1
|
Ustianowski Ł, Udzik J, Szostak J, Gorący A, Ustianowska K, Pawlik A. Genetic and Epigenetic Factors in Gestational Diabetes Mellitus Pathology. Int J Mol Sci 2023; 24:16619. [PMID: 38068941 PMCID: PMC10706782 DOI: 10.3390/ijms242316619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/14/2023] [Accepted: 11/20/2023] [Indexed: 12/18/2023] Open
Abstract
Gestational diabetes (GDM) is the carbohydrate intolerance occurring during pregnancy. The risk factors of GDM include obesity, advanced maternal age, polycystic ovary syndrome, multigravidity, a sedentary lifestyle, and pre-existing hypertension. Additionally, complex genetic and epigenetic processes are also believed to play a crucial role in the development of GDM. In this narrative review, we discuss the role of genetic and epigenetic factors in gestational diabetes mellitus pathogenesis.
Collapse
Affiliation(s)
- Łukasz Ustianowski
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland; (Ł.U.); (J.U.); (K.U.)
| | - Jakub Udzik
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland; (Ł.U.); (J.U.); (K.U.)
- Department of Cardiac Surgery, Pomeranian Medical University, 70-111 Szczecin, Poland
| | - Joanna Szostak
- Department of Experimental and Clinical Pharmacology, Pomeranian Medical University, 70-111 Szczecin, Poland;
| | - Anna Gorący
- Department of Clinical and Molecular Biochemistry, Pomeranian Medical University, 70-111 Szczecin, Poland;
| | - Klaudia Ustianowska
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland; (Ł.U.); (J.U.); (K.U.)
| | - Andrzej Pawlik
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland; (Ł.U.); (J.U.); (K.U.)
| |
Collapse
|
2
|
Spinozzi S, Albini S, Best H, Richard I. Calpains for dummies: What you need to know about the calpain family. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2021; 1869:140616. [PMID: 33545367 DOI: 10.1016/j.bbapap.2021.140616] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 01/29/2021] [Accepted: 01/30/2021] [Indexed: 12/17/2022]
Abstract
This review was written in memory of our late friend, Dr. Hiroyuki Sorimachi, who, following the steps of his mentor Koichi Suzuki, a pioneer in calpain research, has made tremendous contributions to the field. During his career, Hiro also wrote several reviews on calpain, the last of which, published in 2016, was comprehensive. In this manuscript, we decided to put together a review with the basic information a novice may need to know about calpains. We also tried to avoid similarities with previous reviews and reported the most significant new findings, at the same time highlighting Hiro's contributions to the field. The review will cover a short history of calpain discovery, the presentation of the family, the life of calpain from transcription to activity, human diseases caused by calpain mutations and therapeutic perspectives.
Collapse
Affiliation(s)
- Simone Spinozzi
- Genethon, 1 bis, Rue de l'Internationale - 91000 Evry, France; Université Paris-Saclay, Univ Evry, Inserm, Genethon, Integrare Research Unit UMR_S951, 91000, Evry, France
| | - Sonia Albini
- Genethon, 1 bis, Rue de l'Internationale - 91000 Evry, France; Université Paris-Saclay, Univ Evry, Inserm, Genethon, Integrare Research Unit UMR_S951, 91000, Evry, France
| | - Heather Best
- Genethon, 1 bis, Rue de l'Internationale - 91000 Evry, France; Université Paris-Saclay, Univ Evry, Inserm, Genethon, Integrare Research Unit UMR_S951, 91000, Evry, France
| | - Isabelle Richard
- Genethon, 1 bis, Rue de l'Internationale - 91000 Evry, France; Université Paris-Saclay, Univ Evry, Inserm, Genethon, Integrare Research Unit UMR_S951, 91000, Evry, France.
| |
Collapse
|
3
|
Nian H, Ma B. Calpain-calpastatin system and cancer progression. Biol Rev Camb Philos Soc 2021; 96:961-975. [PMID: 33470511 DOI: 10.1111/brv.12686] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 12/26/2020] [Accepted: 01/06/2021] [Indexed: 12/19/2022]
Abstract
The calpain system is required by many important physiological processes, including the cell cycle, cytoskeleton remodelling, cellular proliferation, migration, cancer cell invasion, metastasis, survival, autophagy, apoptosis and signalling, as well as the pathogenesis of a wide range of disorders, in which it may function to promote tumorigenesis. Calpains are intracellular conserved calcium-activated neutral cysteine proteinases that are involved in mediating cancer progression via catalysing and regulating the proteolysis of their specific substrates, which are important signalling molecules during cancer progression. μ-calpain, m-calpain, and their specific inhibitor calpastatin are the three molecules originally identified as comprising the calpain system and they contain several crucial domains, specific motifs, and functional sites. A large amount of data supports the roles of the calpain-calpastatin system in cancer progression via regulation of cellular adhesion, proliferation, invasion, metastasis, and cellular survival and death, as well as inflammation and angiogenesis during tumorigenesis, implying that the inhibition of calpain activity may be a potential anti-cancer intervention strategy targeting cancer cell survival, invasion and chemotherapy resistance.
