1
|
You D, Tong K, Li Y, Zhang T, Wu Y, Wang L, Chen G, Zhang X. PinX1 plays multifaceted roles in human cancers: a review and perspectives. Mol Biol Rep 2024; 51:1163. [PMID: 39550726 PMCID: PMC11570563 DOI: 10.1007/s11033-024-10082-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 10/30/2024] [Indexed: 11/18/2024]
Abstract
BACKGROUND Pin2/TRF1 interacting protein X1 (PinX1), a telomerase inhibitor, is located at human chromosome 8p23. This region is important for telomere length maintenance and chromosome stability, both of which are essential for regulating human ageing and associated diseases. METHODS AND RESULTS We investigated the research progress of PinX1 in human cancers. In cancers, the expression levels of PinX1 mRNA and protein vary according to cancer cell types, and PinX1 plays a critical role in the regulation of cancer development and progression. Additionally, a review of the literature indicates that PinX1 is involved in mitosis and affects the sensitivity of cancer cells to radiation-induced DNA damage. Therefore, PinX1 has therapeutic potential for cancer, and understanding the function of PinX1 in the regulation of cancers is crucial for improving treatment. In this review, we discuss the expression level of PinX1 in a variety of cancers and how it affects the implicated pathways. Additionally, we outline the function of PinX1 in cancer cells and provide a theoretical basis for PinX1-related cancer therapy. CONCLUSIONS PinX1 has promising prospects in future cancer therapeutics. This review may provide theoretical support for researchers in this field.
Collapse
Affiliation(s)
- Dian You
- Huzhou Key Laboratory of Precise Prevention and Control of Major Chronic Diseases, School of Medicine, Huzhou University, 759 East 2nd Rd., Huzhou, 313000, China
| | - Kaiwen Tong
- Huzhou Key Laboratory of Precise Prevention and Control of Major Chronic Diseases, School of Medicine, Huzhou University, 759 East 2nd Rd., Huzhou, 313000, China
| | - Yuan Li
- Huzhou Key Laboratory of Precise Prevention and Control of Major Chronic Diseases, School of Medicine, Huzhou University, 759 East 2nd Rd., Huzhou, 313000, China
| | - Ting Zhang
- Huzhou Key Laboratory of Precise Prevention and Control of Major Chronic Diseases, School of Medicine, Huzhou University, 759 East 2nd Rd., Huzhou, 313000, China
| | | | - Ling Wang
- Botuvac Biotechnology Co., Ltd, Beijing, China
| | - Guangming Chen
- Huzhou Key Laboratory of Precise Prevention and Control of Major Chronic Diseases, School of Medicine, Huzhou University, 759 East 2nd Rd., Huzhou, 313000, China
| | - Xiaoying Zhang
- Huzhou Key Laboratory of Precise Prevention and Control of Major Chronic Diseases, School of Medicine, Huzhou University, 759 East 2nd Rd., Huzhou, 313000, China.
| |
Collapse
|
2
|
Liu M, Zhang Y, Jian Y, Gu L, Zhang D, Zhou H, Wang Y, Xu ZX. The regulations of telomerase reverse transcriptase (TERT) in cancer. Cell Death Dis 2024; 15:90. [PMID: 38278800 PMCID: PMC10817947 DOI: 10.1038/s41419-024-06454-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 01/04/2024] [Accepted: 01/08/2024] [Indexed: 01/28/2024]
Abstract
Abnormal activation of telomerase occurs in most cancer types, which facilitates escaping from cell senescence. As the key component of telomerase, telomerase reverse transcriptase (TERT) is regulated by various regulation pathways. TERT gene changing in its promoter and phosphorylation respectively leads to TERT ectopic expression at the transcription and protein levels. The co-interacting factors play an important role in the regulation of TERT in different cancer types. In this review, we focus on the regulators of TERT and these downstream functions in cancer regulation. Determining the specific regulatory mechanism will help to facilitate the development of a cancer treatment strategy that targets telomerase and cancer cell senescence. As the most important catalytic subunit component of telomerase, TERT is rapidly regulated by transcriptional factors and PTM-related activation. These changes directly influence TERT-related telomere maintenance by regulating telomerase activity in telomerase-positive cancer cells, telomerase assembly with telomere-binding proteins, and recruiting telomerase to the telomere. Besides, there are also non-canonical functions that are influenced by TERT, including the basic biological functions of cancer cells, such as proliferation, apoptosis, cell cycle regulation, initiating cell formation, EMT, and cell invasion. Other downstream effects are the results of the influence of transcriptional factors by TERT. Currently, some small molecular inhibitors of TERT and TERT vaccine are under research as a clinical therapeutic target. Purposeful work is in progress.
Collapse
Affiliation(s)
- Mingdi Liu
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, 130021, Jilin, China
| | - Yuning Zhang
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, 130021, Jilin, China
| | - Yongping Jian
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, 130021, Jilin, China
| | - Liting Gu
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, 130021, Jilin, China
| | - Dan Zhang
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, 130021, Jilin, China
| | - Honglan Zhou
- Department of Urology, The First Hospital of Jilin University, Changchun, 130021, Jilin, China.
| | - Yishu Wang
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, 130021, Jilin, China.
| | - Zhi-Xiang Xu
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, 130021, Jilin, China.
- Department of Urology, The First Hospital of Jilin University, Changchun, 130021, Jilin, China.
| |
Collapse
|
3
|
Shepelev N, Dontsova O, Rubtsova M. Post-Transcriptional and Post-Translational Modifications in Telomerase Biogenesis and Recruitment to Telomeres. Int J Mol Sci 2023; 24:5027. [PMID: 36902458 PMCID: PMC10003056 DOI: 10.3390/ijms24055027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/02/2023] [Accepted: 03/03/2023] [Indexed: 03/08/2023] Open
Abstract
Telomere length is associated with the proliferative potential of cells. Telomerase is an enzyme that elongates telomeres throughout the entire lifespan of an organism in stem cells, germ cells, and cells of constantly renewed tissues. It is activated during cellular division, including regeneration and immune responses. The biogenesis of telomerase components and their assembly and functional localization to the telomere is a complex system regulated at multiple levels, where each step must be tuned to the cellular requirements. Any defect in the function or localization of the components of the telomerase biogenesis and functional system will affect the maintenance of telomere length, which is critical to the processes of regeneration, immune response, embryonic development, and cancer progression. An understanding of the regulatory mechanisms of telomerase biogenesis and activity is necessary for the development of approaches toward manipulating telomerase to influence these processes. The present review focuses on the molecular mechanisms involved in the major steps of telomerase regulation and the role of post-transcriptional and post-translational modifications in telomerase biogenesis and function in yeast and vertebrates.
Collapse
Affiliation(s)
- Nikita Shepelev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117437, Russia
- Chemistry Department and Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119234, Russia
- Skolkovo Institute of Science and Technology, Moscow 121205, Russia
| | - Olga Dontsova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117437, Russia
- Chemistry Department and Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119234, Russia
- Skolkovo Institute of Science and Technology, Moscow 121205, Russia
| | - Maria Rubtsova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117437, Russia
- Chemistry Department and Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119234, Russia
| |
Collapse
|
4
|
Huang CJ, Lyu X, Kang J. The molecular characteristics and functional roles of microspherule protein 1 (MCRS1) in gene expression, cell proliferation, and organismic development. Cell Cycle 2023; 22:619-632. [PMID: 36384428 PMCID: PMC9980701 DOI: 10.1080/15384101.2022.2145816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 09/21/2022] [Accepted: 11/04/2022] [Indexed: 11/18/2022] Open
Abstract
Accurate spatial and temporal regulation of cell cycle progression is essential for cell proliferation and organismic development. This review demonstrates the role of microspherule protein 58kD, commonly known as MCRS1, as a key cell cycle regulator of higher eukaryotic organisms. We discuss the isoforms and functional domains of MCRS1 as well as their subcellular localization at specific stages of the cell cycle. These molecular characteristics reveal MCRS1's dynamic regulatory role in gene expression, genome stability, cell proliferation, and organismic development. Furthermore, we discuss the molecular details of its seemingly opposite, tumor-suppressive or tumor-promoting, role in different types of cancer.
