1
|
Rezatofighi SE. Exogenous interactome analysis of bovine viral diarrhea virus-host using network based-approach and identification of hub genes and important pathways involved in virus pathogenesis. Biochem Biophys Rep 2024; 40:101825. [PMID: 39318471 PMCID: PMC11421936 DOI: 10.1016/j.bbrep.2024.101825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 09/08/2024] [Accepted: 09/11/2024] [Indexed: 09/26/2024] Open
Abstract
Bovine viral diarrhea (BVD) is one of the most important diseases in livestock, caused by BVD virus (BVDV). During the pathogenesis of the virus, many interactions occur between host and viral proteins. Studying these interactions can help better understand the pathogenesis of the virus, identify putative functional proteins, and find new treatment and prevention strategies. To this aim, a BVDV-host protein-protein interaction (PPI) network map was constructed using Cytoscape and analyzed with cytoHubba, Kyoto Encyclopedia of Genes and Genomics (KEGG), Gene Ontology (GO), and Protein Analysis Through Evolutionary Relationships (PANTHER). Npro with 125 connections had the greatest number of interactions with host proteins. CD46, EEF-2, and TXN genes were detected as hub genes using different ranking algorithms in cytoHubba. BVDV interactions with its host mainly focus on targeting translation, protein synthesis, and cellular metabolism pathways. Different classes of proteins including translational proteins, nucleic acid metabolism proteins, metabolite interconversion enzymes, and protein-modifying enzymes are affected by BVDV. These findings improve our understanding of the effects of the virus on the cell. Hub genes and key pathways identified in the present study can serve as targets for novel BVDV prevention or treatment strategies.
Collapse
|
2
|
Huynh LT, Sohn EJ, Park Y, Kim J, Shimoda T, Hiono T, Isoda N, Hong SH, Lee HN, Sakoda Y. Development of a dual immunochromatographic test strip to detect E2 and E rns antibodies against classical swine fever. Front Microbiol 2024; 15:1383976. [PMID: 38666258 PMCID: PMC11043574 DOI: 10.3389/fmicb.2024.1383976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 03/28/2024] [Indexed: 04/28/2024] Open
Abstract
Background It is essential to consider a practical antibody test to successfully implement marker vaccines and validate vaccination efficacy against classical swine fever virus (CSFV). The test should include a serological antibody assay, combined with a tool for differentiating infected from vaccinated animals (DIVA). The immunochromatographic test strip (ICS) has been exclusively designed for detecting CSFV E2 antibodies while lacking in detecting Erns antibodies, which can be employed and satisfy DIVA strategy. This study developed a novel ICS for detecting CSFV E2/Erns dual-antibody. The effectiveness of ICS in evaluating the DIVA capability of two novel chimeric pestivirus vaccine candidates was assessed. Methods Recombinant E2 or Erns protein was transiently expressed in the plant benthamiana using Agrobacterium tumefaciens. ICS was subsequently assembled, and goat anti-rabbit IgG and recombinant CSFV E2 or Erns protein were plated onto the nitrocellulose membrane as control and test lines, respectively. The sensitivity and specificity of ICS were evaluated using sera with different neutralizing antibody titers or positive for antibodies against CSFV and other pestiviruses. The coincidence rates for detecting E2 and Erns antibodies between ICS and commercial enzyme-linked immunosorbent assay (ELISA) kits were also computed. ICS performance for DIVA capability was evaluated using sera from pigs vaccinated with conventional vaccine or chimeric vaccine candidates. Results E2 and Erns proteins were successfully expressed in N. benthamiana-produced recombinant proteins. ICS demonstrated high sensitivity in identifying CSFV E2 and Erns antibodies, even at the low neutralizing antibody titers. No cross-reactivity with antibodies from other pestiviruses was confirmed using ICS. There were high agreement rates of 93.0 and 96.5% between ICS and two commercial ELISA kits for E2 antibody testing. ICS also achieved strong coincidence rates of 92.9 and 89.3% with two ELISA kits for Erns antibody detection. ICS confirmed the absence of CSFV Erns-specific antibodies in sera from pigs vaccinated with chimeric vaccine candidates. Conclusion E2 and Erns proteins derived from the plant showed great potential and can be used to engineer a CSFV E2/Erns dual-antibody ICS. The ICS was also highly sensitive and specific for detecting CSFV E2 and Erns antibodies. Significantly, ICS can fulfill the DIVA concept by incorporating chimeric vaccine candidates.
