1
|
Xu M, Chen X, Chen D, Yu B, Li M, He J, Huang Z. MicroRNA-499-5p regulates skeletal myofiber specification via NFATc1/MEF2C pathway and Thrap1/MEF2C axis. Life Sci 2018; 215:236-245. [PMID: 30419283 DOI: 10.1016/j.lfs.2018.11.020] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 10/29/2018] [Accepted: 11/09/2018] [Indexed: 12/20/2022]
Abstract
AIMS This study aimed to investigate the role of microRNA-499-5p (miR-499-5p) in the regulation of skeletal myofiber specification and its underlying mechanisms. MAIN METHODS Mouse C2C12 cells were used in this study. Cyclosporin A and siRNA targeting Thrap1 (si-Thrap1) were used to inhibit NFATc1/MEF2C pathway and knockdown Thrap1, respectively. The expressions of miR-499-5p and genes were evaluated by real-time quantitative PCR and western blot analysis. KEY FINDINGS Overexpression of miR-499-5p promoted oxidative fiber gene expression and repressed glycolytic fiber gene expression, affecting several factors associated with fiber specification including NFATc1/MEF2C pathway, PGC-1α, FoxO1 and Wnt5a. Inhibition of NFATc1/MEF2C pathway partly reduced the effect of miR-499-5p overexpression on muscle fiber gene expression. MiR-499-5p targeted Thrap1 in proliferating and differentiating C2C12 cells. Knockdown of Thrap1 showed a parallel function with miR-499-5p overexpression on muscle fiber gene expression and NFATc1/MEF2C pathway, accompanied by an increase of miR-499-5p level. The effects of miR-499-5p inhibitor on muscle fiber type specific gene expression and NFATc1/MEF2C pathway were effectively reversed by Thrap1 knockdown. SIGNIFICANCE MiR-499-5p regulated skeletal myofiber specification and affected several factors associated with fiber specification. MiR-499-5p regulated muscle gene expression partly through NFATc1/MEF2C pathway. We also showed a clue that miR-499-5p regulates skeletal muscle fiber specification in C2C12 cells through targeting Thrap1, thereby, promoting NFATc1/MEF2C pathway and then triggering a series of oxidative muscle fiber gene expression.
Collapse
Affiliation(s)
- Meng Xu
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Xiaoling Chen
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Daiwen Chen
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Bing Yu
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Mingzhou Li
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Jun He
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Zhiqing Huang
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China.
| |
Collapse
|
2
|
Xu M, Chen X, Huang Z, Chen D, Yu B, Chen H, He J, Zheng P, Luo J, Yu J, Luo Y. MicroRNA-139-5p suppresses myosin heavy chain I and IIa expression via inhibition of the calcineurin/NFAT signaling pathway. Biochem Biophys Res Commun 2018; 500:930-936. [PMID: 29705696 DOI: 10.1016/j.bbrc.2018.04.202] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 04/25/2018] [Indexed: 12/15/2022]
Abstract
MicroRNAs (miRNAs) are a class of small non-coding RNAs that are widely involved in a variety of biological processes. Different skeletal muscle fiber type composition exhibits characteristic differences in functional properties and energy metabolism of skeletal muscle. However, the molecular mechanism by which miRNAs control the different type of muscle fiber formation is still not fully understood. In the present study, we characterized the role of microRNA-139-5p (miR-139-5p) in the regulation of myosin heavy chain (MyHC) isoform expression and its underlying mechanisms. Here we found that the expression of miR-139-5p was significantly higher in mouse slow-twitch muscle than in fast-twitch muscle. Overexpression of miR-139-5p downregulated the expression of MyHC I and MyHC IIa, whereas inhibition of miR-139-5p upregulated them. We also found that the levels of calcineurin (CaN), NFATc1, MEF2C and MCIP1.4, which are the components of CaN/NFAT signaling pathway that has shown to positively regulate slow fiber-selective gene expression, were notably inhibited by miR-139-5p overexpression. Furthermore, treatment of phenylephrine (PE), a α1-adrenoceptor agonist, abolished the inhibitory effect of miR-139-5p on MyHC I and MyHC IIa expression. Together, our findings indicated that the role of miR-139-5p in regulating the MyHC isoforms, especially MyHC I and MyHC IIa, may be achieved through inhibiting CaN/NFAT signaling pathway.