Collapse
Affiliation(s)
| | - Xiaoai Lyu
- Arts and Science, New York University Shanghai, Shanghai, China
- Graduate School of Arts and Science, New York University, New York, USA
| | - Jungseog Kang
- Arts and Science, New York University Shanghai, Shanghai, China
- NYU-ECNU Center for Computational Chemistry, New York University Shanghai, Shanghai, China
| |
Collapse
|
5
|
Expression of Rta in B Lymphocytes during Epstein-Barr Virus Latency. J Mol Biol 2020; 432:5227-5243. [PMID: 32710985 DOI: 10.1016/j.jmb.2020.07.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 06/29/2020] [Accepted: 07/20/2020] [Indexed: 11/21/2022]
Abstract
Rta of Epstein-Barr virus (EBV) is thought to be expressed only during the lytic cycle to promote the transcription of lytic genes. However, we found that Rta is expressed in EBV-infected B cells during viral latency, at levels detectable by immunoblot analysis. Latent Rta expression cannot be attributed to spontaneous lytic activation, as we observed that more than 90% of Akata, P3HR1, and 721 cells latently infected by EBV express Rta. We further found that Rta is sequestered in the nucleolus during EBV latency through its interaction with MCRS2, a nucleolar protein. When Rta is sequestered in the nucleolus, it no longer activates RNA polymerase II-driven transcription, thus explaining why Rta expression during latency does not transactivate EBV lytic genes. Additional experiments showed that Rta can bind to 18S rRNA and become incorporated into ribosomes, and a transient transfection experiment showed that Rta promotes translation from an mRNA reporter. These findings reveal that Rta has novel functions beyond transcriptional activation during EBV latency and may have interesting implications for the concept of EBV latency.
Collapse
|
6
|
Telomerase Biogenesis and Activities from the Perspective of Its Direct Interacting Partners. Cancers (Basel) 2020; 12:cancers12061679. [PMID: 32599885 PMCID: PMC7352425 DOI: 10.3390/cancers12061679] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 06/20/2020] [Accepted: 06/22/2020] [Indexed: 12/15/2022] Open
Abstract
Telomerase reverse transcriptase (TERT)—the catalytic subunit of telomerase—is reactivated in up to 90% of all human cancers. TERT is observed in heterogenous populations of protein complexes, which are dynamically regulated in a cell type- and cell cycle-specific manner. Over the past two decades, in vitro protein–protein interaction detection methods have discovered a number of endogenous TERT binding partners in human cells that are responsible for the biogenesis and functionalization of the telomerase holoenzyme, including the processes of TERT trafficking between subcellular compartments, assembly into telomerase, and catalytic action at telomeres. Additionally, TERT have been found to interact with protein species with no known telomeric functions, suggesting that these complexes may contribute to non-canonical activities of TERT. Here, we survey TERT direct binding partners and discuss their contributions to TERT biogenesis and functions. The goal is to review the comprehensive spectrum of TERT pro-malignant activities, both telomeric and non-telomeric, which may explain the prevalence of its upregulation in cancer.
Collapse
|
7
|
Ho ST, Jin R, Cheung DHC, Huang JJ, Shaw PC. The PinX1/NPM interaction associates with hTERT in early-S phase and facilitates telomerase activation. Cell Biosci 2019; 9:47. [PMID: 31210926 PMCID: PMC6567508 DOI: 10.1186/s13578-019-0306-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 05/23/2019] [Indexed: 01/26/2023] Open
Abstract
Background Telomere maintenance is an important factor in tumorigenesis. PinX1 is a potent telomerase regulator which also involves in telomerase loading to telomeres. Nucleophosmin (NPM) can partially attenuate PinX1 inhibition of telomerase activity and NPM loading to hTERT requires PinX1. However, the role of the PinX1/NPM interaction in telomerase activity is not fully understood. Method The long-term effects of PinX1 and NPM down-regulation on telomere length were investigated by TRF assay. The localization of the PinX1/NPM association and the NPM/PinX1/hTERT complex formation were examined by immunofluorescence studies. Results Concurrent long-term down-regulation of PinX1 and NPM led to a substantial decrease in telomere length. The interaction with PinX1 was crucial in NPM localization in the nucleolus during the S phase. PinX1 and NPM associated throughout S phase and the NPM/PinX1/hTERT complex formation peaked during the early-S phase. The PinX1/NPM interaction was shown to localize away from Cajal Bodies at the start of S phase. Conclusion PinX1/NPM interaction is important in telomerase regulation during catalysis. NPM is recruited to hTERT by PinX1 and is required in the proposed telomerase modulating unit to activate telomerase when telomere extension occurs during S phase. Electronic supplementary material The online version of this article (10.1186/s13578-019-0306-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sai-Tim Ho
- 1Centre for Protein Science and Crystallography, School of Life Sciences, The Chinese University of Hong Kong, Shatin, N.T, Hong Kong, China
| | - Rui Jin
- 2Laboratory of Tumor and Molecular Biology, Beijing Institute of Biotechnology, Beijing, China
| | - Derek Hang-Cheong Cheung
- 1Centre for Protein Science and Crystallography, School of Life Sciences, The Chinese University of Hong Kong, Shatin, N.T, Hong Kong, China
| | - Jun-Jian Huang
- 2Laboratory of Tumor and Molecular Biology, Beijing Institute of Biotechnology, Beijing, China
| | - Pang-Chui Shaw
- 1Centre for Protein Science and Crystallography, School of Life Sciences, The Chinese University of Hong Kong, Shatin, N.T, Hong Kong, China
| |
Collapse
|
8
|
Tian XP, Jin XH, Li M, Huang WJ, Xie D, Zhang JX. The depletion of PinX1 involved in the tumorigenesis of non-small cell lung cancer promotes cell proliferation via p15/cyclin D1 pathway. Mol Cancer 2017; 16:74. [PMID: 28372542 PMCID: PMC5379637 DOI: 10.1186/s12943-017-0637-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 03/13/2017] [Indexed: 11/10/2022] Open
Abstract
Background The telomerase/telomere interacting protein PinX1 has been suggested as a tumor suppressor. However, the clinical and biological significance of PinX1 in human non-small cell lung cancer (NSCLC) is unclear. Methods PinX1 gene/expression pattern and its association with NSCLC patient survival were analyzed in cBioportal Web resource and two cohorts of NSCLC samples. A series of in vivo and in vitro assays were performed to elucidate the function of PinX1 on NSCLC cells proliferation and underlying mechanisms. Results More frequency of gene PinX1 homozygous deletion and heterozygote deficiency was first retrieved from cBioportal Web resource. Low expression of PinX1 correlated with smoking condition, histological type, T stage, N stage, M stage and TNM stage, and was an independent predictor for overall survival in a learning cohort (n = 93) and a validation cohort (n = 51) of NSCLC patients. Furthermore, knockdown of PinX1 dramatically accelerated NSCLC cell proliferation and G1/S transition, whereas ectopic overexpression of PinX1 substantially inhibited cell viability and cell cycle transition in vitro and in vivo. p15/cyclin D1 pathway and BMP5 might contribute to PinX1-associated cell proliferation and cell cycle transition. Conclusion The cost-effective expression of PinX1 could constitute a novel molecular predictor/marker for NSCLC management. Electronic supplementary material The online version of this article (doi:10.1186/s12943-017-0637-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xiao-Peng Tian
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China.,State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-Sen University, Guangzhou, China
| | - Xiao-Han Jin
- State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-Sen University, Guangzhou, China
| | - Mei Li
- Department of Pathology, Cancer Center, Sun Yat-Sen University, Guangzhou, China
| | - Wei-Juan Huang
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Dan Xie
- State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-Sen University, Guangzhou, China
| | - Jia-Xing Zhang
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China. .,Department of Oncology, The first Affiliated Hospital, Sun Yat-Sen University, No.58, Zhongshan Second Road, 510080, Guangzhou, China.