Collapse
Affiliation(s)
- Hong Nian
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin International Joint Research and Development Centre of Ophthalmology and Vision Science, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, 300384, China
| | - Binyun Ma
- Department of Medicine/Hematology, Keck School of Medicine of the University of Southern California, Los Angeles, CA, 90033, U.S.A
| |
Collapse
|
4
|
Amir Mishan M, Rezaei Kanavi M, Shahpasand K, Ahmadieh H. Pathogenic Tau Protein Species: Promising Therapeutic Targets for Ocular Neurodegenerative Diseases. J Ophthalmic Vis Res 2019; 14:491-505. [PMID: 31875105 PMCID: PMC6825701 DOI: 10.18502/jovr.v14i4.5459] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 06/11/2019] [Indexed: 12/13/2022] Open
Abstract
Tau is a microtubule-associated protein, which is highly expressed in the central nervous system as well as ocular neurons and stabilizes microtubule structure. It is a phospho-protein being moderately phosphorylated under physiological conditions but its abnormal hyperphosphorylation or some post-phosphorylation modifications would result in a pathogenic condition, microtubule dissociation, and aggregation. The aggregates can induce neuroinflammation and trigger some pathogenic cascades, leading to neurodegeneration. Taking these together, targeting pathogenic tau employing tau immunotherapy may be a promising therapeutic strategy in fighting with cerebral and ocular neurodegenerative disorders.
Collapse
Affiliation(s)
- Mohammad Amir Mishan
- Ocular Tissue Engineering Research Center, Student Research Committee, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mozhgan Rezaei Kanavi
- Ocular Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Koorosh Shahpasand
- Department of Brain and Cognitive Sciences, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Hamid Ahmadieh
- Ophthalmic Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
5
|
Liu ZX, Yu K, Dong J, Zhao L, Liu Z, Zhang Q, Li S, Du Y, Cheng H. Precise Prediction of Calpain Cleavage Sites and Their Aberrance Caused by Mutations in Cancer. Front Genet 2019; 10:715. [PMID: 31440276 PMCID: PMC6694742 DOI: 10.3389/fgene.2019.00715] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Accepted: 07/05/2019] [Indexed: 02/05/2023] Open
Abstract
As a widespread post-translational modification of proteins, calpain-mediated cleavage regulates a broad range of cellular processes, including proliferation, differentiation, cytoskeletal reorganization, and apoptosis. The identification of proteins that undergo calpain cleavage in a site-specific manner is the necessary foundation for understanding the exact molecular mechanisms and regulatory roles of calpain-mediated cleavage. In contrast with time-consuming and labor-intensive experimental methods, computational approaches for detecting calpain cleavage sites have attracted wide attention due to their efficiency and convenience. In this study, we established a novel computational tool named DeepCalpain (http://deepcalpain.cancerbio.info/) for predicting the potential calpain cleavage sites by adopting deep neural network and the particle swarm optimization algorithm. Through critical evaluation and comparison, DeepCalpain exhibited superior performance against other existing tools. Meanwhile, we found that protein interactions could enrich the calpain-substrate regulatory relationship. Since calpain-mediated cleavage was critical for cancer development and progression, we comprehensively analyzed the calpain cleavage associated mutations across 11 cancers with the help of DeepCalpain, which demonstrated that the calpain-mediated cleavage events were affected by mutations and heavily implicated in the regulation of cancer cells. These prediction and analysis results might provide helpful information to reveal the regulatory mechanism of calpain cleavage in biological pathways and different cancer types, which might open new avenues for the diagnosis and treatment of cancers.
