilman, 4000 Liège, Belgium
| | - Laurent Nguyen
- Interdisciplinary Cluster for Applied Genoproteomics (GIGA-R), University of Liège, C.H.U. Sart-Tilman, 4000 Liège, Belgium
- GIGA-Neurosciences, University of Liège, C.H.U. Sart-Tilman, Liège, Belgium
| | - Alain Chariot
- Interdisciplinary Cluster for Applied Genoproteomics (GIGA-R), University of Liège, C.H.U. Sart-Tilman, 4000 Liège, Belgium
- GIGA-Signal Transduction, Laboratory of Medical Chemistry, GIGA-R Tour GIGA, University of Liège, +2 B34, C.H.U. Sart-Tilman, 4000 Liège, Belgium
| |
Collapse
|
32
|
Ramalingam SS, Maitland ML, Frankel P, Argiris AE, Koczywas M, Gitlitz B, Thomas S, Espinoza-Delgado I, Vokes EE, Gandara DR, Belani CP. Carboplatin and Paclitaxel in combination with either vorinostat or placebo for first-line therapy of advanced non-small-cell lung cancer. J Clin Oncol 2010; 28:56-62. [PMID: 19933908 PMCID: PMC2799233 DOI: 10.1200/jco.2009.24.9094] [Citation(s) in RCA: 220] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2009] [Accepted: 09/11/2009] [Indexed: 12/22/2022] Open
Abstract
PURPOSE Vorinostat, a histone deacetylase inhibitor, exerts anticancer effects by both histone and nonhistone-mediated mechanisms. It also enhances the anticancer effects of platinum compounds and taxanes in non-small-cell lung cancer (NSCLC) cell lines. This phase II randomized, double-blinded, placebo-controlled study evaluated the efficacy of vorinostat in combination with carboplatin and paclitaxel in patients with advanced-stage NSCLC. PATIENTS AND METHODS Patients with previously untreated stage IIIB (ie, wet) or IV NSCLC were randomly assigned (2:1) to carboplatin (area under the curve, 6 mg/mL x min) and paclitaxel (200 mg/m(2) day 3) with either vorinostat (400 mg by mouth daily) or placebo. Vorinostat or placebo was given on days 1 through 14 of each 3-week cycle to a maximum of six cycles. The primary end point was comparison of the response rate. Results Ninety-four patients initiated protocol therapy. Baseline patient characteristics were similar between the two arms. The median number of cycles was four for both treatment arms. The confirmed response rate was 34% with vorinostat versus 12.5% with placebo (P = .02). There was a trend toward improvement in median progression-free survival (6.0 months v 4.1 months; P = .48) and overall survival (13.0 months v 9.7 months; P = .17) in the vorinostat arm. Grade 4 platelet toxicity was more common with vorinostat (18% v 3%; P < .05). Nausea, emesis, fatigue, dehydration, and hyponatremia also were more frequent with vorinostat. CONCLUSION Vorinostat enhances the efficacy of carboplatin and paclitaxel in patients with advanced NSCLC. HDAC inhibition is a promising therapeutic strategy for treatment of NSCLC.
Collapse
Affiliation(s)
- Suresh S Ramalingam
- Emory University, Winship Cancer Institute, 1365 Clifton Rd, C-3090, Atlanta, GA 30322, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Crisanti MC, Wallace AF, Kapoor V, Vandermeers F, Dowling ML, Pereira LP, Coleman K, Campling BG, Fridlender ZG, Kao GD, Albelda SM. The HDAC inhibitor panobinostat (LBH589) inhibits mesothelioma and lung cancer cells in vitro and in vivo with particular efficacy for small cell lung cancer. Mol Cancer Ther 2009; 8:2221-31. [PMID: 19671764 DOI: 10.1158/1535-7163.mct-09-0138] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Lung cancer is the leading cause of cancer deaths in the United States. Current therapies are inadequate. Histone deacetylase inhibitors (HDACi) are a recently developed class of anticancer agents that cause increased acetylation of core histones and nonhistone proteins leading to modulation of gene expression and protein activity involved in cancer cell growth and survival pathways. We examined the efficacy of the HDACi panobinostat (LBH589) in a wide range of lung cancers and mesotheliomas. Panobinostat was cytotoxic in almost all 37 cancer cell lines tested. IC(50) and LD(50) values were in the low nmol/L range (4-470 nmol/L; median, 20 nmol/L). Small cell lung cancer (SCLC) cell lines were among the most sensitive lines, with LD(50) values consistently <25 nmol/L. In lung cancer and mesothelioma animal models, panobinostat significantly decreased tumor growth by an average of 62% when compared with vehicle control. Panobinostat was equally effective in immunocompetent and severe combined immunodeficiency mice, indicating that the inhibition of tumor growth by panobinostat was not due to direct immunologic effects. Panobinostat was, however, particularly effective in SCLC xenografts, and the addition of the chemotherapy agent etoposide augmented antitumor effects. Protein analysis of treated tumor biopsies revealed elevated amounts of cell cycle regulators such as p21 and proapoptosis factors, such as caspase 3 and 7 and cleaved poly[ADP-ribose] polymerase, coupled with decreased levels of antiapoptotic factors such as Bcl-2 and Bcl-X(L). These studies together suggest that panobinostat may be a useful adjunct in the treatment of thoracic malignancies, especially SCLC.