| |
Collapse
|
9
|
Yang CP, Kuo YL, Lee YC, Lee KH, Chiang CW, Wang JM, Hsu CC, Chang WC, Lin DY. RINT-1 interacts with MSP58 within nucleoli and plays a role in ribosomal gene transcription. Biochem Biophys Res Commun 2016; 478:873-80. [PMID: 27530925 DOI: 10.1016/j.bbrc.2016.08.044] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 08/07/2016] [Indexed: 11/27/2022]
Abstract
The nucleolus is the cellular site of ribosomal (r)DNA transcription and ribosome biogenesis. The 58-kDa microspherule protein (MSP58) is a nucleolar protein involved in rDNA transcription and cell proliferation. However, regulation of MSP58-mediated rDNA transcription remains unknown. Using a yeast two-hybrid system with MSP58 as bait, we isolated complementary (c)DNA encoding Rad50-interacting protein 1 (RINT-1), as a MSP58-binding protein. RINT-1 was implicated in the cell cycle checkpoint, membrane trafficking, Golgi apparatus and centrosome dynamic integrity, and telomere length control. Both in vitro and in vivo interaction assays showed that MSP58 directly interacts with RINT-1. Interestingly, microscopic studies revealed the co-localization of MSP58, RINT-1, and the upstream binding factor (UBF), a rRNA transcription factor, in the nucleolus. We showed that ectopic expression of MSP58 or RINT-1 resulted in decreased rRNA expression and rDNA promoter activity, whereas knockdown of MSP58 or RINT-1 by siRNA exerted the opposite effect. Coexpression of MSP58 and RINT-1 robustly decreased rRNA synthesis compared to overexpression of either protein alone, whereas depletion of RINT-1 from MSP58-transfected cells enhanced rRNA synthesis. We also found that MSP58, RINT-1, and the UBF were associated with the rDNA promoter using a chromatin immunoprecipitation assay. Because aberrant ribosome biogenesis contributes to neoplastic transformation, our results revealed a novel protein complex involved in the regulation of rRNA gene expression, suggesting a role for MSP58 and RINT-1 in cancer development.
Collapse
Affiliation(s)
- Chuan-Pin Yang
- Institute of Bioinformatics and Biosignal Transduction, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, 70101, Taiwan, ROC
| | - Yu-Liang Kuo
- Department of Medical Imaging and Radiological Sciences, Chung Shan Medical University, Taichung, 40201, Taiwan, ROC; Department of Medical Imaging, Chung Shan Medical University Hospital, Taichung, 40201, Taiwan, ROC
| | - Yi-Chao Lee
- Graduate Institute of Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, 11031, Taiwan, ROC
| | - Kuen-Haur Lee
- Institute for Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, 11031, Taiwan, ROC
| | - Chi-Wu Chiang
- Infectious Diseases and Signaling Research Center, National Cheng Kung University, Tainan, 70101, Taiwan, ROC; Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan, ROC
| | - Ju-Ming Wang
- Institute of Bioinformatics and Biosignal Transduction, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, 70101, Taiwan, ROC; Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, 70101, Taiwan, ROC; Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan, ROC; Infectious Diseases and Signaling Research Center, National Cheng Kung University, Tainan, 70101, Taiwan, ROC
| | - Che-Chia Hsu
- Institute of Bioinformatics and Biosignal Transduction, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, 70101, Taiwan, ROC
| | - Wen-Chang Chang
- Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, 70101, Taiwan, ROC; Infectious Diseases and Signaling Research Center, National Cheng Kung University, Tainan, 70101, Taiwan, ROC; Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan, ROC; Center for Neurotrauma and Neuroregeneration, Taipei Medical University, Taipei, 11031, Taiwan, ROC.
| | - Ding-Yen Lin
- Institute of Bioinformatics and Biosignal Transduction, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, 70101, Taiwan, ROC; Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, 70101, Taiwan, ROC; Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan, ROC; Infectious Diseases and Signaling Research Center, National Cheng Kung University, Tainan, 70101, Taiwan, ROC; Institute for Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, 11031, Taiwan, ROC.
| |
Collapse
|
10
|
Lee SH, Lee MS, Choi TI, Hong H, Seo JY, Kim CH, Kim J. MCRS1 associates with cytoplasmic dynein and mediates pericentrosomal material recruitment. Sci Rep 2016; 6:27284. [PMID: 27263857 PMCID: PMC4893664 DOI: 10.1038/srep27284] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 05/13/2016] [Indexed: 12/20/2022] Open
Abstract
MCRS1 is involved in multiple cellular activities, including mitotic spindle assembly, mTOR signaling and tumorigenesis. Although MCRS1 has been reported to bind to the dynein regulator NDE1, a functional interaction between MCRS1 and cytoplasmic dynein remains unaddressed. Here, we demonstrate that MCRS1 is required for dynein-dependent cargo transport to the centrosome and also plays a role in primary cilium formation. MCRS1 localized to centriolar satellites. Knockdown of MCRS1 resulted in a dispersion of centriolar satellites whose establishment depends on cytoplasmic dynein. By contrast, NDE1 was not necessary for the proper distribution of centriolar satellites, indicating a functional distinction between MCRS1 and NDE1. Unlike NDE1, MCRS1 played a positive role for the initiation of ciliogenesis, possibly through its interaction with TTBK2. Zebrafish with homozygous mcrs1 mutants exhibited a reduction in the size of the brain and the eye due to excessive apoptosis. In addition, mcrs1 mutants failed to develop distinct layers in the retina, and showed a defect in melatonin-induced aggregation of melanosomes in melanophores. These phenotypes are reminiscent of zebrafish dynein mutants. Reduced ciliogenesis was also apparent in the olfactory placode of mcrs1 mutants. Collectively, our findings identify MCRS1 as a dynein-interacting protein critical for centriolar satellite formation and ciliogenesis.