Collapse
Affiliation(s)
- Meng Xu
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Xiaoling Chen
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Zhiqing Huang
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China.
| | - Daiwen Chen
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Bing Yu
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Hong Chen
- College of Food Science, Sichuan Agricultural University, Yaan, Sichuan 625014, PR China
| | - Jun He
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Ping Zheng
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Junqiu Luo
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Jie Yu
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Yuheng Luo
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| |
Collapse
|
3
|
Chen X, Luo Y, Huang Z, Liu G, Zhao H. Akirin2 promotes slow myosin heavy chain expression by CaN/NFATc1 signaling in porcine skeletal muscle satellite cells. Oncotarget 2018; 8:25158-25166. [PMID: 28223540 PMCID: PMC5421918 DOI: 10.18632/oncotarget.15374] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 01/24/2017] [Indexed: 12/27/2022] Open
Abstract
The objective of this study was to evaluate the effect of Akirin2 on slow myosin heavy chain (slow MyHC, MyHC I) gene expression and its molecular mechanisms. In this study, we showed that the protein expression of Akirin2 in pig slow oxidative Psoas major muscle is higher than that in fast glycolytic tibialis anterior muscle, suggesting that Akirin2 may play a role in myofiber typing. Knockdown of Akirin2 decreased the MyHC I expression and the calcineurin (CaN) activity, and also decreased the expressions of NFATc1 and MCIP1.4. Conversely, overexpression of Akirin2 got the opposite results. Furthermore, inhibition of CaN or knockdown of NFATc1 attenuated Akirin2 overexpression-induced upregulation of MyHC I. Together, these results demonstrate that Akirin2 promotes MyHC I expression via CaN/NFATc1 signaling pathway in porcine skeletal muscle satellite cells.
Collapse
Affiliation(s)
- Xiaoling Chen
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan 611130, P. R. China
| | - Yanliu Luo
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan 611130, P. R. China
| | - Zhiqing Huang
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan 611130, P. R. China
| | - Guangmang Liu
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan 611130, P. R. China
| | - Hua Zhao
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan 611130, P. R. China
| |
Collapse
|
4
|
Koulmann N, Richard‐Bulteau H, Crassous B, Serrurier B, Pasdeloup M, Bigard X, Banzet S. Physical exercise during muscle regeneration improves recovery of the slow/oxidative phenotype. Muscle Nerve 2016; 55:91-100. [DOI: 10.1002/mus.25151] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/13/2016] [Indexed: 01/22/2023]
Affiliation(s)
- Nathalie Koulmann
- Institut de Recherche Biomédicale des Armées, Département Environnements OpérationnelsBretigny‐Sur‐Orge France
- Ecole du Val‐de‐GrâceParis France
| | - Hélène Richard‐Bulteau
- Institut de Recherche Biomédicale des Armées, Département Environnements OpérationnelsBretigny‐Sur‐Orge France
| | - Brigitte Crassous
- Institut de Recherche Biomédicale des Armées, Département Environnements OpérationnelsBretigny‐Sur‐Orge France
| | - Bernard Serrurier
- Institut de Recherche Biomédicale des Armées, Département Environnements OpérationnelsBretigny‐Sur‐Orge France
| | - Marielle Pasdeloup
- Institut de Recherche Biomédicale des Armées, Département Environnements OpérationnelsBretigny‐Sur‐Orge France
| | - Xavier Bigard
- Institut de Recherche Biomédicale des Armées, Département Environnements OpérationnelsBretigny‐Sur‐Orge France
- Ecole du Val‐de‐GrâceParis France
| | - Sébastien Banzet
- Ecole du Val‐de‐GrâceParis France
- Institut de Recherche Biomédicale des Armées, Département Soutien Médico‐Chirurgical des Forces1 rue du lieutenant Raoul Batany92140Clamart France
- INSERM U1197Clamart France
| |
Collapse
|
5
|
Tóth A, Fodor J, Vincze J, Oláh T, Juhász T, Zákány R, Csernoch L, Zádor E. The Effect of SERCA1b Silencing on the Differentiation and Calcium Homeostasis of C2C12 Skeletal Muscle Cells. PLoS One 2015; 10:e0123583. [PMID: 25893964 PMCID: PMC4404259 DOI: 10.1371/journal.pone.0123583] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 03/04/2015] [Indexed: 12/12/2022] Open
