1
|
Tiwari V, Alam MJ, Bhatia M, Navya M, Banerjee SK. The structure and function of lamin A/C: Special focus on cardiomyopathy and therapeutic interventions. Life Sci 2024; 341:122489. [PMID: 38340979 DOI: 10.1016/j.lfs.2024.122489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 01/21/2024] [Accepted: 02/03/2024] [Indexed: 02/12/2024]
Abstract
Lamins are inner nuclear membrane proteins that belong to the intermediate filament family. Lamin A/C lie adjacent to the heterochromatin structure in polymer form, providing skeletal to the nucleus. Based on the localization, lamin A/C provides nuclear stability and cytoskeleton to the nucleus and modulates chromatin organization and gene expression. Besides being the structural protein making the inner nuclear membrane in polymer form, lamin A/C functions as a signalling molecule involved in gene expression as an enhancer inside the nucleus. Lamin A/C regulates various cellular pathways like autophagy and energy balance in the cytoplasm. Its expression is highly variable in differentiated tissues, higher in hard tissues like bone and muscle cells, and lower in soft tissues like the liver and brain. In muscle cells, including the heart, lamin A/C must be expressed in a balanced state. Lamin A/C mutation is linked with various diseases, such as muscular dystrophy, lipodystrophy, and cardiomyopathies. It has been observed that a good number of mutations in the LMNA gene impact cardiac activity and its function. Although several works have been published, there are still several unexplored areas left regarding the lamin A/C function and structure in the cardiovascular system and its pathological state. In this review, we focus on the structural organization, expression pattern, and function of lamin A/C, its interacting partners, and the pathophysiology associated with mutations in the lamin A/C gene, with special emphasis on cardiovascular diseases. With the recent finding on lamin A/C, we have summarized the possible therapeutic interventions to treat cardiovascular symptoms and reverse the molecular changes.
Collapse
Affiliation(s)
- Vikas Tiwari
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Guwahati 781101, Assam, India
| | - Md Jahangir Alam
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Guwahati 781101, Assam, India; Cell Biology and Physiology Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Madhavi Bhatia
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Guwahati 781101, Assam, India
| | - Malladi Navya
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Guwahati 781101, Assam, India
| | - Sanjay K Banerjee
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Guwahati 781101, Assam, India.
| |
Collapse
|
2
|
Song Y, Jorgensen C. Mesenchymal Stromal Cells in Osteoarthritis: Evidence for Structural Benefit and Cartilage Repair. Biomedicines 2022; 10:biomedicines10061278. [PMID: 35740299 PMCID: PMC9219878 DOI: 10.3390/biomedicines10061278] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 05/24/2022] [Accepted: 05/28/2022] [Indexed: 12/15/2022] Open
Abstract
Osteoarthritis (OA) presents a major clinical challenge to rheumatologists and orthopedists due to the lack of available drugs reducing structural degradation. Mesenchymal stromal cells (MSCs) may represent new therapeutic approaches in cartilage regeneration. In this review, we highlight the latest knowledge on the biological properties of MSC, such as their chondrogenic and immunomodulatory potential, and we give a brief overview of the effects of MSCs in preclinical and clinical studies of OA treatment and also compare different MSC sources, with the adipose tissue-derived MSCs being promising. Then, we focus on their structural benefit in treating OA and summarize the current evidence for the assessment of cartilage in OA according to magnetic resonance imaging (MRI) and second-look arthroscopy after MSC therapy. Finally, this review provides a brief perspective on enhancing the activity of MSCs.
Collapse
|
3
|
Yan W, Li Y, Li G, Yin L, Zhang H, Yan S. Differentiation of Adipose Tissue-Derived Stem Cells into Cardiomyocytes: An Overview. J BIOMATER TISS ENG 2022. [DOI: 10.1166/jbt.2022.2890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Cardiovascular diseases, including congenital and acquired cardiovascular diseases, impose a severe burden on healthcare systems worldwide. Although bone marrow-derived stem cells (BMSCs) therapy can be an effective therapeutic strategy for the heart disease, relatively low abundance,
difficult accessibility, and small tissue volume hinder the clinical usefulness. Adipose tissue-derived stem cells (ADSCs) show similar potential with BMSCs to differentiate into lineages and tissues, such as smooth muscle cells, endothelial cells, and adipocytes, with attractiveness of obtaining
adipose tissue easily and repeatedly, and a simple separation procedure. We briefly summarize the current understanding of the cardiomyocytes differentiated from ADSCs
Collapse
Affiliation(s)
- Wenju Yan
- Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250100, China
| | - Yan Li
- Shandong Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250100, China
| | - Gaiqin Li
- Department of Gastroenterology, Taian City Central Hospital, Taian, Shandong, 271000, China
| | - Luhua Yin
- Department of Vasculocardiology, Taian City Central Hospital, Taian, Shandong, 271000, China
| | - Huanyi Zhang
- Department of Vasculocardiology, Taian City Central Hospital, Taian, Shandong, 271000, China
| | - Suhua Yan
- Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250100, China
| |
Collapse
|
4
|
Galili U, Zhu Z, Chen J, Goldufsky JW, Schaer GL. Near Complete Repair After Myocardial Infarction in Adult Mice by Altering the Inflammatory Response With Intramyocardial Injection of α-Gal Nanoparticles. Front Cardiovasc Med 2021; 8:719160. [PMID: 34513957 PMCID: PMC8425953 DOI: 10.3389/fcvm.2021.719160] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 07/30/2021] [Indexed: 12/27/2022] Open
Abstract
Background: Neonatal mice, but not older mice, can regenerate their hearts after myocardial-infarction (MI), a process mediated by pro-reparative macrophages. α-Gal nanoparticles applied to skin wounds in adult-mice bind the anti-Gal antibody, activate the complement cascade and generate complement chemotactic peptides that recruit pro-reparative macrophages which are further activated by these nanoparticles. The recruited macrophages decrease wound healing time by ~50%, restore the normal skin structure and prevent fibrosis and scar formation in mice. Objectives: The objective of this study is to determine if α-gal nanoparticles injected into the reperfused myocardium after MI in adult-mice can induce myocardial repair that restores normal structure, similar to that observed in skin injuries. Methods and Results: MI was induced by occluding the mid-portion of the left anterior descending (LAD) coronary artery for 30 min. Immediately following reperfusion, each mouse received two 10 μl injections of 100 μg α-gal nanoparticles in saline into the LAD territory (n = 20), or saline for controls (n = 10). Myocardial infarct size was measured by planimetry following Trichrome staining and macrophage recruitment by hematoxylin-eosin staining. Left ventricular (LV) function was measured by echocardiography. Control mice displayed peak macrophage infiltration at 4-days, whereas treated mice had a delayed peak macrophage infiltration at 7-days. At 28-days, control mice demonstrated large transmural infarcts with extensive scar formation and poor contractile function. In contrast, mice treated with α-gal nanoparticles demonstrated after 28-days a marked reduction in infarct size (~10-fold smaller), restoration of normal myocardium structure and contractile function. Conclusions: Intramyocardial injection of α-gal nanoparticles post-MI in anti-Gal producing adult-mice results in near complete repair of the infarcted territory, with restoration of normal LV structure and contractile function. The mechanism responsible for this benefit likely involves alteration of the usual inflammatory response post-MI, as previously observed with regeneration of injured hearts in adult zebrafish, salamanders and neonatal mice.
Collapse
Affiliation(s)
- Uri Galili
- Department of Medicine, Rush University Medical Center, Chicago, IL, United States
| | - Zhongkai Zhu
- Department of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - Jiwang Chen
- Department of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - Josef W Goldufsky
- Department of Medicine, Rush University Medical Center, Chicago, IL, United States
| | - Gary L Schaer
- Department of Medicine, Rush University Medical Center, Chicago, IL, United States
| |
Collapse
|
5
|
Khazaei S, Keshavarz G, Bozorgi A, Nazari H, Khazaei M. Adipose tissue-derived stem cells: a comparative review on isolation, culture, and differentiation methods. Cell Tissue Bank 2021; 23:1-16. [PMID: 33616792 DOI: 10.1007/s10561-021-09905-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 02/01/2021] [Indexed: 01/14/2023]
Abstract
Adipose tissue-derived stem cells (ADSCs) are an available source of mesenchymal stem cells with the appropriate capacity to in vitro survive, propagate, and differentiate into cells from three lineages of ectoderm, mesoderm, and endoderm. The biological features of ADSCs depend on the donor physiology and health status, isolation procedure, culture conditions, and differentiation protocols used. Adipose tissue samples are provided by surgery and lipoaspiration-based methods and subjected to various mechanical and chemical digestion techniques to finally generate a heterogeneous mixture named stromal vascular fraction (SVF). ADSCs are purified through varied cell populations that exist within SVF and cultured under standard conditions to give rise to a highly rich resource of stem cells directly applied in the clinic or differentiated into a wide range of cells. The development and optimization of conventional isolation, expansion, and differentiation methods seem noteworthy to preserve the desirable biological functions of ADSCs in pre-clinical and clinical investigations.
Collapse
Affiliation(s)
- Saber Khazaei
- Department of Endodontics, School of Dentistry, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Ghazal Keshavarz
- Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Azam Bozorgi
- Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.,Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Hamed Nazari
- Department of Orofacial Surgery, School of Dentistry, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mozafar Khazaei
- Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
6
|
Barrientos FJ, Redondo LM, Alberca M, Sánchez AM, García-Sancho J. Bone regeneration with autologous adipose-derived mesenchymal stem cells: A reliable experimental model in rats. MethodsX 2020; 7:101137. [PMID: 33251125 PMCID: PMC7679249 DOI: 10.1016/j.mex.2020.101137] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 11/05/2020] [Indexed: 01/14/2023] Open
Abstract
The adult mesenchymal stem cell (MSC) has been proposed to be the definitive tool in regenerative medicine due to its multi-differentiation potential and expansion capacity ex vivo. The use of MSCs on bone regeneration has been assessed in several studies, obtaining promising results. However, the endless combinations that can be tested and the heterogeneity in the experimental conditions become a drawback when comparing results between authors. Moreover, it is very hard to find autologous studies using adipose-derived MSCs (AD-MSC) in rodents, which is the most used preclinical animal model. In this article an experimental model for basic bone tissue engineering research is described and justified, on which adult AD-MSCs are safely isolated from the rat dorsal interscapular fat pad, allowing ex vivo expansion and autogenous orthotopic reimplantation in a bilateral mandibular bone defect made in the same animal. This reliable and reproducible model provides a simple way to perform basic experimentation studies in a small animal model using autologous MSC for bone regeneration or cell therapy techniques prior to improve the research on large animal models.Predictable and safe harvest of adipose-derived MSC. No need of animal sacrifice. Allows for autologous studies with the most frequently used animal model: the rat. No need of allogeneic or human MSC use and, therefore, immunological concerns are avoided. Bilateral mandibular critical size defect to allow direct control/experimental comparison.
