1
|
Curtiss ML, Rosenberg AF, Scharer CD, Mousseau B, Benavides NAB, Bradley JE, León B, Steele C, Randall TD, Lund FE. Chitinase-3-like 1 regulates T H2 cells, T FH cells and IgE responses to helminth infection. Front Immunol 2023; 14:1158493. [PMID: 37575256 PMCID: PMC10415220 DOI: 10.3389/fimmu.2023.1158493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 07/12/2023] [Indexed: 08/15/2023] Open
Abstract
Introduction Data from patient cohorts and mouse models of atopic dermatitis, food allergy and asthma strongly support a role for chitinase-3-like-1 protein (CHI3L1) in allergic disease. Methods To address whether Chi3l1 also contributes to TH2 responses following nematode infection, we infected Chi3l1 -/- mice with Heligmosomoides polygyrus (Hp) and analyzed T cell responses. Results As anticipated, we observed impaired TH2 responses in Hp-infected Chi3l1 -/- mice. However, we also found that T cell intrinsic expression of Chi3l1 was required for ICOS upregulation following activation of naïve CD4 T cells and was necessary for the development of the IL-4+ TFH subset, which supports germinal center B cell reactions and IgE responses. We also observed roles for Chi3l1 in TFH, germinal center B cell, and IgE responses to alum-adjuvanted vaccination. While Chi3l1 was critical for IgE humoral responses it was not required for vaccine or infection-induced IgG1 responses. Discussion These results suggest that Chi3l1 modulates IgE responses, which are known to be highly dependent on IL-4-producing TFH cells.
Collapse
Affiliation(s)
- Miranda L. Curtiss
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care, University of Alabama Birmingham (UAB), Birmingham, AL, United States
- Department of Medicine, Section of Allergy and Immunology, Birmingham VA Medical Center, Birmingham, AL, United States
| | - Alexander F. Rosenberg
- Department of Microbiology, University of Alabama Birmingham (UAB), Birmingham, AL, United States
- Informatics Institute, University of Alabama at Birmingham, Birmingham, AL, United States
| | | | - Betty Mousseau
- Department of Microbiology, University of Alabama Birmingham (UAB), Birmingham, AL, United States
| | - Natalia A. Ballesteros Benavides
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care, University of Alabama Birmingham (UAB), Birmingham, AL, United States
- Department of Microbiology, University of Alabama Birmingham (UAB), Birmingham, AL, United States
| | - John E. Bradley
- Department of Medicine, Division of Rheumatology, University of Alabama Birmingham (UAB), Birmingham, AL, United States
| | - Beatriz León
- Department of Microbiology, University of Alabama Birmingham (UAB), Birmingham, AL, United States
| | - Chad Steele
- Department of Microbiology and Immunology, Tulane University, New Orleans, LA, United States
| | - Troy D. Randall
- Department of Medicine, Division of Rheumatology, University of Alabama Birmingham (UAB), Birmingham, AL, United States
| | - Frances E. Lund
- Department of Microbiology, University of Alabama Birmingham (UAB), Birmingham, AL, United States
| |
Collapse
|
2
|
Wrońska AK, Kaczmarek A, Boguś MI, Kuna A. Lipids as a key element of insect defense systems. Front Genet 2023; 14:1183659. [PMID: 37359377 PMCID: PMC10289264 DOI: 10.3389/fgene.2023.1183659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 05/31/2023] [Indexed: 06/28/2023] Open
Abstract
The relationship between insect pathogenic fungi and their insect hosts is a classic example of a co-evolutionary arms race between pathogen and target host: parasites evolve towards mechanisms that increase their advantage over the host, and the host increasingly strengthens its defenses. The present review summarizes the literature data describing the direct and indirect role of lipids as an important defense mechanism during fungal infection. Insect defense mechanisms comprise anatomical and physiological barriers, and cellular and humoral response mechanisms. The entomopathogenic fungi have the unique ability to digest the insect cuticle by producing hydrolytic enzymes with chitin-, lipo- and proteolytic activity; besides the oral tract, cuticle pays the way for fungal entry within the host. The key factor in insect resistance to fungal infection is the presence of certain types of lipids (free fatty acids, waxes or hydrocarbons) which can promote or inhibit fungal attachment to cuticle, and might also have antifungal activity. Lipids are considered as an important source of energy, and as triglycerides are stored in the fat body, a structure analogous to the liver and adipose tissue in vertebrates. In addition, the fat body plays a key role in innate humoral immunity by producing a range of bactericidal proteins and polypeptides, one of which is lysozyme. Energy derived from lipid metabolism is used by hemocytes to migrate to the site of fungal infection, and for phagocytosis, nodulation and encapsulation. One polyunsaturated fatty acid, arachidonic acid, is used in the synthesis of eicosanoids, which play several crucial roles in insect physiology and immunology. Apolipoprotein III is important compound with antifungal activity, which can modulate insect cellular response and is considered as important signal molecule.
Collapse
Affiliation(s)
- Anna Katarzyna Wrońska
- Museum and Institute of Zoology, Polish Academy of Science, Warszawa, Poland
- Witold Stefański Institute of Parasitology, Polish Academy of Sciences, Warsaw, Poland
| | - Agata Kaczmarek
- Museum and Institute of Zoology, Polish Academy of Science, Warszawa, Poland
- Witold Stefański Institute of Parasitology, Polish Academy of Sciences, Warsaw, Poland
| | - Mieczysława Irena Boguś
- Museum and Institute of Zoology, Polish Academy of Science, Warszawa, Poland
- Witold Stefański Institute of Parasitology, Polish Academy of Sciences, Warsaw, Poland
| | - Anna Kuna
- Independent Researcher, Warsaw, Poland
| |
Collapse
|
3
|
Ouali R, Vieira LR, Salmon D, Bousbata S. Rhodnius prolixus Hemolymph Immuno-Physiology: Deciphering the Systemic Immune Response Triggered by Trypanosoma cruzi Establishment in the Vector Using Quantitative Proteomics. Cells 2022; 11:1449. [PMID: 35563760 PMCID: PMC9104911 DOI: 10.3390/cells11091449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 04/20/2022] [Accepted: 04/22/2022] [Indexed: 12/10/2022] Open
Abstract
Understanding the development of Trypanosoma cruzi within the triatomine vector at the molecular level should provide novel targets for interrupting parasitic life cycle and affect vectorial competence. The aim of the current study is to provide new insights into triatomines immunology through the characterization of the hemolymph proteome of Rhodnius prolixus, a major Chagas disease vector, in order to gain an overview of its immune physiology. Surprisingly, proteomics investigation of the immunomodulation of T. cruzi-infected blood reveals that the parasite triggers an early systemic response in the hemolymph. The analysis of the expression profiles of hemolymph proteins from 6 h to 24 h allowed the identification of a broad range of immune proteins expressed already in the early hours post-blood-feeding regardless of the presence of the parasite, ready to mount a rapid response exemplified by the significant phenol oxidase activation. Nevertheless, we have also observed a remarkable induction of the immune response triggered by an rpPGRP-LC and the overexpression of defensins 6 h post-T. cruzi infection. Moreover, we have identified novel proteins with immune properties such as the putative c1q-like protein and the immunoglobulin I-set domain-containing protein, which have never been described in triatomines and could play a role in T. cruzi recognition. Twelve proteins with unknown function are modulated by the presence of T. cruzi in the hemolymph. Determining the function of these parasite-induced proteins represents an exciting challenge for increasing our knowledge about the diversity of the immune response from the universal one studied in holometabolous insects. This will provide us with clear answers for misunderstood mechanisms in host-parasite interaction, leading to the development of new generation strategies to control vector populations and pathogen transmission.