Collapse
Affiliation(s)
- M Cecilia Crisanti
- Thoracic Oncology Research Laboratory, University of Pennsylvania, Philadelphia, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Vandermeers F, Hubert P, Delvenne P, Mascaux C, Grigoriu B, Burny A, Scherpereel A, Willems L. Valproate, in combination with pemetrexed and cisplatin, provides additional efficacy to the treatment of malignant mesothelioma. Clin Cancer Res 2009; 15:2818-28. [PMID: 19351772 DOI: 10.1158/1078-0432.ccr-08-1579] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Present chemotherapeutic regimens are marginally efficient in tumor cells being particularly resistant to radiotherapy and/or chemotherapy. We hypothesized that unresponsiveness of tumors to conventional therapeutic agents might be due to inappropriate gene expression resulting from epigenetic modifications and leading to transcriptional silencing. The goal of this study was to evaluate the anticancer effect of a histone deacetylase inhibitor, valproate, on mesothelioma cells in combination with pemetrexed and cisplatin, the usual first-line regimen of chemotherapy for this tumor. EXPERIMENTAL DESIGN AND RESULTS We show that valproate augments apoptosis induced by pemetrexed and cisplatin in mesothelioma cell lines and in tumor cells from patient's biopsies. Onset of apoptosis involves both extrinsic and intrinsic pathways requiring enzymatic activities of caspases 8 and 9, respectively. Valproate but not suberoylanilide hydroxamic acid efficiently stimulates the production of reactive oxygen species. The free radical scavenger N-acetylcysteine inhibits apoptosis, indicating that reactive oxygen species are major mediators of valproate activity. As expected, valproate alone or combined with pemetrexed and cisplatin triggers hyperacetylation of histone H3. Bid protein processing in truncated t-Bid and cytochrome c release from mitochondria are significantly increased in the presence of valproate, providing a mechanistic rationale for improvement of the proapoptotic efficacy of cisplatin and pemetrexed. Finally, valproate when combined with pemetrexed and cisplatin prevents tumor growth in mouse models of epithelioid mesothelioma. CONCLUSIONS These observations support the potential additional efficacy of valproate in combination with pemetrexed and cisplatin for treatment of malignant mesothelioma.
Collapse
Affiliation(s)
- Fabian Vandermeers
- Molecular and Cellular Biology, Gembloux Agricultural University (FUSAG), Gembloux, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Phase II study of belinostat (PXD101), a histone deacetylase inhibitor, for second line therapy of advanced malignant pleural mesothelioma. J Thorac Oncol 2009; 4:97-101. [PMID: 19096314 DOI: 10.1097/jto.0b013e318191520c] [Citation(s) in RCA: 135] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
BACKGROUND Belinostat (PXD 101) is a novel inhibitor of class I and II histone deacetylases. This class of compounds has demonstrated anticancer activity in malignant mesothelioma. We conducted a phase II study of belinostat in patients with relapsed malignant pleural mesothelioma. METHODS Patients with advanced mesothelioma, progression with one prior chemotherapy regimen and Eastern Cooperative Oncology Group performance status 0-2 were eligible. Belinostat was administered at 1000 mg/m intravenously over 30 minutes on days 1-5 of every 3 week cycle. The primary end point was response rate. The Simon two-stage design was used. Disease assessments were performed every two cycles. RESULTS Thirteen patients were enrolled. Baseline characteristics were: median age of 73 years; Eastern Cooperative Oncology Group performance status 0 (n = 4), 1 (8) and 2 (1). A median of two cycles of therapy were administered. Disease stabilization was seen in two patients. No objective responses were noted and the study did not meet criteria to proceed to the second stage of accrual. Median survival was 5 months with a median progression-free survival of 1 month. Salient toxicities included nausea, emesis, fatigue, and constipation. One patient died as a consequence of cardiac arrhythmia which was deemed 'possibly' related to therapy. CONCLUSIONS Belinostat is not active as monotherapy against recurrent malignant pleural mesothelioma. Evaluation of combination strategies or alternate dosing schedules may be necessary for further development of this novel agent in mesothelioma.