Collapse
Affiliation(s)
- Si-Hyung Lee
- Graduate School of Medical Science and Engineering, KAIST, Daejeon 34141, Korea
| | - Mi-Sun Lee
- Department of Biology, Chungnam National University, Daejeon 34134, Korea
| | - Tae-Ik Choi
- Department of Biology, Chungnam National University, Daejeon 34134, Korea
| | - Hyowon Hong
- Graduate School of Medical Science and Engineering, KAIST, Daejeon 34141, Korea
| | - Jun-Young Seo
- Severance Biomedical Science Institute, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Cheol-Hee Kim
- Department of Biology, Chungnam National University, Daejeon 34134, Korea
| | - Joon Kim
- Graduate School of Medical Science and Engineering, KAIST, Daejeon 34141, Korea
| |
Collapse
|
11
|
Li C, Chen M, Zhao P, Ayana DA, Wang L, Jiang Y. Expression of MCRS1 and MCRS2 and their correlation with serum carcinoembryonic antigen in colorectal cancer. Exp Ther Med 2016; 12:589-596. [PMID: 27446248 PMCID: PMC4950148 DOI: 10.3892/etm.2016.3424] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 03/03/2016] [Indexed: 12/16/2022] Open
Abstract
Cancer-associated genes serve a crucial role in carcinogenesis. The present study aimed to investigate the mRNA expression levels of microspherule protein 1 (MCRS1) and MCRS2 in colorectal cancer (CRC) and their association with clinical variables. The mRNA expression levels of MCRS1 and MCRS2 were assessed by semi-quantitative reverse transcription polymerase chain reaction in the tumor and corresponding non-tumor tissues of 54 newly-diagnosed CRC patients, as well as in the normal colonic mucosa tissue of 19 age/gender-matched healthy controls. Immunofluorescence was also employed to identify the expression of MCRS1 in CRC tissues, while the concentration of serum carcinoembryonic antigen (CEA) was determined by an enzyme-linked immunoassay. The results identified a negative correlation between MCRS1 and MCRS2 expression levels (r=-0.3018, P=0.0266). MCRS1 mRNA expression was significantly increased and MCRS2 mRNA expression was decreased in CRC tissues compared with the levels in the corresponding normal tissues (both P<0.001). An increase in MCRS1 expression and a decrease in MCRS2 expression was detected in advanced stage when compared with early stage CRC patients. Immunofluorescence analysis revealed increased expression of MCRS1 in CRC patients. Furthermore, the expression levels of MCRS1 displayed positive correlation, whilst those of MCRS2 displayed negative correlation, with the serum CEA level in patients with CRC. The results suggest that increased MCRS1 and decreased MCRS2 expression appeared to be involved in the pathogenesis of CRC. The present study provides evidence suggesting that MCRS1 and MCRS2 may identify CRC patients at a risk of disease relapse, and thus, may be potential tools for monitoring disease activity and act as novel diagnostic markers in the treatment of CRC.
Collapse
Affiliation(s)
- Chenguang Li
- Department of Colorectal and Anal Surgery, The First Hospital, Jilin University, Changchun, Jilin 130032, P.R. China; Key Laboratory of Zoonosis Research, Ministry of Education, The First Hospital, Jilin University, Changchun, Jilin 130032, P.R. China
| | - Mingxiao Chen
- Department of Colorectal and Anal Surgery, The First Hospital, Jilin University, Changchun, Jilin 130032, P.R. China
| | - Pingwei Zhao
- Department of Colorectal and Anal Surgery, The First Hospital, Jilin University, Changchun, Jilin 130032, P.R. China
| | - Desalegn Admassu Ayana
- Department of Medical Laboratory Sciences, Haramaya University, Dire Dawa 3000, Ethiopia
| | - Lei Wang
- Department of Colorectal and Anal Surgery, The First Hospital, Jilin University, Changchun, Jilin 130032, P.R. China
| | - Yanfang Jiang
- Key Laboratory of Zoonosis Research, Ministry of Education, The First Hospital, Jilin University, Changchun, Jilin 130032, P.R. China
| |
Collapse
|
12
|
Telomerase repeat amplification protocol (TRAP) activity upon recombinant expression and purification of human telomerase in a bacterial system. Protein Expr Purif 2016; 123:6-13. [PMID: 26965413 DOI: 10.1016/j.pep.2016.03.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Revised: 03/01/2016] [Accepted: 03/04/2016] [Indexed: 12/26/2022]
Abstract
Telomerase biogenesis is a highly regulated process that solves the DNA end-replication problem. Recombinant expression has so far been accomplished only within a eukaryotic background. Towards structural and functional analyses, we developed bacterial expression of human telomerase. Positive activity by the telomerase repeat amplification protocol (TRAP) was identified in cell extracts of Escherichia coli expressing a sequence-optimized hTERT gene, the full-length hTR RNA with a self-splicing hepatitis delta virus ribozyme, and the human heat shock complex of Hsp90, Hsp70, p60/Hop, Hsp40, and p23. The Hsp90 inhibitor geldanamycin did not affect post-assembly TRAP activity. By various purification methods, TRAP activity was also obtained upon expression of only hTERT and hTR. hTERT was confirmed by tandem mass spectrometry in a ∼120 kDa SDS-PAGE fragment from a TRAP-positive purification fraction. TRAP activity was also supported by hTR constructs lacking the box H/ACA small nucleolar RNA domain. End-point TRAP indicated expression levels within 3-fold of that from HeLa carcinoma cells, which is several orders of magnitude below detection by the direct assay. These results represent the first report of TRAP activity from a bacterium and provide a facile system for the investigation of assembly factors and anti-cancer therapeutics independently of a eukaryotic setting.
Collapse
|
13
|
Liu M, Zhou K, Huang Y, Cao Y. The candidate oncogene (MCRS1) promotes the growth of human lung cancer cells via the miR-155-Rb1 pathway. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2015; 34:121. [PMID: 26467212 PMCID: PMC4606992 DOI: 10.1186/s13046-015-0235-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2015] [Accepted: 10/05/2015] [Indexed: 12/23/2022]
Abstract
Background Microspherule protein 1 (MCRS1) is a candidate oncogene and participates in various cellular processes, including growth, migration, senescence and transformation. MCRS1 is overexpressed in non-small cell lung cancer (NSCLC) and promotes the growth of cancer cells. However, the mechanisms driving these processes are not fully understood. Methods Retrovirus-mediated RNA interference was employed to knockdown MCRS1 expression in cell lines. Cell proliferation assays and animal experiments were respectively performed to evaluate the growth of NSCLC cells in vitro and in vivo. Microarray analysis was carried out for mRNA profiling. Luciferase reporter assay and microRNA (miRNA) transfection were used to investigate the interaction between miRNA and gene. Results Stably knocking down MCRS1 expression inhibited the proliferation of NSCLC cells in vitro and in vivo. By comparing the mRNA expression profiles of NSCLC cells with or without MCRS1 silencing, we found that MCRS1 regulated expressions of various genes related to cell proliferation, including Rb1, TP53, cell cycle-related genes, MYC, E2F2, PCNA, and Ki67. However, MCRS1 did not directly bind to these differentially expressed genes. Here, we confirmed that Rb1, an important tumor suppression gene (TSG), is a direct target of miR-155 which is directly up-regulated by MCRS1. Furthermore, the level of Rb1 expression in NSCLC tissues was inversely correlated with those of miR-155 and MCRS1, and MCRS1 regulated expression of Rb1 via miR-155. Additionally, we found that the DNA copy number of the MCRS1 gene played a role in MCRS1 overexpression in NSCLCs. Conclusion MCRS1 overexpression induced NSCLC proliferation through the miR-155–Rb1 pathway and DNA copy-number amplification is one of the mechanisms underlying MCRS1 overexpression in NSCLC. Moreover, we put forward the hypothesis that there are regulatory relationships between oncogenes and TSGs apart from the functional synergy of both; the oncogene-miRNA-TSG networks are one of mechanisms among the regulatory relationships; the regulatory relationships and the networks might play active roles in the development and progression of cancer. Electronic supplementary material The online version of this article (doi:10.1186/s13046-015-0235-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Minxia Liu
- Laboratory of Molecular and Experimental Pathology, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China. .,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, China.
| | - Kecheng Zhou
- Laboratory of Molecular and Experimental Pathology, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China. .,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, China.
| | - Yunchao Huang
- Department of Thoracic and Cardiovascular Surgery, The Third Affiliated Hospital of Kunming Medical University (Yunnan Tumor Hospital), Kunming, China.