Collapse
Affiliation(s)
- Radouane Ouali
- Proteomic Plateform, Laboratory of Microbiology, Department of Molecular Biology, Université Libre de Bruxelles, 6041 Gosselies, Belgium
| | - Larissa Rezende Vieira
- Institute of Medical Biochemistry Leopoldo de Meis, Centro de Ciências e da Saúde, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (L.R.V.); (D.S.)
| | - Didier Salmon
- Institute of Medical Biochemistry Leopoldo de Meis, Centro de Ciências e da Saúde, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (L.R.V.); (D.S.)
| | - Sabrina Bousbata
- Proteomic Plateform, Laboratory of Microbiology, Department of Molecular Biology, Université Libre de Bruxelles, 6041 Gosselies, Belgium
| |
Collapse
|
4
|
Wan B, Belghazi M, Lemauf S, Poirié M, Gatti JL. Proteomics of purified lamellocytes from Drosophila melanogaster HopT um-l identifies new membrane proteins and networks involved in their functions. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2021; 134:103584. [PMID: 34033897 DOI: 10.1016/j.ibmb.2021.103584] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/20/2021] [Accepted: 04/22/2021] [Indexed: 06/12/2023]
Abstract
In healthy Drosophila melanogaster larvae, plasmatocytes and crystal cells account for 95% and 5% of the hemocytes, respectively. A third type of hemocytes, lamellocytes, are rare, but their number increases after oviposition by parasitoid wasps. The lamellocytes form successive layers around the parasitoid egg, leading to its encapsulation and melanization, and finally the death of this intruder. However, the total number of lamellocytes per larva remains quite low even after parasitoid infestation, making direct biochemical studies difficult. Here, we used the HopTum-l mutant strain that constitutively produces large numbers of lamellocytes to set up a purification method and analyzed their major proteins by 2D gel electrophoresis and their plasma membrane surface proteins by 1D SDS-PAGE after affinity purification. Mass spectrometry identified 430 proteins from 2D spots and 344 affinity-purified proteins from 1D bands, for a total of 639 unique proteins. Known lamellocyte markers such as PPO3 and the myospheroid integrin were among the components identified with specific chaperone proteins. Affinity purification detected other integrins, as well as a wide range of integrin-associated proteins involved in the formation and function of cell-cell junctions. Overall, the newly identified proteins indicate that these cells are highly adapted to the encapsulation process (recognition, motility, adhesion, signaling), but may also have several other physiological functions (such as secretion and internalization of vesicles) under different signaling pathways. These results provide the basis for further in vivo and in vitro studies of lamellocytes, including the development of new markers to identify coexisting populations and their respective origins and functions in Drosophila immunity.
Collapse
Affiliation(s)
- Bin Wan
- Université Côte d'Azur, INRAE, CNRS, Institute Sophia-Agrobiotech, Sophia Antipolis, France
| | - Maya Belghazi
- Institute of NeuroPhysiopathology (INP), UMR7051, CNRS, Aix-Marseille Université, Marseille, 13015, France
| | - Séverine Lemauf
- Université Côte d'Azur, INRAE, CNRS, Institute Sophia-Agrobiotech, Sophia Antipolis, France
| | - Marylène Poirié
- Université Côte d'Azur, INRAE, CNRS, Institute Sophia-Agrobiotech, Sophia Antipolis, France
| | - Jean-Luc Gatti
- Université Côte d'Azur, INRAE, CNRS, Institute Sophia-Agrobiotech, Sophia Antipolis, France.
| |
Collapse
|
5
|
Cao X, Li Y, Li S, Tang T, Liu F. Two ferritin genes (MdFerH and MdFerL) are involved in iron homeostasis, antioxidation and immune defense in housefly Musca domestica. JOURNAL OF INSECT PHYSIOLOGY 2020; 124:104073. [PMID: 32526234 DOI: 10.1016/j.jinsphys.2020.104073] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 05/29/2020] [Accepted: 06/02/2020] [Indexed: 06/11/2023]
Abstract
Ferritin is a ubiquitous multi-subunit iron storage protein, made up of heavy chain and light chain subunits. In recent years, invertebrate ferritins have emerged as an important, yet largely underappreciated, component of host defense and antioxidant system. Here, two alternatively spliced transcripts encoding for a unique ferritin heavy chain homolog (MdFerH), and a transcript encoding for a light chain homolog (MdFerL) are cloned and characterized from Musca domestica. Comparing with MdFerH1, a fragment is absent at the 5' untranslated region of MdFerH2, where a putative iron response element is present. Amino acid sequence analysis shows that MdFerH possesses a strictly conserved ferroxidase site, while MdFerL has a putative atypical active center. Tissue distribution analysis indicates that MdFers are enriched expressed in gut. When the larvae receive diverse stimulations, including challenge by bacteria, exposure to excess Fe2+, doxorubicin or ultraviolet, the expression of MdFers is positively up-regulated in different degrees and different temporal patterns, indicating their potential roles in oxidative stress. The two mRNA isoforms of MdFerH appear to be differentially expressed in different tissues, but seem to show the similar expression patterns under diverse stress conditions. Further investigation reveals that silencing MdFers can alter the redox homeostasis, leading elevated mortalities of larvae following bacterial infection. Inspiringly, recombinant MdFerL produced in Pichia pastoris shows significant iron-chelating activity in vitro. These results suggest a pivotal role of ferritins from housefly in iron homeostasis, antibacterial immunity and redox balance.
Collapse
Affiliation(s)
- Xinru Cao
- The Key Laboratory of Zoological Systematics and Application, College of Life Sciences, Hebei University, Baoding, Hebei 071002, China
| | - Yongbao Li
- The Key Laboratory of Zoological Systematics and Application, College of Life Sciences, Hebei University, Baoding, Hebei 071002, China
| | - Shuangshuang Li
- The Key Laboratory of Zoological Systematics and Application, College of Life Sciences, Hebei University, Baoding, Hebei 071002, China
| | - Ting Tang
- The Key Laboratory of Zoological Systematics and Application, College of Life Sciences, Hebei University, Baoding, Hebei 071002, China; Institute of Life Science and Green Development, Hebei University, Baoding, Hebei 071002, China.
| | - Fengsong Liu
- The Key Laboratory of Zoological Systematics and Application, College of Life Sciences, Hebei University, Baoding, Hebei 071002, China; Institute of Life Science and Green Development, Hebei University, Baoding, Hebei 071002, China.
| |
Collapse
|
6
|
Dong J, Han L, Wang Y, Huang J, Wu J. Transcript expression bias of phosphatidylethanolamine binding protein gene in bumblebee, Bombus lantschouensis (Hymenoptera: Apidae). Gene 2017. [PMID: 28647560 DOI: 10.1016/j.gene.2017.06.041] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The phosphatidylethanolamine-binding protein (PEBP) family is a highly conserved group of proteins found in a wide range of organism. It plays an important role in innate immunity of insects. Little is known on the expression characteristic and function of PEBP in bees. In the current study, we cloned the pebp gene and investigated its expression profiles at different developmental stages and reproductive status from bumblebee, Bombus lantschouensis (Vogt), which is one of the most abundant pollinators for wild plants and crops in Northern China. Two transcripts (PEBPX1 and PEBPX2) of the pebp gene were cloned for the first time. The transcript PEBPX2 lacked a signal peptide sequence compared to PEBPX1. The full-length cDNA of these two PEBP transcripts is 1005bp and 915bp, with an open reading frame of 627bp and 549bp, respectively. Transcript PEBPX2 was one order of magnitude more expressed than transcript PEBPX1 at most of the developmental stages and different reproductive status (egg-laying versus non- egg-laying females). Both of the PEBP transcripts were highly expressed in brown-eyed with light and dark pigmented cuticle pupae stages. Quantitative PCR and Western Blot demonstrated that PEBP was significantly up-regulated in egg-laying females. In summary, we suggest that levels of these two PEBPs could be related to the regulation of reproduction in bumblebees. In addition, both transcripts likely play an important role in the metamorphosis developmental stage of bumblebee pupae.
Collapse
Affiliation(s)
- Jie Dong
- Key Laboratory for Insect-Pollinator Biology of the Ministry of Agriculture, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, PR China
| | - Lei Han
- Key Laboratory for Insect-Pollinator Biology of the Ministry of Agriculture, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, PR China
| | - Ye Wang
- Key Laboratory for Insect-Pollinator Biology of the Ministry of Agriculture, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, PR China
| | - Jiaxing Huang
- Key Laboratory for Insect-Pollinator Biology of the Ministry of Agriculture, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, PR China.
| | - Jie Wu
- Key Laboratory for Insect-Pollinator Biology of the Ministry of Agriculture, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, PR China.
| |
Collapse
|
7
|
|
8
|
Otho SA, Chen K, Zhang Y, Wang P, Lu Z. Silkworm ferritin 1 heavy chain homolog is involved in defense against bacterial infection through regulation of haemolymph iron homeostasis. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2016; 55:152-158. [PMID: 26522340 DOI: 10.1016/j.dci.2015.10.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 10/26/2015] [Accepted: 10/26/2015] [Indexed: 06/05/2023]
Abstract
Iron functions as a nutrient and a potential toxin in all organisms. It plays a key role in the interaction between microbes and their hosts as well. Microbial infection disrupts iron homeostasis in the host; meanwhile the host endeavors to keep the homeostasis through iron transport and storage. Transferrins and ferritins are the major iron-binding proteins that affect iron distribution in insects. In this study, we investigated a possible involvement of Bombyx mori ferritin 1 (BmFer1) heavy chain homolog in the defense against bacterial infection in the silkworm larvae. The BmFer1 mRNA abundance was up-regulated in hemocytes, but not in fat body, after Pseudomonas aeruginosa or Staphylococcus aureus infection. The infection resulted in elevated iron levels in the hemolymph. Injection of recombinant BmFer1 protein into hemocoel reduced the plasma iron level after infection, limited the bacterial growth in the hemolymph, and resulted in a lower mortality caused by infection. Our study indicated that B. mori ferritin-1 may restrict iron access of the invading bacteria to block their growth as a defense strategy.