Abstract
The sarcoplasmic/endoplasmic reticulum Ca2+ATPases (SERCAs) are the main Ca2+ pumps which decrease the intracellular Ca2+ level by reaccumulating Ca2+ into the sarcoplasmic reticulum. The neonatal SERCA1b is the major Ca2+ pump in myotubes and young muscle fibers. To understand its role during skeletal muscle differentiation its synthesis has been interfered with specific shRNA sequence. Stably transfected clones showing significantly decreased SERCA1b expression (cloneC1) were selected for experiments. The expression of the regulatory proteins of skeletal muscle differentiation was examined either by Western-blot at the protein level for MyoD, STIM1, calsequestrin (CSQ), and calcineurin (CaN) or by RT-PCR for myostatin and MCIP1.4. Quantitative analysis revealed significant alterations in CSQ, STIM1, and CaN expression in cloneC1 as compared to control cells. To examine the functional consequences of the decreased expression of SERCA1b, repeated Ca2+-transients were evoked by applications of 120 mM KCl. The significantly higher [Ca2+]i measured at the 20th and 40th seconds after the beginning of KCl application (112±3 and 110±3 nM vs. 150±7 and 135±5 nM, in control and in cloneC1 cells, respectively) indicated a decreased Ca2+-uptake capability which was quantified by extracting the maximal pump rate (454±41 μM/s vs. 144±24 μM/s, in control and in cloneC1 cells). Furthermore, the rate of calcium release from the SR (610±60 vs. 377±64 μM/s) and the amount of calcium released (843±75 μM vs. 576±80 μM) were also significantly suppressed. These changes were also accompanied by a reduced activity of CaN in cells with decreased SERCA1b. In parallel, cloneC1 cells showed inhibited cell proliferation and decreased myotube nuclear numbers. Moreover, while cyclosporineA treatment suppressed the proliferation of parental cultures it had no effect on cloneC1 cells. SERCA1b is thus considered to play an essential role in the regulation of [Ca2+]i and its ab ovo gene silencing results in decreased skeletal muscle differentiation.
Collapse
Affiliation(s)
- Adrienn Tóth
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - János Fodor
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - János Vincze
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Tamás Oláh
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Tamás Juhász
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Róza Zákány
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - László Csernoch
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- * E-mail:
| | - Ernő Zádor
- Department of Biochemistry, Faculty of Medicine, University of Szeged, Szeged, Hungary
| |
Collapse
|
6
|
Chen X, Luo Y, Zhou B, Huang Z, Jia G, Liu G, Zhao H, Yang Z, Zhang R. Effect of porcine Akirin2 on skeletal myosin heavy chain isoform expression. Int J Mol Sci 2015; 16:3996-4006. [PMID: 25686036 PMCID: PMC4346940 DOI: 10.3390/ijms16023996] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2014] [Revised: 02/04/2015] [Accepted: 02/09/2015] [Indexed: 11/16/2022] Open
Abstract
Akirin2 plays an important role in skeletal myogenesis. In this study, we found that porcine Akirin2 (pAkirin2) mRNA level was significantly higher in fast extensor digitorum longus (EDL) and longissimus lumborum (LL) muscles than in slow soleus (SOL) muscle of pigs. Overexpression of pAkirin2 increased the number of myosin heavy chain (MHC)-positive cells, indicating that pAkirin2 promoted myoblast differentiation. We also found that overexpression of pAkirin2 increased the mRNA expressions of MHCI and MHCIIa and decreased the mRNA expression of MHCIIb. Myocyte enhancer factor 2 (MEF2) and nuclear factor of activated T cells (NFAT) are the major downstream effectors of calcineurin. Here we also observed that the mRNA expressions of MEF2C and NFATc1 were notably elevated by pAkirin2 overexpression. Together, our data indicate that the role of pAkirin2 in modulating MHCI and MHCIIa expressions may be achieved through calcineurin/NFATc1 signaling pathway.