Collapse
|
36
|
|
37
|
A Histone Deacetylase Inhibitor LBH589 Downregulates XIAP in Mesothelioma Cell Lines Which is Likely Responsible for Increased Apoptosis With TRAIL. J Thorac Oncol 2009; 4:149-60. [DOI: 10.1097/jto.0b013e318194f991] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
38
|
Combination therapy of established cancer using a histone deacetylase inhibitor and a TRAIL receptor agonist. Proc Natl Acad Sci U S A 2008; 105:11317-22. [PMID: 18685088 DOI: 10.1073/pnas.0801868105] [Citation(s) in RCA: 113] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Histone deacetylase inhibitors (HDACi) and agents such as recombinant tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) and agonistic anti-TRAIL receptor (TRAIL-R) antibodies are anticancer agents that have shown promise in preclinical settings and in early phase clinical trials as monotherapies. Although HDACi and activators of the TRAIL pathway have different molecular targets and mechanisms of action, they share the ability to induce tumor cell-selective apoptosis. The ability of HDACi to induce expression of TRAIL-R death receptors 4 and 5 (DR4/DR5), and induce tumor cell death via the intrinsic apoptotic pathway provides a molecular rationale to combine these agents with activators of the TRAIL pathway that activate the alternative (death receptor) apoptotic pathway. Herein, we demonstrate that the HDACi vorinostat synergizes with the mouse DR5-specific monoclonal antibody MD5-1 to induce rapid and robust tumor cell apoptosis in vitro and in vivo. Importantly, using a preclinical mouse breast cancer model, we show that the combination of vorinostat and MD5-1 is safe and induces regression of established tumors, whereas single agent treatment had little or no effect. Functional analyses revealed that rather than mediating enhanced tumor cell apoptosis via the simultaneous activation of the intrinsic and extrinsic apoptotic pathways, vorinostat augmented MD5-1-induced apoptosis concomitant with down-regulation of the intracellular apoptosis inhibitor cellular-FLIP (c-FLIP). These data demonstrate that combination therapies involving HDACi and activators of the TRAIL pathway can be efficacious for the treatment of cancer in experimental mouse models.
Collapse
|
39
|
Ning L, Jaskula-Sztul R, Kunnimalaiyaan M, Chen H. Suberoyl bishydroxamic acid activates notch1 signaling and suppresses tumor progression in an animal model of medullary thyroid carcinoma. Ann Surg Oncol 2008; 15:2600-5. [PMID: 18563491 DOI: 10.1245/s10434-008-0006-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2008] [Revised: 05/12/2008] [Accepted: 05/13/2008] [Indexed: 12/18/2022]
Abstract
BACKGROUND Medullary thyroid carcinoma (MTC) is a neuroendocrine malignancy that frequently metastasizes and has few treatments. This study was aimed at assessing the antitumor effects of suberoyl bishydroxamic acid (SBHA) in an in vivo model of MTC. METHODS Nude mice were injected with human MTC cells, and the groups were treated with SBHA (200 mg/kg) or vehicle (dimethyl sulfoxide) in saline injection every other day for 12 days. Tumors were measured every 4 days and collected at 12 days for Western blot analysis. RESULTS Treatment with SBHA resulted in an average 55% inhibition of tumor growth in the treatment group (P < .05). Analysis of SBHA-treated MTC tumors revealed a marked increase in the active form of Notch1 (NICD) with a concomitant decrease in achaete-scute complex-like 1 (ASCL1), a downstream target of Notch1 signaling, as well as the neuroendocrine tumor marker chromogranin A. Importantly, SBHA treatment resulted in an increase in protein levels of p21(CIP1/WAF1), p27(KIP1), cleaved caspase-9, cleaved caspase-3, and cleaved poly ADP-ribose polymerase and concomitant with a decrease in cyclin D1 and cyclin B1, indicating that the growth inhibition was due to both cell cycle arrest and apoptosis. Moreover, SBHA downregulated cell survival proteins Bcl-2 and Bcl-X(L), but upregulated apoptotic proteins Bax, Bad, and Bmf. CONCLUSION These results demonstrate that SBHA inhibits MTC growth in vivo. SBHA is a promising candidate for further preclinical and clinical studies in MTC.