Collapse
Affiliation(s)
- Sohail Ahmed Otho
- Department of Entomology, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Kangkang Chen
- Department of Entomology, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yongdong Zhang
- Department of Entomology, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Peng Wang
- Department of Entomology, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zhiqiang Lu
- Department of Entomology, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Plant Protection Resources and Pest Management, Ministry of Education, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
9
|
Kucerova L, Broz V, Arefin B, Maaroufi HO, Hurychova J, Strnad H, Zurovec M, Theopold U. The Drosophila Chitinase-Like Protein IDGF3 Is Involved in Protection against Nematodes and in Wound Healing. J Innate Immun 2015; 8:199-210. [PMID: 26694862 DOI: 10.1159/000442351] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 11/10/2015] [Indexed: 01/06/2023] Open
Abstract
Chitinase-like proteins (CLPs) of the 18 glycosyl hydrolase family retain structural similarity to chitinases but lack enzymatic activity. Although CLPs are upregulated in several human disorders that affect regenerative and inflammatory processes, very little is known about their normal physiological function. We show that an insect CLP (Drosophila imaginal disc growth factor 3, IDGF3) plays an immune-protective role during entomopathogenic nematode (EPN) infections. During these infections, nematodes force their entry into the host via border tissues, thus creating wounds. Whole-genome transcriptional analysis of nematode-infected wild-type and Idgf3 mutant larvae have shown that, in addition to the regulation of genes related to immunity and wound closure, IDGF3 represses Jak/STAT and Wingless signaling. Further experiments have confirmed that IDGF3 has multiple roles in innate immunity. It serves as an essential component required for the formation of hemolymph clots that seal wounds, and Idgf3 mutants display an extended developmental delay during wound healing. Altogether, our findings indicate that vertebrate and invertebrate CLP proteins function in analogous settings and have a broad impact on inflammatory reactions and infections. This opens the way to further genetic analysis of Drosophila IDGF3 and will help to elucidate the exact molecular context of CLP function.
Collapse
Affiliation(s)
- Lucie Kucerova
- Department of Molecular Biosciences, Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Zhang T, Qiu L, Sun Z, Wang L, Zhou Z, Liu R, Yue F, Sun R, Song L. The specifically enhanced cellular immune responses in Pacific oyster (Crassostrea gigas) against secondary challenge with Vibrio splendidus. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2014; 45:141-150. [PMID: 24607288 DOI: 10.1016/j.dci.2014.02.015] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Revised: 02/26/2014] [Accepted: 02/28/2014] [Indexed: 06/03/2023]
Abstract
The increasing experimental evidences suggest that there are some forms of specific acquired immunity in invertebrates, but the underlying mechanism is not fully understood. In the present study, Pacific oyster (Crassostrea gigas) stimulated primarily by heat-killed Vibrio splendidus displayed stronger immune responses at cellular and molecular levels when they encountered the secondary challenge of live V. splendidus. The total hemocyte counts (THC) increased significantly after the primary stimulation of heat-killed V. splendidus, and it increased even higher (p < 0.01) and reached the peak earlier (at 6 h) after the secondary challenge with live V. splendidus compared with that of the primary stimulation. The number of new generated circulating hemocytes increased dramatically (p < 0.01) at 6 h after the pre-stimulated oysters received the secondary stimulation with live V. splendidus, and the phagocytic rate was also enhanced significantly (p < 0.01) at 12 h after the secondary stimulation. Meanwhile, the enhanced phagocytosis of hemocytes was highly specific for V. splendidus and they could distinguish Vibrio anguillarum, Vibrio coralliilyticus, Yarrowia lipolytica, and Micrococcus luteus efficiently. In addition, the mRNA expression of 12 candidate genes related to phagocytosis and hematopoiesis were also monitored, and the expression levels of CgIntegrin, CgPI3K (phosphatidylinositol 3-kinase), CgRho J, CgMAPKK (mitogen-activated protein kinase kinase), CgRab32, CgNADPH (nicotinamide adenine dinucleotide phosphate) oxidase, CgRunx1 and CgBMP7 (bone morphogenetic protein 7) in the hemocytes of pre-stimulated oysters after the secondary stimulation of V. splendidus were higher (p < 0.01) than that after the primary stimulation, but there was no statistically significant changes for the genes of CgPKC (protein kinase C), CgMyosin, CgActin, and CgGATA 3. These results collectively suggested that the primary stimulation of V. splendidus led to immune priming in oyster with specifically enhanced phagocytosis and rapidly promoted regeneration of circulating hemocytes when the primed oysters encountered the secondary challenge with V. splendidus.
Collapse
Affiliation(s)
- Tao Zhang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Limei Qiu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Zhibin Sun
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lingling Wang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Zhi Zhou
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Rui Liu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Feng Yue
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Rui Sun
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Linsheng Song
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China.
| |
Collapse
|
11
|
The hemolymph proteome of fed and starved Drosophila larvae. PLoS One 2013; 8:e67208. [PMID: 23840627 PMCID: PMC3688620 DOI: 10.1371/journal.pone.0067208] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Accepted: 05/17/2013] [Indexed: 01/31/2023] Open
Abstract
The co-operation of specialized organ systems in complex multicellular organisms depends on effective chemical communication. Thus, body fluids (like blood, lymph or intraspinal fluid) contain myriads of signaling mediators apart from metabolites. Moreover, these fluids are also of crucial importance for immune and wound responses. Compositional analyses of human body fluids are therefore of paramount diagnostic importance. Further improving their comprehensiveness should increase our understanding of inter-organ communication. In arthropods, which have trachea for gas exchange and an open circulatory system, the single dominating interstitial fluid is the hemolymph. Accordingly, a detailed analysis of hemolymph composition should provide an especially comprehensive picture of chemical communication and defense in animals. Therefore we used an extensive protein fractionation workflow in combination with a discovery-driven proteomic approach to map out the detectable protein composition of hemolymph isolated from Drosophila larvae. Combined mass spectrometric analysis revealed more than 700 proteins extending far beyond the previously known Drosophila hemolymph proteome. Moreover, by comparing hemolymph isolated from either fed or starved larvae, we provide initial provisional insights concerning compositional changes in response to nutritional state. Storage proteins in particular were observed to be strongly reduced by starvation. Our hemolymph proteome catalog provides a rich basis for data mining, as exemplified by our identification of potential novel cytokines, as well as for future quantitative analyses by targeted proteomics.
Collapse
|
12
|
Duncan AB, Agnew P, Noel V, Demettre E, Seveno M, Brizard JP, Michalakis Y. Proteome of Aedes aegypti in response to infection and coinfection with microsporidian parasites. Ecol Evol 2012; 2:681-94. [PMID: 22837817 PMCID: PMC3399191 DOI: 10.1002/ece3.199] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2011] [Accepted: 12/01/2011] [Indexed: 12/24/2022] Open
Abstract
Hosts are frequently infected with more than one parasite or pathogen at any one time, but little is known as to how they respond to multiple immune challenges compared to those involving single infections. We investigated the proteome of Aedes aegypti larvae following infection with either Edhazardia aedis or Vavraia culicis, and coinfections involving both. They are both obligate intracellular parasites belonging to the phylum microsporidia and infect natural populations of Ae. aegypti. The results found some proteins only showing modified abundance in response to infections involving E. aedis, while others were only differentially abundant when infections involved V. culicis. Some proteins only responded with modified abundance to the coinfection condition, while others were differentially abundant in response to all three types of infection. As time since infection increased, the response to each of the single parasite infections diverged, while the response to the E. aedis and coinfection treatments converged. Some of the proteins differentially abundant in response to infection were identified. They included two vacuolar ATPases, proteins known to have a role in determining the infection success of intracellular parasites. This result suggests microsporidia could influence the infection success of other intracellular pathogens infecting vector species of mosquito, including viruses, Plasmodium and Wolbachia.