Collapse
Affiliation(s)
| | - Luis Miguel Redondo
- Servicio de Cirugía Maxilofacial, Hospital del Rio Hortega, Valladolid, Spain
| | - Mercedes Alberca
- Citospin SL, Edificio I+D Campus Miguel Delibes, Valladolid, Spain
| | - Ana María Sánchez
- Instituto de Biología y Genética Molecular (IBGM), Universidad de Valladolid y Centro Superior de Investigaciones Científicas (CSIC), Valladolid, Spain
| | - Javier García-Sancho
- Instituto de Biología y Genética Molecular (IBGM), Universidad de Valladolid y Centro Superior de Investigaciones Científicas (CSIC), Valladolid, Spain
| |
Collapse
|
7
|
Najafipour H, Bagheri-Hosseinabadi Z, Eslaminejad T, Mollaei HR. The effect of sodium valproate on differentiation of human adipose-derived stem cells into cardiomyocyte-like cells in two-dimensional culture and fibrin scaffold conditions. Cell Tissue Res 2019; 378:127-141. [PMID: 31049685 DOI: 10.1007/s00441-019-03027-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Accepted: 04/02/2019] [Indexed: 01/04/2023]
Abstract
Differentiation of mesenchymal stem cells (MSCs) into cardiomyocytes is a complex phenomenon, and attempts to find an effective inducing agent are still ongoing. We studied the effect of fibrin scaffold and sodium valproate (VPA, as a histone deacetylase inhibitor) on the differentiation of human adipose-derived stem cells (hADSCs) into cardiomyocyte-like cells. The cells were cultured in culture flask (2D) and in fibrin scaffold (3D), fabricated of human plasma fibrinogen, with and without VPA (1 mM). QRT-PCR, Western blot, and immunochemistry assays were used to evaluate the expression of cardiac markers at gene and protein levels. High levels of CD44, CD90, CD73, and CD105 were expressed on the surface of hADSCs. Treated encapsulated hADSCs (3D) presented significantly higher mRNA expression of HAND1 (1.54-fold), HAND2 (1.59-fold), cTnI (1.76-fold), MLC2v (1.4-fold), Cx43 (1.38-fold), βMHC (1.34-fold), GATA4 (1.48-fold), and NKX2.5 (1.66-fold) in comparison to 2D conditions at four weeks after induction. The protein expressions of NKX2.5 (0.78 vs 0.65), cTnI (1.04 vs 0.81), and Cx43 (1.11 vs 1.08) were observed in the differentiated cells both in 3D and 2D groups, while control cells were absolutely negative for these proteins. The frequency of cTnI and Cx43-positive cells was significantly higher in 3D (24.2 ± 15 and 12 ± 3%) than 2D conditions (19.8 ± 3 and 10 ± 2%). Overall, the results showed that VPA can increase cardiomyogenesis in hADSCs and that fibrin scaffold enhances the inductive effect of VPA. Results of this study may improve cell-based protocols for implementation of more successful cardiac repair strategies.
Collapse
Affiliation(s)
- Hamid Najafipour
- Cardiovascular Research Center, Institute of Basic and Clinical Physiology Sciences and Department of Physiology, Afzalipour Medical Faculty, Kerman University of Medical Sciences, Kerman, Iran
| | - Zahra Bagheri-Hosseinabadi
- Department of Clinical Biochemistry, Faculty of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran.
| | - Touba Eslaminejad
- Pharmaceutics Research Centre, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Hamid Reza Mollaei
- Department of Medical Microbiology, and Physiology Research Center, Afzalipour Medical Faculty, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
8
|
Improved Efficiency of Cardiomyocyte-Like Cell Differentiation from Rat Adipose Tissue-Derived Mesenchymal Stem Cells with a Directed Differentiation Protocol. Stem Cells Int 2019; 2019:8940365. [PMID: 31065283 PMCID: PMC6466858 DOI: 10.1155/2019/8940365] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 11/06/2018] [Accepted: 12/20/2018] [Indexed: 01/29/2023] Open
Abstract
Cell-based therapy has become a resource for the treatment of cardiovascular diseases; however, there are some conundrums to achieve. In vitro cardiomyocyte generation could be a solution for scaling options in clinical applications. Variability on cardiac differentiation in previously reported studies from adipose tissue-derived mesenchymal stem cells (ASCs) and the lack of measuring of the cardiomyocyte differentiation efficiency motivate the present study. Here, we improved the ASC-derived cardiomyocyte-like cell differentiation efficiency with a directed cardiomyocyte differentiation protocol: BMP-4 + VEGF (days 0-4) followed by a methylcellulose-based medium with cytokines (IL-6 and IL-3) (days 5-21). Cultures treated with the directed cardiomyocyte differentiation protocol showed cardiac-like cells and “rosette-like structures” from day 7. The percentage of cardiac troponin T- (cTnT-) positive cells was evaluated by flow cytometry to assess the cardiomyocyte differentiation efficiency in a quantitative manner. ASCs treated with the directed cardiomyocyte differentiation protocol obtained a differentiation efficiency of up to 44.03% (39.96%±3.78) at day 15 without any enrichment step. Also, at day 21 we observed by immunofluorescence the positive expression of early, late, and cardiac maturation differentiation markers (Gata-4, cTnT, cardiac myosin heavy chain (MyH), and the sarcoplasmic/endoplasmic reticulum Ca2+ ATPase (SERCa2)) in cultures treated with the directed cardiomyocyte differentiation protocol. Unlike other protocols, the use of critical factors of embryonic cardiomyogenesis coupled with a methylcellulose-based medium containing previously reported cardiogenic cytokines (IL-6 and IL-3) seems to be favorable for in vitro cardiomyocyte generation. This novel efficient culture protocol makes ASC-derived cardiac differentiation more efficient. Further investigation is needed to identify an ASC-derived cardiomyocyte surface marker for cardiac enrichment.
Collapse
|
9
|
Sun Y, Lu B, Deng J, Jiang Z, Cao W, Dai T, Li S. IL-7 enhances the differentiation of adipose-derived stem cells toward lymphatic endothelial cells through AKT signaling. Cell Biol Int 2019; 43:394-401. [PMID: 30690788 DOI: 10.1002/cbin.11093] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 12/21/2018] [Indexed: 12/12/2022]
Abstract
Our study was designed to investigate the effects of IL-7 during the differentiation process of adipose-derived stem cells (ADSCs) toward lymphatic endothelial cells (LECs). IL-7 was added to the traditional induced medium, which was called the IL-7 (+) group, while the group that used traditional induced medium was called the IL-7 (-) group. After 7 days of induction of ADSCs, a comprehensive analysis was conducted between these two groups. We examined the changes in Prox1, LYVE-1, Podoplanin and VEGFR-3 on the RNA and protein level and found that the expression of LEC markers in the IL-7 (+) group was higher than in the IL-7 (-) group. The characteristics of differentiated cells were confirmed by flow cytometry and immunofluorescence. At the same time, we detected the MAPK/ERK and PI3K/AKT pathway involved in the differentiation process, and we found that the phosphorylation of AKT increased, however the expression of ERK was not significantly changed. In conclusion, our study found that IL-7 could improve the differentiation efficiency of ADSCs toward LECs through AKT signaling pathways.
Collapse
Affiliation(s)
- Yiyu Sun
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, P. R. China
| | - Bolun Lu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, P. R. China
| | - Jingcheng Deng
- Department of Plastic and Reconstructive Surgery, the First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, P. R. China
| | - Zhaohua Jiang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, P. R. China
| | - Weigang Cao
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, P. R. China
| | - Tingting Dai
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, P. R. China
| | - Shengli Li
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, P. R. China
| |
Collapse
|
10
|
Neshati V, Mollazadeh S, Fazly Bazzaz BS, Iranshahi M, Mojarrad M, Naderi-Meshkin H, Kerachian MA. Cardiogenic effects of characterized Geum urbanum extracts on adipose-derived human mesenchymal stem cells. Biochem Cell Biol 2018; 96:610-618. [DOI: 10.1139/bcb-2017-0313] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Stem cell therapy is considered as a promising treatment for cardiovascular diseases. Adipose-derived mesenchymal stem cells (ADMSCs) have the ability to undergo cardiomyogenesis. Medicinal plants are effective and safe candidates for cell differentiation. Therefore, the aim of our study was to investigate cardiogenic effects of characterized (HPLC–UV) extracts of Geum urbanum on ADMSCs of adipose tissue. The methanolic extracts of the root and aerial parts of G. urbanum were obtained and MTT assay was used for studying their cytotoxic effects. Then, cells were treated with 50 or 100 μg/mL of the extracts from root and aerial parts of G. urbanum. MTT assay showed that the extracts of G. urbanum did not have any toxic effects on ADMSCs. Immunostaining results showed increase in the expression of α-actinin and cardiac troponin I (cTnI), and quantitative real-time reverse-transcription PCR data confirmed the upregulation of ACTN, ACTC1, and TNNI3 genes in ADMSCs after treatment. According to HPLC fingerprinting, some cardiogenic effects of G. urbanum extracts are probably due to ellagic and gallic acid derivatives. Our findings indicated that G. urbanum extracts effectively upregulated some essential cardiogenic markers, which confirmed the therapeutic role of this plant as a traditional cardiac medicine.
Collapse
Affiliation(s)
- Vajiheh Neshati
- Biotechnology Research Center, Institute of Pharmaceutical Technology, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Samaneh Mollazadeh
- Biotechnology Research Center, Institute of Pharmaceutical Technology, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Bibi Sedigheh Fazly Bazzaz
- Biotechnology Research Center, Institute of Pharmaceutical Technology, Mashhad University of Medical Sciences, Mashhad, Iran
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mehrdad Iranshahi
- Biotechnology Research Center, Institute of Pharmaceutical Technology, Mashhad University of Medical Sciences, Mashhad, Iran
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Majid Mojarrad
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hojjat Naderi-Meshkin
- Stem Cell and Regenerative Medicine Research Group, Academic Center for Education, Culture, Research (ACECR), Khorasan Razavi Branch, Mashhad, Iran
| | - Mohammad Amin Kerachian
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
11
|
Baghalishahi M, Efthekhar-vaghefi SH, Piryaei A, Nematolahi-mahani S, Mollaei HR, Sadeghi Y. Cardiac extracellular matrix hydrogel together with or without inducer cocktail improves human adipose tissue-derived stem cells differentiation into cardiomyocyte–like cells. Biochem Biophys Res Commun 2018; 502:215-225. [DOI: 10.1016/j.bbrc.2018.05.147] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 05/20/2018] [Indexed: 01/18/2023]
|
12
|
Miana VV, González EAP. Adipose tissue stem cells in regenerative medicine. Ecancermedicalscience 2018; 12:822. [PMID: 29662535 PMCID: PMC5880231 DOI: 10.3332/ecancer.2018.822] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Indexed: 12/26/2022] Open
Abstract
Adipose tissue-derived stem cells (ADSCs) are mesenchymal cells with the capacity for self-renewal and multipotential differentiation. This multipotentiality allows them to become adipocytes, chondrocytes, myocytes, osteoblasts and neurocytes among other cell lineages. Stem cells and, in particular, adipose tissue-derived cells, play a key role in reconstructive or tissue engineering medicine as they have already proven effective in developing new treatments. The purpose of this work is to review the applications of ADSCs in various areas of regenerative medicine, as well as some of the risks associated with treatment with ADSCs in neoplastic disease.