Collapse
Affiliation(s)
- Li Ning
- Endocrine Surgery Research Laboratories, Department of Surgery, University of Wisconsin School of Medicine and Public Health, and the University of Wisconsin Paul P. Carbone Comprehensive Cancer Center, Madison, WI, USA
| | | | | | | |
Collapse
|
40
|
Ray S, Bucur O, Almasan A. Sensitization of prostate carcinoma cells to Apo2L/TRAIL by a Bcl-2 family protein inhibitor. Apoptosis 2008; 10:1411-8. [PMID: 16215673 DOI: 10.1007/s10495-005-2490-y] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Overexpression of anti-apoptotic Bcl-2 family proteins may play an important role in the aggressive behavior of prostate cancer cells and their resistance to therapy. The Bcl-2 homology 3 domain (BH3) is a uniquely important functional element within the pro-apoptotic class of the Bcl-2-related proteins, mediating their ability to dimerize with other Bcl-2-related proteins and promote apoptosis. The BH3 inhibitors (BH3Is) function by disrupting the interactions mediated by the BH3 domain between pro- and anti-apoptotic members of the Bcl-2 family and liberating more Bax/Bak to induce mitochondrial membrane permeabilization. LNCaP-derived C4-2 human prostate cancer cells are quite resistant to non-tagged, human recombinant soluble Apo2 ligand [Apo2L, also Tumor necrosis factor (TNF)-related apoptosis-inducing ligand, TRAIL], a tumor specific drug that is now in clinical trials. However, when Apo2L/TRAIL was combined with the Bcl-xL inhibitor, BH3I-2', it induced apoptosis synergistically through activation of Caspase-8 and the proapoptotic Bcl-2 family member Bid, resulting in the activation of effector Caspase-3 and proteolytic cleavage of Poly(ADP-ribose) polymerase, events that were blocked by the pan-caspase inhibitor zVAD-fmk. Our data indicate that, in combination with the BH3 mimetic, BH3I-2', Apo2L/TRAIL synergistically induces apoptosis in C4-2 human prostate cancer cells through both the extrinsic and intrinsic apoptotic pathways.
Collapse
Affiliation(s)
- S Ray
- Department of Cancer Biology, Lerner Research Institute, The Cleveland Clinic Foundation, Cleveland, Ohio 44195, USA
| | | | | |
Collapse
|
41
|
Barbone D, Yang TM, Morgan JR, Gaudino G, Broaddus VC. Mammalian target of rapamycin contributes to the acquired apoptotic resistance of human mesothelioma multicellular spheroids. J Biol Chem 2008; 283:13021-30. [PMID: 18339627 DOI: 10.1074/jbc.m709698200] [Citation(s) in RCA: 116] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
When grown as three-dimensional structures, tumor cells can acquire an additional multicellular resistance to apoptosis that may mimic the chemoresistance found in solid tumors. We developed a multicellular spheroid model of malignant mesothelioma to investigate molecular mechanisms of acquired apoptotic resistance. We found that mesothelioma cell lines, when grown as multicellular spheroids, acquired resistance to a variety of apoptotic stimuli, including combinations of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), ribotoxic stressors, histone deacetylase, and proteasome inhibitors, that were highly effective against mesothelioma cells when grown as monolayers. Inhibitors of the phosphatidylinositol 3-kinase/Akt/mammalian target of rapamycin (mTOR) pathway, particularly rapamycin, blocked much of the acquired resistance of the spheroids, suggesting a key role for mTOR. Knockdown by small interference RNA of S6K, a major downstream target of mTOR, reproduced the effect of rapamycin, thereby confirming the role of mTOR and of S6K in the acquired resistance of three dimensional spheroids. Rapamycin or S6K knockdown increased TRAIL-induced caspase-8 cleavage in spheroids, suggesting initially that mTOR inhibited apoptosis by actions at the death receptor pathway; however, isolation of the apoptotic pathways by means of Bid knockdown ablated this effect showing that mTOR actually controls a step distal to Bid, probably at the level of the mitochondria. In sum, mTOR and S6K contribute to the apoptotic resistance of mesothelioma cells in three-dimensional, not in two-dimensional, cultures. The three-dimensional model may reflect a more clinically relevant in vitro setting in which mTOR exhibits anti-apoptotic properties.