Collapse
|
13
|
Boerjan B, Cardoen D, Verdonck R, Caers J, Schoofs L. Insect omics research coming of age1This review is part of a virtual symposium on recent advances in understanding a variety of complex regulatory processes in insect physiology and endocrinology, including development, metabolism, cold hardiness, food intake and digestion, and diuresis, through the use of omics technologies in the postgenomic era. CAN J ZOOL 2012. [DOI: 10.1139/z2012-010] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
As more and more insect genomes are fully sequenced and annotated, omics technologies, including transcriptomic, proteomic, peptidomics, and metobolomic profiling, as well as bioinformatics, can be used to exploit this huge amount of sequence information for the study of different biological aspects of insect model organisms. Omics experiments are an elegant way to deliver candidate genes, the function of which can be further explored by genetic tools for functional inactivation or overexpression of the genes of interest. Such tools include mainly RNA interference and are currently being developed in diverse insect species. In this manuscript, we have reviewed how omics technologies were integrated and applied in insect biology.
Collapse
Affiliation(s)
- Bart Boerjan
- Research Group of Functional Genomics and Proteomics, KU Leuven, Naamsestraat 59, B-3000 Leuven, Belgium
| | - Dries Cardoen
- Research Group of Functional Genomics and Proteomics, KU Leuven, Naamsestraat 59, B-3000 Leuven, Belgium
- Laboratory of Entomology, KU Leuven, Naamsestraat 59, B-3000 Leuven, Belgium
| | - Rik Verdonck
- Research Group of Molecular Developmental Physiology and Signal Transduction, KU Leuven, Naamsestraat 59, B-3000 Leuven, Belgium
| | - Jelle Caers
- Research Group of Functional Genomics and Proteomics, KU Leuven, Naamsestraat 59, B-3000 Leuven, Belgium
| | - Liliane Schoofs
- Research Group of Functional Genomics and Proteomics, KU Leuven, Naamsestraat 59, B-3000 Leuven, Belgium
| |
Collapse
|
14
|
Abstract
The deleterious and sometimes fatal outcomes of bacterial infectious diseases are the net result of the interactions between the pathogen and the host, and the genetically tractable fruit fly, Drosophila melanogaster, has emerged as a valuable tool for modeling the pathogen-host interactions of a wide variety of bacteria. These studies have revealed that there is a remarkable conservation of bacterial pathogenesis and host defence mechanisms between higher host organisms and Drosophila. This review presents an in-depth discussion of the Drosophila immune response, the Drosophila killing model, and the use of the model to examine bacterial-host interactions. The recent introduction of the Drosophila model into the oral microbiology field is discussed, specifically the use of the model to examine Porphyromonas gingivalis-host interactions, and finally the potential uses of this powerful model system to further elucidate oral bacterial-host interactions are addressed.
Collapse
Affiliation(s)
- Christina O Igboin
- Division of Oral Biology, College of Dentistry, The Ohio State University, Columbus, Ohio, USA
| | | | | |
Collapse
|
15
|
Jia X, Zou Z, Wang G, Wang S, Wang Y, Zhang Z. Gene expression profiling in respond to TBT exposure in small abalone Haliotis diversicolor. FISH & SHELLFISH IMMUNOLOGY 2011; 31:557-563. [PMID: 21767652 DOI: 10.1016/j.fsi.2011.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2011] [Revised: 06/18/2011] [Accepted: 07/02/2011] [Indexed: 05/31/2023]
Abstract
In this study, we investigated the gene expression profiling of small abalone, Haliotis diversicolor by tributyltin (TBT) exposure using a cDNA microarray containing 2473 unique transcripts. Totally, 107 up-regulated genes and 41 down-regulated genes were found. For further investigation of candidate genes from microarray data and EST analysis, quantitative real-time PCR was performed at 6 h, 24 h, 48 h, 96 h and 192 h TBT exposure. 26 genes were found to be significantly differentially expressed in different time course, 3 of them were unknown. Some gene homologues like cellulose, endo-beta-1,4-glucanase, ferritin subunit 1 and thiolester containing protein II CG7052-PB might be the good biomarker candidate for TBT monitor. The identification of stress response genes and their expression profiles will permit detailed investigation of the defense responses of small abalone genes.
Collapse
Affiliation(s)
- Xiwei Jia
- The Key Laboratory of Science and Technology for Aquaculture and Food Safety, Fisheries College, Jimei University, Xiamen, Fujian 361021, China
| | | | | | | | | | | |
Collapse
|
16
|
Keebaugh ES, Schlenke TA. Adaptive evolution of a novel Drosophila lectin induced by parasitic wasp attack. Mol Biol Evol 2011; 29:565-77. [PMID: 21873297 DOI: 10.1093/molbev/msr191] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Drosophila melanogaster has long been used as a model for the molecular genetics of innate immunity. Such work has uncovered several immune receptors that recognize bacterial and fungal pathogens by binding unique components of their cell walls and membranes. Drosophila also act as hosts to metazoan pathogens such as parasitic wasps, which can infect a majority of individuals in natural populations, but many aspects of their immune responses against these more closely related pathogens are poorly understood. Here, we present data describing the transcriptional induction and molecular evolution of a candidate Drosophila anti-wasp immunity gene, lectin-24A. Lectin-24A has a secretion signal sequence and its lectin domain suggests a function in sugar group binding. Transcript levels of lectin-24A were induced significantly stronger and faster following wasp attack than following wounding or bacterial infection, demonstrating lectin-24A is not a general stress response or defense response gene but is instead part of a specific response against wasps. The major site of lectin-24A transcript production is the fat body, the main humoral immune tissue of flies. Interestingly, lectin-24A is a new gene of the D. melanogaster/Drosophila simulans clade, displaying very little homology to any other Drosophila lectins. Population genetic analyses of lectin-24A DNA sequence data from African and North American populations of D. melanogaster and D. simulans revealed gene length polymorphisms segregating at high frequencies as well as strong evidence of repeated and recent selective sweeps. Thus, lectin-24A is a rapidly evolving new gene that has seemingly developed functional importance for fly resistance against infection by parasitic wasps.
Collapse
|
17
|
Hernández-Tobías A, Julián-Sánchez A, Piña E, Riveros-Rosas H. Natural alcohol exposure: Is ethanol the main substrate for alcohol dehydrogenases in animals? Chem Biol Interact 2011; 191:14-25. [DOI: 10.1016/j.cbi.2011.02.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2010] [Revised: 02/01/2011] [Accepted: 02/01/2011] [Indexed: 01/30/2023]
|
18
|
WERTHEIM BREGJE, KRAAIJEVELD ALEXR, HOPKINS MEIRIONG, WALTHER BOER MARK, GODFRAY HCHARLESJ. Functional genomics of the evolution of increased resistance to parasitism in Drosophila. Mol Ecol 2010; 20:932-49. [DOI: 10.1111/j.1365-294x.2010.04911.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
19
|
Mak P, Zdybicka-Barabas A, Cytryńska M. A different repertoire of Galleria mellonella antimicrobial peptides in larvae challenged with bacteria and fungi. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2010; 34:1129-1136. [PMID: 20558200 DOI: 10.1016/j.dci.2010.06.005] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2010] [Revised: 06/08/2010] [Accepted: 06/09/2010] [Indexed: 05/29/2023]
Abstract
To date, functioning of insect humoral immune response is especially well described in Diptera. The mechanisms of pathogen recognition, activation of signaling pathways and regulation of antimicrobial defense peptide expression are relatively well known. The present paper demonstrates evidence that the immune system of the Lepidoptera moth, Galleria mellonella, is also able to distinguish between different classes of microorganisms and responds to the invading pathogen accordingly. G. mellonella larvae were challenged with Gram-negative and Gram-positive bacteria as well as with yeast and filamentous fungus cells. Subsequently, 24, 48 and 72 h after immunization, the concentrations of lysozyme and six defense peptides were determined in the hemolymph by the HPLC technique. The compounds studied demonstrated variability both in the kinetics of the increase as well as in the concentrations reached. The Gram-negative bacterium and filamentous fungus were particularly effective immunogens, especially affecting the levels of lysozyme, Galleria defensin, proline-rich peptide 2 and cecropin D-like peptide.