Collapse
Affiliation(s)
- Vanesa Verónica Miana
- Centre for Advanced Studies in Humanities and Health Sciences, Interamerican Open University, Buenos Aires, Argentina
| | - Elio A Prieto González
- Centre for Advanced Studies in Humanities and Health Sciences, Interamerican Open University, Buenos Aires, Argentina
| |
Collapse
|
13
|
Salehi PM, Foroutan T, Javeri A, Taha MF. Extract of mouse embryonic stem cells induces the expression of pluripotency genes in human adipose tissue-derived stem cells. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2018; 20:1200-1206. [PMID: 29299196 PMCID: PMC5749353 DOI: 10.22038/ijbms.2017.9464] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Objective(s): In some previous studies, the extract of embryonic carcinoma cells (ECCs) and embryonic stem cells (ESCs) have been used to reprogram somatic cells to more dedifferentiated state. The aim of this study was to investigate the effect of mouse ESCs extract on the expression of some pluripotency markers in human adipose tissue-derived stem cells (ADSCs). Materials and Methods: Human ADSCs were isolated from subcutaneous abdominal adipose tissue and characterized by flow cytometric analysis for the expression of some mesenchymal stem cell markers and adipogenic and osteogenic differentiation. Frequent freeze-thaw technique was used to prepare cytoplasmic extract of ESCs. Plasma membranes of the ADSCs were reversibly permeabilized by streptolysin-O (SLO). Then the permeabilized ADSCs were incubated with the ESC extract and cultured in resealing medium. After reprogramming, the expression of some pluripotency genes was evaluated by RT-PCR and quantitative real-time PCR (qPCR) analyses. Results: Third-passaged ADSCs showed a fibroblast-like morphology and expressed mesenchymal stem cell markers. They also showed adipogenic and osteogenic differentiation potential. QPCR analysis revealed a significant upregulation in the expression of some pluripotency genes including OCT4, SOX2, NANOG, REX1 and ESG1 in the reprogrammed ADSCs compared to the control group. Conclusion: These findings showed that mouse ESC extract can be used to induce reprogramming of human ADSCs. In fact, this method is applicable for reprogramming of human adult stem cells to a more pluripotent sate and may have a potential in regenerative medicine.
Collapse
Affiliation(s)
- Paria Motamen Salehi
- Department of Stem Cells and Regenerative Medicine, Institute for Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran.,Department of Biology, Faculty of Basic Science, Kharazmi University, Tehran, Iran
| | - Tahereh Foroutan
- Department of Biology, Faculty of Basic Science, Kharazmi University, Tehran, Iran
| | - Arash Javeri
- Department of Stem Cells and Regenerative Medicine, Institute for Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Masoumeh Fakhr Taha
- Department of Stem Cells and Regenerative Medicine, Institute for Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| |
Collapse
|
14
|
Sabol RA, Bowles AC, Côté A, Wise R, Pashos N, Bunnell BA. Therapeutic Potential of Adipose Stem Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1341:15-25. [PMID: 30051318 DOI: 10.1007/5584_2018_248] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Adipose stem cells (ASCs) have gained attention in the fields of stem cells regenerative medicine due to their multifaceted therapeutic capabilities. Promising preclinical evidence of ASCs has supported the substantial interest in the use of these cells as therapy for human disease. ASCs are an adult stem cell resident in adipose tissue with the potential to differentiation along mesenchymal lineages. They also are known to be recruited to sites of inflammation where they exhibit strong immunomodulatory capabilities to promote wound healing and regeneration. ASCs can be isolated from adipose tissue at a relatively high yield compared to their mesenchymal cell counterparts: bone marrow-derived mesenchymal stem cells (BM-MSCs). Like BM-MSCs, ASCs are easily culture expanded and have a reduced immunogenicity or are perhaps immune privileged, making them attractive options for cellular therapy. Additionally, the heterogeneous cellular product obtained after digestion of adipose tissue, called the stromal vascular fraction (SVF), contains ASCs and several populations of stromal and immune cells. Both the SVF and culture expanded ASCs have the potential to be therapeutic in various diseases. This review will focus on the preclinical and clinical evidence of SVF and ASCs, which make them potential candidates for therapy in regenerative medicine and inflammatory disease processes.
Collapse
Affiliation(s)
- Rachel A Sabol
- Center for Stem Cell Research and Regenerative Medicine, Tulane University, New Orleans, LA, USA
- Physician Scientist Program, Tulane University School of Medicine, New Orleans, LA, USA
| | - Annie C Bowles
- Center for Stem Cell Research and Regenerative Medicine, Tulane University, New Orleans, LA, USA
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA, USA
| | - Alexandra Côté
- Center for Stem Cell Research and Regenerative Medicine, Tulane University, New Orleans, LA, USA
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA, USA
| | - Rachel Wise
- Center for Stem Cell Research and Regenerative Medicine, Tulane University, New Orleans, LA, USA
- Tulane Brain Institute, Neuroscience Program, Tulane University, New Orleans, LA, USA
| | - Nicholas Pashos
- Center for Stem Cell Research and Regenerative Medicine, Tulane University, New Orleans, LA, USA
- Bioinnovation PhD Program, Tulane University, New Orleans, LA, USA
| | - Bruce A Bunnell
- Center for Stem Cell Research and Regenerative Medicine, Tulane University, New Orleans, LA, USA.
- Department of Pharmacology, Tulane University, New Orleans, LA, USA.
- Division of Regenerative Medicine, Tulane National Primate Research Center, Covington, LA, USA.
| |
Collapse
|
15
|
Abstract
Adipose-derived stem/stromal cells (ASCs), together with adipocytes, vascular endothelial cells, and vascular smooth muscle cells, are contained in fat tissue. ASCs, like the human bone marrow stromal/stem cells (BMSCs), can differentiate into several lineages (adipose cells, fibroblast, chondrocytes, osteoblasts, neuronal cells, endothelial cells, myocytes, and cardiomyocytes). They have also been shown to be immunoprivileged, and genetically stable in long-term cultures. Nevertheless, unlike the BMSCs, ASCs can be easily harvested in large amounts with minimal invasive procedures. The combination of these properties suggests that these cells may be a useful tool in tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Simone Ciuffi
- Department of Surgery and Translational Medicine, University of Florence, Florence, Italy
| | - Roberto Zonefrati
- Department of Surgery and Translational Medicine, University of Florence, Florence, Italy
| | - Maria Luisa Brandi
- Department of Surgery and Translational Medicine, University of Florence, Florence, Italy
| |
Collapse
|
16
|
Lao S, Xu J, Liu Y, Cai S, Lin L, Zhang J, Cai D, Yin S. A comparative study of the influence of two types of PHEMA stents on the differentiation of ASCs to myocardial cells. Mol Med Rep 2017; 16:507-514. [PMID: 28586071 PMCID: PMC5482065 DOI: 10.3892/mmr.2017.6680] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2016] [Accepted: 02/07/2017] [Indexed: 01/16/2023] Open
Abstract
In the present study, subcutaneous fat was obtained from adult women that had undergone conventional liposuction surgery. A comparative study was performed to investigate the effect of transparent and white poly-β-hydroxyethyl methacrylate (PHEMA) stents, which have different surface and cross-sectional morphological characteristics, on the differentiation of adipose-derived stem cells (ASCs) into myocardial cells. The cell counting kit-8 assay revealed that cell growth increased at varying rates among the different treatment groups. The absorbance of the experimental transparent PHEMA treated group increased in a time-dependent manner with the duration of incubation. The highest levels of proliferation were observed in the transparent PHEMA group. In addition, the transparent PHEMA treated group exhibited the strongest cell adhesion ability, which was significantly different to that of the white PHEMA group (P<0.01 and P<0.05 for Matrigel and fibronectin assay, respectively). Comparisons between the two stent materials with the inducer control group revealed statistically significant differences in the rate of ASC differentiation (P<0.05). The level of differentiation was the greatest in the transparent PHEMA group, and was significantly different to the white PHEMA group (P<0.05) and the blank control group (P<0.01). The results suggest that the inducers 5-aza-2-deoxycytidin and laminin, and material microstructure stents effectively promote the proliferation, growth and adhesion of ASCs. However, the transparent material microstructure may be a more suitable candidate for ASC-associated injections. The present study provides further evidence that a PHEMA stent structure, comprised of a high number of matrixes and a low water content, induces a high level of ASC differentiation to myocardial cells.
Collapse
Affiliation(s)
- Shen Lao
- Department of Cardiothoracic Surgery, The Third Affiliated Hospital, Sun Yat‑sen University, Guangzhou, Guangdong 510630, P.R. China
| | - Jing Xu
- Department of Ultrasonography, The First Affiliated Hospital, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510080, P.R. China
| | - Yunqi Liu
- Department of Cardiac Surgery, The First Affiliated Hospital, Sun Yat‑sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Songwang Cai
- Department of Cardiothoracic Surgery, The Third Affiliated Hospital, Sun Yat‑sen University, Guangzhou, Guangdong 510630, P.R. China
| | - Lin Lin
- Department of Cardiac Surgery, The First Affiliated Hospital, Sun Yat‑sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Junhang Zhang
- Department of Cardiothoracic Surgery, The Third Affiliated Hospital, Sun Yat‑sen University, Guangzhou, Guangdong 510630, P.R. China
| | - Dongmei Cai
- Department of Cardiac Surgery, The First Affiliated Hospital, Sun Yat‑sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Shengli Yin
- Department of Cardiac Surgery, The First Affiliated Hospital, Sun Yat‑sen University, Guangzhou, Guangdong 510080, P.R. China
| |
Collapse
|
17
|
Engebretson B, Mussett ZR, Sikavitsas VI. Tenocytic extract and mechanical stimulation in a tissue-engineered tendon construct increases cellular proliferation and ECM deposition. Biotechnol J 2017; 12. [DOI: 10.1002/biot.201600595] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 12/08/2016] [Accepted: 12/21/2016] [Indexed: 01/30/2023]
Affiliation(s)
- Brandon Engebretson
- School of Chemical, Biological and Materials Engineering; University of Oklahoma; Norman OK USA
| | - Zachary R. Mussett
- Stephenson School of Biomedical Engineering; University of Oklahoma; Norman OK USA
| | | |
Collapse
|
18
|
Lee TM, Harn HJ, Chiou TW, Chuang MH, Chen CH, Lin PC, Lin SZ. Targeting the pathway of GSK-3β/nerve growth factor to attenuate post-infarction arrhythmias by preconditioned adipose-derived stem cells. J Mol Cell Cardiol 2017; 104:17-30. [PMID: 28130118 DOI: 10.1016/j.yjmcc.2017.01.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 01/01/2017] [Accepted: 01/23/2017] [Indexed: 10/20/2022]
Abstract
Adipose-derived stem cell (ADSC) transplantation is a promising new therapy to improve cardiac function after myocardial infarction. However, its low efficacy of transdifferentiation hampers its usefulness. Glycogen synthase kinase-3β (GSK-3β) signal has been shown to play a role in preconditioning-induced cardioprotection. We assessed whether n-butylidenephthalide (BP) primed ADSCs can attenuate arrhythmias by a GSK-3β-dependent pathway after myocardial infarction. Male Wistar rats after coronary ligation was randomly allocated to receive intramyocardial injection of vehicle, ADSCs, BP-preconditioned ADSCs, (BP+lithium)-preconditioned ADSCs, (BP+SB216763)-preconditioned ADSCs, and (BP+LY294002)-preconditioned ADSCs. ADSCs were primed for 16h before implantation. After 4weeks of implantation, ADSCs were retained in myocardium, reduced fibrosis and improved cardiac function. Sympathetic hyperinnervation was blunted after administering ADSCs, assessed by immunofluorescent analysis, and Western blotting and real-time quantitative RT-PCR of nerve growth factor. Arrhythmic scores during programmed stimulation in the ADSC-treated infarcted rats were significantly lower than vehicle. BP-preconditioned ADSCs had superior cardioprotection, greater ADSC engraftment and transdifferentiation, and antiarrhythmic effects compared with ADSCs alone. Simultaneously, BP increased the levels of phospho-Akt and down-regulated GSK-3β activity. The effects of BP against sympathetic hyperinnervation were blocked by LY294002, a PI3K inhibitor. Addition of either lithium or SB216763 did not have additional effects compared with BP alone. Compared with ADSC alone, BP-primed ADSC implantation improved stem cell engraftment and attenuated sympathetic hyperinnervation and arrhythmias through a PI3K/Akt/GSK-3β-dependent pathway, suggesting that a synergic action was achieved between BP pretreatment and ADSCs.