| | - Yi Cao
- Laboratory of Molecular and Experimental Pathology, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.
| |
Collapse
|
14
|
The 58-kda microspherule protein (MSP58) represses human telomerase reverse transcriptase (hTERT) gene expression and cell proliferation by interacting with telomerase transcriptional element-interacting factor (TEIF). BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1843:565-79. [PMID: 24361335 DOI: 10.1016/j.bbamcr.2013.12.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Revised: 11/13/2013] [Accepted: 12/04/2013] [Indexed: 11/21/2022]
Abstract
58-kDa microspherule protein (MSP58) plays an important role in a variety of cellular processes including transcriptional regulation, cell proliferation and oncogenic transformation. Currently, the mechanisms underlying the oncogenic effect of MSP58 are not fully understood. The human telomerase reverse transcriptase (hTERT) gene, which encodes an essential component for telomerase activity that is involved in cellular immortalization and transformation, is strictly regulated at the gene transcription level. Our previous study revealed a novel function of MSP58 in cellular senescence. Here we identify telomerase transcriptional element-interacting factor (TEIF) as a novel MSP58-interacting protein and determine the effect of MSP58 on hTERT transcription. This study thus provides evidence showing MSP58 to be a negative regulator of hTERT expression and telomerase activity. Luciferase reporter assays indicated that MSP58 could suppress the transcription ofhTERTpromoter. Additionally, stable overexpression of MSP58 protein in HT1080 and 293T cells decreased both endogenous hTERT expression and telomerase activity. Conversely, their upregulation was induced by MSP58 silencing. Chromatin immunoprecipitation assays showed that MSP58 binds to the hTERT proximal promoter. Furthermore, overexpression of MSP58 inhibited TEIF-mediated hTERT transactivation, telomerase activation, and cell proliferation promotion. The inhibitory effect of MSP58 occurred through inhibition of TEIF binding to DNA. Ultimately, the HT1080-implanted xenograft mouse model confirmed these cellular effects. Together, our findings provide new insights into both the biological function of MSP58 and the regulation of telomerase/hTERT expression.
Collapse
|
15
|
Lin W, Li XM, Zhang J, Huang Y, Wang J, Zhang J, Jiang XF, Fei Z. Increased expression of the 58-kD microspherule protein (MSP58) is correlated with poor prognosis in glioma patients. Med Oncol 2013; 30:677. [PMID: 23996240 DOI: 10.1007/s12032-013-0677-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Accepted: 07/21/2013] [Indexed: 10/26/2022]
Abstract
The pathological grading system for human gliomas is usually used to evaluate the prognosis of glioma patients. However, some glioma patients with similar grades have obvious discrepancies in survival. It is therefore necessary to identify some new certain tumor biomarkers that are more suitable for the prognostic assessment of gliomas than the grading system. The 58-kD microspherule protein (MSP58) is an evolutionarily conserved nuclear protein and plays an important role in the regulation of cell proliferation and malignant transformation. However, whether MSP58 can be used as a biomarker to evaluate the malignancy and the prognosis of glioma patients is unknown. In the present study, we performed immunohistochemical analysis to evaluate MSP58 protein expression in 158 specimens of human gliomas and 34 normal control brain tissues. Compared with the control tissues, MSP58 expression was not only significantly higher in the glioma tissues (P < 0.05), but also increased with the increasing pathological grade (P < 0.001). Furthermore, the Kaplan-Meier analysis showed that high expression of MSP58 could predict poor survival in glioma patients (P < 0.001). In the multivariate analysis, high expression of MSP58 was also an independent unfavorable prognostic factor for the overall survival in glioma patients (P < 0.001, hazard ratio, 8.177, 95% CI 2.571-26.008). In conclusion, the increased expression of MSP58 is correlated with a higher malignant grade and poor prognosis in glioma patients. MSP58 is valuable both as an indicator of the malignancy of gliomas and as a prognostic factor for the clinical outcome of glioma patients.
Collapse
Affiliation(s)
- Wei Lin
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Shi H, Li SJ, Zhang B, Liu HL, Chen CS. Expression of MSP58 in human colorectal cancer and its correlation with prognosis. Med Oncol 2012; 29:3136-42. [PMID: 22773039 PMCID: PMC3505539 DOI: 10.1007/s12032-012-0284-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2012] [Accepted: 06/12/2012] [Indexed: 12/21/2022]
Abstract
We had reported that MSP58 regulates colorectal cancer cell proliferation, development, and apoptosis, by the cyclin D1-cyclin-dependent kinase 4-p21 pathway. In this study, MSP58 protein expression was examined by immunohistochemistry in 499 specimens of CRC. The relationship between various clinicopathological features and overall patient survival rate was analyzed. The association of MSP58 expression with the 499 CRC patients’ survival rate was assessed by Kaplan–Meier and Cox regression. Using ROC curve to provide sensitivity and specificity of the score of MSP58 predicts local recurrence and survival of CRC patients. The expression of MSP58 was positively correlated with the depth of invasion (P < 0.001), local recurrence (P = 0.008), tumor grade (P = 0.002), and UICC stage (P < 0.001). The Kaplan–Meier survival analysis demonstrated that the survival time of CRC patients with low expression of MSP58 was longer than those with high expression during the 5-year follow-up period (P < 0.001). COX regression analysis indicated that high expression of MSP58 (P < 0.001), depth of invasion >pT1 (P = 0.008), distant organ metastasis (pM1) (P < 0.001), regional lymph node metastasis (≥pN1) (P < 0.001), and local recurrence (Yes) (P = 0.007) were independent, poor prognostic factors of CRC. ROC curve showed the score of MSP58 expression level did provide a maximal sensitivity and specificity to predict local recurrence and survival of CRC patients. Our results demonstrated MSP58 might serve as a novel prognostic marker that is independent of, and additive to, the UICC staging system.
Collapse
Affiliation(s)
- Hai Shi
- State Key Laboratory of Cancer Biology, Department of Gastrointestinal Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, 710032, Shanxi, People's Republic of China.
| | | | | | | | | |
Collapse
|
17
|
Microspherule protein 2 associates with ASK1 and acts as a negative regulator of stress-induced ASK1 activation. FEBS Lett 2012; 586:1678-86. [DOI: 10.1016/j.febslet.2012.04.051] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Revised: 04/10/2012] [Accepted: 04/25/2012] [Indexed: 01/02/2023]
|
18
|
Hsu CC, Lee YC, Yeh SH, Chen CH, Wu CC, Wang TY, Chen YN, Hung LY, Liu YW, Chen HK, Hsiao YT, Wang WS, Tsou JH, Tsou YH, Wu MH, Chang WC, Lin DY. 58-kDa microspherule protein (MSP58) is novel Brahma-related gene 1 (BRG1)-associated protein that modulates p53/p21 senescence pathway. J Biol Chem 2012; 287:22533-48. [PMID: 22563078 PMCID: PMC3391125 DOI: 10.1074/jbc.m111.335331] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The nucleolar 58-kDa microspherule protein (MSP58) protein is a candidate oncogene implicated in modulating cellular proliferation and malignant transformation. In this study, we show that knocking down MSP58 expression caused aneuploidy and led to apoptosis, whereas ectopic expression of MSP58 regulated cell proliferation in a context-dependent manner. Specifically, ectopic expression of MSP58 in normal human IMR90 and Hs68 diploid fibroblasts, the H184B5F5/M10 mammary epithelial cell line, HT1080 fibrosarcoma cells, primary mouse embryonic fibroblasts, and immortalized NIH3T3 fibroblasts resulted in induction of premature senescence, an enlarged and flattened cellular morphology, and increased senescence-associated β-galactosidase activity. MSP58-driven senescence was strictly dependent on the presence of functional p53 as revealed by the fact that normal cells with p53 knockdown by specific shRNA or cells with a mutated or functionally impaired p53 pathway were effective in bypassing MSP58-induced senescence. At least two senescence mechanisms are induced by MSP58. First, MSP58 activates the DNA damage response and p53/p21 signaling pathways. Second, MSP58, p53, and the SWI/SNF chromatin-remodeling subunit Brahma-related gene 1 (BRG1) form a ternary complex on the p21 promoter and collaborate to activate p21. Additionally, MSP58 protein levels increased in cells undergoing replicative senescence and stress-induced senescence. Notably, the results of analyzing expression levels of MSP58 between tumors and matched normal tissues showed significant changes (both up- and down-regulation) in its expression in various types of tumors. Our findings highlight new aspects of MSP58 in modulating cellular senescence and suggest that MSP58 has both oncogenic and tumor-suppressive properties.