Collapse
Affiliation(s)
- Xiaoling Chen
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
| | - Yanliu Luo
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
| | - Bo Zhou
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
| | - Zhiqing Huang
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
| | - Gang Jia
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
| | - Guangmang Liu
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
| | - Hua Zhao
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
| | - Zhouping Yang
- College of Science, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
| | - Ruinan Zhang
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
| |
Collapse
|
7
|
Silencing SERCA1b in a few fibers stimulates growth in the entire regenerating soleus muscle. Histochem Cell Biol 2010; 135:11-20. [DOI: 10.1007/s00418-010-0766-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/12/2010] [Indexed: 11/26/2022]
|
8
|
Roberts-Wilson TK, Reddy RN, Bailey JL, Zheng B, Ordas R, Gooch JL, Price SR. Calcineurin signaling and PGC-1alpha expression are suppressed during muscle atrophy due to diabetes. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2010; 1803:960-7. [PMID: 20359506 DOI: 10.1016/j.bbamcr.2010.03.019] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2010] [Revised: 03/22/2010] [Accepted: 03/23/2010] [Indexed: 02/01/2023]
Abstract
PGC-1alpha is a transcriptional coactivator that controls energy homeostasis through regulation of glucose and oxidative metabolism. Both PGC-1alpha expression and oxidative capacity are decreased in skeletal muscle of patients and animals undergoing atrophy, suggesting that PGC-1alpha participates in the regulation of muscle mass. PGC-1alpha gene expression is controlled by calcium- and cAMP-sensitive pathways. However, the mechanism regulating PGC-1alpha in skeletal muscle during atrophy remains unclear. Therefore, we examined the mechanism responsible for decreased PGC-1alpha expression using a rodent streptozotocin (STZ) model of chronic diabetes and atrophy. After 21days, the levels of PGC-1alpha protein and mRNA were decreased. We examined the activation state of CREB, a potent activator of PGC-1alpha transcription, and found that phospho-CREB was paradoxically high in muscle of STZ-rats, suggesting that the cAMP pathway was not involved in PGC-1alpha regulation. In contrast, expression of calcineurin (Cn), a calcium-dependent phosphatase, was suppressed in the same muscles. PGC-1alpha expression is regulated by two Cn substrates, MEF2 and NFATc. Therefore, we examined MEF2 and NFATc activity in muscles from STZ-rats. Target genes MRF4 and MCIP1.4 mRNAs were both significantly reduced, consistent with reduced Cn signaling. Moreover, levels of MRF4, MCIP1.4, and PGC-1alpha were also decreased in muscles of CnAalpha-/- and CnAbeta-/- mice without diabetes indicating that decreased Cn signaling, rather than changes in other calcium- or cAMP-sensitive pathways, were responsible for decreased PGC-1alpha expression. These findings demonstrate that Cn activity is a major determinant of PGC-1alpha expression in skeletal muscle during diabetes and possibly other conditions associated with loss of muscle mass.
Collapse
|
9
|
Zádor E. dnRas stimulates autocrine-paracrine growth of regenerating muscle via calcineurin-NFAT-IL-4 pathway. Biochem Biophys Res Commun 2008; 375:265-70. [PMID: 18706889 DOI: 10.1016/j.bbrc.2008.08.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2008] [Accepted: 08/06/2008] [Indexed: 12/21/2022]
Abstract
Ras and calcineurin are members of two independent pathways in muscle growth but their interaction is not known. This work shows that the transfection of about 1% of the muscle fibers with dominant negative Ras (dnRas) shows a wilder effect; it stimulates the fiber growth in the entire regenerating soleus muscle, including the nontransfected fibers. Co-transfection with the calcineurin inhibitor cain/cabin prevented the growth stimulation. Injection of antibody for interleukin-4 (IL-4) also abolished the growth ameliorating effect. These results suggest that the inactivation of Ras in 1% of the fibers upregulates the calcineurin-NFAT-IL-4 pathway and the secreted IL-4 triggers fiber growth stimulation in the whole regenerating soleus muscle of the rat. The results highlight the importance of the autocrine-paracrine regulation in muscle regeneration and hint to a novel method of gene theraphy of degenerative-regenerative muscle dystrophies.