Collapse
Affiliation(s)
- Tsung-Ming Lee
- Department of Medicine, Cardiology Section, China Medical University-An Nan Hospital, Tainan, Taiwan; Department of Medicine, China Medical University, Taichung, Taiwan
| | - Horng-Jyh Harn
- Bioinnovation Center, Tzu Chi Foundation; Department of Pathology, Buddhist Tzu Chi General Hospital, Tzu Chi University
| | - Tzyy-Wen Chiou
- Department of Life Science, Graduate Institute of Biotechnology, National Dong Hwa University, Hualien, Taiwan
| | - Ming-Hsi Chuang
- Gwo Xi Stem Cell Applied Technology, Hsinchu, Taiwan; Department of Bioinformatics, Chung Hua University, Hsinchu, Taiwan
| | | | - Po-Cheng Lin
- Gwo Xi Stem Cell Applied Technology, Hsinchu, Taiwan
| | - Shinn-Zong Lin
- Bioinnovation Center, Tzu Chi Foundation; Department of Neurosurgery, Buddhist Tzu Chi General Hospital, Tzu Chi University.
| |
Collapse
|
19
|
Abstract
In this review, we focus on new approaches that could lead to the regeneration of heart muscle and the restoration of cardiac muscle function derived from newly-formed cardiomyocytes. Various strategies for the production of cardiomyocytes from embryonic stem cells, induced pluripotent stem cells, adult bone marrow stem cells and cardiac spheres from human heart biopsies are described. Pathological conditions which lead to atherosclerosis and coronary artery disease often are followed by myocardial infarction causing myocardial cell death. After cell death, there is very little self-regeneration of the cardiac muscle tissue, which is replaced by non-contractile connective tissue, thus weakening the ability of the heart muscle to contract fully and leading to heart failure. A number of experimental research approaches to stimulate heart muscle regeneration with the hope of regaining normal or near normal heart function in the damaged heart muscle have been attempted. Some of these very interesting studies have used a variety of stem cell types in combination with potential cardiogenic differentiation factors in an attempt to promote differentiation of new cardiac muscle for possible future use in the clinical treatment of patients who have suffered heart muscle damage from acute myocardial infarctions or related cardiovascular diseases. Although progress has been made in recent years relative to promoting the differentiation of cardiac muscle tissue from non-muscle cells, much work remains to be done for this technology to be used routinely in translational clinical medicine to treat patients with damaged heart muscle tissue and return such individuals to pre-heart-attack activity levels.
Collapse
Affiliation(s)
- Andrei Kochegarov
- Department of Biological and Environmental Sciences, Texas A&M University-Commerce, Commerce, Texas, USA
| | - Larry F Lemanski
- Department of Biological and Environmental Sciences, Texas A&M University-Commerce, Commerce, Texas, USA
| |
Collapse
|
20
|
Hasan A, Waters R, Roula B, Dana R, Yara S, Alexandre T, Paul A. Engineered Biomaterials to Enhance Stem Cell-Based Cardiac Tissue Engineering and Therapy. Macromol Biosci 2016; 16:958-77. [PMID: 26953627 PMCID: PMC4931991 DOI: 10.1002/mabi.201500396] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 01/18/2016] [Indexed: 12/17/2022]
Abstract
Cardiovascular disease is a leading cause of death worldwide. Since adult cardiac cells are limited in their proliferation, cardiac tissue with dead or damaged cardiac cells downstream of the occluded vessel does not regenerate after myocardial infarction. The cardiac tissue is then replaced with nonfunctional fibrotic scar tissue rather than new cardiac cells, which leaves the heart weak. The limited proliferation ability of host cardiac cells has motivated investigators to research the potential cardiac regenerative ability of stem cells. Considerable progress has been made in this endeavor. However, the optimum type of stem cells along with the most suitable matrix-material and cellular microenvironmental cues are yet to be identified or agreed upon. This review presents an overview of various types of biofunctional materials and biomaterial matrices, which in combination with stem cells, have shown promises for cardiac tissue replacement and reinforcement. Engineered biomaterials also have applications in cardiac tissue engineering, in which tissue constructs are developed in vitro by combining stem cells and biomaterial scaffolds for drug screening or eventual implantation. This review highlights the benefits of using biomaterials in conjunction with stem cells to repair damaged myocardium and give a brief description of the properties of these biomaterials that make them such valuable tools to the field.
Collapse
Affiliation(s)
- Anwarul Hasan
- Department of Mechanical and Industrial Engineering, College of Engineering, Qatar University, Doha, Qatar
- Biomedical Engineering and Department of Mechanical Engineering, Faculty of Engineering and Architecture, American University of Beirut, Beirut 1107 2020, Lebanon
- Center for Biomedical Engineering, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Renae Waters
- BioIntel Research Laboratory, Department of Chemical and Petroleum Engineering, Bioengineering Graduate Program, School of Engineering, University of Kansas, Lawrence, KS, USA
| | - Boustany Roula
- Biomedical Engineering and Department of Mechanical Engineering, Faculty of Engineering and Architecture, American University of Beirut, Beirut 1107 2020, Lebanon
| | - Rahbani Dana
- Biomedical Engineering and Department of Mechanical Engineering, Faculty of Engineering and Architecture, American University of Beirut, Beirut 1107 2020, Lebanon
| | - Seif Yara
- Biomedical Engineering and Department of Mechanical Engineering, Faculty of Engineering and Architecture, American University of Beirut, Beirut 1107 2020, Lebanon
| | - Toubia Alexandre
- Biomedical Engineering and Department of Mechanical Engineering, Faculty of Engineering and Architecture, American University of Beirut, Beirut 1107 2020, Lebanon
| | - Arghya Paul
- BioIntel Research Laboratory, Department of Chemical and Petroleum Engineering, Bioengineering Graduate Program, School of Engineering, University of Kansas, Lawrence, KS, USA
| |
Collapse
|
21
|
Stromal Vascular Fraction from Lipoaspirate Infranatant: Comparison Between Suction-Assisted Liposuction and Nutational Infrasonic Liposuction. Aesthetic Plast Surg 2016; 40:367-71. [PMID: 27059045 DOI: 10.1007/s00266-016-0631-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2015] [Accepted: 03/02/2016] [Indexed: 01/31/2023]
Abstract
INTRODUCTION Lipoaspirate has shown great promise as a source of progenitor cells for use in regenerative medicine. The stromal vascular fraction (SVF) can be isolated from lipoaspirate using enzyme digestion and centrifugation, but this approach may be limited by the labor-intensive nature of the technique as well as ambiguities in current governmental regulations. An alternative approach to obtain SVF from lipoaspirate was studied. METHOD Paired (collected from contralateral regions) lipoaspirate specimens were acquired from 30 consenting patients (age 24-62; 22 females, 8 males) by suction-assisted liposuction (SAL) and nutational infrasonic liposuction (NIL). The infranatant from 50 ml of adipose tissue (LAF) was centrifuged at 400g × 5 min and the resultant pellet was collected with a pipette. Time = 15-20 min. The respective SVFs cell populations were counted using an optical fluorescent cell counter (Nexcelom A2000) and the fluorescent stains-acridine orange (AO) and propidium iodide (PI). RESULTS The number of nucleated, live cells from SAL infranatant was 97,345 ± 23,435 per ml of adipose tissue and from NIL infranatant was 335,621 ± 81,274 per ml of adipose tissue. The p value is <0.00001, n = 30. CONCLUSION Regenerative cells can be isolated from the lipoaspirate infranatant from either SAL or NIL, although in lower quantities than from enzyme digestion. NIL acquisition yielded 3.5× the number of cells over that acquired from SAL. The time, skill, and cost of producing SVF from infranatant is less than using enzyme digestion, which potentially make these regenerative therapies accessible to more physicians and patients. NO LEVEL ASSIGNED This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .
Collapse
|
22
|
Peng SY, Yang YS, Chou CJ, Lin KY, Wu SC. Differentiation of Enhanced Green Fluorescent Protein-Labeled Mouse Amniotic Fluid-Derived Stem Cells into Cardiomyocyte-Like Beating Cells. ACTA CARDIOLOGICA SINICA 2016; 31:209-14. [PMID: 27122872 DOI: 10.6515/acs20141027a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
BACKGROUND Amniotic fluid-derived stem cells (AFSCs) possess optimal differentiation potential and are a promising resource for cell therapy and tissue engineering. Mouse is a good model to be studied for pre-clinical research. METHODS In this study, we successfully established enhanced green fluorescent protein mouse-derived amniotic fluid stem cells (EGFP-mAFSCs) and investigated whether EGFP-mAFSCs possess the ability to differentiate into cardiomyocytes by in vitro culture. We evaluated stem-cell differentiation using immunofluorescence. RESULTS This study showed that EGFP-mAFSCs can give rise to spontaneously beating cardiomyocyte-like cells expressing the specific markers c-kit, myosin heavy chain, and cardiac troponin I. CONCLUSIONS We demonstrated that mAFSCs have the in vitro propensity to acquire a cardiomyogenic phenotype and to a certain extent cardiomyocytes; however the process efficiency which gives rise to cardiomyocyte-like cells remains quite low (2 out of 10 were found). KEY WORDS Amniotic fluid; Cardiomyocytes; In vitro differentiation; Stem cells.