Collapse
Affiliation(s)
- Loc Tan Huynh
- Laboratory of Microbiology, Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
- Faculty of Veterinary Medicine, College of Agriculture, Can Tho University, Can Tho, Vietnam
| | - Eun-Ju Sohn
- BioApplications, Inc., Pohang, Gyeongsangbuk, Republic of Korea
| | - Youngmin Park
- BioApplications, Inc., Pohang, Gyeongsangbuk, Republic of Korea
| | - Juhun Kim
- BioApplications, Inc., Pohang, Gyeongsangbuk, Republic of Korea
| | | | - Takahiro Hiono
- Laboratory of Microbiology, Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
- One Health Research Center, Hokkaido University, Sapporo, Hokkaido, Japan
- International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Hokkaido, Japan
- Institute for Vaccine Research and Development (HU-IVReD), Hokkaido University, Sapporo, Hokkaido, Japan
| | - Norikazu Isoda
- Laboratory of Microbiology, Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
- One Health Research Center, Hokkaido University, Sapporo, Hokkaido, Japan
- International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Hokkaido, Japan
- Institute for Vaccine Research and Development (HU-IVReD), Hokkaido University, Sapporo, Hokkaido, Japan
| | - Sung-Hee Hong
- Celltrix Co., Ltd., Seongnam, Gyeonggi, Republic of Korea
| | - Ha-Na Lee
- Celltrix Co., Ltd., Seongnam, Gyeonggi, Republic of Korea
| | - Yoshihiro Sakoda
- Laboratory of Microbiology, Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
- One Health Research Center, Hokkaido University, Sapporo, Hokkaido, Japan
- International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Hokkaido, Japan
- Institute for Vaccine Research and Development (HU-IVReD), Hokkaido University, Sapporo, Hokkaido, Japan
| |
Collapse
|
3
|
Yang N, Zhang J, Xu M, Yi J, Wang Z, Wang Y, Chen C. Virus-like particles vaccines based on glycoprotein E0 and E2 of bovine viral diarrhea virus induce Humoral responses. Front Microbiol 2022; 13:1047001. [PMID: 36439839 PMCID: PMC9687372 DOI: 10.3389/fmicb.2022.1047001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 10/10/2022] [Indexed: 07/27/2023] Open
Abstract
Bovine viral diarrhea/mucosal disease (BVD/MD) is a viral infectious disease that seriously endangers the health of cattle herds and brings serious economic losses to the global cattle industry. Virus-like particles (VLPs) are empty shell structures without viral nucleic acid, which are similar to natural virus particles in morphology and structure. Because of their strong immunogenicity and biological activity, some of them have been used as vaccines in clinical trials. In this study, we developed a strategy to generate BVDV (E0 + E2, E2 + E2) VLPs using an insect baculovirus expression vector system (BEVS). The VLPs obtained were detected by immunofluorescence assay (IFA), western blotting analyses and transmission electron microscope (TEM), and the results showed that VLPs of high purity were obtained. Mice immunized with VLPs (15 μg) and Freund's adjuvant (100 μl) elicited higher BVDV-neutralizing antibody in comparison with Freund's adjuvant control (p < 0.0001), and even on day 21 or 35 post-prime immunization, the neutralizing antibody levels of mice immunized with E0 + E2 or E2 + E2 VLPs were significantly higher compared with inactivated vaccine (p < 0.05). A subsequent challenge reveals that the viral loads of livers, kidneys, spleens, lungs and small intestines were significantly lower compared with control (p < 0.0001), and the viral loads of mice immunized with E0 + E2 or E2 + E2 VLPs in the small intestines were significantly lower compared with inactivated vaccine (p < 0.05). Thus, VLPs are a promising candidate vaccine and warrants further clinical evaluation.