Collapse
Affiliation(s)
- Ze-Xian Liu
- School of Life Sciences, Zhengzhou University, Zhengzhou, China.,State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Kai Yu
- School of Life Sciences, Zhengzhou University, Zhengzhou, China.,State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Jingsi Dong
- Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Linhong Zhao
- Institute of Life Sciences, Southeast University, Nanjing, China
| | - Zekun Liu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Qingfeng Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Shihua Li
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Yimeng Du
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Han Cheng
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
6
|
Del Carmen Lafita-Navarro M, Conacci-Sorrell M. Identification of Calpain-Activated Protein Functions. Methods Mol Biol 2019; 1915:149-160. [PMID: 30617802 DOI: 10.1007/978-1-4939-8988-1_12] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
As opposed to proteasome-mediated proteolysis that leads to protein degradation, calpain proteases carry out limited proteolytic cleavages of their substrates. The cleavage of some substrates can produce active fragments that perform functions that are different from those performed by the full-length proteins. Therefore, cleavage by calpains can operate as a posttranslational modification and increase the functional diversity of target proteins. Nevertheless, activation of protein function by calpain cleavage is still an understudied area in molecular biology. Identifying and functionally characterizing by products generated by calpain cleavage could lead to the discovery of biomarkers and the identification of novel drug targets for the treatment of human diseases. This chapter contains a workflow designed to experimentally characterize novel calpain substrates, including identification of potential calpain targets via Western blotting, characterization of calpain cleavage sites, and the study of cellular functions played by such cleaved products. We will employ MYC as an example for these experiments.
Collapse
Affiliation(s)
- Maria Del Carmen Lafita-Navarro
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Maralice Conacci-Sorrell
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA.
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
7
|
Yi HY, Yang WY, Wu WM, Li XX, Deng XJ, Li QR, Cao Y, Zhong YJ, Huang YD. BmCalpains are involved in autophagy and apoptosis during metamorphosis and after starvation in Bombyx mori. INSECT SCIENCE 2018; 25:379-388. [PMID: 28219118 DOI: 10.1111/1744-7917.12417] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 09/20/2016] [Accepted: 10/07/2016] [Indexed: 06/06/2023]
Abstract
Apoptosis and autophagy play crucial roles during Bombyx mori metamorphosis and in response to various adverse conditions, including starvation. Recently, calpain, one of the major intracellular proteases, has been reported to be involved in apoptosis and autophagy in mammals. BmATG5 and BmATG6 have been identified to mediate apoptosis following autophagy induced by 20-hydroxyecdysone and starvation in B. mori. However, B. mori calpains and their functions remain unclear. In this study, phylogenetic analysis of calpains from B. mori, Drosophila melanogaster and Homo sapiens were performed and the results showed distinct close relationships of BmCalpain-A/B with DmCalpain-A/B, BmCalpain-C with DmCalpain-C, and BmCalpain-7 with HsCalpain-7. Then, the expression profiles of BmCalpains were analyzed by quantitative real-time polymerase chain reaction, and results showed that expression of BmCalpain-A/B, BmCalpain-C and BmCalpain-7 was significantly increased during B. mori metamorphosis and induced in the fat body and midgut of starved larvae, which is consistent with the expression profiles of BmAtg5, BmAtg6 and BmCaspase-1. Moreover, the apoptosis-associated cleavage of BmATG6 in Bm-12 cells was significantly enhanced when BmCalpain-A/B and BmCalpain-7 were induced by starvation, and was partially inhibited by the inhibitor of either calpain or caspase, but completely inhibited when both types of inhibitors were applied together. Our results indicated that BmCalpains, including BmCalpain-A/B, -C and -7, may be involved in autophagy and apoptosis during B. mori metamorphosis and after starvation, and may also contribute to the apoptosis-associated cleavage of BmATG6.