Collapse
Affiliation(s)
- Shao-Yu Peng
- Institute of Biotechnology, National Taiwan University
| | - Yu-Sheng Yang
- Department of Orthopaedics, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Chih-Jen Chou
- Institute of Biotechnology, National Taiwan University
| | - Kun-Yi Lin
- Institute of Biotechnology, National Taiwan University; ; Department of Orthopaedics, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Shinn-Chih Wu
- Institute of Biotechnology, National Taiwan University
| |
Collapse
|
23
|
Kharizinejad E, Minaee Zanganeh B, Khanlarkhani N, Mortezaee K, Rastegar T, Baazm M, Abolhassani F, Sajjadi SM, Hajian M, Aliakbari F, Barbarestani M. Role of spermatogonial stem cells extract in transdifferentiation of 5-Aza-2'-deoxycytidine-treated bone marrow mesenchymal stem cells into germ-like cells. Microsc Res Tech 2016; 79:365-73. [PMID: 26969916 DOI: 10.1002/jemt.22639] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 01/19/2016] [Accepted: 01/24/2016] [Indexed: 01/22/2023]
Abstract
As one of the induced pluripotent stem cells (iPSCs) methods, spermatogonial stem cells (SSCS ) extract is considered as new approach in stem cell therapy of infertility. 5-aza-2'-deoxycytidine (5-aza-dC) inhibits methyltransferase enzyme, and induces gene reprogramming; herein, the effects of SSCS extract incubation in 5-aza-dC-treated bone marrow mesenchymal stem cells (BMMSCs) has been surveyed. BMMSCs were isolated from femurs of three to four weeks old male NMRI mice, and the cells at passage three were treated with 2 µM 5-aza-dC for 72 hours. SSCs were isolated, cultured, and harvested at passage three to collect SSCS extract; BMMSCs were then incubated with SSCS extract in the three time periods: 72 hours, one week and two weeks. There were five groups: control, sham, extract, 5-aza-dC and extract-5-aza-dC. After one week of incubation, flow cytometry and real-time polymerase chain reaction (PCR) exhibited high levels of expression for β1- and α6-integrins and promyelocytic leukaemia zinc finger (PLZF) in extract and extract-5-aza-dC groups (P < 0.05 vs. control and 5-aza-dC), and cells in these two groups had two forms of morphology, round and fusiform, similar to germ-like cells. 5-aza-dC had no significant effects during the three time periods of evaluation. These data disclose the effectiveness of SSCs extract incubation in transdifferentiation of BMMSCs into germ-like cells; this strategy could introduce a new approach for treatment of male infertility in clinic.
Collapse
Affiliation(s)
- Ebrahim Kharizinejad
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Bagher Minaee Zanganeh
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Neda Khanlarkhani
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Keywan Mortezaee
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Tayebeh Rastegar
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Baazm
- Department of Anatomy, School of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Farid Abolhassani
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Mehdi Sajjadi
- Department of Medical Laboratory Sciences, School of Allied Medical Sciences, Birjand University of Medical Sciences, Birjand, Iran
| | - Mahdieh Hajian
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Fereshte Aliakbari
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Barbarestani
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
24
|
Siciliano C, Chimenti I, Ibrahim M, Napoletano C, Mangino G, Scaletta G, Zoccai GB, Rendina EA, Calogero A, Frati G, De Falco E. Cardiosphere Conditioned Media Influence the Plasticity of Human Mediastinal Adipose Tissue-Derived Mesenchymal Stem Cells. Cell Transplant 2015; 24:2307-22. [PMID: 26531290 DOI: 10.3727/096368914x685771] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Nowadays, cardiac regenerative medicine is facing many limitations because of the complexity to find the most suitable stem cell source and to understand the regenerative mechanisms involved. Mesenchymal stem cells (MSCs) have shown great regenerative potential due to their intrinsic properties and ability to restore cardiac functionality, directly by transdifferentiation and indirectly by paracrine effects. Yet, how MSCs could respond to definite cardiac-committing microenvironments, such as that created by resident cardiac progenitor cells in the form of cardiospheres (CSs), has never been addressed. Recently, a putative MSC pool has been described in the mediastinal fat (hmADMSCs), but both its biology and function remain hitherto unexplored. Accordingly, we investigated the potential of hmADMSCs to be committed toward a cardiovascular lineage after preconditioning with CS-conditioned media (CCM). Results indicated that CCM affects cell proliferation. Gene expression levels of multiple cardiovascular and stemness markers (MHC, KDR, Nkx2.5, Thy-1, c-kit, SMA) are significantly modulated, and the percentage of hmADMSCs preconditioned with CCM and positive for Nkx2.5, MHC, and KDR is significantly higher relative to FBS and explant-derived cell conditioned media (EDCM, the unselected stage before CS formation). Growth factor-specific and survival signaling pathways (i.e., Erk1/2, Akt, p38, mTOR, p53) present in CCM are all equally regulated. Nonetheless, earlier BAD phosphorylation (Ser112) occurs associated with the CS microenvironment (and to a lesser extent to EDCM), whereas faster phosphorylation of PRAS40 in FBS, and of Akt (Ser473) in EDCM and 5-azacytidine occurs compared to CCM. For the first time, we demonstrated that the MSC pool held in the mediastinal fat is adequately plastic to partially differentiate in vitro toward a cardiac-like lineage. Besides, we have provided novel evidence of the potent inductive niche-like microenvironment that the CS structure can reproduce in vitro. hmADMSCs can represent an interesting tool in order to exploit their possible role in cardiovascular diseases and treatment.
Collapse
Affiliation(s)
- Camilla Siciliano
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy
- Center for Life Nano Science@Sapienza, Istituto Italiano di Tecnologia, Rome, Italy
| | - Isotta Chimenti
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy
| | - Mohsen Ibrahim
- Division of Thoracic Surgery, Department of Medical-Surgical Science and Translational Medicine, Sapienza University of Rome, S. Andrea Hospital, Rome, Italy
| | - Chiara Napoletano
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Giorgio Mangino
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy
| | - Gaia Scaletta
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy
| | - Giuseppe Biondi Zoccai
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy
| | - Erino Angelo Rendina
- Division of Thoracic Surgery, Department of Medical-Surgical Science and Translational Medicine, Sapienza University of Rome, S. Andrea Hospital, Rome, Italy
| | - Antonella Calogero
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy
| | - Giacomo Frati
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy
- Department of AngioCardioNeurology, IRCCS Neuromed, Pozzilli, Italy
| | - Elena De Falco
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy
| |
Collapse
|
25
|
The potential of GMP-compliant platelet lysate to induce a permissive state for cardiovascular transdifferentiation in human mediastinal adipose tissue-derived mesenchymal stem cells. BIOMED RESEARCH INTERNATIONAL 2015; 2015:162439. [PMID: 26495284 PMCID: PMC4606096 DOI: 10.1155/2015/162439] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Revised: 06/04/2015] [Accepted: 06/10/2015] [Indexed: 01/13/2023]
Abstract
Human adipose tissue-derived mesenchymal stem cells (ADMSCs) are considered eligible candidates for cardiovascular stem cell therapy applications due to their cardiac transdifferentiation potential and immunotolerance. Over the years, the in vitro culture of ADMSCs by platelet lysate (PL), a hemoderivate containing numerous growth factors and cytokines derived from platelet pools, has allowed achieving a safe and reproducible methodology to obtain high cell yield prior to clinical administration. Nevertheless, the biological properties of PL are still to be fully elucidated. In this brief report we show the potential ability of PL to induce a permissive state of cardiac-like transdifferentiation and to cause epigenetic modifications. RTPCR results indicate an upregulation of Cx43, SMA, c-kit, and Thy-1 confirmed by immunofluorescence staining, compared to standard cultures with foetal bovine serum. Moreover, PL-cultured ADMSCs exhibit a remarkable increase of both acetylated histones 3 and 4, with a patient-dependent time trend, and methylation at lysine 9 on histone 3 preceding the acetylation. Expression levels of p300 and SIRT-1, two major regulators of histone 3, are also upregulated after treatment with PL. In conclusion, PL could unravel novel biological properties beyond its routine employment in noncardiac applications, providing new insights into the plasticity of human ADMSCs.
Collapse
|
26
|
Wang B, Ma X, Zhao L, Zhou X, Ma Y, Sun H, Yang Y, Chen B. Injection of basic fibroblast growth factor together with adipose-derived stem cell transplantation: improved cardiac remodeling and function in myocardial infarction. Clin Exp Med 2015; 16:539-550. [DOI: 10.1007/s10238-015-0383-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 08/03/2015] [Indexed: 11/28/2022]
|
27
|
Li Q, Guo ZK, Chang YQ, Yu X, Li CX, Li H. Gata4, Tbx5 and Baf60c induce differentiation of adipose tissue-derived mesenchymal stem cells into beating cardiomyocytes. Int J Biochem Cell Biol 2015; 66:30-6. [DOI: 10.1016/j.biocel.2015.06.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2015] [Revised: 05/10/2015] [Accepted: 06/01/2015] [Indexed: 01/12/2023]
|
28
|
Gao Y, Jacot JG. Stem Cells and Progenitor Cells for Tissue-Engineered Solutions to Congenital Heart Defects. Biomark Insights 2015; 10:139-46. [PMID: 26379417 PMCID: PMC4554358 DOI: 10.4137/bmi.s20058] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Revised: 03/01/2015] [Accepted: 03/04/2015] [Indexed: 02/06/2023] Open
Abstract
Synthetic patches and fixed grafts currently used in the repair of congenital heart defects are nonliving, noncontractile, and not electrically responsive, leading to increased risk of complication, reoperation, and sudden cardiac death. Studies suggest that tissue-engineered patches made from living, functional cells could grow with the patient, facilitate healing, and help recover cardiac function. In this paper, we review the research into possible sources of cardiomyocytes and other cardiac cells, including embryonic stem cells, induced pluripotent stem cells, mesenchymal stem cells, adipose-derived stem cells, umbilical cord blood cells, amniotic fluid-derived stem cells, and cardiac progenitor cells. Each cell source has advantages, but also has technical hurdles to overcome, including heterogeneity, functional maturity, immunogenicity, and pathogenicity. Additionally, biomaterials used as patch materials will need to attract and support desired cells and induce minimal immune responses.
Collapse
Affiliation(s)
- Yang Gao
- Department of Bioengineering, Rice University, Houston, TX, USA
| | - Jeffrey G Jacot
- Department of Bioengineering, Rice University, Houston, TX, USA
- Congenital Heart Surgery Services, Texas Children’s Hospital, Houston, TX, USA
| |
Collapse
|
29
|
Suzuki E, Fujita D, Takahashi M, Oba S, Nishimatsu H. Adipose tissue-derived stem cells as a therapeutic tool for cardiovascular disease. World J Cardiol 2015; 7:454-465. [PMID: 26322185 PMCID: PMC4549779 DOI: 10.4330/wjc.v7.i8.454] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 06/15/2015] [Accepted: 06/19/2015] [Indexed: 02/06/2023] Open
Abstract
Adipose tissue-derived stem cells (ADSCs) are adult stem cells that can be easily harvested from subcutaneous adipose tissue. Many studies have demonstrated that ADSCs differentiate into vascular endothelial cells (VECs), vascular smooth muscle cells (VSMCs), and cardiomyocytes in vitro and in vivo. However, ADSCs may fuse with tissue-resident cells and obtain the corresponding characteristics of those cells. If fusion occurs, ADSCs may express markers of VECs, VSMCs, and cardiomyocytes without direct differentiation into these cell types. ADSCs also produce a variety of paracrine factors such as vascular endothelial growth factor, hepatocyte growth factor, and insulin-like growth factor-1 that have proangiogenic and/or antiapoptotic activities. Thus, ADSCs have the potential to regenerate the cardiovascular system via direct differentiation into VECs, VSMCs, and cardiomyocytes, fusion with tissue-resident cells, and the production of paracrine factors. Numerous animal studies have demonstrated the efficacy of ADSC implantation in the treatment of acute myocardial infarction (AMI), ischemic cardiomyopathy (ICM), dilated cardiomyopathy, hindlimb ischemia, and stroke. Clinical studies regarding the use of autologous ADSCs for treating patients with AMI and ICM have recently been initiated. ADSC implantation has been reported as safe and effective so far. Therefore, ADSCs appear to be useful for the treatment of cardiovascular disease. However, the tumorigenic potential of ADSCs requires careful evaluation before their safe clinical application.