Collapse
Affiliation(s)
- Che-Chia Hsu
- Institute of Bioinformatics and Biosignal Transduction, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan 70101, Taiwan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Abstract
In mitotic spindles, each sister chromatid is directly attached to a spindle pole through microtubule bundles known as kinetochore fibres. Microspherule protein 1 (MCRS1) is now shown to support spindle assembly by localizing to the minus ends of kinetochore fibres and protecting them from depolymerization.
Collapse
|
20
|
Dyrsø T, Li J, Wang K, Lindebjerg J, Kølvraa S, Bolund L, Jakobsen A, Bruun-Petersen G, Li S, Crüger DG. Identification of chromosome aberrations in sporadic microsatellite stable and unstable colorectal cancers using array comparative genomic hybridization. Cancer Genet 2011; 204:84-95. [PMID: 21504706 DOI: 10.1016/j.cancergencyto.2010.08.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2010] [Revised: 07/27/2010] [Accepted: 08/18/2010] [Indexed: 01/07/2023]
Abstract
Colorectal cancer (CRC) is one of the most common cancers in Denmark and in the western world in general, and the prognosis is generally poor. According to the traditional molecular classification of sporadic colorectal cancer, microsatellite stable (MSS)/chromosome unstable (CIN) colorectal cancers constitute approximately 85% of sporadic cases, whereas microsatellite unstable (MSI) cases constitute the remaining 15%. In this study, we used array comparative genomic hybridization (aCGH) to identify genomic hotspot regions that harbor recurrent copy number changes. The study material comprised fresh samples from 40 MSS tumors and 20 MSI tumors obtained from 60 Danish CRC patients. We identified five small genomic regions (<15 megabases) exhibiting recurrent copy number loss, which, to our knowledge, have not been reported in previously published aCGH studies of CRC: 3p25.3, 3p21.2-p21.31, 5q13.2, 12q24.23-q24.31, and 12q24.23-q24.31. These regions contain several potentially important tumor suppressor genes that may play a role in a significant proportion of both sporadic MSS CRC and MSI CRC. Furthermore, the generated aCGH data are in support of the recently proposed classification of sporadic CRC into MSS CIN+, MSI CIN-, MSI CIN+, and MSS CIN- cancers.
Collapse
Affiliation(s)
- Thomas Dyrsø
- Department of Clinical Genetics, Vejle Hospital, Denmark.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Kuo CW, Wang WH, Liu ST. Mapping signals that are important for nuclear and nucleolar localization in MCRS2. Mol Cells 2011; 31:547-52. [PMID: 21533551 PMCID: PMC3887618 DOI: 10.1007/s10059-011-1033-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2011] [Revised: 03/22/2011] [Accepted: 03/22/2011] [Indexed: 11/27/2022] Open
Abstract
MCRS2 is an oncoprotein that is sequestered in the nucleolus. When in the nucleolus, it promotes the transcription of the rRNA gene. MCRS2 also brings proteins into the nucleolus to change their function. This study analyzes the sequence of MCRS2 and determines that the nuclear localization signal, which has the sequence KRKK, is situated between amino acids 66 and 69. Meanwhile, MCRS2 contains a bipartite nucleolar localization signal, which comprises a KKSK motif, located between amino acids 133 and 136, and a downstream 152-amino acid region, from amino acid 314 to 465. The results of this study are important to understand the function of MCRS2.
Collapse
Affiliation(s)
| | | | - Shih-Tung Liu
- Department of Microbiology and Immunology, Chang-Gung University, Kwei-Shan, Taoyuan 33302, Taiwan
| |
Collapse
|
22
|
Proteasomal degradation is transcriptionally controlled by TCF11 via an ERAD-dependent feedback loop. Mol Cell 2010; 40:147-58. [PMID: 20932482 DOI: 10.1016/j.molcel.2010.09.012] [Citation(s) in RCA: 282] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2010] [Revised: 06/14/2010] [Accepted: 07/20/2010] [Indexed: 11/22/2022]
Abstract
Coordinated regulation of the ubiquitin-proteasome system (UPS) is crucial for the cell to adjust its protein degradation capacity to changing proteolytic requirements. We have shown previously that mammalian cells upregulate proteasome gene expression in response to proteasome inhibition. Here, we report the identification of the transcription factor TCF11 (long isoform of Nrf1) as a key regulator for 26S proteasome formation in human cells to compensate for reduced proteolytic activity. Under noninducing conditions, TCF11 resides in the endoplasmic reticulum (ER) membrane. There, TCF11 is targeted to ER-associated protein degradation requiring the E3 ubiquitin ligase HRD1 and the AAA ATPase p97. Proteasome inhibitors trigger the accumulation of oxidant-damaged proteins and promote the nuclear translocation of TCF11 from the ER, permitting activation of proteasome gene expression by binding to antioxidant response elements in their promoter regions. Thus, we uncovered the transcriptional control loop regulating human proteasome-dependent protein degradation to counteract proteotoxic stress caused by proteasome inhibition.
Collapse
|
23
|
Yoo JE, Oh BK, Park YN. Human PinX1 mediates TRF1 accumulation in nucleolus and enhances TRF1 binding to telomeres. J Mol Biol 2009; 388:928-40. [PMID: 19265708 DOI: 10.1016/j.jmb.2009.02.051] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2008] [Revised: 01/30/2009] [Accepted: 02/13/2009] [Indexed: 10/21/2022]
Abstract
Human PinX1 (hPinX1) is known to interact with telomere repeat binding factor 1 (TRF1) and telomerase. Here, we report that hPinX1 regulates the nucleolar accumulation and telomeric association of TRF1. In HeLa, HA-hPinX1 was co-localized with fibrillarin, a nucleolar protein, in 51% of the transfected cells and was present in the nucleoplasm of the remaining 48%. Mutant analysis showed that the C-terminal region was important for nucleolar localization, while the N-terminus exhibited an inhibitory effect on nucleolar localization. Unlike HA- and Myc-hPinX1, GFP-hPinX1 resided predominantly in the nucleolus. Nuclear hPinX1 bound to telomeres and other repeat sequences as well but, despite its interaction with TRF1, nucleolar hPinX1 did not bind to telomeres. Nucleolar hPinX1 forced endogenous TRF1 accumulation in the nucleolus. Furthermore, TRF1 binding to telomeres was upregulated in cells over-expressing hPinX1. In an ALT cell line, WI-38 VA-13, TRF1 did not co-localize with hPinX1 in the nucleoli. In summary, hPinX1 likely interacts with TRF1 in both the nucleolus and the nucleoplasm, and excess hPinX1 results in increased telomere binding of TRF1. The PinX1 function of mediating TRF1 nucleolar accumulation is absent from ALT cells, suggesting that it might be telomerase-dependent.
