1
|
Wang M, Zhu XY, Wang L, Lin Y. Expression and significance of CDC25B, PED/PEA-15 in esophageal carcinoma. Cancer Biother Radiopharm 2015; 30:139-45. [PMID: 25775393 DOI: 10.1089/cbr.2014.1701] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
OBJECTIVE To explore the role of CDC25B, PED/PEA-15 in the development of esophageal carcinoma and its influence on the prognosis. METHODS Fluorescence quantitative real-time PCR and immunohistochemistry methods were used to analyze the expression of CDC25B, PED/PEA-15 in esophageal carcinoma. Moreover, survival analysis was done using the Kaplan-Meier method. RESULTS In 66 cases of esophageal cancer tissues, the relative content of CDC25B mRNA was 16.22 (13.93-18.90). The positive expression rate of CDC25B protein was 48.5%, significantly higher than normal mucosa tissues (0%) (p<0.01). The relative content of PED/PEA-15 mRNA was 12.47 (10.41-14.93). The positive expression rate of PED/PEA-15 protein was 68.2%, significantly higher than normal mucosa tissues (17.6%) (p<0.01). The CDC25B protein expression was correlated with differentiation grade and depth of invasion (p<0.05). The PED/PEA-15 protein expression was related to differentiation grade, lymph node metastasis, and depth of invasion (p<0.05). Survival analysis showed that the mean survival time of PED/PEA-15-positive expression group was lower compared with the negative expression group (χ(2)=5.549, p=0.018). Analysis of the relationship between CDC25B and PED/PEA-15 suggested that there was a positive correlation between them (r=4.061, p=0.044). CONCLUSION Both CDC25B and PED/PEA-15 play a certain role in the carcinogenesis of esophageal cancer, and PED/PEA-15 has a greater influence on postoperative survival time. They will be the new diagnostic/therapeutic targets in esophageal carcinoma.
Collapse
Affiliation(s)
- Ming Wang
- 1 Department of Radiation Therapy, Cangzhou Central Hospital , Cangzhou, China
| | | | | | | |
Collapse
|
2
|
Van Roey K, Uyar B, Weatheritt RJ, Dinkel H, Seiler M, Budd A, Gibson TJ, Davey NE. Short Linear Motifs: Ubiquitous and Functionally Diverse Protein Interaction Modules Directing Cell Regulation. Chem Rev 2014; 114:6733-78. [DOI: 10.1021/cr400585q] [Citation(s) in RCA: 293] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Kim Van Roey
- Structural
and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Bora Uyar
- Structural
and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Robert J. Weatheritt
- MRC
Laboratory of Molecular Biology (LMB), Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, United Kingdom
| | - Holger Dinkel
- Structural
and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Markus Seiler
- Structural
and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Aidan Budd
- Structural
and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Toby J. Gibson
- Structural
and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Norman E. Davey
- Structural
and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany
- Department
of Physiology, University of California, San Francisco, San Francisco, California 94143, United States
| |
Collapse
|
3
|
Bouayad D, Pederzoli-Ribeil M, Mocek J, Candalh C, Arlet JB, Hermine O, Reuter N, Davezac N, Witko-Sarsat V. Nuclear-to-cytoplasmic relocalization of the proliferating cell nuclear antigen (PCNA) during differentiation involves a chromosome region maintenance 1 (CRM1)-dependent export and is a prerequisite for PCNA antiapoptotic activity in mature neutrophils. J Biol Chem 2012; 287:33812-25. [PMID: 22846997 PMCID: PMC3460476 DOI: 10.1074/jbc.m112.367839] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Revised: 07/24/2012] [Indexed: 01/03/2023] Open
Abstract
Neutrophils are deprived of proliferative capacity and have a tightly controlled lifespan to avoid their persistence at the site of injury. We have recently described that the proliferating cell nuclear antigen (PCNA), a nuclear factor involved in DNA replication and repair of proliferating cells, is a key regulator of neutrophil survival. In neutrophils, PCNA was localized exclusively in the cytoplasm due to its nuclear-to-cytoplasmic relocalization during granulocytic differentiation. We showed here that leptomycin B, an inhibitor of the chromosome region maintenance 1 (CRM1) exportin, inhibited PCNA relocalization during granulocytic differentiation of HL-60 and NB4 promyelocytic cell lines and of human CD34(+) primary cells. Using enhanced green fluorescent protein fusion constructs, we have demonstrated that PCNA relocalization involved a nuclear export signal (NES) located from Ile-11 to Ile-23 in the PCNA sequence. However, this NES, located at the inner face of the PCNA trimer, was not functional in wild-type PCNA, but instead, was fully active and leptomycin B-sensitive in the monomeric PCNAY114A mutant. To test whether a defect in PCNA cytoplasmic relocalization would affect its antiapoptotic activity in mature neutrophils, a chimeric PCNA fused with the SV40 nuclear localization sequence (NLS) was generated to preclude its cytoplasmic localization. As expected, neutrophil-differentiated PLB985 cells expressing ectopic SV40NLS-PCNA had an increased nuclear PCNA as compared with cells expressing wild-type PCNA. Accordingly, the nuclear PCNA mutant did not show any antiapoptotic activity as compared with wild-type PCNA. Nuclear-to-cytoplasmic relocalization that occurred during myeloid differentiation is essential for PCNA antiapoptotic activity in mature neutrophils and is dependent on the newly identified monomerization-dependent PCNA NES.