Collapse
Affiliation(s)
- Dario Barbone
- Lung Biology Center, San Francisco General Hospital, University of California, San Francisco, California 94110, USA
| | | | | | | | | |
Collapse
|
42
|
Histone deacetylase inhibitors: mechanisms and clinical significance in cancer: HDAC inhibitor-induced apoptosis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2008; 615:261-98. [PMID: 18437899 DOI: 10.1007/978-1-4020-6554-5_13] [Citation(s) in RCA: 114] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Epigenic modifications, mainly DNA methylation and acetylation, are recognized as the main mechanisms contributing to the malignant phenotype. Acetylation and deacetylation are catalyzed by specific enzymes, histone acetyltransferases (HATs) and histone deacetylases (HDACs), respectively. While histones represent a primary target for the physiological function of HDACs, the antitumor effect of HDAC inhibitors might also be attributed to transcription-independent mechanisms by modulating the acetylation status of a series of non-histone proteins. HDAC inhibitors may act through the transcriptional reactivation of dormant tumor suppressor genes. They also modulate expression of several other genes related to cell cycle, apoptosis, and angiogenesis. Several HDAC inhibitors are currently in clinical trials both for solid and hematologic malignancies. Thus, HDAC inhibitors, in combination with DNA-demethylating agents, chemopreventive, or classical chemotherapeutic drugs, could be promising candidates for cancer therapy. Here, we review the molecular mechanisms and therapeutic potential of HDAC inhibitors for the treatment of cancer.
Collapse
|
43
|
Witham J, Valenti MR, De-Haven-Brandon AK, Vidot S, Eccles SA, Kaye SB, Richardson A. The Bcl-2/Bcl-XL Family Inhibitor ABT-737 Sensitizes Ovarian Cancer Cells to Carboplatin. Clin Cancer Res 2007; 13:7191-8. [DOI: 10.1158/1078-0432.ccr-07-0362] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
44
|
Belyanskaya LL, Marti TM, Hopkins-Donaldson S, Kurtz S, Felley-Bosco E, Stahel RA. Human agonistic TRAIL receptor antibodies Mapatumumab and Lexatumumab induce apoptosis in malignant mesothelioma and act synergistically with cisplatin. Mol Cancer 2007; 6:66. [PMID: 17953743 PMCID: PMC2134932 DOI: 10.1186/1476-4598-6-66] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2007] [Accepted: 10/22/2007] [Indexed: 12/20/2022] Open
Abstract
Background The incidence of malignant pleural mesothelioma (MPM) is associated with exposure to asbestos, and projections suggest that the yearly number of deaths in Western Europe due to MPM will increase until 2020. Despite progress in chemo- and in multimodality therapy, MPM remains a disease with a poor prognosis. Inducing apoptosis by tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) or agonistic monoclonal antibodies which target TRAIL-receptor 1 (TRAIL-R1) or TRAIL-R2 has been thought to be a promising cancer therapy. Results We have compared the sensitivity of 13 MPM cell lines or primary cultures to TRAIL and two fully human agonistic monoclonal antibodies directed to TRAIL-R1 (Mapatumumab) and TRAIL-R2 (Lexatumumab) and examined sensitization of the MPM cell lines to cisplatin-induced by the TRAIL-receptor antibodies. We found that sensitivity of MPM cells to TRAIL, Mapatumumab and Lexatumumab varies largely and is independent of TRAIL-receptor expression. TRAIL-R2 contributes more than TRAIL-R1 to death-receptor mediated apoptosis in MPM cells that express both receptors. The combination of cisplatin with Mapatumumab or Lexatumumab synergistically inhibited the cell growth and enhanced apoptotic death. Furthermore, pre-treatment with cisplatin followed by Mapatumumab or Lexatumumab resulted in significant higher cytotoxic effects as compared to the reverse sequence. Combination-induced cell growth inhibition was significantly abrogated by pre-treatment of the cells with the antioxidant N-acetylcysteine. Conclusion Our results suggest that the sequential administration of cisplatin followed by Mapatumumab or Lexatumumab deserves investigation in the treatment of patients with MPM.
Collapse
Affiliation(s)
- Larisa L Belyanskaya
- Laboratory of Molecular Oncology, Clinic and Policlinic of Oncology, University Hospital of Zürich, Häldeliweg 4, 8044 Zürich, Switzerland.