Collapse
Affiliation(s)
- Ningning Yang
- College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Jiangwei Zhang
- Intelligent Breeding of Livestock and Poultry, Tiemenguan Vocational and Technical College, Tiemenguan, China
| | - Mingguo Xu
- College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Jihai Yi
- College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Zhen Wang
- College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Yong Wang
- College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Chuangfu Chen
- College of Animal Science and Technology, Shihezi University, Shihezi, China
- Key Laboratory of Control and Prevention of Animal Disease, Xinjiang Production & Construction Corps, Shihezi, China
- Co-Innovation Center for Zoonotic Infectious Diseases in the Western Region, Shihezi, China
| |
Collapse
|
4
|
Induction of Robust and Specific Humoral and Cellular Immune Responses by Bovine Viral Diarrhea Virus Virus-Like Particles (BVDV-VLPs) Engineered with Baculovirus Expression Vector System. Vaccines (Basel) 2021; 9:vaccines9040350. [PMID: 33917272 PMCID: PMC8067437 DOI: 10.3390/vaccines9040350] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 01/24/2021] [Accepted: 01/27/2021] [Indexed: 02/02/2023] Open
Abstract
Bovine viral diarrhea virus (BVDV) is an important animal pathogen that affects cattle. Infections caused by the virus have resulted in substantial economic losses and outbreaks of BVDV are reported globally. Virus-like particles (VLPs) are promising vaccine technology largely due to their safety and strong ability to elicit robust immune responses. In this study, we developed a strategy to generate BVDV-VLPs using a baculovirus expression vector system (BEVS). We were able to assemble BVDV-VLPs composed of dimerized viral proteins E2 and Erns, and the VLPs were spherical particles with the diameters of about 50 nm. Mice immunized with 15 μg of VLPs adjuvanted with ISA201 elicited higher levels of E2-specific IgG, IgG1, and IgG2a antibodies as well as higher BVDV-neutralizing activity in comparison with controls. Re-stimulation of the splenocytes collected from mice immunized with VLPs led to significantly increased levels of CD3+CD4+T cells and CD3+CD8+T cells. In addition, the splenocytes showed dramatically enhanced proliferation and the secretion of Th1-associated IFN-γ and Th2-associated IL-4 compared to that of the unstimulated control group. Taken together, our data indicate that BVDV-VLPs efficiently induced BVDV-specific humoral and cellular immune responses in mice, showing a promising potential of developing BVDV-VLP-based vaccines for the prevention of BVDV infections.
Collapse
|
5
|
Wei Q, Bai Y, Song Y, Liu Y, Yu W, Sun Y, Wang L, Deng R, Xing G, Zhang G. Generation and immunogenicity analysis of recombinant classical swine fever virus glycoprotein E2 and E rns expressed in baculovirus expression system. Virol J 2021; 18:44. [PMID: 33627167 PMCID: PMC7903030 DOI: 10.1186/s12985-021-01507-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 02/08/2021] [Indexed: 11/12/2022] Open
Abstract
Classical swine fever (CSF) caused by the classical swine fever virus (CSFV) is a highly contagious swine disease resulting in large economical losses worldwide. The viral envelope glycoprotein E2 and Erns are major targets for eliciting antibodies against CSFV in infected animals. In this report, the glycoprotein E2 and Erns were expressed using the baculovirus system and their protective immunity in rabbits were tested. Twenty CSFV seronegative rabbits were randomly divided into five groups. Each rabbit was intramuscularly immunized with CSFV-E2, CSFV-Erns, or their combination (CSFV-E2 + Erns). Besides, a commercial CSFV vaccine (C-strain) and PBS were used as positive or negative controls, respectively. Four weeks after the second immunization, all the rabbits were challenged with 100 RID50 of CSFV C-strain. High levels of CSFV E2-specific antibody, neutralizing antibody and cellular immune responses to CSFV were elicited in the rabbits inoculated with C-strain, CSFV-E2, and CSFV-E2 + Erns. And the rabbits inoculated with the three vaccines received complete protection against CSFV C-strain. However, no neutralizing antibody was detected in the Erns vaccinated rabbits and the rabbits exhibited fever typical of CSFV, suggesting the Erns alone is not able to induce a protective immune response. Taken together, while the Erns could not confer protection against CSFV, E2 and E2 + Erns could not only elicit humoral and cell-mediated immune responses but also confer complete protection against CSFV C-strain in rabbits.