Collapse
Affiliation(s)
- Dikra Bouayad
- From the INSERM U1016, 75014 Paris, France
- the Institut Cochin, Université Paris Descartes, Cochin Hospital, 75015 Paris, France
- the CNRS UMR8104, 75014 Paris, France
| | - Magali Pederzoli-Ribeil
- From the INSERM U1016, 75014 Paris, France
- the Institut Cochin, Université Paris Descartes, Cochin Hospital, 75015 Paris, France
- the CNRS UMR8104, 75014 Paris, France
| | - Julie Mocek
- From the INSERM U1016, 75014 Paris, France
- the Institut Cochin, Université Paris Descartes, Cochin Hospital, 75015 Paris, France
- the CNRS UMR8104, 75014 Paris, France
| | - Céline Candalh
- From the INSERM U1016, 75014 Paris, France
- the Institut Cochin, Université Paris Descartes, Cochin Hospital, 75015 Paris, France
- the CNRS UMR8104, 75014 Paris, France
| | | | - Olivier Hermine
- the CNRS UMR8147 and
- Hematology Department, Université Paris Descartes, Necker Hospital, 75015 Paris, France
| | - Nathalie Reuter
- the Computational Biology Unit, University of Bergen, N-5008 Bergen, Norway, and
| | - Noélie Davezac
- CNRS UMR5547, Université Toulouse III, 31400 Toulouse, France
| | - Véronique Witko-Sarsat
- From the INSERM U1016, 75014 Paris, France
- the Institut Cochin, Université Paris Descartes, Cochin Hospital, 75015 Paris, France
- the CNRS UMR8104, 75014 Paris, France
| |
Collapse
|
4
|
Jullien D, Bugler B, Dozier C, Cazales M, Ducommun B. Identification of N-terminally truncated stable nuclear isoforms of CDC25B that are specifically involved in G2/M checkpoint recovery. Cancer Res 2011; 71:1968-77. [PMID: 21363925 DOI: 10.1158/0008-5472.can-10-2453] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
CDC25B phosphatases must activate cyclin B-CDK1 complexes to restart the cell cycle after an arrest in G2 phase caused by DNA damage. However, little is known about the precise mechanisms involved in this process, which may exert considerable impact on cancer susceptibility and therapeutic responses. Here we report the discovery of novel N-terminally truncated CDC25B isoforms, referred to as ΔN-CDC25B, with an exclusively nuclear and nonredundant function in cell cycle re-initiation after DNA damage. ΔN-CDC25B isoforms are expressed from a distinct promoter not involved in expression of canonical full-length isoforms. Remarkably, in contrast to the high lability and spatial dynamism of the full-length isoforms, ΔN-CDC25B isoforms are highly stable and exclusively nuclear, strongly suggesting the existence of two pools of CDC25B phosphatases in the cell that have functionally distinct properties. Using isoform-specific siRNA, we found that depleting full-length isoforms, but not ΔN-CDC25B isoforms, delays entry into mitosis. Thus, in an unperturbed cell cycle, the full-length isoforms are exclusively responsible for activating cyclin B-CDK1. Strikingly, in the late response to DNA damage, we found a CHK1-dependent shift in accumulation of CDC25B isoforms toward the ΔN-CDC25B species. Under this physiological stress condition, the ΔN-CDC25B isoform was found to play a crucial, nonredundant function in restarting the cell cycle after DNA damage-induced G2 phase arrest. Our findings reveal the existence of a previously unrecognized CDC25B isoform that operates specifically in the nucleus to reinitiate G2/M transition after DNA damage.