| | | | | | | | | | | |
Collapse
|
45
|
Ireland DJ, Kissick HT, Beilharz MW. Alpha-Tocopheryl succinate: toxicity and lack of anti-tumour activity in immuno-competent mice. Food Chem Toxicol 2007; 46:508-12. [PMID: 17923224 DOI: 10.1016/j.fct.2007.08.030] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2006] [Revised: 06/14/2007] [Accepted: 08/22/2007] [Indexed: 10/22/2022]
Abstract
Alpha-tocopheryl succinate (alpha-TOS), an analogue of vitamin E (VitE), inhibits peritoneal human malignant mesoethelioma xenograft development in immuno-compromised mice via the induction of apoptosis of tumour cells [Tomasetti, M., Gellert, N., Procopio, A., Neuzil, J., 2004. A vitamin E analogue suppresses malignant mesothelioma in a preclinical model: a future drug against a fatal neoplastic disease? Int. J. Cancer 109, 641-642]. We tested the effect of systemic alpha-TOS treatment in our immuno-competent and syngeneic murine mesothelioma model. VitE analogues such as alpha-TOS have been developed for clinical use as supplements mainly for the treatment of VitE deficiency and are considered safe and non-toxic when taken orally. In our murine model of mesothelioma alpha-TOS was not only ineffective at inhibiting established tumour development at the published doses, but resulted in severe side effects characterized by both behavioural changes, intra-peritoneal abnormalities and the destruction of T cells. Toxicity of alpha-TOS has not been reported to date perhaps due to a lack of studies conducted in fully immuno-competent hosts. Our results suggest that the translation of animal studies to clinical treatment with alpha-TOS requires careful consideration.
Collapse
Affiliation(s)
- Demelza J Ireland
- Microbiology and Immunology (M502), School of Biomedical, Biomolecular and Chemical Sciences, The University of Western Australia, 35 Stirling Highway, 6009 Perth, Western Australia, Australia
| | | | | |
Collapse
|
46
|
Tsai WS, Yeow WS, Chua A, Reddy RM, Nguyen DM, Schrump DS, Nguyen DM. Enhancement of Apo2L/TRAIL-mediated cytotoxicity in esophageal cancer cells by cisplatin. Mol Cancer Ther 2007; 5:2977-90. [PMID: 17172403 DOI: 10.1158/1535-7163.mct-05-0514] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Although expressing adequate levels of functional tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) receptors DR4/DR5, significant proportion of cancer cells exhibit resistance to the cytotoxic effect of this ligand. Exposure of Apo2L/TRAIL-refractory cancer cells to cytotoxic chemotherapeutic agents enhances their sensitivity to Apo2L/TRAIL cytotoxicity. This study aims to elucidate the molecular mechanism responsible for the cisplatin-mediated enhancement of Apo2L/TRAIL sensitivity in cultured esophageal cancer cells. Exposure of cancer cells to sublethal concentrations of cisplatin resulted in profound potentiation of their susceptibility to Apo2L/TRAIL cytotoxicity as indicated by 2- to >20-fold reduction in Apo2L/TRAIL IC50 values. Significant activation of caspase-8, caspase-9, and caspase-3 was observed only in cells treated with cisplatin/Apo2L/TRAIL combination and not in those exposed to either agent alone. More importantly, activation of these key caspases was significantly abrogated by overexpression of Bcl2 or by the selective caspase-9 inhibitor. This observation strongly suggested that caspase-8 activation in cells treated with the cisplatin/Apo2L/TRAIL combination was secondary to the mitochondria-mediated amplification feedback loop and activation of the executioner caspase-3 was dependent on the recruitment of the intrinsic pathway characteristic of the type II cell. Profound combination-mediated cytotoxicity and induction of apoptosis was completely suppressed either by Bcl2 overexpression or by inhibition of caspase-9 activity, which conclusively pointed to the essential role of the mitochondria-dependent death signaling cascade in this process. Cisplatin sensitizes esophageal cancer cells to Apo2L/TRAIL cytotoxicity by potentiation of the mitochondria-dependent death signaling pathway that leads to amplification of caspase activation, particularly caspase-8, by the feedback loop to efficiently induce apoptosis.