Collapse
Affiliation(s)
- Hui-Yu Yi
- Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding/Guangdong Provincial Sericulture and Mulberry Engineering Research Center, College of Animal Science, South China Agricultural University, Guangzhou, China
- College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Wan-Ying Yang
- Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding/Guangdong Provincial Sericulture and Mulberry Engineering Research Center, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Wen-Mei Wu
- Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding/Guangdong Provincial Sericulture and Mulberry Engineering Research Center, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Xing-Xia Li
- Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding/Guangdong Provincial Sericulture and Mulberry Engineering Research Center, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Xiao-Juan Deng
- Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding/Guangdong Provincial Sericulture and Mulberry Engineering Research Center, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Qing-Rong Li
- The Sericultural and Agri-Food Research Institute of the Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Yang Cao
- Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding/Guangdong Provincial Sericulture and Mulberry Engineering Research Center, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Yang-Jin Zhong
- Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding/Guangdong Provincial Sericulture and Mulberry Engineering Research Center, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Ya-Dong Huang
- College of Life Science and Technology, Jinan University, Guangzhou, China
| |
Collapse
|
8
|
Kovacs L, Su Y. Redox-Dependent Calpain Signaling in Airway and Pulmonary Vascular Remodeling in COPD. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 967:139-160. [PMID: 29047085 PMCID: PMC7036267 DOI: 10.1007/978-3-319-63245-2_9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The calcium-dependent cytosolic, neutral, thiol endopeptidases, calpains, perform limited cleavage of their substrates thereby irreversibly changing their functions. Calpains have been shown to be involved in several physiological processes such as cell motility, proliferation, cell cycle, signal transduction, and apoptosis. Overactivation of calpain or mutations in the calpain genes contribute to a number of pathological conditions including neurodegenerative disorders, rheumatoid arthritis, cancer, and lung diseases. High concentrations of reactive oxygen and nitrogen species (RONS) originated from cigarette smoke or released by numerous cell types such as activated inflammatory cells and other respiratory cells cause oxidative and nitrosative stress contributing to the pathogenesis of COPD. RONS and calpain play important roles in the development of airway and pulmonary vascular remodeling in COPD. Published data show that increased RONS production is associated with increased calpain activation and/or elevated calpain protein level, leading to epithelial or endothelial barrier dysfunction, neovascularization, lung inflammation, increased smooth muscle cell proliferation, and deposition of extracellular matrix protein. Further investigation of the redox-dependent calpain signaling may provide future targets for the prevention and treatment of COPD.
Collapse
Affiliation(s)
- Laszlo Kovacs
- Department of Pharmacology & Toxicology, Medical College of Georgia, Augusta University, 1120 15th Street, Augusta, GA, 30912, USA
| | - Yunchao Su
- Department of Pharmacology & Toxicology, Medical College of Georgia, Augusta University, 1120 15th Street, Augusta, GA, 30912, USA.
- Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA.
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA.
- Research Service, Charlie Norwood Veterans Affairs Medical Center, Augusta, GA, 30912, USA.
| |
Collapse
|
9
|
HUANG J, ZHU X. The Molecular Mechanisms of Calpains Action on Skeletal Muscle Atrophy. Physiol Res 2016; 65:547-560. [DOI: 10.33549/physiolres.933087] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Skeletal muscle atrophy is associated with a loss of muscle protein which may result from both increased proteolysis and decreased protein synthesis. Investigations on cell signaling pathways that regulate muscle atrophy have promoted our understanding of this complicated process. Emerging evidence implicates that calpains play key roles in dysregulation of proteolysis seen in muscle atrophy. Moreover, studies have also shown that abnormally activated calpain results muscle atrophy via its downstream effects on ubiquitin-proteasome pathway (UPP) and Akt phosphorylation. This review will discuss the role of calpains in regulation of skeletal muscle atrophy mainly focusing on its collaboration with either UPP or Akt in atrophy conditions in hope to stimulate the interest in development of novel therapeutic interventions for skeletal muscle atrophy.
Collapse
Affiliation(s)
| | - X. ZHU
- Department of Respiratory Diseases, YangPu Hospital of Tongji University, Shanghai, China
| |
Collapse
|
10
|
Moretti D, Del Bello B, Allavena G, Maellaro E. Calpains and cancer: Friends or enemies? Arch Biochem Biophys 2014; 564:26-36. [DOI: 10.1016/j.abb.2014.09.018] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Revised: 09/23/2014] [Accepted: 09/30/2014] [Indexed: 02/07/2023]
|
11
|
De Tullio R, Averna M, Pedrazzi M, Sparatore B, Salamino F, Pontremoli S, Melloni E. Differential regulation of the calpain-calpastatin complex by the L-domain of calpastatin. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1843:2583-91. [PMID: 25026177 DOI: 10.1016/j.bbamcr.2014.07.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Revised: 07/03/2014] [Accepted: 07/07/2014] [Indexed: 01/28/2023]
Abstract
Here we demonstrate that the presence of the L-domain in calpastatins induces biphasic interaction with calpain. Competition experiments revealed that the L-domain is involved in positioning the first inhibitory unit in close and correct proximity to the calpain active site cleft, both in the closed and in the open conformation. At high concentrations of calpastatin, the multiple EF-hand structures in domains IV and VI of calpain can bind calpastatin, maintaining the active site accessible to substrate. Based on these observations, we hypothesize that two distinct calpain-calpastatin complexes may occur in which calpain can be either fully inhibited (I) or fully active (II). In complex II the accessible calpain active site can be occupied by an additional calpastatin molecule, now a cleavable substrate. The consequent proteolysis promotes the accumulation of calpastatin free inhibitory units which are able of improving the capacity of the cell to inhibit calpain. This process operates under conditions of prolonged [Ca(2+)] alteration, as seen for instance in Familial Amyotrophic Lateral Sclerosis (FALS) in which calpastatin levels are increased. Our findings show that the L-domain of calpastatin plays a crucial role in determining the formation of complexes with calpain in which calpain can be either inhibited or still active. Moreover, the presence of multiple inhibitory domains in native full-length calpastatin molecules provides a reservoir of potential inhibitory units to be used to counteract aberrant calpain activity.