Collapse
|
5
|
Kaláb P, Solc P, Motlík J. The role of RanGTP gradient in vertebrate oocyte maturation. Results Probl Cell Differ 2011; 53:235-67. [PMID: 21630149 DOI: 10.1007/978-3-642-19065-0_12] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The maturation of vertebrate oocyte into haploid gamete, the egg, consists of two specialized asymmetric cell divisions with no intervening S-phase. Ran GTPase has an essential role in relaying the active role of chromosomes in their own segregation by the meiotic process. In addition to its conserved role as a key regulator of macromolecular transport between nucleus and cytoplasm, Ran has important functions during cell division, including in mitotic spindle assembly and in the assembly of nuclear envelope at the exit from mitosis. The cellular functions of Ran are mediated by RanGTP interactions with nuclear transport receptors (NTRs) related to importin β and depend on the existence of chromosome-centered RanGTP gradient. Live imaging with FRET biosensors indeed revealed the existence of RanGTP gradient throughout mouse oocyte maturation. NTR-dependent transport of cell cycle regulators including cyclin B1, Wee2, and Cdc25B between the oocyte cytoplasm and germinal vesicle (GV) is required for normal resumption of meiosis. After GVBD in mouse oocytes, RanGTP gradient is required for timely meiosis I (MI) spindle assembly and provides long-range signal directing egg cortex differentiation. However, RanGTP gradient is not required for MI spindle migration and may be dispensable for MI spindle function in chromosome segregation. In contrast, MII spindle assembly and function in maturing mouse and Xenopus laevis eggs depend on RanGTP gradient, similar to X. laevis MII-derived egg extracts.
Collapse
Affiliation(s)
- Petr Kaláb
- Laboratory of Cellular and Molecular Biology, National Cancer Institute, NIH, Bethesda, MD 20892-4256, USA.
| | | | | |
Collapse
|
6
|
Uchida S, Yoshioka K, Kizu R, Nakagama H, Matsunaga T, Ishizaka Y, Poon RY, Yamashita K. Stress-Activated Mitogen-Activated Protein Kinases c-Jun NH2-Terminal Kinase and p38 Target Cdc25B for Degradation. Cancer Res 2009; 69:6438-44. [DOI: 10.1158/0008-5472.can-09-0869] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
7
|
Lobjois V, Jullien D, Bouché JP, Ducommun B. The polo-like kinase 1 regulates CDC25B-dependent mitosis entry. BIOCHIMICA ET BIOPHYSICA ACTA 2009; 1793:462-8. [PMID: 19185590 DOI: 10.1016/j.bbamcr.2008.12.015] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2008] [Revised: 12/13/2008] [Accepted: 12/17/2008] [Indexed: 12/19/2022]
Abstract
Activation of cyclin-dependent kinase complexes (CDK) at key cell cycle transitions is dependent on their dephosphorylation by CDC25 dual-specificity phosphatases (CDC25A, B and C in human). The CDC25B phosphatase plays an essential role in controlling the activity of CDK1-cyclin B complexes at the entry into mitosis and together with polo-like kinase 1 (PLK1) in regulating the resumption of cell cycle progression after DNA damage-dependent checkpoint arrest in G2. In this study, we analysed the regulation of CDC25B-dependent mitosis entry by PLK1. We demonstrate that PLK1 activity is essential for the relocation of CDC25B from the cytoplasm to the nucleus. By gain and loss of function analyses, we show that PLK1 stimulates CDC25B-induced mitotic entry in both normal conditions and after DNA-damage induced G2/M arrest. Our results support a model in which the relocalisation of CDC25B to the nucleus at the G2-M transition by PLK1 regulates its mitotic inducing activity.