Collapse
Affiliation(s)
- Qiang Wei
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China
| | - Yilin Bai
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China.,College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, China
| | - Yapeng Song
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China.,College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, Henan, China
| | - Yunchao Liu
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China
| | - Wei Yu
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China.,College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, China
| | - Yaning Sun
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China.,Henan Baiao Biological Project Co., Ltd., Zhengzhou, 450002, China
| | - Li Wang
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China
| | - Ruiguang Deng
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China
| | - Guangxu Xing
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China
| | - Gaiping Zhang
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China. .,College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, Henan, China. .,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu Province, China.
| |
Collapse
|
6
|
Lentiviral-mediated delivery of classical swine fever virus Erns gene into porcine kidney-15 cells for production of recombinant ELISA diagnostic antigen. Mol Biol Rep 2019; 46:3865-3876. [PMID: 31016614 DOI: 10.1007/s11033-019-04829-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 04/16/2019] [Indexed: 10/27/2022]
Abstract
Classical swine fever virus (CSFV), a member of the Pestivirus genus within the Flaviviridae family causes contagious fatal disease in swine. Antibodies against E2, Erns and NS3 proteins of virus can be detected in infected animals. Development of an ELISA coating antigen to improve the sensitivity of detecting Erns-specific antibodies in pig sera is always desirable for diagnosis as well as for differentiation of infected from vaccinated animals. In present study, a lentivirus-based gene delivery system was used to develop a stable PK-15 cell line expressing Erns (PK-Erns) for production of diagnostic antigen. The Lenti-Erns virus was purified from the supernatant of co-transfected 293LTV cells and used to transduce PK-15 cells. The homogenous PK-Erns cell line was produced by single cell cloning by monitoring eGFP expression. The Erns gene in the genomic DNA and RNA transcripts in total RNA isolated from PK-Erns cells were detected by PCR and RT-PCR, respectively. Expression of 45 kDa Erns glycoprotein was detected in western blot using CSFV-specific hyperimmune sera. The use of PK-Erns cell lysate as antigen in serial dilution and single dilution ELISAs with known positive and negative pig sera was investigated. The PK-Erns ELISA revealed sensitivity equivalent to commercial HerdChek ELISA kit. The sensitivity, specificity and accuracy of the PK-Erns ELISA was 95%, 100% and 96.66%, respectively compared to ELISA using purified CSFV as coating antigen. When field pig sera (n = 69) were tested in PK-Erns ELISA, a significant correlation between the titers from serial dilution and single dilution ELISA was observed. This indicated that PK-Erns cell line can serve as continuous source of ELISA diagnostic antigen for detection of CSFV-specific antibodies in pig sera.
Collapse
|
7
|
Cheng CY, Wu CW, Chien MS, Huang C. N-terminus of Classical swine fever virus strain TD96 glycoprotein E rns contains a potential heparin-binding domain. Vet Microbiol 2019; 232:79-83. [PMID: 31030849 DOI: 10.1016/j.vetmic.2019.03.029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 03/26/2019] [Accepted: 03/26/2019] [Indexed: 10/27/2022]
Abstract
Classical swine fever virus (CSFV) envelope glycoprotein Erns has been shown to bind to cell surface sulphated-heparin-like glycosaminoglycans (GAGs), which participate in cell attachment of the virus. In this study, the CSFV Erns gene was codon optimized for expression in the yeast Pichia pastoris. A C-terminally truncated Erns recombinant protein lacking the previously identified heparin-binding domain (HBD) bound to heparin column, suggesting the presence of another HBD in CSFV Erns. Sequence analyses of the CSFV Erns coding region revealed a common potential N-terminal HBD at residues 301-311. Site-directed mutagenesis of the basic amino acids at K303 and K306 significantly reduced the heparin-binding affinity of the protein. Further mutations of both T310 and H311 had little effect. Thus, a novel potential heparin-binding site near the N-terminus of CSFV strain TD96 Erns has been detected, and the two basic amino acids K303 and K306 are crucial for binding activity to heparin matrix and cell-surface GAGs.