Collapse
|
30
|
Su X, Ling Y, Liu C, Meng F, Cao J, Zhang L, Zhou H, Liu Z, Zhang Y. Isolation, Culture, Differentiation, and Nuclear Reprogramming of Mongolian Sheep Fetal Bone Marrow-Derived Mesenchymal Stem Cells. Cell Reprogram 2015; 17:288-96. [PMID: 26086202 DOI: 10.1089/cell.2014.0109] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
We have characterized the differentiation potentiality and the developmental potential of cloned embryos of fetal bone marrow mesenchymal stem cells (BMSCs) isolated from Mongolian sheep. BMSCs were harvested by centrifuging after the explants method and the mononuclear cells obtained were cultured. The isolated BMSCs were uniform, with a fibroblast-like spindle or stellate appearance, and we confirmed expression of OCT4, SOX2, and NANOG genes at passage 3 (P3) by RT-PCR. We measured the growth of the passage 1, 5, and 10 cultures and found exponential growth with a population doubling time of 29.7±0.05 h. We cultured the P3 BMSCs in vitro under inductive environments and were able to induce them to undergo neurogenesis and form cardiomyocytes and adipocytes. Donor cells at passages 3-4 were used for nuclear transfer (NT). We found the BMSCs could be expanded in vitro and used as nuclear donors for somatic cell nuclear transfer (SCNT). Thus, BMSCs are an attractive cell type for large-animal autologous studies and will be valuable material for somatic cell cloning and future transgenic research.
Collapse
Affiliation(s)
- Xiaohu Su
- 1 College of Life Sciences, Inner Mongolia Agricultural University , Hohhot 010018, China .,2 Key Laboratory of Biological Manufacturing of Inner Mongolia Autonomous Region , Hohhot 010018, China
| | - Yu Ling
- 1 College of Life Sciences, Inner Mongolia Agricultural University , Hohhot 010018, China .,2 Key Laboratory of Biological Manufacturing of Inner Mongolia Autonomous Region , Hohhot 010018, China
| | - Chunxia Liu
- 1 College of Life Sciences, Inner Mongolia Agricultural University , Hohhot 010018, China .,2 Key Laboratory of Biological Manufacturing of Inner Mongolia Autonomous Region , Hohhot 010018, China
| | - Fanhua Meng
- 1 College of Life Sciences, Inner Mongolia Agricultural University , Hohhot 010018, China .,2 Key Laboratory of Biological Manufacturing of Inner Mongolia Autonomous Region , Hohhot 010018, China
| | - Junwei Cao
- 1 College of Life Sciences, Inner Mongolia Agricultural University , Hohhot 010018, China .,2 Key Laboratory of Biological Manufacturing of Inner Mongolia Autonomous Region , Hohhot 010018, China
| | - Li Zhang
- 1 College of Life Sciences, Inner Mongolia Agricultural University , Hohhot 010018, China .,2 Key Laboratory of Biological Manufacturing of Inner Mongolia Autonomous Region , Hohhot 010018, China
| | - Huanmin Zhou
- 1 College of Life Sciences, Inner Mongolia Agricultural University , Hohhot 010018, China .,2 Key Laboratory of Biological Manufacturing of Inner Mongolia Autonomous Region , Hohhot 010018, China
| | - Zongzheng Liu
- 1 College of Life Sciences, Inner Mongolia Agricultural University , Hohhot 010018, China .,2 Key Laboratory of Biological Manufacturing of Inner Mongolia Autonomous Region , Hohhot 010018, China
| | - Yanru Zhang
- 1 College of Life Sciences, Inner Mongolia Agricultural University , Hohhot 010018, China .,2 Key Laboratory of Biological Manufacturing of Inner Mongolia Autonomous Region , Hohhot 010018, China
| |
Collapse
|
31
|
Minteer DM, Marra KG, Rubin JP. Adipose stem cells: biology, safety, regulation, and regenerative potential. Clin Plast Surg 2015; 42:169-79. [PMID: 25827561 DOI: 10.1016/j.cps.2014.12.007] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
This article discusses adipose-derived stem cell (ASC) biology, describes the current knowledge in the literature for the safety and regulation of ASCs, and provides a brief overview of the regenerative potential of ASCs. It is not an exhaustive listing of all available clinical studies or every study applying ASCs in tissue engineering and regenerative medicine, but is an objective commentary of these topics.
Collapse
Affiliation(s)
- Danielle M Minteer
- Department of Bioengineering, University of Pittsburgh, 200 Lothrop Street, Pittsburgh, PA 15213, USA
| | - Kacey G Marra
- Department of Bioengineering, University of Pittsburgh, 200 Lothrop Street, Pittsburgh, PA 15213, USA; Department of Plastic Surgery, University of Pittsburgh, 3550 Terrace Street, Pittsburgh, PA 15213, USA; McGowan Institute for Regenerative Medicine, University of Pittsburgh, 450 Technology Drive, Pittsburgh, PA 15213, USA
| | - J Peter Rubin
- Department of Bioengineering, University of Pittsburgh, 200 Lothrop Street, Pittsburgh, PA 15213, USA; Department of Plastic Surgery, University of Pittsburgh, 3550 Terrace Street, Pittsburgh, PA 15213, USA; McGowan Institute for Regenerative Medicine, University of Pittsburgh, 450 Technology Drive, Pittsburgh, PA 15213, USA.
| |
Collapse
|
32
|
Papadimou E, Morigi M, Iatropoulos P, Xinaris C, Tomasoni S, Benedetti V, Longaretti L, Rota C, Todeschini M, Rizzo P, Introna M, Grazia de Simoni M, Remuzzi G, Goligorsky MS, Benigni A. Direct reprogramming of human bone marrow stromal cells into functional renal cells using cell-free extracts. Stem Cell Reports 2015; 4:685-98. [PMID: 25754206 PMCID: PMC4400646 DOI: 10.1016/j.stemcr.2015.02.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Revised: 02/03/2015] [Accepted: 02/04/2015] [Indexed: 12/15/2022] Open
Abstract
The application of cell-based therapies in regenerative medicine is gaining recognition. Here, we show that human bone marrow stromal cells (BMSCs), also known as bone-marrow-derived mesenchymal cells, can be reprogrammed into renal proximal tubular-like epithelial cells using cell-free extracts. Streptolysin-O-permeabilized BMSCs exposed to HK2-cell extracts underwent morphological changes—formation of “domes” and tubule-like structures—and acquired epithelial functional properties such as transepithelial-resistance, albumin-binding, and uptake and specific markers E-cadherin and aquaporin-1. Transmission electron microscopy revealed the presence of brush border microvilli and tight intercellular contacts. RNA sequencing showed tubular epithelial transcript abundance and revealed the upregulation of components of the EGFR pathway. Reprogrammed BMSCs integrated into self-forming kidney tissue and formed tubular structures. Reprogrammed BMSCs infused in immunodeficient mice with cisplatin-induced acute kidney injury engrafted into proximal tubuli, reduced renal injury and improved function. Thus, reprogrammed BMSCs are a promising cell resource for future cell therapy. BMSCs cross lineage boundaries toward renal cells via cell-extract reprogramming Reprogrammed BMSCs acquire proximal tubular-like epithelial cell properties Reprogrammed BMSCs integrate into proximal tubuli and protect mice from AKI
Collapse
Affiliation(s)
- Evangelia Papadimou
- IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri," Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, 24126 Bergamo, Italy.
| | - Marina Morigi
- IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri," Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, 24126 Bergamo, Italy
| | - Paraskevas Iatropoulos
- IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri," Clinical Research Center for Rare Diseases "Aldo e Cele Daccò," 24020 Ranica, Italy
| | - Christodoulos Xinaris
- IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri," Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, 24126 Bergamo, Italy
| | - Susanna Tomasoni
- IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri," Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, 24126 Bergamo, Italy
| | - Valentina Benedetti
- IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri," Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, 24126 Bergamo, Italy
| | - Lorena Longaretti
- IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri," Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, 24126 Bergamo, Italy
| | - Cinzia Rota
- IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri," Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, 24126 Bergamo, Italy
| | - Marta Todeschini
- IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri," Clinical Research Center for Rare Diseases "Aldo e Cele Daccò," 24020 Ranica, Italy
| | - Paola Rizzo
- IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri," Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, 24126 Bergamo, Italy
| | - Martino Introna
- Laboratory of Cellular Therapy "G. Lanzani," USC Hematology, 24122 Bergamo, Italy
| | - Maria Grazia de Simoni
- Department of Neuroscience, IRCCS - Istituto di Ricerche Farmacologiche "Mario Negri," 20156 Milan, Italy
| | - Giuseppe Remuzzi
- IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri," Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, 24126 Bergamo, Italy; IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri," Clinical Research Center for Rare Diseases "Aldo e Cele Daccò," 24020 Ranica, Italy; Unit of Nephrology and Dialysis, Azienda Ospedaliera Papa Giovanni XXIII, 24127 Bergamo, Italy.
| | - Michael S Goligorsky
- Department of Medicine, Renal Research Institute, New York Medical College, 15 Dana Road, BSB C-06, Valhalla, NY 10595, USA
| | - Ariela Benigni
- IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri," Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, 24126 Bergamo, Italy
| |
Collapse
|
33
|
Adipose-Derived Stem Cells for Therapeutic Applications. Regen Med 2015. [DOI: 10.1007/978-1-4471-6542-2_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
34
|
Pham TLB, Nguyen TT, Van Bui A, Nguyen MT, Van Pham P. Fetal heart extract facilitates the differentiation of human umbilical cord blood-derived mesenchymal stem cells into heart muscle precursor cells. Cytotechnology 2014; 68:645-58. [PMID: 25377264 DOI: 10.1007/s10616-014-9812-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Accepted: 10/27/2014] [Indexed: 02/07/2023] Open
Abstract
Human umbilical cord blood-derived mesenchymal stem cells (UCB-MSCs) are a promising stem cell source with the potential to modulate the immune system as well as the capacity to differentiate into osteoblasts, chondrocytes, and adipocytes. In previous publications, UCB-MSCs have been successfully differentiated into cardiomyocytes. This study aimed to improve the efficacy of differentiation of UCB-MSCs into cardiomyocytes by combining 5-azacytidine (Aza) with mouse fetal heart extract (HE) in the induction medium. UCB-MSCs were isolated from umbilical cord blood according to a published protocol. Murine fetal hearts were used to produce fetal HE using a rapid freeze-thaw procedure. MSCs at the 3rd to 5th passage were differentiated into cardiomyocytes in two kinds of induction medium: complete culture medium plus Aza (Aza group) and complete culture medium plus Aza and fetal HE (Aza + HE group). The results showed that the cells in both kinds of induction medium exhibited the phenotype of cardiomyocytes. At the transcriptional level, the cells expressed a number of cardiac muscle-specific genes such as Nkx2.5, Gata 4, Mef2c, HCN2, hBNP, α-Ca, cTnT, Desmin, and β-MHC on day 27 in the Aza group and on day 18 in the Aza + HE group. At the translational level, sarcomic α-actin was expressed on day 27 in the Aza group and day 18 in the Aza + HE group. Although they expressed specific genes and proteins of cardiac muscle cells, the induced cells in both groups did not contract and beat spontaneously. These properties are similar to properties of heart muscle precursor cells in vivo. These results demonstrated that the fetal HE facilitates the differentiation process of human UCB-MSCs into heart muscle precursor cells.