Collapse
Affiliation(s)
- Valerie Lobjois
- Université de Toulouse, LBCMCP, 118 Route de Narbonne, CNRS, LBCMCP-UMR5088, F-31062 Toulouse, France
| | | | | | | |
Collapse
|
8
|
Solc P, Saskova A, Baran V, Kubelka M, Schultz RM, Motlik J. CDC25A phosphatase controls meiosis I progression in mouse oocytes. Dev Biol 2008; 317:260-9. [PMID: 18367163 DOI: 10.1016/j.ydbio.2008.02.028] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2007] [Revised: 02/11/2008] [Accepted: 02/13/2008] [Indexed: 11/26/2022]
Abstract
CDK1 is a pivotal regulator of resumption of meiosis and meiotic maturation of oocytes. CDC25A/B/C are dual-specificity phosphatases and activate cyclin-dependent kinases (CDKs). Although CDC25C is not essential for either mitotic or meiotic cell cycle regulation, CDC25B is essential for CDK1 activation during resumption of meiosis. Cdc25a -/- mice are embryonic lethal and therefore a role for CDC25A in meiosis is unknown. We report that activation of CDK1 results in a maturation-associated decrease in the amount of CDC25A protein, but not Cdc25a mRNA, such that little CDC25A is present by metaphase I. In addition, expression of exogenous CDC25A overcomes cAMP-mediated maintenance of meiotic arrest. Microinjection of Gfp-Cdc25a and Gpf-Cdc25b mRNAs constructs reveals that CDC25A is exclusively localized to the nucleus prior to nuclear envelope breakdown (NEBD). In contrast, CDC25B localizes to cytoplasm in GV-intact oocytes and translocates to the nucleus shortly before NEBD. Over-expressing GFP-CDC25A, which compensates for the normal maturation-associated decrease in CDC25A, blocks meiotic maturation at MI. This MI block is characterized by defects in chromosome congression and spindle formation and a transient reduction in both CDK1 and MAPK activities. Lastly, RNAi-mediated reduction of CDC25A results in fewer oocytes resuming meiosis and reaching MII. These data demonstrate that CDC25A behaves differently during female meiosis than during mitosis, and moreover, that CDC25A has a function in resumption of meiosis, MI spindle formation and the MI-MII transition. Thus, both CDC25A and CDC25B are critical for meiotic maturation of oocytes.
Collapse
Affiliation(s)
- Petr Solc
- Institute of Animal Physiology and Genetics, Academy of Sciences of the Czech Republic, Rumburska 89, CZ-27721, Czech Republic.
| | | | | | | | | | | |
Collapse
|
9
|
Tsuchiya A, Tashiro E, Yoshida M, Imoto M. Involvement of protein phosphatase 2A nuclear accumulation and subsequent inactivation of activator protein-1 in leptomycin B-inhibited cyclin D1 expression. Oncogene 2006; 26:1522-32. [PMID: 16964287 DOI: 10.1038/sj.onc.1209962] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Leptomycin B (LMB) is a Streptomyces metabolite that causes the specific inhibition of the nuclear export of proteins containing a nuclear export signal (NES). LMB was reported to inhibit cell cycle progression in fission yeast and mammalian cells, however, the mechanism underlying LMB-induced cell cycle arrest is still obscure. In this study, we found that in serum-starved NIH3T3 cells, LMB inhibited serum-induced cyclin D1 expression at the level of transcription. However, this inhibition was reversed by inhibitors of protein phosphatase 2A (PP2A). Furthermore, we found that PP2A accumulated in the nucleus upon treatment with LMB. The finding prompted us to identify the functional NES in PP2A catalytic subunit alpha. These results indicated that LMB inhibited the chromosomal region maintenance 1 (CRM1)-dependent nuclear export of PP2A, resulting in sustained dephosphorylation in the nucleus. Although phosphorylation of c-Jun at Ser-63 is required for activator protein 1 (AP-1)-dependent expression of cyclin D1, it decreased in LMB-treated cells compared to untreated cells. Moreover, the inhibitors of PP2A restored the levels of c-Jun phosphorylated at Ser-63. We propose that inhibition of cyclin D1 expression by LMB is mediated by the LMB-induced nuclear accumulation of PP2A, leading to sustained dephosphorylation of c-Jun at Ser-63, which leads to inactivation of the transcription of the AP-1-responsive cyclin D1 gene.