Collapse
Affiliation(s)
- Chih-Yuan Cheng
- Graduate Institute of Microbiology and Public Health, College of Veterinary Medicine, National Chung Hsing University, 145 Xingda Road, Taichung, 40227, Taiwan, Republic of China
| | - Ching-Wei Wu
- Research Center for Animal Medicine, National Chung Hsing University, 145 Xingda Road, Taichung, 40227, Taiwan, Republic of China
| | - Maw-Sheng Chien
- Graduate Institute of Veterinary Pathobiology, College of Veterinary Medicine, National Chung Hsing University, 145 Xingda Road, Taichung, 40227, Taiwan, Republic of China.
| | - Chienjin Huang
- Graduate Institute of Microbiology and Public Health, College of Veterinary Medicine, National Chung Hsing University, 145 Xingda Road, Taichung, 40227, Taiwan, Republic of China.
| |
Collapse
|
8
|
Vieyres G, Pietschmann T. HCV Pit Stop at the Lipid Droplet: Refuel Lipids and Put on a Lipoprotein Coat before Exit. Cells 2019; 8:cells8030233. [PMID: 30871009 PMCID: PMC6468556 DOI: 10.3390/cells8030233] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 02/28/2019] [Accepted: 03/04/2019] [Indexed: 02/07/2023] Open
Abstract
The replication cycle of the liver-tropic hepatitis C virus (HCV) is tightly connected to the host lipid metabolism, during the virus entry, replication, assembly and egress stages, but also while the virus circulates in the bloodstream. This interplay coins viral particle properties, governs viral cell tropism, and facilitates immune evasion. This review summarizes our knowledge of these interactions focusing on the late steps of the virus replication cycle. It builds on our understanding of the cell biology of lipid droplets and the biosynthesis of liver lipoproteins and attempts to explain how HCV hijacks these organelles and pathways to assemble its lipo-viro-particles. In particular, this review describes (i) the mechanisms of viral protein translocation to and from the lipid droplet surface and the orchestration of an interface between replication and assembly complexes, (ii) the importance of the triglyceride mobilization from the lipid droplets for HCV assembly, (iii) the interplay between HCV and the lipoprotein synthesis pathway including the role played by apolipoproteins in virion assembly, and finally (iv) the consequences of these complex virus–host interactions on the virion composition and its biophysical properties. The wealth of data accumulated in the past years on the role of the lipid metabolism in HCV assembly and its imprint on the virion properties will guide vaccine design efforts and reinforce our understanding of the hepatic lipid metabolism in health and disease.
Collapse
Affiliation(s)
- Gabrielle Vieyres
- Institute of Experimental Virology, TWINCORE, Centre for Experimental and Clinical Infection Research, a Joint Venture between the Medical School Hannover (MHH) and the Helmholtz Centre for Infection Research (HZI), 30625 Hannover, Germany.
| | - Thomas Pietschmann
- Institute of Experimental Virology, TWINCORE, Centre for Experimental and Clinical Infection Research, a Joint Venture between the Medical School Hannover (MHH) and the Helmholtz Centre for Infection Research (HZI), 30625 Hannover, Germany.
- German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, 38124 Braunschweig, Germany.
| |
Collapse
|
9
|
Complex Virus-Host Interactions Involved in the Regulation of Classical Swine Fever Virus Replication: A Minireview. Viruses 2017; 9:v9070171. [PMID: 28678154 PMCID: PMC5537663 DOI: 10.3390/v9070171] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 06/15/2017] [Accepted: 06/27/2017] [Indexed: 02/06/2023] Open
Abstract
Classical swine fever (CSF), caused by classical swine fever virus (CSFV), is one of the most devastating epizootic diseases of pigs in many countries. Viruses are small intracellular parasites and thus rely on the cellular factors for replication. Fundamental aspects of CSFV-host interactions have been well described, such as factors contributing to viral attachment, modulation of genomic replication and translation, antagonism of innate immunity, and inhibition of cell apoptosis. However, those host factors that participate in the viral entry, assembly, and release largely remain to be elucidated. In this review, we summarize recent progress in the virus-host interactions involved in the life cycle of CSFV and analyze the potential mechanisms of viral entry, assembly, and release. We conclude with future perspectives and highlight areas that require further understanding.