Collapse
Affiliation(s)
- Jeong Eun Yoo
- Department of Pathology, Institute of Gastroenterology, Center for Chronic Metabolic Disease, Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | | | | |
Collapse
|
24
|
Wu JL, Lin YS, Yang CC, Lin YJ, Wu SF, Lin YT, Huang CF. MCRS2 represses the transactivation activities of Nrf1. BMC Cell Biol 2009; 10:9. [PMID: 19187526 PMCID: PMC2644286 DOI: 10.1186/1471-2121-10-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2008] [Accepted: 02/02/2009] [Indexed: 12/30/2022] Open
Abstract
Background Nrf1 [p45 nuclear factor-erythroid 2 (p45 NF-E2)-related factor 1], a member of the CNC-bZIP (CNC basic region leucine zipper) family, is known to be a transcriptional activator by dimerization with distinct partners, such as Maf, FosB, c-Jun, JunD, etc. The transcriptional roles of CNC-bZIP family are demonstrated to be involved in globin gene expression as well as the antioxidant response. For example, CNC-bZIP factors can regulate the expression of detoxification proteins through AREs, such as expression of human gamma-glutamylcysteine synthetases (GCS), glutathione S-transferases (GST), UDP-glucuronosyl transferase (UDP-GT), NADP (H) quinone oxidoreductase (NQOs), etc. To further explore other factor(s) in cells related to the function of Nrf1, we performed a yeast two-hybrid screening assay to identify any Nrf1-interacting proteins. In this study, we isolated a cDNA encoding residues 126–475 of MCRS2 from the HeLa cell cDNA library. Some functions of MCRS1 and its splice variant-MSP58 and MCRS2 have been previously identified, such as transforming, nucleolar sequestration, ribosomal gene regulation, telomerase inhibition activities, etc. Here, we demonstrated MCRS2 can function as a repressor on the Nrf1-mediated transactivation using both in vitro and in vivo systems. Results To find other proteins interacting with the CNC bZIP domain of Nrf1, the CNC-bZIP region of Nrf1 was used as a bait in a yeast two-hybrid screening assay. MCRS2, a splicing variant of p78/MCRS1, was isolated as the Nrf1-interacting partner from the screenings. The interaction between Nrf1 and MCRS2 was confirmed in vitro by GST pull-down assays and in vivo by co-immunoprecipitation. Further, the Nrf1-MCRS2 interaction domains were mapped to the residues 354–447 of Nrf1 as well as the residues 314–475 of MCRS2 respectively, by yeast two-hybrid and GST pull-down assays. By immunofluorescence, MCRS2-FLAG was shown to colocalize with HA-Nrf1 in the nucleus and didn't result in the redistribution of Nrf1. This suggested the existence of Nrf1-MCRS2 complex in vivo. To further confirm the biological function, a reporter driven by CNC-bZIP protein binding sites was also shown to be repressed by MCRS2 in a transient transfection assay. An artificial reporter gene activated by LexA-Nrf1 was also specifically repressed by MCRS2. Conclusion From the results, we showed MCRS2, a new Nrf1-interacting protein, has a repression effect on Nrf1-mediated transcriptional activation. This was the first ever identified repressor protein related to Nrf1 transactivation.
Collapse
Affiliation(s)
- Jia-Long Wu
- IBMS, Academia Sinica, Taipei 11529, Taiwan, ROC.
| | | | | | | | | | | | | |
Collapse
|
25
|
Sun C, Wu Z, Jia F, Wang Y, Li T, Zhao M. Identification of zebrafish LPTS: a gene with similarities to human LPTS/PinX1 that inhibits telomerase activity. Gene 2008; 420:90-8. [PMID: 18583067 DOI: 10.1016/j.gene.2008.05.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2008] [Revised: 05/09/2008] [Accepted: 05/09/2008] [Indexed: 01/15/2023]
Abstract
Human LPTS/PinX1 is a newly identified telomerase inhibitory protein. Overexpression of the LPTS/PinX1 gene suppresses telomerase activity, results in shortened telomeres. To investigate the role of the LPTS gene in zebrafish, we cloned the homologous gene, zLPTS, which encodes a protein of 355 amino acids. Sequence analysis revealed that, like human LPTS/PinX1, the zLPTS protein has a conserved G-patch domain at its N-terminus and a lysine-rich domain at its C-terminus. Bioinformatics analysis showed the evolutionary conservation of zLPTS. Using RT-PCR and northern blot, we found that zLPTS was expressed in all zebrafish tissues with higher level in ovary, and in all embryonic developmental stages examined. Whole mount in situ hybridization revealed that zLPTS was expressed in all regions of early developmental embryos. The subcellular localization of zLPTS protein was showed in the nucleolus and telomeres. We also cloned the gene for zebrafish Telomerase Reverse Transcriptase (zTERT), a catalytic subunit of telomerase, and demonstrated that zLPTS protein can interact with zTERT through the TR-binding domain of zTERT. Further, we verified that zLPTS could inhibit telomerase activities in zebrafish embryos and human cancer cell line by TRAP assay. Our results clearly demonstrate that zLPTS is ubiquitously expressed in tissues and embryos and plays a function of inhibiting telomerase activity. This study may provide a useful system for further investigating the mechanism of telomere length regulation.
Collapse
Affiliation(s)
- Chengfu Sun
- State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, China
| | | | | | | | | | | |
Collapse
|
26
|
Oh BK, Yoon SM, Lee CH, Park YN. Rat homolog of PinX1 is a nucleolar protein involved in the regulation of telomere length. Gene 2007; 400:35-43. [PMID: 17624691 DOI: 10.1016/j.gene.2007.05.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2007] [Revised: 04/16/2007] [Accepted: 05/25/2007] [Indexed: 01/15/2023]
Abstract
Human PinX1 involves in regulation of telomere length. Here, we describe the function of a rat homolog of PinX1. Rat PinX1 (rPinX1) was cloned from WB-F344, a rat hepatic stem-like epithelial cell. It encodes a protein of 331 amino acids with 70% homology to human PinX1 and 91% homology to mouse. Northern analysis revealed that rPinX1 is expressed in both somatic and germ tissues, most abundantly in heart, liver and testis. Co-localization with a nucleolar protein, fibrillarin, showed that rPinX1 resides in the nucleolus. Analysis of truncated mutants revealed that an internal K,E/D region seems to be important for nucleolar localization. A stable cell line expressing rPinX1 was established in NIH3T3, a mouse-transformed embryonic fibroblast cell line, and stable cells were subcultured for more than 150 population doublings. The growth of stable rPinX1 cells slowed down at late passages, and a fraction of these cells exhibited increased size and stained positively for senescence-associated beta-galactosidase. Overexpression of rPinX1 in NIH3T3 cells resulted in gradual telomere shortening over successive passages. However, the telomeric 3' overhang was not altered by PinX1 expression. This study demonstrates that a rat homolog of human PinX1 is a nucleolar protein, and that overexpression of rPinX1 induces cellular senescence and telomere shortening, but has no effect on 3' overhang length. The function of PinX1 in regulating telomere length is conserved in rodents, and this study may provide insight into the mechanism by which a nucleolar protein can regulate telomere length.