Collapse
Affiliation(s)
- Truc Le-Buu Pham
- Laboratory of Stem Cell Research and Application, University of Science, Vietnam National University, Ho Chi Minh City, Vietnam
| | - Tam Thanh Nguyen
- Laboratory of Stem Cell Research and Application, University of Science, Vietnam National University, Ho Chi Minh City, Vietnam
| | - Anh Van Bui
- Laboratory of Stem Cell Research and Application, University of Science, Vietnam National University, Ho Chi Minh City, Vietnam
| | - My Thu Nguyen
- Laboratory of Stem Cell Research and Application, University of Science, Vietnam National University, Ho Chi Minh City, Vietnam
| | - Phuc Van Pham
- Laboratory of Stem Cell Research and Application, University of Science, Vietnam National University, Ho Chi Minh City, Vietnam.
| |
Collapse
|
35
|
Xie F, Tang X, Zhang Q, Deng C. Reprogramming human adipose tissue stem cells using epidermal keratinocyte extracts. Mol Med Rep 2014; 11:182-8. [PMID: 25333210 PMCID: PMC4237102 DOI: 10.3892/mmr.2014.2711] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Accepted: 07/25/2014] [Indexed: 11/06/2022] Open
Abstract
Human adipose tissue stem cells (ATSCs) can differentiate into various types of cell in response to lineage-specific induction factors. Reprogramming cells using nuclear and cytoplasmic extracts derived from another type of somatic cell is an effective method of producing specific types of differentiated cell. In the present study, the ability of reprogrammed ATSCs to acquire epidermal keratinocyte properties following transient exposure to epidermal keratinocyte extracts was demonstrated. Reversibly permeabilized ATSCs were incubated for 1 h in nuclear and cytoplasmic extracts from epidermal keratinocytes, resealed with CaCl2 and cultured. ATSC reprogramming is demonstrated by nuclear uptake of epidermal keratinocyte extracts. After one week of exposure to extracts, ATSCs underwent changes in cell morphology, cell-specific genes were activated, and epidermal keratinocyte markers including K19 and K1/K10 (markers of stem cells and terminally differentiated keratinocytes, respectively) were expressed. This study indicates that the reprogramming of ATSCs using nuclear and cytoplasmic extracts from epidermal keratinocytes is a viable option for the production of specific types of cell.
Collapse
Affiliation(s)
- Feng Xie
- Department of Plastic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University, Shanghai 200011, P.R. China
| | - Xinjie Tang
- Department of Plastic and Reconstructive Surgery, Huashan Hospital, Fudan University School of Medicine, Shanghai 200040, P.R. China
| | - Qun Zhang
- Department of Plastic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University, Shanghai 200011, P.R. China
| | - Chenliang Deng
- Department of Plastic Surgery, Shanghai Sixth People's Hospital, Shanghai Jiaotong University, Shanghai 200233, P.R. China
| |
Collapse
|
36
|
Chen L, Qin F, Ge M, Shu Q, Xu J. Application of adipose-derived stem cells in heart disease. J Cardiovasc Transl Res 2014; 7:651-63. [PMID: 25205213 DOI: 10.1007/s12265-014-9585-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2014] [Accepted: 08/05/2014] [Indexed: 12/14/2022]
Abstract
Therapy with mesenchymal stem cells is one of the promising tools to improve outcomes after myocardial infarction. Adipose-derived stem cells (ASCs) are an ideal source of mesenchymal stem cells due to their abundance and ease of preparation. Studies in animal models of myocardial infarction have demonstrated the ability of injected ASCs to engraft and differentiate into cardiomyocytes and vasculature cells. ASCs secrete a wide array of angiogenic and anti-apoptotic paracrine factors such as vascular endothelial growth factor, hepatocyte growth factor, and insulin-like growth factor 1. ASCs are capable of enhancing heart function, reducing myocardial infarction, promoting vascularization, and reversing remodeling in the ischemically injured hearts. Furthermore, several ongoing clinical trials using ASCs are producing promising results for heart diseases. This article reviews the isolation, differentiation, immunoregulatory properties, mechanisms of action, animal models, and ongoing clinical trials of ASCs for cardiac disease.
Collapse
Affiliation(s)
- Lina Chen
- Shaoxing Second Hospital, Shaoxing, Zhejiang, China
| | | | | | | | | |
Collapse
|
37
|
Carmosino M, Torretta S, Procino G, Gerbino A, Forleo C, Favale S, Svelto M. Role of nuclear Lamin A/C in cardiomyocyte functions. Biol Cell 2014; 106:346-58. [PMID: 25055884 DOI: 10.1111/boc.201400033] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Accepted: 07/16/2014] [Indexed: 12/21/2022]
Abstract
Lamin A/C is a structural protein of the nuclear envelope (NE) and cardiac involvement in Lamin A/C mutations was one of the first phenotypes to be reported in humans, suggesting a crucial role of this protein in the cardiomyocytes function. Mutations in LMNA gene cause a class of pathologies generically named 'Lamanopathies' mainly involving heart and skeletal muscles. Moreover, the well-known disease called Hutchinson-Gilford Progeria Syndrome due to extensive mutations in LMNA gene, in addition to the systemic phenotype of premature aging, is characterised by the death of patients at around 13 typically for a heart attack or stroke, suggesting again the heart as the main site sensitive to Lamin A/C disfunction. Indeed, the identification of the roles of the Lamin A/C in cardiomyocytes function is a key area of exploration. One of the primary biological roles recently conferred to Lamin A/C is to affect contractile cells lineage determination and senescence. Then, in differentiated adult cardiomyocytes both the 'structural' and 'gene expression hypothesis' could explain the role of Lamin A in the function of cardiomyocytes. In fact, recent advances in the field propose that the structural weakness/stiffness of the NE, regulated by Lamin A/C amount in NE, can 'consequently' alter gene expression.
Collapse
Affiliation(s)
- Monica Carmosino
- Department of Sciences, University of Basilicata, Potenza, Italy; Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari, Italy
| | | | | | | | | | | | | |
Collapse
|
38
|
Porous Membranes Promote Endothelial Differentiation of Adipose-Derived Stem Cells and Perivascular Interactions. Cell Mol Bioeng 2014. [DOI: 10.1007/s12195-014-0354-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
|
39
|
Perán M, López-Ruiz E, González-Herrera L, Bustamante M, Valenzuela A, Marchal JA. Cellular extracts from post-mortem human cardiac tissue direct cardiomyogenic differentiation of human adipose tissue-derived stem cells. Cytotherapy 2014; 15:1541-8. [PMID: 24199593 DOI: 10.1016/j.jcyt.2013.06.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Revised: 05/14/2013] [Accepted: 06/22/2013] [Indexed: 01/31/2023]
Abstract
BACKGROUND AIMS Human adipose tissue-derived stem cells (hASCs) can be easily (and inexpensively) expanded in culture, and their high plasticity allows their conversion to different cell types. We study the potential capacity of postmortem cardiac tissue to direct cardiac differentiation of hASCs in vitro. METHODS Cardiac tissue collected from autopsies was used to obtain cell extracts and conditioned medium, and both approaches were tested for cardiac induction. RESULTS Gene expression analyses proved that post-mortem human cardiac tissue maintains genetic integrity. hASCs exposed to the cell extracts or conditioned medium for 2 weeks achieved the appearance of myotube-like structures and were positive for cardiac markers such as sarcomeric α-actinin, cardiac troponin I and T and desmin as proved by immunofluorescence. In addition, differentiated cells showed increased expression of cardiomyocyte-related genes analyzed by reverse transcriptase polymerase chain reaction (GATA-4, myocyte-enhancer factor-2c, α-cardiac actin and cardiac troponin I). CONCLUSIONS For the first time, post-mortem human cardiac tissue was used to induce hASC differentiation into myocardial-like cells. The methodology described here would serve as a useful model to obtain cardiomyocyte-like cells in vitro.
Collapse
Affiliation(s)
- Macarena Perán
- Department of Health Sciences, University of Jaén, Spain.
| | | | | | | | | | | |
Collapse
|
40
|
Pasini A, Bonafè F, Govoni M, Guarnieri C, Morselli PG, Sharma HS, Caldarera CM, Muscari C, Giordano E. Epigenetic signature of early cardiac regulatory genes in native human adipose-derived stem cells. Cell Biochem Biophys 2014; 67:255-62. [PMID: 23625166 DOI: 10.1007/s12013-013-9610-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Adipose-derived stem cells (ADSCs) are stromal mesenchymal stem cells isolated from lipoaspirates, and they display a broad potential to differentiate toward different lineages. The role of epigenetics in regulating the expression of their lineage-specific genes is under evaluation, however till date virtually nothing is known about the relative significance of cardiac-specific transcription factor genes in human ADSCs. The aim of this study was to investigate DNA promoter methylation and relevant histone modifications involving MEF-2C, GATA-4, and Nkx2.5 in native human ADSCs. CpG sites at the transcription start in their promoters were found unmethylated using methylation-specific PCR. Chromatin immunoprecipitation assay showed low levels of total acetylated H3 histone (acH3) and high levels of trimethylated lysine 27 in H3 histone (H3K27me3) which were associated with both GATA-4 and Nkx2.5 promoters, indicating their transcriptional repressive chromatin arrangement. On the other hand, the opposite was apparent for MEF-2C promoter. Accordingly, MEF-2C-but not GATA-4 and Nkx2.5-transcripts were evidenced in native human ADSCs. These results suggest that the chromatin arrangement of these early cardiac regulatory genes could be explored as a level of intervention to address the differentiation of human ADSCs toward the cardiac lineage.
Collapse
Affiliation(s)
- Alice Pasini
- Laboratory of Cellular and Molecular Engineering "S. Cavalcanti", University of Bologna, Campus of Cesena, via Venezia, 52, 47521, Cesena, FC, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Girão-Silva T, Bassaneze V, Campos LCG, Barauna VG, Dallan LAO, Krieger JE, Miyakawa AA. Short-term mechanical stretch fails to differentiate human adipose-derived stem cells into cardiovascular cell phenotypes. Biomed Eng Online 2014; 13:54. [PMID: 24885410 PMCID: PMC4012171 DOI: 10.1186/1475-925x-13-54] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Accepted: 04/22/2014] [Indexed: 12/31/2022] Open
Abstract
Background We and others have previously demonstrated that adipose-derived stem cells (ASCs) transplantation improve cardiac dysfunction post-myocardium infarction (MI) under hemodynamic stress in rats. The beneficial effects appear to be associated with pleiotropic factors due to a complex interplay between the transplanted ASCs and the microenvironment in the absence of cell transdifferentiation. In the present work, we tested the hypothesis that mechanical stretch per se could change human ASCs (hASCs) into cardiovascular cell phenotypes that might influence post-MI outcomes. Methods Human ASCs were obtained from patients undergoing liposuction procedures. These cells were stretched 12%, 1Hz up to 96 hours by using Flexercell 4000 system. Protein and gene expression were evaluated to identify cardiovascular cell markers. Culture medium was analyzed to determine cell releasing factors, and contraction potential was also evaluated. Results Mechanical stretch, which is associated with extracellular signal-regulated kinase (ERK) phosphorylation, failed to induce the expression of cardiovascular cell markers in human ASCs, and mesenchymal cell surface markers (CD29; CD90) remained unchanged. hASCs and smooth muscle cells (SMCs) displayed comparable contraction ability. In addition, these cells demonstrated a profound ability to secrete an array of cytokines. These two properties of human ASCs were not influenced by mechanical stretch. Conclusions Altogether, our findings demonstrate that hASCs secrete an array of cytokines and display contraction ability even in the absence of induction of cardiovascular cell markers or the loss of mesenchymal surface markers when exposed to mechanical stretch. These properties may contribute to beneficial post-MI cardiovascular outcomes and deserve to be further explored under the controlled influence of other microenvironment components associated with myocardial infarction, such as tissue hypoxia.