Collapse
Affiliation(s)
- Roberta De Tullio
- Department of Experimental Medicine (DIMES), Biochemistry Section, University of Genova, Viale Benedetto XV, 1-16132 Genova, Italy; Centre of Excellence for Biomedical Research, University of Genova, Viale Benedetto XV, 7-16132 Genova, Italy.
| | - Monica Averna
- Department of Experimental Medicine (DIMES), Biochemistry Section, University of Genova, Viale Benedetto XV, 1-16132 Genova, Italy; Centre of Excellence for Biomedical Research, University of Genova, Viale Benedetto XV, 7-16132 Genova, Italy
| | - Marco Pedrazzi
- Department of Experimental Medicine (DIMES), Biochemistry Section, University of Genova, Viale Benedetto XV, 1-16132 Genova, Italy; Centre of Excellence for Biomedical Research, University of Genova, Viale Benedetto XV, 7-16132 Genova, Italy
| | - Bianca Sparatore
- Department of Experimental Medicine (DIMES), Biochemistry Section, University of Genova, Viale Benedetto XV, 1-16132 Genova, Italy; Centre of Excellence for Biomedical Research, University of Genova, Viale Benedetto XV, 7-16132 Genova, Italy
| | - Franca Salamino
- Department of Experimental Medicine (DIMES), Biochemistry Section, University of Genova, Viale Benedetto XV, 1-16132 Genova, Italy; Centre of Excellence for Biomedical Research, University of Genova, Viale Benedetto XV, 7-16132 Genova, Italy
| | - Sandro Pontremoli
- Department of Experimental Medicine (DIMES), Biochemistry Section, University of Genova, Viale Benedetto XV, 1-16132 Genova, Italy; Centre of Excellence for Biomedical Research, University of Genova, Viale Benedetto XV, 7-16132 Genova, Italy
| | - Edon Melloni
- Department of Experimental Medicine (DIMES), Biochemistry Section, University of Genova, Viale Benedetto XV, 1-16132 Genova, Italy; Centre of Excellence for Biomedical Research, University of Genova, Viale Benedetto XV, 7-16132 Genova, Italy
| |
Collapse
|
12
|
Suzuki R, Oka T, Tamada Y, Shearer TR, Azuma M. Degeneration and dysfunction of retinal neurons in acute ocular hypertensive rats: involvement of calpains. J Ocul Pharmacol Ther 2014; 30:419-28. [PMID: 24660785 DOI: 10.1089/jop.2013.0100] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
PURPOSE Retinal ischemic diseases primarily lead to damage of the inner retinal neurons. Electrophysiological studies also suggest impairment of the inner retinal neurons. Our recent studies with acute ocular hypertensive rats confirmed damage predominantly in the inner retinal layer along with the ganglion cell layer, changes that are ameliorated by the calpain inhibitor SNJ-1945. However, we do not know which specific neuronal cells in the inner retinal layer are damaged by calpains. Thus, the purpose of the present study was to identify specific calpain-damaged neuronal cells in the inner retina from acute ocular hypertensive rats. METHODS Intraocular pressure was elevated to 110 mm Hg for 40 min. One hour after ocular hypertension (OH), SNJ-1945 was administrated as a single oral dose of 50 mg/kg. Retinal function was assessed by scotopic electroretinography (ERG). Histological degeneration was evaluated by hematoxylin and eosin, terminal deoxynucleotidyl transferase (TdT)-mediated dUTP nick-end-labeling (TUNEL), and immunostaining in thin sections and flat mounts of the retina. Calpain activation was determined by proteolysis of the calpain substrate α-spectrin. RESULTS OH caused calpain activation, increased TUNEL-positive staining, decreased thickness of the inner nuclear layer (INL), and decreased amplitudes of the ERG a- and b-waves and oscillatory potentials (OPs). SNJ-1945 significantly inhibited calpain activation and the decrease in ERG values. Interestingly, the changes in the b-wave and OPs amplitudes were significantly correlated to changes in the thickness of the INL. In the inner retinal layer, the numbers of rod bipolar, cone-ON bipolar, and amacrine cells were decreased after OH. SNJ-1945 suppressed the loss of cone-ON bipolar and amacrine cells, but did not inhibit the loss of rod bipolar cells. We also observed increased glial fibrillary acid protein-positive staining in the Müller cells after OH and the treatment with SNJ-1945. CONCLUSIONS Calpains may contribute to ischemic retinal dysfunction by causing the loss of cone-ON bipolar and amacrine cells and causing the activation of Müller cells. Calpain inhibitor SNJ-1945 may be a candidate compound for treatment of retinal ischemic disease.