Collapse
Affiliation(s)
- Wilson S Tsai
- Section of Thoracic Oncology, Surgery Branch, Center for Cancer Research, National Cancer Institute, NIH, Room 4-4W-3940, 10 Center Drive, Bethesda, MD 20892-1502, USA
| | | | | | | | | | | | | |
Collapse
|
47
|
Reddy RM, Yeow WS, Chua A, Nguyen DM, Baras A, Ziauddin MF, Shamimi-Noori SM, Maxhimer JB, Schrump DS, Nguyen DM. Rapid and profound potentiation of Apo2L/TRAIL-mediated cytotoxicity and apoptosis in thoracic cancer cells by the histone deacetylase inhibitor Trichostatin A: the essential role of the mitochondria-mediated caspase activation cascade. Apoptosis 2007; 12:55-71. [PMID: 17136498 DOI: 10.1007/s10495-006-0484-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Apo2L/TRAIL is actively investigated as a novel targeted agent to directly induce apoptosis of susceptible cancer cells. Apo2L/TRAIL-refractory cells can be sensitized to the cytotoxic effect of this ligand by cytotoxic chemotherapeutics. The aim of this study was to evaluate the in vitro tumoricidal activity of the Apo2L/TRAIL + Trichostatin A in cultured thoracic cancer cells and to elucidate the molecular basis of the synergistic cytotoxicity of this combination. Concurrent exposure of cultured cancer cells to sublethal concentrations of Apo2L/TRAIL and Trichostatin A resulted in profound enhancement of Apo2L/TRAIL-mediated cytotoxicity in all cell lines regardless of their intrinsic susceptibility to this ligand. This combination was not toxic to primary normal cells. While Apo2L/TRAIL alone or Trichostatin A alone mediated < 20% cell death, 60 to 90% of cancer cells were apoptotic following treatment with TSA + Apo2L/TRAIL combinations. Complete translocation of Bax from the cytosol to the mitochondria compartment was mainly observed in combination-treated cells and this was correlated with robust elevation of caspase 9 proteolytic activity indicative of activation of the mitochondria apoptogenic effect. Profound TSA + Apo2L/TRAIL-mediated cytotoxicity and apoptosis were completely abrogated by either Bcl2 over-expression or by the selective caspase 9 inhibitor, highlighting the essential role of mitochondria-dependent apoptosis signaling cascade in this process. Moreover, increased caspase 8 activity observed in cells treated with the TSA + Apo2L/TRAIL combination was completely suppressed by Bcl-2 over-expression or by the selective caspase 9 inhibitor indicating that the elevated caspase 8 activity in combination-treated cells was secondary to a mitochondria-mediated amplification feedback loop of caspase activation. These finding form the basis for further development of HDAC inhibitors + Apo2L/TRAIL combination as novel targeted therapy for thoracic malignancies.
Collapse
Affiliation(s)
- Rishindra M Reddy
- Section of Thoracic Oncology, Surgery Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Abstract
Human sarcoma cells can be killed by radio- and chemotherapy, but tumor cells acquiring resistance frequently kill the patient. A keen understanding of the intracellular course of oncogenic cascades leads to the discovery of small molecular inhibitors of the involved phosphorylated kinases. Targeted therapy complements chemotherapy. Oncogene silencing is feasible by small interfering RNA. The restoration of some of the mutated or deleted tumor-suppressor genes (p53, Rb, PTEN, hSNF, INK/ARF and WT) by demethylation or reacetylation of their histones has been accomplished. Genetically engineered or naturally oncolytic viruses selectively lyse tumors and leave healthy tissues intact. Adeno- or retroviral vectors deliver genes of immunological costimulators, tumor antigens, chemo- or cytokines and/or tumor-suppressor proteins into tumor (sarcoma) cells. Suicide gene delivery results in apoptosis induction. Genes of enzymes that target prodrugs as their substrates render tumor cells highly susceptible to chemotherapy, with the prodrug to be targeted intracellularly. It will be combinations of sophisticated surgical removal of the nonencapsulated and locally invasive primary sarcomas, advanced forms of radiotherapy to the involved sites and immunotherapy with sarcoma vaccines that will cure primary sarcomas. Adoptive immunotherapy with immune lymphocytes will be operational in metastatic disease only when populations of regulatory T cells are controlled. Targeted therapy with small molecular inhibitors of oncogene cascades, the driving forces of sarcoma cells, alteration of the tumor stroma from a supportive to a tumor-hostile environment, reactivation or replacement of wild-type tumor-suppressor genes, and radio-chemotherapy (with much reduced toxicity) will eventually accomplish the cure of metastatic sarcomas.
Collapse
Affiliation(s)
- Joseph G Sinkovics
- The University of South Florida, Cancer Institute of St Joseph's Hospital, HL Moffitt Cancer Center, The University of South Florida College of Medicine, FL, USA.