Collapse
|
10
|
Structures and Functions of Pestivirus Glycoproteins: Not Simply Surface Matters. Viruses 2015; 7:3506-29. [PMID: 26131960 PMCID: PMC4517112 DOI: 10.3390/v7072783] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Revised: 06/11/2015] [Accepted: 06/18/2015] [Indexed: 12/21/2022] Open
Abstract
Pestiviruses, which include economically important animal pathogens such as bovine viral diarrhea virus and classical swine fever virus, possess three envelope glycoproteins, namely Erns, E1, and E2. This article discusses the structures and functions of these glycoproteins and their effects on viral pathogenicity in cells in culture and in animal hosts. E2 is the most important structural protein as it interacts with cell surface receptors that determine cell tropism and induces neutralizing antibody and cytotoxic T-lymphocyte responses. All three glycoproteins are involved in virus attachment and entry into target cells. E1-E2 heterodimers are essential for viral entry and infectivity. Erns is unique because it possesses intrinsic ribonuclease (RNase) activity that can inhibit the production of type I interferons and assist in the development of persistent infections. These glycoproteins are localized to the virion surface; however, variations in amino acids and antigenic structures, disulfide bond formation, glycosylation, and RNase activity can ultimately affect the virulence of pestiviruses in animals. Along with mutations that are driven by selection pressure, antigenic differences in glycoproteins influence the efficacy of vaccines and determine the appropriateness of the vaccines that are currently being used in the field.
Collapse
|
11
|
Abstract
Pestiviruses are among the economically most important pathogens of livestock. The biology of these viruses is characterized by unique and interesting features that are both crucial for their success as pathogens and challenging from a scientific point of view. Elucidation of these features at the molecular level has made striking progress during recent years. The analyses revealed that major aspects of pestivirus biology show significant similarity to the biology of human hepatitis C virus (HCV). The detailed molecular analyses conducted for pestiviruses and HCV supported and complemented each other during the last three decades resulting in elucidation of the functions of viral proteins and RNA elements in replication and virus-host interaction. For pestiviruses, the analyses also helped to shed light on the molecular basis of persistent infection, a special strategy these viruses have evolved to be maintained within their host population. The results of these investigations are summarized in this chapter.
Collapse
Affiliation(s)
- Norbert Tautz
- Institute for Virology and Cell Biology, University of Lübeck, Lübeck, Germany
| | - Birke Andrea Tews
- Institut für Immunologie, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Gregor Meyers
- Institut für Immunologie, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany.
| |
Collapse
|
12
|
Ji W, Guo Z, Ding NZ, He CQ. Studying classical swine fever virus: Making the best of a bad virus. Virus Res 2015; 197:35-47. [DOI: 10.1016/j.virusres.2014.12.006] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 12/02/2014] [Accepted: 12/04/2014] [Indexed: 01/04/2023]
|
13
|
Chen R, Li J, Feng CH, Chen SK, Liu YP, Duan CY, Li H, Xia XM, He T, Wei M, Dai RY. c-Met function requires n-linked glycosylation modification of pro-Met. J Cell Biochem 2013; 114:816-22. [DOI: 10.1002/jcb.24420] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Accepted: 10/01/2012] [Indexed: 12/22/2022]
|
14
|
Peterhans E, Schweizer M. BVDV: A pestivirus inducing tolerance of the innate immune response. Biologicals 2013; 41:39-51. [DOI: 10.1016/j.biologicals.2012.07.006] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2012] [Accepted: 07/16/2012] [Indexed: 12/14/2022] Open
|
15
|
Gavrilov BK, Rogers K, Fernandez-Sainz IJ, Holinka LG, Borca MV, Risatti GR. Effects of glycosylation on antigenicity and immunogenicity of classical swine fever virus envelope proteins. Virology 2011; 420:135-45. [DOI: 10.1016/j.virol.2011.08.025] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2011] [Revised: 08/15/2011] [Accepted: 08/31/2011] [Indexed: 11/24/2022]
|
16
|
Luo X, Pan R, Wan C, Liu X, Wu J, Pan Z. Glycosylation of classical swine fever virus Erns is essential for binding double-stranded RNA and preventing interferon-beta induction. Virus Res 2009; 146:135-9. [DOI: 10.1016/j.virusres.2009.09.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2009] [Revised: 09/11/2009] [Accepted: 09/16/2009] [Indexed: 12/25/2022]
|
17
|