Collapse
Affiliation(s)
- Bong-Kyeong Oh
- Cancer Metastasis Research Center, Yonsei University College of Medicine, 120-752, Republic of Korea
| | | | | | | |
Collapse
|
27
|
Du X, Wang Q, Hirohashi Y, Greene MI. DIPA, which can localize to the centrosome, associates with p78/MCRS1/MSP58 and acts as a repressor of gene transcription. Exp Mol Pathol 2006; 81:184-90. [PMID: 17014843 DOI: 10.1016/j.yexmp.2006.07.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2006] [Accepted: 07/27/2006] [Indexed: 01/27/2023]
Abstract
DIPA (delta-interacting protein A) was initially identified as a protein that associates with the hepatitis delta antigen. In this study, we found that DIPA can associate with p78/MCRS/MSP58, a Forkhead-associated domain containing protein implicated in malignant transformation as well as in regulation of gene transcription and translation. We analyzed the interaction between DIPA and p78 by co-immunoprecipitation and identified the structural regions involved in the interaction. Consistent with the physical interaction, we found that DIPA is predominant co-localized with p78 to the nucleus. In addition, a fraction of DIPA can be detected on the centrosome. Furthermore, we demonstrate that DIPA can act as a repressor of gene transcription, an activity that appears to be enhanced by p78. Taken together, our results revealed a novel protein complex that plays a role in regulation of gene expression and cell proliferation. We propose that dysfunction of DIPA may contribute to malignant transformation by affecting the functions of p78.
Collapse
Affiliation(s)
- Xiulian Du
- Department of Pathology and Laboratory Medicine, 252 John Morgan Building, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | | | | | | |
Collapse
|
28
|
Hirohashi Y, Wang Q, Liu Q, Du X, Zhang H, Sato N, Greene MI. p78/MCRS1 forms a complex with centrosomal protein Nde1 and is essential for cell viability. Oncogene 2006; 25:4937-46. [PMID: 16547491 DOI: 10.1038/sj.onc.1209500] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The centrosome, an organelle that functions as the major microtubule-organizing center, plays an essential role in the formation of the mitotic spindle and guiding accurate chromosome segregation. Centrosome aberrations are frequently associated with various forms of human cancers and it is thought that defects in this organelle contribute to genomic instability and malignant transformation. We recently identified and characterized a centrosome-localized protein complex that is comprised of Su48 and Nde1. Disruption of the normal function of these proteins leads to abnormal cell division. To extend our understanding of how this protein complex operates, we sought to identify Nde1-interacting molecules by the yeast two-hybrid screening method. Here, we demonstrate that both Nde1 and Su48 can associate with p78/MCRS1, a protein implicated in cancer development. We found that, whereas the majority of p78 localizes to the nucleus as reported in earlier studies, a fraction of the p78 protein can be detected in the centrosome. Moreover, we determined that a region containing the forkhead-associated domain of p78 is involved in association with Nde1 and Su48, as well as in centrosomal localization. We also provide evidence that the association between p78 and Nde1 is regulated by phosphorylation on Nde1. Furthermore, abrogation of the endogenous p78 function by small interfering RNA knockdown causes cell death and a modest delay in mitosis. These results indicate that a subset of the p78 proteins comprises a component of the centrosome and that p78 is essential for cell viability.
Collapse
Affiliation(s)
- Y Hirohashi
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | | | | | | | | | | | | |
Collapse
|
29
|
Shimono K, Shimono Y, Shimokata K, Ishiguro N, Takahashi M. Microspherule protein 1, Mi-2beta, and RET finger protein associate in the nucleolus and up-regulate ribosomal gene transcription. J Biol Chem 2005; 280:39436-47. [PMID: 16186106 DOI: 10.1074/jbc.m507356200] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The nucleolus is the site of ribosomal DNA (rDNA) transcription and ribosome production. In exploring the role of nucleolar protein MCRS1 (microspherule protein1)/MSP58 (58-kDa microspherule protein), we found that Mi-2beta, a component of a nucleosome remodeling and deacetylase (NuRD) complex, RET finger protein (RFP), and upstream binding factor (UBF) were associated with MCRS1. Yeast two-hybrid assays revealed that MCRS1 bound to the ATPase/helicase region of Mi-2beta and the coiled-coil region of RFP. Interestingly, confocal microscopic analyses revealed the co-localization of MCRS1, Mi-2beta, RFP, and the rRNA transcription factor UBF in the nucleoli. We also found that MCRS1, Mi-2beta, and RFP were associated with rDNA using a chromatin immunoprecipitation assay. Finally, we showed that MCRS1, Mi-2beta, and RFP up-regulated transcriptional activity of the rDNA promoter and that ribosomal RNA transcription was repressed when MCRS1, Mi-2beta, and RFP expression was reduced using siRNA. These results indicated that Mi-2beta and RFP, known to be involved in transcriptional repression in the nucleus, co-localize with MCRS1 in the nucleolus and appear to activate the rRNA transcription.
Collapse
Affiliation(s)
- Keiko Shimono
- Department of Pathology, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | | | | | | | | |
Collapse
|
30
|
Okumura K, Zhao M, Depinho RA, Furnari FB, Cavenee WK. Cellular transformation by the MSP58 oncogene is inhibited by its physical interaction with the PTEN tumor suppressor. Proc Natl Acad Sci U S A 2005; 102:2703-6. [PMID: 15659546 PMCID: PMC549467 DOI: 10.1073/pnas.0409370102] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The PTEN (phosphatase and tensin homologue) tumor suppressor protein contains a single catalytic domain with both lipid and protein phosphatase activities. The remaining C-terminal half of the PTEN protein plays a role in its stability and is mutated in many clinical cancer samples. Here, we report that the PTEN C-terminal domain physically interacts with the forkhead-associated domain of the oncogenic MSP58 protein and that this interaction requires PTEN Thr-366. We further show that while MSP58 transforms Pten-/- mouse embryo fibroblasts (MEFs), concurrent introduction of wild-type PTEN causes a dramatic reduction in the number of MSP58-induced transformed foci. This PTEN-mediated inhibition of cellular transformation requires physical interaction as evidenced by the failure of PTEN(T366A) point mutation (residing within the MSP58 interaction domain) to suppress MSP-58-driven transformation. These observations, together with the capacity of catalytically inactive PTEN mutant (G129R) to suppress MSP58 oncogenicity, support the view that the C-terminal region of PTEN directly provides a previously uncharacterized biological function in its ability to regulate cellular transformation.
Collapse
Affiliation(s)
- Koichi Okumura
- Ludwig Institute for Cancer Research, San Diego Branch, University of California at San Diego, La Jolla, CA 92093-0660, USA
| | | | | | | | | |
Collapse
|
31
|
Banik SSR, Counter CM. Characterization of interactions between PinX1 and human telomerase subunits hTERT and hTR. J Biol Chem 2004; 279:51745-8. [PMID: 15381700 DOI: 10.1074/jbc.m408131200] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The addition of telomeric repeats to chromosome ends by the enzyme telomerase is a highly orchestrated process. Although much is known regarding telomerase catalytic activity in vitro, less is known about how this activity is regulated in vivo to ensure proper telomere elongation. One protein that appears to be involved in negatively regulating telomerase function in vivo is PinX1 because overexpression of PinX1 inhibits telomerase activity and causes telomere shortening. To understand the nature of this repression, we characterized the interactions among PinX1 and the core components of telomerase, the human telomerase reverse transcriptase (hTERT) and associated human telomerase RNA (hTR). We now show that in vitro PinX1 binds directly to the hTERT protein subunit, primarily to the hTR-binding domain, as well as to the hTR subunit. However, in a cellular context, the association of PinX1 with hTR is dependent on the presence of hTERT. Taken together, we suggest that PinX1 represses telomerase activity in vivo by binding to the assembled hTERT.hTR complex.
Collapse
Affiliation(s)
- Soma S R Banik
- Department of Pharmacology, Duke University Medical Center, Durham, North Carolina, 27710, USA
| | | |
Collapse
|