Collapse
Affiliation(s)
- Erno Zádor
- Institute of Biochemistry, Faculty of Medicine, University of Szeged, Szeged, Dóm tér 9, H-6720, Hungary.
| |
Collapse
|
10
|
Szabó A, Wuytack F, Zádor E. The effect of passive movement on denervated soleus highlights a differential nerve control on SERCA and MyHC isoforms. J Histochem Cytochem 2008; 56:1013-22. [PMID: 18678884 DOI: 10.1369/jhc.2008.951632] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The sarco-endoplasmic reticulum Ca2+ ATP-ase (SERCA) and myosin heavy chain (MyHC) levels were measured in hindlimb-denervated and selectively denervated rat soleus muscles. Selective denervation allowed passive movement of the soleus, whereas hindlimb denervation rendered it to passivity. To minimize chronic effects, we followed the changes only for 2 weeks. Selective denervation resulted in less muscle atrophy, a faster slow-to-fast transition of MyHC isoforms, and less coordinated expressions of the slow vs fast isoforms of MyHC and SERCA. Generally, expression of the slow-twitch type SERCA2a was found to be less dependent, whereas the slow-twitch type MyHC1 was the most dependent on innervation. Our study shows that passive movement is able to ameliorate denervation-induced atrophy of the soleus and that it also accentuates the dyscoordination in the expression of the corresponding slow and fast isoforms of MyHC and SERCA.
Collapse
Affiliation(s)
- András Szabó
- Institute of Biochemistry, Faculty of General Medicine, University of Szeged, Szeged, Hungary
| | | | | |
Collapse
|
11
|
Eizema K, van der Wal DE, van den Burg MMM, de Jonge HW, Everts ME. Differential Expression of Calcineurin and SR Ca2+ Handling Proteins in Equine Muscle Fibers During Early Postnatal Growth. J Histochem Cytochem 2006; 55:247-54. [PMID: 17101725 DOI: 10.1369/jhc.6a7039.2006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
During early postnatal development, the myosin heavy chain (MyHC) expression pattern in equine gluteus medius muscle shows adaptation to movement and load, resulting in a decrease in the number of fast MyHC fibers and an increase in the number of slow MyHC fibers. In the present study we correlated the expression of MyHC isoforms to the expression of sarcoplasmic(endo)reticulum Ca2+-ATPase 1 and 2a (SERCA), phospholamban (PLB), calcineurin A (CnA), and calcineurin B (CnB). Gluteus medius muscle biopsies were taken at 0, 2, 4, and 48 weeks and analyzed using immunofluorescence. Both SERCA isoforms and PLB were expressed in almost all fiber types at birth. From 4 weeks of age onward, SERCA1 was exclusively expressed in fast MyHC fibers and SERCA2a and PLB in slow MyHC fibers. At all time points, CnA and CnB proteins were expressed at a basal level in all fibers, but with a higher expression level in MyHC type 1 fibers. From 4 weeks onward, expression of only CnA was also higher in MyHC type 2a and 2ad fibers. We propose a double function of calcineurin in calcium homeostasis and maintenance of slow MyHC fiber type identity. Although equine muscle is already functional at birth, expression patterns of the monitored proteins still show adaptation, depending on the MyHC fiber type.
Collapse
Affiliation(s)
- Karin Eizema
- Department of Pathobiology, Division of Anatomy and Physiology, Faculty of Veterinary Medicine, Utrecht University, P.O. Box 80.158, NL-3508 TD, Utrecht, The Netherlands.
| | | | | | | | | |
Collapse
|
12
|
Launay T, Noirez P, Butler-Browne G, Agbulut O. Expression of slow myosin heavy chain during muscle regeneration is not always dependent on muscle innervation and calcineurin phosphatase activity. Am J Physiol Regul Integr Comp Physiol 2006; 290:R1508-14. [PMID: 16424085 DOI: 10.1152/ajpregu.00486.2005] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In the literature, there is an ambiguity as to the respective roles played by calcineurin phosphatase activity (CPA) and muscle innervation in the reestablishment of the slow-twitch muscle phenotype after muscle regeneration in different species. In this study, we wanted to determine the role of calcineurin and muscle innervation on the appearance and maintenance of the slow phenotype during mouse muscle regeneration. The pattern of myosin expression and CPA was analyzed in adult ( n = 15), regenerating ( n = 45) and denervated-regenerating ( n = 32) slow-twitch soleus and fast-twitch extensor digitorum longus (EDL) muscles. Moreover, in a second group of denervated-regenerating mice ( n = 9), the animals were treated with a calcineurin inhibitor. Regeneration was induced by injection of cardiotoxin and in the denervated-regenerating group, denervation was carried out by cutting the sciatic nerve before the administration of cardiotoxin. In innervated-regenerating soleus muscle, CPA increased continuously after 10 days postinjury and by 21 days, there was a 3.5-fold increase in CPA compared with adult basal level, whereas in innervated-regenerating EDL muscle, CPA remained unchanged. Moreover, our results show that in denervated-regenerating muscles, the MyHC profile was identical in spite of the functional differences inherent in these muscles. In long-term denervated-regenerating muscles, a slow muscle phenotype was reexpressed both in the presence or absence of calcineurin inhibitor. Our results show that although in innervated-regenerating mouse muscle, the appearance of a slow phenotype is correlated with a peak of CPA, in denervated-regenerating muscles, a slow phenotype is triggered and maintained in a calcineurin- and nerve-independent manner.