Collapse
Affiliation(s)
- Pawel Mak
- Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7 St., 30-387 Krakow, Poland
| | | | | |
Collapse
|
20
|
Stopforth E, Neitz AWH, Gaspar ARM. A proteomics approach for the analysis of hemolymph proteins involved in the immediate defense response of the soft tick, Ornithodoros savignyi, when challenged with Candida albicans. EXPERIMENTAL & APPLIED ACAROLOGY 2010; 51:309-325. [PMID: 20186467 DOI: 10.1007/s10493-010-9338-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2009] [Accepted: 01/28/2010] [Indexed: 05/28/2023]
Abstract
A proteomics approach was employed to identify proteins secreted into the hemolymph of Ornithodorus savignyi ticks 2 h after immune-challenge with the yeast, Candida albicans. Profiling of the proteins present in hemolymph of unchallenged ticks versus ticks challenged with heat-killed yeast revealed five proteins to be differentially expressed. The modulated protein spots were subjected to tandem mass spectrometry (MS/MS) analysis, but could not be positively identified. These proteins can be assigned to the immune response as they were not induced after aseptic injury. In an attempt to identify hemolymph proteins that recognize and bind to yeast cells, hemolymph obtained from both unchallenged and challenged ticks was incubated with C. albicans. Elution of the bound proteins followed by SDS-PAGE analysis indicated that three proteins (97, 88 and 26 kDa) present in both unchallenged and challenged hemolymph samples bind to yeast cells. The constant presence of these three proteins in tick hemolymph leads us to believe that they may be involved in non-self recognition and participate in yeast clearance from tick plasma. The analyzed yeast-binding proteins could also not be positively identified, suggesting that all the tick immune proteins investigated in this study are novel.
Collapse
Affiliation(s)
- Elaine Stopforth
- Department of Biochemistry, University of Pretoria, South Africa
| | | | | |
Collapse
|
21
|
Reumer A, Bogaerts A, Van Loy T, Husson SJ, Temmerman L, Choi C, Clynen E, Hassan B, Schoofs L. Unraveling the protective effect of a Drosophila phosphatidylethanolamine-binding protein upon bacterial infection by means of proteomics. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2009; 33:1186-1195. [PMID: 19545586 DOI: 10.1016/j.dci.2009.06.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2009] [Revised: 06/12/2009] [Accepted: 06/13/2009] [Indexed: 05/28/2023]
Abstract
This study addresses the biological function of CG18594, a Drosophila melanogaster phosphatidylethanolamine-binding protein (PEBP) that we named PEBP1, by combining fly genetics, survival experiments and differential proteomics. We demonstrate that transgenic flies overexpressing PEBP1 are highly protected against bacterial infection due to the release of immunity-related proteins in their hemolymph. Apart from proteins that have been reported earlier to participate in insect immunity, we also identify proteins involved in metabolism and signaling, and, in addition, twelve (hypothetical) proteins with unknown function. This is the first report demonstrating an immune function for a Drosophila PEBP protein.
Collapse
Affiliation(s)
- Ank Reumer
- Department of Biology, Functional Genomics and Proteomics Unit, K.U. Leuven, Leuven, Belgium.
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Bogaerts A, Baggerman G, Vierstraete E, Schoofs L, Verleyen P. The hemolymph proteome of the honeybee: Gel-based or gel-free? Proteomics 2009; 9:3201-8. [DOI: 10.1002/pmic.200800604] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
23
|
Sackton TB, Clark AG. Comparative profiling of the transcriptional response to infection in two species of Drosophila by short-read cDNA sequencing. BMC Genomics 2009; 10:259. [PMID: 19500410 PMCID: PMC2701966 DOI: 10.1186/1471-2164-10-259] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2008] [Accepted: 06/07/2009] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Homology-based comparisons of the genes involved in innate immunity across many insect taxa with fully sequenced genomes has revealed a striking pattern of gene gain and loss, particularly among genes that encode proteins involved in clearing pathogens (effectors). However, limited functional annotation in non-model systems has hindered understanding of evolutionary novelties in the insect innate immune system. RESULTS We use short read sequencing technology (Illumina/Solexa) to compare the transcriptional response to infection between the well studied model system Drosophila melanogaster and the distantly related drosophilid D. virilis. We first demonstrate that Illumina/Solexa sequencing of cDNA from infected and uninfected D. melanogaster recapitulates previously published microarray studies of the transcriptional response to infection in this species, validating our approach. We then show that patterns of transcription of homologous genes differ considerably between D. melanogaster and D. virilis, and identify potential candidates for novel components of the D. virilis immune system based on transcriptional data. Finally, we use a proteomic approach to characterize the protein constituents of the D. virilis hemolymph and validate our transcriptional data. CONCLUSION These results suggest that the acquisition of novel components of the immune system, and particularly novel effector proteins, may be a common evolutionary phenomenon.
Collapse
Affiliation(s)
- Timothy B Sackton
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA.
| | | |
Collapse
|
24
|
Wang D, Kim BY, Lee KS, Yoon HJ, Cui Z, Lu W, Jia JM, Kim DH, Sohn HD, Jin BR. Molecular characterization of iron binding proteins, transferrin and ferritin heavy chain subunit, from the bumblebee Bombus ignitus. Comp Biochem Physiol B Biochem Mol Biol 2008; 152:20-7. [PMID: 18824242 DOI: 10.1016/j.cbpb.2008.09.082] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2008] [Revised: 09/04/2008] [Accepted: 09/05/2008] [Indexed: 10/21/2022]
Abstract
Transferrin and ferritin are iron-binding proteins involved in transport and storage of iron as part of iron metabolism. Here, we describe the cDNA cloning and characterization of transferrin (Bi-Tf) and the ferritin heavy chain subunit (Bi-FerHCH), from the bumblebee Bombus ignitus. Bi-Tf cDNA spans 2340 bp and encodes a protein of 706 amino acids and Bi-FerHCH cDNA spans 1393 bp and encodes a protein of 217 amino acids. Comparative analysis revealed that Bi-Tf appears to have residues comprising iron-binding sites in the N-terminal lobe, and Bi-FerHCH contains a 5'UTR iron-responsive element and seven conserved amino acid residues associated with a ferroxidase center. The Bi-Tf and Bi-FerHCH cDNAs were expressed as 79 kDa and 27 kDa polypeptides, respectively, in baculovirus-infected insect Sf9 cells. Northern blot analysis revealed that Bi-Tf exhibits fat body-specific expression and Bi-FerHCH shows ubiquitous expression. The expression profiles of the Bi-Tf and Bi-FerHCH in the fat body of B. ignitus worker bees revealed that Bi-Tf and Bi-FerHCH are differentially induced in a time-dependent manner in a single insect by wounding, bacterial challenge, and iron overload.
Collapse
Affiliation(s)
- Dong Wang
- College of Natural Resources and Life Science, Dong-A University, Busan 604-714, Republic of Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Jacobs S, Van de Plas B, Van der Gucht E, Clerens S, Cnops L, Van den Bergh G, Arckens L. Identification of new regional marker proteins to map mouse brain by 2-D difference gel electrophoresis screening. Electrophoresis 2008; 29:1518-24. [PMID: 18324726 DOI: 10.1002/elps.200700487] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
To screen for new region-specific protein markers we compared the proteome maps of the primary visual and somatosensory areas V1 and S1 in mouse brain using 2-D difference gel electrophoresis (2-D DIGE). Twenty-three protein spots showed a statistically significant difference in expression level between V1 and S1, with 52% appearing more abundantly in V1. Twenty-six proteins were mass spectrometrically identified in 22 spots. To assess the validity of this list of potential areal markers generated by 2-D DIGE, the effective area-specific distribution profile of creatine kinase brain subtype (CKB), a protein with a clearly higher expression level in S1, was monitored with in situ hybridization. The mRNA expression profile of CKB displayed a clear area-specific distribution, which allowed demarcation of S1 and its topographical borders with neighboring neocortical areas. This proteomic study demonstrates the innovative application of 2-D DIGE and MS to select new regional markers for neuroscience research.