Collapse
Affiliation(s)
- A Tsuchiya
- Department of Biosciences and Informatics, Faculty of Science and Technology, Keio University, Yokohama, Japan
| | | | | | | |
Collapse
|
10
|
Uchida S, Kubo A, Kizu R, Nakagama H, Matsunaga T, Ishizaka Y, Yamashita K. Amino acids C-terminal to the 14-3-3 binding motif in CDC25B affect the efficiency of 14-3-3 binding. J Biochem 2006; 139:761-9. [PMID: 16672277 DOI: 10.1093/jb/mvj079] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The phospho-site adapter protein 14-3-3 binds to target proteins at amino acid sequences matching the consensus motif Arg-X-X-Ser/Thr-X-Pro, where the serine or threonine residue is phosphorylated and X is any amino acid. The dual-specificity phosphatase CDC25B, which is involved in cell cycle regulation, contains five 14-3-3 binding motifs, but 14-3-3 preferentially binds to the motif at Ser309 in CDC25B1 (or Ser323 in CDC25B3). In the present study, we demonstrate that amino acid residues C-terminal to the 14-3-3 binding motif strongly affect the efficiency of 14-3-3 binding. Alanine substitutions at residues downstream of the Ser309 motif dramatically reduced 14-3-3 binding, although phosphorylation of Ser309 was unaffected. We also observed that binding of endogenous 14-3-3 to mutant CDC25B occurred less efficiently than to the wild type. Mutants to which 14-3-3 cannot bind efficiently tend to be located in the nucleus, although not as specifically as the alanine substitution mutant of Ser309. These results indicate that amino acid sequences C-terminal to the consensus binding site have an important role in the efficient binding of 14-3-3 to at least CDC25B, which may partly explain why some consensus sequences are inactive as 14-3-3 binding sites.
Collapse
Affiliation(s)
- Sanae Uchida
- Division of Life Science, Graduate School of Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192
| | | | | | | | | | | | | |
Collapse
|
11
|
Boutros R, Dozier C, Ducommun B. The when and wheres of CDC25 phosphatases. Curr Opin Cell Biol 2006; 18:185-91. [PMID: 16488126 DOI: 10.1016/j.ceb.2006.02.003] [Citation(s) in RCA: 294] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2005] [Accepted: 02/06/2006] [Indexed: 02/08/2023]
Abstract
The CDC25 phosphatases are key regulators of normal cell division and the cell's response to DNA damage. Earlier studies suggested non-overlapping roles for each isoform during a specific cell cycle phase. However, recent data suggest that multiple CDC25 isoforms cooperate to regulate each cell cycle transition. For instance, although CDC25A was initially thought to exclusively regulate the G(1)-S transition, recent data demonstrate a significant role for CDC25A in the G(2)-M transition. Further evidence demonstrates that in addition to the ATM/ATR-CHK pathway, a p38-MAPKAP pathway is also involved in controlling CDC25 activity during G(2)/M checkpoint activation. Together with the fact that CDC25 overexpression is reported in many cancers, these data highlight the significance of developing specific CDC25 inhibitors for cancer therapy.
Collapse
Affiliation(s)
- Rose Boutros
- LBCMCP-CNRS UMR5088, IFR109, Université Paul Sabatier, 118 route de Narbonne, 31062 Toulouse, France
| | | | | |
Collapse
|
12
|
Lindqvist A, Källström H, Karlsson Rosenthal C. Characterisation of Cdc25B localisation and nuclear export during the cell cycle and in response to stress. J Cell Sci 2005; 117:4979-90. [PMID: 15456846 DOI: 10.1242/jcs.01395] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Cdc25 phosphatases are essential regulators of the cell cycle. In mammalian cells, the Cdc25B isoform activates cyclin A- and cyclin B1-containing complexes and is necessary for entry into mitosis. In this report, we characterise the subcellular localisation of Cdc25B by immunofluorescence in combination with RNA interference to identify specific antibody staining. We find that endogenous Cdc25B is mainly nuclear, but a fraction resides in the cytoplasm during the G2 phase of the cell cycle. Cdc25B starts to appear in S-phase cells and accumulates until prophase, after which the protein disappears. We characterise a nuclear export sequence in the N-terminus of Cdc25B (amino acids 54-67) that, when mutated, greatly reduces the ability of Cdc25B to shuttle in a fluorescence loss in photobleaching assay. Mutation of the nuclear export sequence makes Cdc25B less efficient in inducing mitosis, suggesting that an important mitotic function of Cdc25B occurs in the cytoplasm. Furthermore, we find that when cells are exposed to cycloheximide or ultraviolet irradiation, Cdc25B partially translocates to the cytoplasm. The dependence of this translocation event on a functional nuclear export sequence, an intact serine 323 residue (a 14-3-3 binding site) and p38 mitogen-activated protein kinase activity indicates that the p38 pathway regulates Cdc25B localisation in different situations of cellular stress.
Collapse
Affiliation(s)
- Arne Lindqvist
- Department of Cell and Molecular Biology, Karolinska Institutet, S-171 77 Stockholm, Sweden
| | | | | |
Collapse
|