| |
Collapse
|
49
|
VanOosten RL, Earel JK, Griffith TS. Histone deacetylase inhibitors enhance Ad5-TRAIL killing of TRAIL-resistant prostate tumor cells through increased caspase-2 activity. Apoptosis 2006; 12:561-71. [PMID: 17195089 DOI: 10.1007/s10495-006-0009-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2006] [Accepted: 10/11/2006] [Indexed: 11/29/2022]
Abstract
Interest in TNF-related apoptosis-inducing ligand (TRAIL) as a cancer therapeutic has been high since its first description. Recently, the use of histone deacetylase inhibitors (HDACi) to treat cancer has progressed from the laboratory to the clinic, and the combination of HDACi and TRAIL is very powerful in killing human tumors. Using a panel of prostate tumor cell lines (ALVA-31, DU-145, and LNCaP) with varying TRAIL sensitivity, we examined their sensitization to a recombinant adenovirus encoding TRAIL (Ad5-TRAIL) by sodium butyrate and trichostatin A. HDACi treatment increased coxsackie-adenovirus receptor (CAR) expression, resulting in increased adenoviral infection, and increased TRAIL-mediated killing. In TRAIL-resistant DU-145 cells, HDAC inhibition also decreased protein kinase casein kinase (PKCK) 2 activity, leading to caspase-2 activation. The importance of PKCK2 and caspase-2 in DU-145 sensitization was demonstrated with the PKCK-2-specific inhibitor, which enhanced Ad5-TRAIL-induced death, or the caspase-2-specific inhibitor, zVDVAD, which blocked Ad5-TRAIL-induced death. Thus, our data highlight the connection between HDAC inhibition of PKCK2 activity and tumor cell sensitivity to TRAIL-induced apoptosis. Specifically, HDAC inhibition leads to decreased PCKC2 activity, which is followed by caspase-2 activation and partial cleavage of caspase-8 that sensitizes the tumor cell to TRAIL.
Collapse
Affiliation(s)
- Rebecca L VanOosten
- Department of Urology, 3204 MERF, University of Iowa, 375 Newton Road, Iowa City, IA 52242-1089, USA
| | | | | |
Collapse
|
50
|
Ch'ng S, Sullivan M, Yuan L, Davis P, Tan ST. Mast cells dysregulate apoptotic and cell cycle genes in mucosal squamous cell carcinoma. Cancer Cell Int 2006; 6:28. [PMID: 17177999 PMCID: PMC1769399 DOI: 10.1186/1475-2867-6-28] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2006] [Accepted: 12/19/2006] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Mucosal squamous cell carcinoma of the head and neck is a disease of high mortality and morbidity. Interactions between the squamous cell carcinoma and the host's local immunity, and how the latter contributes to the biological behavior of the tumor are unclear. In vivo studies have demonstrated sequential mast cell infiltration and degranulation during squamous cell carcinogenesis. The degree of mast cell activation correlates closely with distinct phases of hyperkeratosis, dysplasia, carcinoma in-situ and invasive carcinoma. However, the role of mast cells in carcinogenesis is unclear. AIM This study explores the effects of mast cells on the proliferation and gene expression profile of mucosal squamous cell carcinoma using human mast cell line (HMC-1) and human glossal squamous cell carcinoma cell line (SCC25). METHODS HMC-1 and SCC25 were co-cultured in a two-compartment chamber, separated by a polycarbonate membrane. HMC-1 was stimulated to degranulate with calcium ionophore A23187. The experiments were done in quadruplicate. Negative controls were established where SCC25 were cultured alone without HMC-1. At 12, 24, 48 and 72 hours, proliferation and viability of SCC25 were assessed with MTT colorimetric assay. cDNA microarray was employed to study differential gene expression between co-cultured and control SCC25. RESULTS HMC-1/SCC25 co-culture resulted in suppression of growth rate for SCC-25 (34% compared with 110% for the control by 72 hours, p < 0.001), and dysregulation of genes TRAIL, BIRC4, CDK6, Cyclin G2 and CDC6 in SCC25. CONCLUSION We show that mast cells have a direct inhibitory effect on the proliferation of mucosal squamous cell carcinoma in vitro by dysregulating key genes in apoptosis and cell cycle control.
Collapse
Affiliation(s)
- Sydney Ch'ng
- From the Wellington Regional Plastic, Maxillofacial & Burns Unit, Hutt Hospital, Wellington, New Zealand
- The Department of Medicine, Wellington School of Medicine & Health Sciences, Wellington, New Zealand
| | - Michael Sullivan
- The Children's Cancer Research Group, Christchurch School of Medicine & Health Sciences, Christchurch, New Zealand
| | - Lan Yuan
- The Department of Medicine, Wellington School of Medicine & Health Sciences, Wellington, New Zealand
| | - Paul Davis
- The Department of Medicine, Wellington School of Medicine & Health Sciences, Wellington, New Zealand
| | - Swee T Tan
- From the Wellington Regional Plastic, Maxillofacial & Burns Unit, Hutt Hospital, Wellington, New Zealand
| |
Collapse
|