Sainz IF, Holinka LG, Lu Z, Risatti GR, Borca MV. Removal of a N-linked glycosylation site of classical swine fever virus strain Brescia Erns glycoprotein affects virulence in swine. Virology 2007; 370:122-9. [PMID: 17904607 DOI: 10.1016/j.virol.2007.08.028] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2007] [Revised: 08/08/2007] [Accepted: 08/21/2007] [Indexed: 10/22/2022]
Abstract
E(rns) glycoprotein, along with E(1) and E(2), is one of the three envelope glycoproteins of classical swine fever virus (CSFV). E(rns) is a heavily glycosylated protein involved in several functions, including virus attachment and entry to target cells, production of neutralizing antibodies, and virulence. The role of added glycans to CSFV strain Brescia E(rns) on virus virulence was assessed in swine. A panel of virus mutants was constructed and used to investigate whether the removal of each of seven putative glycosylation sites in the E(rns) glycoprotein would affect viral virulence in swine. Only N269A/Q substitution rendered attenuated viruses (N1v/N1Qv) that, unlike BICv and other mutants, produced a transient infection in swine characterized by mild symptoms and decreased virus shedding. Notably, N1v efficiently protected swine from challenge with virulent BICv at 3 and 21 days post-infection suggesting that glycosylation of E(rns) could be modified for development of CSF live-attenuated vaccines.
Collapse
Affiliation(s)
- I Fernandez Sainz
- Plum Island Animal Disease Center, ARS, USDA/ARS/NAA, P.O. Box 848, Greenport, NY 11944-0848, USA.
| | | | | | | | | |
Collapse
|
18
|
Ambasta RK, Ai X, Emerson CP. Quail Sulf1 function requires asparagine-linked glycosylation. J Biol Chem 2007; 282:34492-9. [PMID: 17855356 DOI: 10.1074/jbc.m706744200] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The heparan sulfate endosulfatases Sulf1 and Sulf2 are cell-surface enzymes that control growth factor signaling through regulation of the 6-O-sulfation states of cell-surface and matrix heparan sulfate proteoglycans. Here, we report that quail Sulf1 (QSulf1) is an asparagine-linked glycosylated protein. Domain mapping studies in combination with a protein glycosylation prediction program identified multiple asparagine-linked glycosylation sites in the enzymatic and C-terminal domains. Glycosylation inhibitor studies revealed that glycosylation of QSulf1 is essential for its enzymatic activity, membrane targeting, and secretion. Furthermore, N-glycanase cleavage of asparagine-linked sites in native QSulf1 provided direct evidence that these N-linked glycosylation sites are specifically required for QSulf1 heparin binding and its 6-O-desulfation activity, revealing that N-linked glycosylation has a key role in the control of sulfatase enzymatic function.
Collapse
Affiliation(s)
- Rashmi K Ambasta
- Boston Biomedical Research Institute, 64 Grove Street, Watertown, MA 02472, USA
| | | | | |
Collapse
|
19
|
Chapel C, Garcia C, Bartosch B, Roingeard P, Zitzmann N, Cosset FL, Dubuisson J, Dwek RA, Trépo C, Zoulim F, Durantel D. Reduction of the infectivity of hepatitis C virus pseudoparticles by incorporation of misfolded glycoproteins induced by glucosidase inhibitors. J Gen Virol 2007; 88:1133-1143. [PMID: 17374756 DOI: 10.1099/vir.0.82465-0] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Folding and assembly into complexes of some viral glycoproteins are exquisitely sensitive to endoplasmic reticulum (ER) alpha-glucosidase inhibition, which prevents the trimming of glucose from N-linked glycans. Derivatives of deoxynojirimycin (DNJ) iminosugars, which are potent alpha-glucosidase inhibitors, were shown to have antiviral activity against bovine viral diarrhea virus, a pestivirus related to hepatitis C virus (HCV). The aim of this study was to determine whether these inhibitors would affect HCV infectivity and to provide novel insights on their mechanism of action. The overall antiviral activity of glucosidase inhibitors was shown by using the two most relevant models currently available: the cell-culture model enabling complete replication of the HCV JFH1 strain in Huh7.5 cells, and infectious HCV pseudotyped particles (HCVpp) produced in HEK-293T cells that display functional E1-E2 glycoprotein complexes. By using the latter model, it is shown that the inhibition of alpha-glucosidases by iminosugars results in the misfolding and misassembly of HCV glycoprotein pre-budding complexes. This inhibition of the assembly of E1-E2 in the ER of transfected HEK-293T cells leads to a reduction in the incorporation of E1-E2 complexes into HCVpp. More importantly, it is demonstrated that the infectivity of HCVpp that are released under treatment is reduced and that this reduction in infectivity is due to the incorporation of misfolded envelope glycoproteins in secreted particles. These properties suggest the potential usefulness of DNJ derivatives in combating HCV infection.