Collapse
Affiliation(s)
- Sandy Jacobs
- Laboratory of Neuroplasticity and Neuroproteomics, Katholieke Universiteit Leuven, Leuven, Belgium
| | | | | | | | | | | | | |
Collapse
|
26
|
Mendes AM, Schlegelmilch T, Cohuet A, Awono-Ambene P, De Iorio M, Fontenille D, Morlais I, Christophides GK, Kafatos FC, Vlachou D. Conserved mosquito/parasite interactions affect development of Plasmodium falciparum in Africa. PLoS Pathog 2008; 4:e1000069. [PMID: 18483558 PMCID: PMC2373770 DOI: 10.1371/journal.ppat.1000069] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2007] [Accepted: 04/14/2008] [Indexed: 12/16/2022] Open
Abstract
In much of sub-Saharan Africa, the mosquito Anopheles gambiae is the main vector of the major human malaria parasite, Plasmodium falciparum. Convenient laboratory studies have identified mosquito genes that affect positively or negatively the developmental cycle of the model rodent parasite, P. berghei. Here, we use transcription profiling and reverse genetics to explore whether five disparate mosquito gene regulators of P. berghei development are also pertinent to A. gambiae/P. falciparum interactions in semi-natural conditions, using field isolates of this parasite and geographically related mosquitoes. We detected broadly similar albeit not identical transcriptional responses of these genes to the two parasite species. Gene silencing established that two genes affect similarly both parasites: infections are hindered by the intracellular local activator of actin cytoskeleton dynamics, WASP, but promoted by the hemolymph lipid transporter, ApoII/I. Since P. berghei is not a natural parasite of A. gambiae, these data suggest that the effects of these genes have not been drastically altered by constant interaction and co-evolution of A. gambiae and P. falciparum; this conclusion allowed us to investigate further the mode of action of these two genes in the laboratory model system using a suite of genetic tools and infection assays. We showed that both genes act at the level of midgut invasion during the parasite's developmental transition from ookinete to oocyst. ApoII/I also affects the early stages of oocyst development. These are the first mosquito genes whose significant effects on P. falciparum field isolates have been established by direct experimentation. Importantly, they validate for semi-field human malaria transmission the concept of parasite antagonists and agonists. Malaria is a parasitic infectious disease transmitted by mosquitoes. It impacts half the population of the world and kills 1 to 3 million people every year, the vast majority of whom are children aged below 5 in sub-Saharan Africa. There, the deadliest parasite is Plasmodium falciparum and its most important vector is the mosquito Anopheles gambiae. This study identifies for the first time specific A. gambiae genes that demonstrably regulate the density of mosquito infection by P. falciparum parasites circulating in malaria patients in Africa. These genes function in mosquito lipid transport and intracellular actin cytoskeleton dynamics, and act as an agonist and an antagonist, respectively, of the parasite ookinete-to-oocyst developmental transition. Importantly, our study validates for P. falciparum the concept of mosquito genes that support or hinder parasite development, a concept that we defined previously using a laboratory model system. Thus, the work constitutes a major contribution to understanding meaningful mosquito/parasite interactions in natural transmission conditions.
Collapse
Affiliation(s)
- Antonio M. Mendes
- Imperial College London, Division of Cell and Molecular Biology, Faculty of Natural Sciences, South Kensington Campus, London, United Kingdom
| | - Timm Schlegelmilch
- Imperial College London, Division of Cell and Molecular Biology, Faculty of Natural Sciences, South Kensington Campus, London, United Kingdom
| | - Anna Cohuet
- Institut de Recherche pour le Développement - Laboratoire de Lutte contre les Insectes Nuisibles, UR 016, BP 64501, Montpellier, France
| | - Parfait Awono-Ambene
- Organisation de Coordination de la lutte contre les Endémies en Afrique Centrale, Laboratoire de Recherche sur le Paludisme, BP 288, Yaoundé, Cameroon
| | - Maria De Iorio
- Imperial College London, Division of Epidemiology, Department of Public Health and Primary Care, Faculty of Medicine, St Mary's Campus, London, United Kingdom
| | - Didier Fontenille
- Institut de Recherche pour le Développement - Laboratoire de Lutte contre les Insectes Nuisibles, UR 016, BP 64501, Montpellier, France
| | - Isabelle Morlais
- Organisation de Coordination de la lutte contre les Endémies en Afrique Centrale, Laboratoire de Recherche sur le Paludisme, BP 288, Yaoundé, Cameroon
| | - George K. Christophides
- Imperial College London, Division of Cell and Molecular Biology, Faculty of Natural Sciences, South Kensington Campus, London, United Kingdom
| | - Fotis C. Kafatos
- Imperial College London, Division of Cell and Molecular Biology, Faculty of Natural Sciences, South Kensington Campus, London, United Kingdom
- * E-mail: (FCK); (DV)
| | - Dina Vlachou
- Imperial College London, Division of Cell and Molecular Biology, Faculty of Natural Sciences, South Kensington Campus, London, United Kingdom
- * E-mail: (FCK); (DV)
| |
Collapse
|
27
|
|
28
|
Reumer A, Van Loy T, Clynen E, Schoofs L. How functional genomics and genetics complements insect endocrinology. Gen Comp Endocrinol 2008; 155:22-30. [PMID: 17686480 DOI: 10.1016/j.ygcen.2007.06.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2007] [Accepted: 06/27/2007] [Indexed: 01/19/2023]
Abstract
Insects are the most abundant animal group on Earth and have been the subject of genetic and physiological studies since the beginning of the 19th century. The public interest in understanding their biology increased as many insects have proven to exert a severe impact on human welfare and the environment. To trigger insect physiological and endocrinological research, the genome of several economical and ecological important insect species was recently sequenced. Following the availability of these genomic data many so called 'post-genomic' technologies have been developed to characterise gene function and to unravel signalling pathways underlying biological processes. For some species genomic research is further complemented with mutagenesis and reverse genetic studies. In the following, we present an overview of genomic and functional genetic methodologies that boosted endocrine research in insects.
Collapse
Affiliation(s)
- Ank Reumer
- Animal Physiology and Neurobiology Section, Research Group Functional Genomics and Proteomics, K.U.Leuven, Naamsestraat 59, B-3000 Leuven, Belgium
| | | | | | | |
Collapse
|
29
|
Soltanian S, Thai TQ, Dhont J, Sorgeloos P, Bossier P. The protective effect against Vibrio campbellii in Artemia nauplii by pure beta-glucan and isogenic yeast cells differing in beta-glucan and chitin content operated with a source-dependent time lag. FISH & SHELLFISH IMMUNOLOGY 2007; 23:1003-14. [PMID: 17827034 DOI: 10.1016/j.fsi.2007.04.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2007] [Revised: 03/30/2007] [Accepted: 04/05/2007] [Indexed: 05/17/2023]
Abstract
In invertebrates the defence system to fight infectious diseases depends mainly on a non-specific or innate immune response, contrary to the vertebrate immune system. The use of natural immunostimulants that enhance the defence mechanism or the immune response of target organisms may be an excellent preventive tool against pathogens. Several strains of baker's yeast Saccharomyces cerevisiae have been found to be good immune enhancers. Previously, it was shown that small quantities of the mnn9 yeast cells and/or glucan particles could protect Artemia nauplii against the pathogenic bacterium Vibrio campbellii in the gnotobiotic Artemia challenge test. Apparently, the higher amount and/or availability of beta-glucans and/or chitin present in mnn9 yeast strain might play an essential role in such protection. The present study reveals that these compounds could only provide protection against the pathogen when they were supplied to Artemia well in advance of the challenge (8-48 h depending on the source). Also the putative immunostimulant did not have a curative action. Moreover, short-time exposure of Artemia to mnn9 strain (priming) did not provide protection against the pathogen longer than two days. Hence, it is hypothesized that the mere stimulation of known biochemical pathways, e.g. prophenoloxidase is not sufficient to explain the mechanisms involved in the observed immunostimulation obtained by beta-glucans and/or mnn9 yeast in Artemia nauplii.
Collapse
Affiliation(s)
- Siyavash Soltanian
- Laboratory of Aquaculture and Artemia Reference Center, Faculty of Bioscience Engineering, Ghent University, Rozier 44, 9000 Gent, Belgium.
| | | | | | | | | |
Collapse
|
30
|
Scharlaken B, De Graaf DC, Memmi S, Devreese B, Van Beeumen J, Jacobs FJ. Differential protein expression in the honey bee head after a bacterial challenge. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2007; 65:223-37. [PMID: 17630657 DOI: 10.1002/arch.20179] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Insect immune proteins and peptides induced during bacterial infection are predominantly synthesized by the fat body or by haemocytes and released into the hemolymph. However, tissues other than the "immune-related" ones are thought to play a role in bacteria-induced responses. Here we report a proteomic study of honey bee heads designed to identify the proteins that are differentially expressed after bacterial challenge in a major body segment not directly involved in insect immunity. The list of identified proteins includes structural proteins, an olfactory protein, proteins involved in signal transduction, energy housekeeping, and stress responses, and also two major royal jelly proteins. This study revealed a number of bacteria-induced responses in insect head tissue directly related to typical functions of the head, such as exocrine secretion, memory, and senses in general.