Collapse
Affiliation(s)
| | | | | | | | | | - Jose Eduardo Krieger
- Laboratory of Genetics and Molecular Cardiology, Heart Institute (InCor) - University of São Paulo School of Medicine, Avenue Dr, Eneas de Carvalho Aguiar, 44, São Paulo, SP 05403-000, Brazil.
| | | |
Collapse
|
42
|
Blazquez-Martinez A, Chiesa M, Arnalich F, Fernandez-Delgado J, Nistal M, De Miguel MP. c-Kit identifies a subpopulation of mesenchymal stem cells in adipose tissue with higher telomerase expression and differentiation potential. Differentiation 2014; 87:147-60. [PMID: 24713343 DOI: 10.1016/j.diff.2014.02.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Revised: 01/24/2014] [Accepted: 02/24/2014] [Indexed: 12/14/2022]
Abstract
The stromal vascular fraction (SVF) of adipose tissue is an easy to obtain source of adipose tissue-derived stem cells (ADSCs). We and others have achieved significant but suboptimal therapeutic effects with ADSCs in various settings, mainly due to low rates of differentiation into specific cell types and with the downside of undesired side effects as a consequence of the undifferentiated ADSCs. These data prompted us to find new stem cell-specific markers for ADSCs and/or subpopulations with higher differentiation potential to specific lineages. We found a subpopulation of human ADSCs, marked by c-Kit positiveness, resides in a perivascular location, and shows higher proliferative activity and self-renewal capacity, higher telomerase activity and expression, higher in vitro adipogenic efficiency, a higher capacity for the maintenance of cardiac progenitors, and higher pancreatogenic and hepatogenic efficiency independently of CD105 expression. Our data suggests that the isolation of ADSC subpopulations with anti-c-Kit antibodies allows for the selection of a more homogeneous subpopulation with increased cardioprotective properties and increased adipogenic and endodermal differentiation potential, providing a useful tool for specific therapies in regenerative medicine applications.
Collapse
Affiliation(s)
- A Blazquez-Martinez
- Cell Engineering Laboratory, La Paz University Hospital Research Institute, Madrid, Spain
| | - M Chiesa
- Cell Engineering Laboratory, La Paz University Hospital Research Institute, Madrid, Spain
| | - F Arnalich
- Department of Internal Medicine, La Paz University Hospital, Madrid, Spain
| | - J Fernandez-Delgado
- Department of Plastic and Reconstructive Surgery, Santa Cristina Hospital, and Centrocim, Madrid, Spain
| | - M Nistal
- Department of Pathology, La Paz University Hospital, Madrid, Spain
| | - M P De Miguel
- Cell Engineering Laboratory, La Paz University Hospital Research Institute, Madrid, Spain.
| |
Collapse
|
43
|
Mahapatra PS, Bag S. Reprogramming of buffalo (Bubalus bubalis) foetal fibroblasts with avian egg extract for generation of pluripotent stem cells. Res Vet Sci 2014; 96:292-8. [DOI: 10.1016/j.rvsc.2014.02.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2013] [Revised: 01/06/2014] [Accepted: 02/09/2014] [Indexed: 01/12/2023]
|
44
|
McClelland Descalzo DL, Ehnes DD, zur Nieden NI. Stem cells for osteodegenerative diseases: current studies and future outlook. Regen Med 2014; 9:219-30. [DOI: 10.2217/rme.13.100] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
As the worldwide population grows and life expectancies continue to increase, degenerative diseases of the bones, muscles, and connective tissue are a growing problem for society. Current therapies for osteodegenerative disorders such as hormone replacement therapies, calcium/vitamin D supplements and oral bisphosphonates are often inadequate to stop degeneration and/or have serious negative side effects. Thus, there is an urgent need in the medical community for more effective and safer treatments. Stem cell therapies for osteodegenerative disorders have been rigorously explored over the last decade and are yielding some promising results in animal models and clinical trials. Although much work still needs to be done to ensure the safety and efficacy of these therapies, stem cells represent a new frontier of exciting possibilities for bone and cartilage regeneration.
Collapse
Affiliation(s)
- Darcie L McClelland Descalzo
- Department of Cell Biology & Neuroscience, 1113 Biological Sciences Building, University of California Riverside, Riverside, CA 92521, USA
| | - Devon D Ehnes
- Department of Cell Biology & Neuroscience, 1113 Biological Sciences Building, University of California Riverside, Riverside, CA 92521, USA
| | - Nicole I zur Nieden
- Department of Cell Biology & Neuroscience, 1113 Biological Sciences Building, University of California Riverside, Riverside, CA 92521, USA
| |
Collapse
|
45
|
Li L, Xia Y. Study of adipose tissue-derived mesenchymal stem cells transplantation for rats with dilated cardiomyopathy. Ann Thorac Cardiovasc Surg 2014; 20:398-406. [PMID: 24492176 DOI: 10.5761/atcs.oa.13-00104] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Increasing evidences indicated that adipose-derived mesenchymal stem cells (ADMSCs) can stay survive, then gradually proliferate and differentiate into myocardial cells after transplanted into damaged areas and improve function of heart. METHODS In this article, ADMSCs were isolated from adipose tissue of Wistar rats and cultured. When treated with 5-azacytidine (5-aza), ADMSCs were differentiated into myocardial cells, then we implant these cells into myocardium of rats of DCM to observe cell population and differentiation and compare cardiac function and hemodynamics changes before and after transplantation. RESULTS The expression of Cardiac-specific markers indicated that ADMSCs which were isolated from adipose tissue of Wistar rats can differentiate into various cell types. Meanwhile, the treatment group displayed a higher level of LVESP, left ventricular intraventricular pressure (+dP/dt max), left ventricular intraventricular pressure (-dP/dt max) and left ventricular EF (%) than the control group. Altogether, these results indicate that heart systolic and diastolic function of rats of DCM was significantly improved meanwhile ventricular dilatation remodeling was inhibited after ADMSCs transplantation. CONCLUSIONS Therefore, this research provides an experimental basis for further clinical application of ADMSCs transplantation for the treatment of DCM and non-ischemic HF.
Collapse
Affiliation(s)
- Liang Li
- First Department of Cadres, First Hospital Affiliated to General Hospital of PLA, Beijing, China
| | | |
Collapse
|
46
|
Musa S, Xin LZ, Govindasamy V, Fuen FW, Kasim NHA. Global search for right cell type as a treatment modality for cardiovascular disease. Expert Opin Biol Ther 2013; 14:63-73. [DOI: 10.1517/14712598.2014.858694] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
47
|
Raynaud CM, Yacoub MH. Clinical trials of bone marrow derived cells for ischemic heart failure. Time to move on? TIME, SWISS-AMI, CELLWAVE, POSEIDON and C-CURE. Glob Cardiol Sci Pract 2013; 2013:207-11. [PMID: 24689022 PMCID: PMC3963753 DOI: 10.5339/gcsp.2013.28] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Accepted: 09/23/2013] [Indexed: 01/07/2023] Open
|
48
|
Myocardin-A enhances expression of promyogenic genes without depressing telomerase activity in adipose tissue-derived mesenchymal stem cells. Int J Cardiol 2013; 167:2912-21. [DOI: 10.1016/j.ijcard.2012.07.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Revised: 07/15/2012] [Accepted: 07/21/2012] [Indexed: 01/16/2023]
|
49
|
Maioli M, Rinaldi S, Santaniello S, Castagna A, Pigliaru G, Delitala A, Bianchi F, Tremolada C, Fontani V, Ventura C. Radioelectric asymmetric conveyed fields and human adipose-derived stem cells obtained with a nonenzymatic method and device: a novel approach to multipotency. Cell Transplant 2013; 23:1489-500. [PMID: 24044359 DOI: 10.3727/096368913x672037] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Human adipose-derived stem cells (hASCs) have been recently proposed as a suitable tool for regenerative therapies for their simple isolation procedure and high proliferative capability in culture. Although hASCs can be committed into different lineages in vitro, the differentiation is a low-yield and often incomplete process. We have recently developed a novel nonenzymatic method and device, named Lipogems, to obtain a fat tissue derivative highly enriched in pericytes/mesenchymal stem cells by mild mechanical forces from human lipoaspirates. When compared to enzymatically dissociated cells, Lipogems-derived hASCs exhibited enhanced transcription of vasculogenic genes in response to provasculogenic molecules, suggesting that these cells may be amenable for further optimization of their multipotency. Here we exposed Lipogems-derived hASCs to a radioelectric asymmetric conveyer (REAC), an innovative device asymmetrically conveying radioelectric fields, affording both enhanced differentiating profiles in mouse embryonic stem cells and efficient direct multilineage reprogramming in human skin fibroblasts. We show that specific REAC exposure remarkably enhanced the transcription of prodynorphin, GATA-4, Nkx-2.5, VEGF, HGF, vWF, neurogenin-1, and myoD, indicating the commitment toward cardiac, vascular, neuronal, and skeletal muscle lineages, as inferred by the overexpression of a program of targeted marker proteins. REAC exposure also finely tuned the expression of stemness-related genes, including NANOG, SOX-2, and OCT-4. Noteworthy, the REAC-induced responses were fashioned at a significantly higher extent in Lipogems-derived than in enzymatically dissociated hASCs. Therefore, REAC-mediated interplay between radioelectric asymmetrically conveyed fields and Lipogems-derived hASCs appears to involve the generation of an ideal "milieu" to optimize multipotency expression from human adult stem cells in view of potential improvement of future cell therapy efforts.
Collapse
Affiliation(s)
- Margherita Maioli
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Reprogramming of fetal cells by avian EE for generation of pluripotent stem cell like cells in caprine. Res Vet Sci 2013; 95:638-43. [PMID: 23830780 DOI: 10.1016/j.rvsc.2013.06.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2012] [Revised: 04/11/2013] [Accepted: 06/18/2013] [Indexed: 11/23/2022]
Abstract
The present work was carried out to study the ability of avian "Extract Egg" (EE) for reprogramming caprine fetal cells. The isolated caprine fetal cells were cultured in stem cell media supplemented with different percentages of either EE or FBS. The results indicated that the supplementation of 2-4% EE formed lesser but larger size stem cell like cell colonies as compared to 6% or 10% EE. The expression of pluripotent genes were comparatively higher in colonies developed in 2% or 4% as compared to 6% or 10% EE. Further, immunocytochemistry revealed that the colonies developed in all percentage of EE expressed pluripotent markers like Oct4, Nanog, TRA-1-60 and TRA-1-81. Our findings indicated that avian EE has the potentiality to reprogram caprine fetal cells into embryonic state which may help in generation of pluripotent stem cells without using viral vector.
Collapse
|