Collapse
Affiliation(s)
- Thierry Launay
- University Paris 7, Institut National de la Santé et de la Recherce Médicale, Paris, France
| | | | | | | |
Collapse
|
13
|
Sakuma K, Nakao R, Aoi W, Inashima S, Fujikawa T, Hirata M, Sano M, Yasuhara M. Cyclosporin A treatment upregulates Id1 and Smad3 expression and delays skeletal muscle regeneration. Acta Neuropathol 2005; 110:269-80. [PMID: 15986223 DOI: 10.1007/s00401-005-1049-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2004] [Revised: 04/05/2005] [Accepted: 04/06/2005] [Indexed: 10/25/2022]
Abstract
The molecular signaling pathway linked to muscle regeneration has not yet been identified. Previously, we demonstrated that mice treated with cyclosporin A (CsA), a calcineurin inhibitor, failed to regenerate normally after muscle damage. Using reverse transcription (RT)-PCR, Western blot and immunohistochemical analysis, we investigated whether the amounts of nuclear factor of activated T cells (NFAT), myocyte-enhancer factor 2 (MEF2), the MyoD family, Id-1, and Smad3 change in the regenerating muscle after CsA treatment. Adult male ICR mice were subjected to a bupivacaine injection into the tibialis anterior muscle, and were treated with either CsA (25 mg/kg) or vehicle once daily. They were killed at 1, 2, 4, 6, 9 and 14 days post injury. RT-PCR analysis did not show a significant difference in MEF2s, MyoD and myogenin mRNA levels in the regenerating muscle in either placebo- and CsA-administered mice. In contrast, a significant increase in MRF4 mRNA was seen in CsA-administered mice compared to the placebo-treated mice at 4 and 9 days post surgery. In CsA-treated mice, the level of Id1 mRNA was elevated at day 9 relative to the placebo-treated mice. After 6 days, the CsA-treated mice possessed more abundant proliferating cell nuclear antigen (PCNA) and cyclin D1 protein in many satellite cells and/or myoblast-like cells in the regenerating muscle. The amount of myostatin, TGF-beta2 and Smad3 mRNA and proteins was increased more markedly in the mice treated with CsA. After 9 days, many satellite cells and/or myoblasts showed apparent co-localization of both MyoD and Smad3 in CsA-, but not in placebo-, treated mice. Our results demonstrated that CsA treatment upregulates Id1 and Smad3 expression and delays skeletal muscle regeneration in vivo.
Collapse
Affiliation(s)
- Kunihiro Sakuma
- Department of Legal Medicine, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachi-hirokoji, Kamigyo-ku, 602-8566 Kyoto, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Cano E, Canellada A, Minami T, Iglesias T, Redondo JM. Depolarization of neural cells induces transcription of the Down syndrome critical region 1 isoform 4 via a calcineurin/nuclear factor of activated T cells-dependent pathway. J Biol Chem 2005; 280:29435-43. [PMID: 15975916 DOI: 10.1074/jbc.m506205200] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
In this study we showed that the transcriptional regulation of Down syndrome critical region isoform 4 (DSCR1.4) is mediated by the calcineurin/nuclear factor of activated T cells (NFAT) pathway in neural cells. Stimuli that elicit an increase in the intracellular concentrations of calcium, such as membrane depolarization, induced de novo transcription of DSCR1.4, with mRNA expression peaking after 4 h and then declining. Action via the physiologically relevant L-type calcium channel was confirmed by blockade with nifedipine and verapamil. This calcium-dependent transcription of DSCR1.4 was inhibited by the calcineurin inhibitors cyclosporin A and FK506. Deletional analysis showed that the calcium- and calcineurin-dependent activation is mediated by the promoter region between nucleotides -350 and -166, a region that contains putative NFAT-binding motifs. Exogenous NFATc2 potently augmented the DSCR1.4 promoter transcriptional activity, and the involvement of endogenous NFAT signaling pathway in DSCR1.4 transcription was confirmed by the suppression of depolarization-inducible promoter activity with the NFAT inhibitor peptide VIVIT. Exogenous overexpression of DSCR1 protein (calcipressin 1) resulted in the inhibition of the transcription of DSCR1.4 and NFAT-dependent signaling. These findings suggest that calcineurin-dependent induction of DSCR1.4 product may represent an important auto-regulatory mechanism for the homeostatic control of NFAT signaling in neural cells.