Collapse
|
31
|
Chan QWT, Howes CG, Foster LJ. Quantitative comparison of caste differences in honeybee hemolymph. Mol Cell Proteomics 2006; 5:2252-62. [PMID: 16920818 DOI: 10.1074/mcp.m600197-mcp200] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The honeybee, Apis mellifera, is an invaluable partner in agriculture around the world both for its production of honey and, more importantly, for its role in pollination. Honeybees are largely unexplored at the molecular level despite a long and distinguished career as a model organism for understanding social behavior. Like other eusocial insects, honeybees can be divided into several castes: the queen (fertile female), workers (sterile females), and drones (males). Each caste has different energetic and metabolic requirements, and each differs in its susceptibility to pathogens, many of which have evolved to take advantage of the close social network inside a colony. Hemolymph, arthropods' equivalent to blood, distributes nutrients throughout the bee, and the immune components contained within it form one of the primary lines of defense against invading microorganisms. In this study we have applied qualitative and quantitative proteomics to gain a better understanding of honeybee hemolymph and how it varies among the castes and during development. We found large differences in hemolymph protein composition, especially between larval and adult stage bees and between male and female castes but even between adult workers and queens. We also provide experimental evidence for the expression of several unannotated honeybee genes and for the detection of biomarkers of a viral infection. Our data provide an initial molecular picture of honeybee hemolymph, to a greater depth than previous studies in other insects, and will pave the way for future biochemical studies of innate immunity in this animal.
Collapse
Affiliation(s)
- Queenie W T Chan
- UBC Centre for Proteomics, Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | | | | |
Collapse
|
32
|
Verleyen P, Baggerman G, D'Hertog W, Vierstraete E, Husson SJ, Schoofs L. Identification of new immune induced molecules in the haemolymph of Drosophila melanogaster by 2D-nanoLC MS/MS. JOURNAL OF INSECT PHYSIOLOGY 2006; 52:379-88. [PMID: 16510152 DOI: 10.1016/j.jinsphys.2005.12.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2005] [Revised: 12/20/2005] [Accepted: 12/21/2005] [Indexed: 05/06/2023]
Abstract
Antimicrobial peptides (AMPs) play an important role in the innate immunity of insects. In Drosophila 17 additional immune induced molecules (DIMs) were found in the haemolymph of adult flies upon septic injury. Previous studies using MALDI mass spectrometry combined with Edman degradation, detected AMPs and DIMs of a predominantly large size. By means of 2D-nanoLC ESI MS/MS, 43 DIMs were identified in this study from the haemolymph of Drosophila third instar larvae 12h after challenge with a mixture of Micrococcus luteus and Escherichia coli. Most peptides were derived from known AMP or DIM precursors, but only four peptides were purified and identified before. The majority of the peptides that we detected were smaller in size. Interestingly, two previously unknown peptide precursors were found and hereby related to immune defense. These include CG7738 and CG32185. Many of the identified peptides are post-translationally modified by an N-terminal pyroglutamic acid and/or a C-terminal amide. Haemolymph of control larvae was treated in the same way and revealed only one peptide.
Collapse
Affiliation(s)
- Peter Verleyen
- Laboratory of Developmental Physiology, Genomics and Proteomics, K.U.Leuven, Naamsestraat 59, B-3000 Leuven, Belgium.
| | | | | | | | | | | |
Collapse
|
33
|
Rautureau G, Jouvensal L, Decoville M, Locker D, Vovelle F, Schoentgen F. Cloning, high yield over-expression, purification, and characterization of CG18594, a new PEBP/RKIP family member from Drosophila melanogaster. Protein Expr Purif 2006; 48:90-7. [PMID: 16529946 DOI: 10.1016/j.pep.2006.01.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2005] [Revised: 01/18/2006] [Accepted: 01/27/2006] [Indexed: 11/22/2022]
Abstract
The phosphatidylethanolamine-binding protein (PEBP) family is widely distributed in various species, from bacteria to mammals. These proteins seem to modulate important cell mechanisms: they control heterotrimeric G-proteins, inhibit the MAP-kinase and NFkappaB signaling pathways, and also serine proteases (thrombin, neuropsin, and chymotrypsin). In order to establish structure-function relationships for this family of proteins, our study focuses on PEBPs expressed within a single organism: Drosophila melanogaster, which constitutes a model system that lends itself well to establishing links between genes' expression and the corresponding proteins' functions, and to studying physiological mechanisms such as development. Here, we describe an optimized protocol for high level over-expression and high yield/high purity production of CG18594, one of Drosophila six putative PEBPs, for biophysical studies. The yield of the purified 15N labeled protein is estimated to be 60 mg/L of M9 minimal medium. Analysis of the secondary structure using circular dichroism indicates that the protein comprises mainly beta-sheets at pH 7. The good dispersion of the crosspeaks on the 1H-15N HSQC spectrum provides evidence of a proper folding of the purified protein, though its time evolution suggests a tendency to denature. Taken together, these data are consistent with the assumption that the CG18594 protein belongs to the PEPB family.
Collapse
Affiliation(s)
- Gilles Rautureau
- Centre de Biophysique Moléculaire, UPR 4301 CNRS affiliated to Orléans University and to INSERM, Rue Charles Sadron, 45071 Orléans cedex 2, France
| | | | | | | | | | | |
Collapse
|
34
|
Vierstraete E, Verleyen P, De Loof A, Schoofs L. Differential Proteomics for StudyingDrosophilaImmunity. Ann N Y Acad Sci 2006; 1040:504-7. [PMID: 15891102 DOI: 10.1196/annals.1327.104] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Here, we report the identification of proteins associated with the immune response of Drosophila by analyzing the hemolymph profiles after infection. Two-dimensional difference gel electrophoresis was used to study the secretome in the hemolymph of Drosophila larvae. Shortly after induction with lipopolysaccharides, we identified 10 proteins, which we designated "Drosophila instantly released immune proteins". Infection with Micrococcus luteus or Saccharomyces cerevisiae induced 20 and 19 differential protein spots, respectively. Next to known immune proteins, new candidates that require further investigation were identified.
Collapse
Affiliation(s)
- Evy Vierstraete
- Laboratory of Developmental Physiology, Genomics, and Proteomics, Katholieke Universiteit Leuven, Belgium.
| | | | | | | |
Collapse
|
35
|
Biron DG, Agnew P, Marché L, Renault L, Sidobre C, Michalakis Y. Proteome of Aedes aegypti larvae in response to infection by the intracellular parasite Vavraia culicis. Int J Parasitol 2005; 35:1385-97. [PMID: 16102770 DOI: 10.1016/j.ijpara.2005.05.015] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2005] [Revised: 05/03/2005] [Accepted: 05/15/2005] [Indexed: 10/25/2022]
Abstract
We report on the modification of the Aedes aegypti larval proteome following infection by the microsporidian parasite Vavraia culicis. Mosquito larvae were sampled at 5 and 15 days of age to compare the effects of infection when the parasite was in two different developmental stages. Modifications of the host proteome due to the stress of infection were distinguished from those of a more general nature by treatments involving hypoxia. We found that the major reaction to stress was the suppression of particular protein spots. Older (15 days) larvae reacted more strongly to infection by V. culicis (46% of the total number of spots affected; 17% for 5 days larvae), while the strongest reaction of younger (5 days) larvae was to hypoxia for pH range 5-8 and to combined effects of infection and hypoxia for pH range 3-6. MALDI-TOF results indicate that proteins induced or suppressed by infection are involved directly or indirectly in defense against microorganisms. Finally, our MALDI-TOF results suggest that A. aegypti larvae try to control or clear V. culicis infection and also that V. culicis probably impairs the immune defense of this host via arginases-NOS competition.
Collapse
Affiliation(s)
- D G Biron
- GEMI, UMR CNRS/IRD 2724, Centre IRD de Montpellier, 911 Avenue Agropolis, BP 64501, 34394 Montpellier Cedex 5, France.
| | | | | | | | | | | |
Collapse
|
36
|
Ruden DM, De Luca M, Garfinkel MD, Bynum KL, Lu X. DROSOPHILANUTRIGENOMICS CAN PROVIDE CLUES TO HUMAN GENE-NUTRIENT INTERACTIONS. Annu Rev Nutr 2005; 25:499-522. [PMID: 16011476 DOI: 10.1146/annurev.nutr.25.050304.092708] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Nutrigenomics refers to the complex effects of the nutritional environment on the genome, epigenome, and proteome of an organism. The diverse tissue- and organ-specific effects of diet include gene expression patterns, organization of the chromatin, and protein post-translational modifications. Long-term effects of diet range from obesity and associated diseases such as diabetes and cardiovascular disease to increased or decreased longevity. Furthermore, the diet of the mother can potentially have long-term health impacts on the children, possibly through inherited diet-induced chromatin alterations. Drosophila is a unique and ideal model organism for conducting nutrigenomics research for numerous reasons. Drosophila, yeast, and Caenorhabditis elegans all have sophisticated genetics as well as sequenced genomes, and researchers working with all three organisms have made valuable discoveries in nutrigenomics. However, unlike yeast and C. elegans, Drosophila has adipose-like tissues and a lipid transport system, making it a closer model to humans. This review summarizes what has already been learned in Drosophila nutrigenomics (with an emphasis on lipids and sterols), critically evaluates the data, and discusses fruitful areas for future research.