Collapse
Affiliation(s)
- Cynthia Chapel
- INSERM, U871, Université Lyon 1, et IFR62 Laennec, Lyon, France
| | - Céline Garcia
- INSERM, U871, Université Lyon 1, et IFR62 Laennec, Lyon, France
| | - Birke Bartosch
- INSERM, U758, Ecole Normale Supérieure de Lyon, et IFR128 BioSciences Lyon-Gerland, Lyon, France
| | | | - Nicole Zitzmann
- Glycobiology Institute, Department of Biochemistry, University of Oxford, Oxford, UK
| | - François-Loïc Cosset
- INSERM, U758, Ecole Normale Supérieure de Lyon, et IFR128 BioSciences Lyon-Gerland, Lyon, France
| | - Jean Dubuisson
- CNRS-UPR2511, Institut de Biologie de Lille et Institut Pasteur de Lille, Lille, France
| | - Raymond A Dwek
- Glycobiology Institute, Department of Biochemistry, University of Oxford, Oxford, UK
| | - Christian Trépo
- INSERM, U871, Université Lyon 1, et IFR62 Laennec, Lyon, France
| | - Fabien Zoulim
- INSERM, U871, Université Lyon 1, et IFR62 Laennec, Lyon, France
| | - David Durantel
- INSERM, U871, Université Lyon 1, et IFR62 Laennec, Lyon, France
| |
Collapse
|
20
|
Huang C, Chien MS, Hu CM, Chen CW, Hsieh PC. Secreted expression of the classical swine fever virus glycoprotein Erns in yeast and application to a sandwich blocking ELISA. J Virol Methods 2006; 132:40-7. [PMID: 16213600 DOI: 10.1016/j.jviromet.2005.08.020] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2005] [Revised: 08/30/2005] [Accepted: 08/31/2005] [Indexed: 11/21/2022]
Abstract
E(rns) is an envelope glycoprotein of classical swine fever virus (CSFV) with RNase activity. The purpose of this study was to produce an active E(rns) for further applications using the yeast secreted expression system. The E(rns) gene was cloned into the expression vector pGAPZalphaC which was introduced into Pichia pastoris. Expression of E(rns) protein in culture supernatant was confirmed by Western blot analysis using both the monoclonal antibody against CSFV E(rns) and CSFV-positive swine serum. The yeast-expressed E(rns) (yE(rns)) was shown to have N-linked glycosylation and to form homodimer of 74 kDa molecules. All monomer, homodimer, and deglycosylated forms of yE(rns) demonstrated intrinsic ribonuclease activity and a clear preference for uridine-rich sequence. A direct sandwich blocking enzyme-linked immunosorbent assay (ELISA) based on the yE(rns) was developed with a high sensitivity and specificity. The yE(rns) which possesses enzymatic activity and retains antigenicity may provide a useful material for developing a diagnostic kit.
Collapse
Affiliation(s)
- Chienjin Huang
- Graduate Institute of Veterinary Microbiology, College of Veterinary Medicine, National Chung Hsing University, 250 Kuo Kuang Road, Taichung 40227, Taiwan, ROC.
| | | | | | | | | |
Collapse
|