Collapse
Affiliation(s)
- Eva Cano
- Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| | | | | | | | | |
Collapse
|
15
|
Suwa M, Nakano H, Kumagai S. Inhibition of calcineurin increases monocarboxylate transporters 1 and 4 protein and glycolytic enzyme activities in rat soleus muscle. Clin Exp Pharmacol Physiol 2005; 32:218-23. [PMID: 15743406 DOI: 10.1111/j.1440-1681.2005.04176.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
1. The present study was designed to examine the role of calcineurin in muscle metabolic components by the administration of the specific calcineurin inhibitor cyclosporine A (CsA) to rats. 2. Male Wistar rats were divided into either a CsA-treated group (CT) or a vehicle-treated group (VT). Cyclosporine A was administered subcutaneously to rats at a rate of 25 mg/kg bodyweight per day for 10 successive days. Thereafter, changes in muscle enzyme activities and glucose transporter (GLUT)-4 and monocarboxylate transporter (MCT)-1 and MCT-4 proteins in the slow-twitch soleus and fast-twitch extensor digitorum longus (EDL) muscles were examined. 3. There was a significant increase in MCT-1 and MCT-4 proteins in the soleus muscle in the CT group, but not in the EDL muscle. The activities of hexokinase, pyruvate kinase and lactate dehydrogenase in the soleus muscle also increased significantly in the CT group, but a similar increase in enzyme activity was not seen in EDL muscle. The activities of citrate synthase or malate dehydrogenase and the GLUT-4 protein content were not altered by CsA treatment in either the soleus or EDL muscles. 4. These results seem to imply that calcineurin negatively regulates the components of glucose/lactate metabolism, except for GLUT-4, especially in slow-twitch muscle.
Collapse
Affiliation(s)
- Masataka Suwa
- Institute of Health Science, Kyushu University, Kasuga, Fukuoka, Japan
| | | | | |
Collapse
|
16
|
Abstract
Education and public policies are largely failing to encourage people to exercise. Could our knowledge of exercise biology lead to pharmaceutical treaments that could confer the same benefits as exercise?
Collapse
|
17
|
Zádor E, Fenyvesi R, Wuytack F. Expression of SERCA2a is not regulated by calcineurin or upon mechanical unloading in skeletal muscle regeneration. FEBS Lett 2005; 579:749-52. [PMID: 15670840 DOI: 10.1016/j.febslet.2004.12.061] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2004] [Revised: 12/17/2004] [Accepted: 12/22/2004] [Indexed: 10/25/2022]
Abstract
This study investigates to what extent the expression of the slow myosin heavy chain (MyHCI) isoform and the slow type sarcoplasmic reticulum Ca2+ ATPase (SERCA2a) isoform are co-regulated in fibers of regenerating skeletal soleus muscle. Both overexpression of cain, a calcineurin inhibitor, or partial tenotomy prevented the expression of MyHCI but left SERCA2a expression unaffected in fibers of regenerating soleus muscles. These data complement those from different experimental models and clearly show that the expression of MyHCI and SERCA2a--the major proteins mediating, respectively, the slow type of contraction and relaxation--are not coregulated in regenerating soleus muscle.
Collapse
Affiliation(s)
- Erno Zádor
- Institute of Biochemistry, Faculty of Medicine, Albert Szent-Györgyi Medical and Pharmaceutical Center, University of Szeged, BOBox 427, Dóm tér 9, H-6701 Szeged, Hungary.
| | | | | |
Collapse
|