Collapse
Affiliation(s)
- Douglas M Ruden
- Department of Environmental Health Sciences, University of Alabama at Birmingham, Alabama 35294, USA.
| | | | | | | | | |
Collapse
|
37
|
Paskewitz SM, Shi L. The hemolymph proteome of Anopheles gambiae. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2005; 35:815-24. [PMID: 15944078 DOI: 10.1016/j.ibmb.2005.03.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2005] [Revised: 03/02/2005] [Accepted: 03/15/2005] [Indexed: 05/02/2023]
Abstract
We used two-dimensional SDS-PAGE and microsequencing or peptide mass fingerprinting to identify major proteins in the hemolymph of Anopheles gambiae. We found approximately 280 protein spots in hemolymph and identified 28 spots, representing 26 individual proteins. Most of these proteins have known or predicted functions in immunity, iron transport, or lipid biology. Many of the proteins have been found in hemolymph in other insects but one protein is novel: a new member of the ML family (involved in lipid recognition). Three of the identified proteins increased in spot intensity or appeared de novo following bacterial injection: a phenoloxidase, and two chitinase-like proteins. A subset of proteins decreased following bacterial injections: these included the light and heavy chains of ferritin. Several proteins appeared in hemolymph following any wound or injection. Most of these are metabolic enzymes lacking signal peptides that are likely to be released as a result of damage to muscles and other tissues by injury. The map will provide a useful tool for examining changes in hemolymph proteins following blood feeding and infection by parasites.
Collapse
Affiliation(s)
- Susan M Paskewitz
- Department of Entomology, University of Wisconsin, 237 Russell Labs, 1630 Linden Drive, Madison, WI 53706, USA.
| | | |
Collapse
|
38
|
Vlachou D, Schlegelmilch T, Christophides GK, Kafatos FC. Functional Genomic Analysis of Midgut Epithelial Responses in Anopheles during Plasmodium Invasion. Curr Biol 2005; 15:1185-95. [PMID: 16005290 DOI: 10.1016/j.cub.2005.06.044] [Citation(s) in RCA: 147] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2005] [Revised: 06/03/2005] [Accepted: 06/07/2005] [Indexed: 11/17/2022]
Abstract
BACKGROUND The malaria parasite Plasmodium must complete a complex developmental life cycle within Anopheles mosquitoes before it can be transmitted into the human host. One day after mosquito infection, motile ookinetes traverse the midgut epithelium and, after exiting to its basal site facing the hemolymph, develop into oocysts. Previously, we have identified hemolymph factors that can antagonize or promote parasite development. RESULTS We profiled on a genomic scale the transcriptional responses of the A. gambiae midgut to P. berghei and showed that more than 7% of the assessed mosquito transcriptome is differentially regulated during invasion. The profiles suggested that actin- and microtubule-cytoskeleton remodeling is a major response of the epithelium to ookinete penetration. Other responses encompass components of innate immunity, extracellular-matrix remodeling, and apoptosis. RNAi-dependent gene silencing identified both parasite antagonists and agonists among regulators of actin dynamics and revealed that actin polymerization is inhibitory to the invading parasite. Combined transcriptional and reverse-genetic analysis further identified an unexpected dual role of the lipid-trafficking machinery of the hemolymph for both parasite and mosquito-egg development. CONCLUSIONS We conclude that the determinants of malaria-parasite development in Anopheles include components not only of systemic humoral immunity but also of intracellular, local epithelial reactions. These results provide novel mechanistic insights for understanding malaria transmission in the mosquito vector.
Collapse
Affiliation(s)
- Dina Vlachou
- European Molecular Biology Laboratory, Heidelberg, Germany
| | | | | | | |
Collapse
|
39
|
Abstract
Research into immune defense has been considerably enriched by the increasing focus on innate immunity. This type of immunity is still considered to lack specific memory, largely because there is no evidence of mechanisms that could provide such memory (such as acquired immunity). However, recent experimental data demonstrate specific memory phenomena in invertebrates: these organisms are thought to rely solely on innate defense. Here, I argue that a clear definition of the terms 'specificity' and 'memory', together with dissection of the evolutionary roots of immune defense, show us that innate immunity should not be, and is probably not, necessarily free of specific memory.
Collapse
Affiliation(s)
- Joachim Kurtz
- Department of Evolutionary Ecology, Max Planck Institute of Limnology, August-Thienemann-Str. 2, 24306 Plön, Germany.
| |
Collapse
|
40
|
Schlenke TA, McKean KA. A role for alcohol dehydrogenase in the Drosophila immune response? INSECT MOLECULAR BIOLOGY 2005; 14:175-178. [PMID: 15796750 DOI: 10.1111/j.1365-2583.2004.00543.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
In a recent study Drosophila larvae were injected with bacterial lipopolysaccharide (LPS) suspended in 1% ethanol and differentially induced protein fractions were identified. The levels of several proteins, including alcohol dehydrogenase (ADH), increased in LPS-treated flies and were labelled as immune response proteins. However, because control larvae were not injected with ethanol alone the identified proteins could represent a response to ethanol. Here, we injected Drosophila larvae with combinations of ethanol and LPS. While ADH activity increased in larvae receiving 1% ethanol, it was not increased after LPS injection. These results suggest that ADH plays no role in the Drosophila immune response, and that other proteins identified in the previous study may instead mediate ethanol tolerance in flies and other organisms.
Collapse
Affiliation(s)
- T A Schlenke
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA.
| | | |
Collapse
|
41
|
Abstract
Completion of the Drosophila genome has enabled the use of proteomic approaches for studying complex processes such as the innate immune defense against microorganisms. Microbial infection leads to the activation of responses involving changes at translational and post-translational levels. Proteomics is a tool for assessing such changes in protein expression, localization and post-translational modification. Recently, several studies have reported whole-genome analyses of the Drosophila immune response, both at the transcriptome and proteome levels, leading to a more comprehensive view of fly immunity. In this review, we describe and compare the proteomic techniques used in these analyses and discuss the results obtained by differential protein profiling of the Drosophila immune response.
Collapse
Affiliation(s)
- Ylva Engström
- Department of Molecular Biology and Functional Genomics, Stockholm University, SE-106 91 Stockholm, Sweden.
| | | | | |
Collapse
|
42
|
Karlsson C, Korayem AM, Scherfer C, Loseva O, Dushay MS, Theopold U. Proteomic Analysis of the Drosophila Larval Hemolymph Clot. J Biol Chem 2004; 279:52033-41. [PMID: 15466469 DOI: 10.1074/jbc.m408220200] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Components of the insect clot, an extremely rapid forming and critical part of insect immunity, are just beginning to be identified (1). Here we present a proteomic comparison of larval hemolymph before and after clotting to learn more about this process. This approach was supplemented by the identification of substrates for the enzyme transglutaminase, which plays a role in both vertebrate blood clotting (as factor XIIIa) and hemolymph coagulation in arthropods. Hemolymph proteins present in lower amounts after clotting include CG8502 (a protein with a mucin-type domain and a domain with similarity to cuticular components), CG11313 (a protein with similarity to prophenoloxidase-activating proteases), and two phenoloxidases, lipophorin, a secreted gelsolin, and CG15825, which had previously been isolated from clots (2). Proteins whose levels increase after clotting include a ferritin-subunit and two members of the immunoglobulin family with a high similarity to the small immunoglobulin-like molecules involved in mammalian innate immunity. Our results correlate with findings from another study of coagulation (2) that involved a different experimental approach. Proteomics allows the isolation of novel candidate clotting factors, leading to a more complete picture of clotting. In addition, our two-dimensional protein map of cell-free Drosophila hemolymph includes many additional proteins that were not found in studies performed on whole hemolymph.
Collapse
Affiliation(s)
- Christine Karlsson
- Department of Molecular Biology and Functional Genomics, University of Stockholm, 10691 Stockholm, Sweden
| | | | | | | | | | | |
Collapse
|