Collapse
Affiliation(s)
- Rie Suzuki
- 1 Senju Laboratory of Ocular Sciences, Senju Pharmaceutical Co., Ltd. , Kobe, Japan
| | | | | | | | | |
Collapse
|
13
|
Abstract
Calpain is a conserved family of calcium-dependent, cytosolic, neutral cysteine proteases. The best characterized members of the family are the ubiquitously expressed calpain 1 and calpain 2. They perform controlled proteolysis of their target proteins. The regulation of these enzymes includes autolysis, calcium, phosphorylation as a posttranslational modification, and binding of calpastatin, phospholipids or activator proteins, respectively. Calpain are implicated in many physiological and pathological processes. They have significant role in the cell proliferation, differentiation and migration in a variety of mammalian cell types, contributing to the development of angiogenesis, vascular remodeling, and cancer. Therefore the knowledge of the precise mechanism of calpain signaling could provide therapeutic approaches in these processes.
Collapse
Affiliation(s)
- Laszlo Kovacs
- Department of Pharmacology & Toxicology, Medical College of Georgia, Georgia Regents University, Augusta, GA 30912, USA
| | - Yunchao Su
- Department of Pharmacology & Toxicology, Medical College of Georgia, Georgia Regents University, Augusta, GA 30912, USA
| |
Collapse
|
14
|
Zhao S, Liang Z, Demko V, Wilson R, Johansen W, Olsen OA, Shalchian-Tabrizi K. Massive expansion of the calpain gene family in unicellular eukaryotes. BMC Evol Biol 2012; 12:193. [PMID: 23020305 PMCID: PMC3563603 DOI: 10.1186/1471-2148-12-193] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Accepted: 09/24/2012] [Indexed: 11/30/2022] Open
Abstract
Background Calpains are Ca2+-dependent cysteine proteases that participate in a range of crucial cellular processes. Dysfunction of these enzymes may cause, for instance, life-threatening diseases in humans, the loss of sex determination in nematodes and embryo lethality in plants. Although the calpain family is well characterized in animal and plant model organisms, there is a great lack of knowledge about these genes in unicellular eukaryote species (i.e. protists). Here, we study the distribution and evolution of calpain genes in a wide range of eukaryote genomes from major branches in the tree of life. Results Our investigations reveal 24 types of protein domains that are combined with the calpain-specific catalytic domain CysPc. In total we identify 41 different calpain domain architectures, 28 of these domain combinations have not been previously described. Based on our phylogenetic inferences, we propose that at least four calpain variants were established in the early evolution of eukaryotes, most likely before the radiation of all the major supergroups of eukaryotes. Many domains associated with eukaryotic calpain genes can be found among eubacteria or archaebacteria but never in combination with the CysPc domain. Conclusions The analyses presented here show that ancient modules present in prokaryotes, and a few de novo eukaryote domains, have been assembled into many novel domain combinations along the evolutionary history of eukaryotes. Some of the new calpain genes show a narrow distribution in a few branches in the tree of life, likely representing lineage-specific innovations. Hence, the functionally important classical calpain genes found among humans and vertebrates make up only a tiny fraction of the calpain family. In fact, a massive expansion of the calpain family occurred by domain shuffling among unicellular eukaryotes and contributed to a wealth of functionally different genes.
Collapse
Affiliation(s)
- Sen Zhao
- Microbial Evolution Research Group (MERG), Department of Biology, University of Oslo, OSLO, N-0136, Norway
| | | | | | | | | | | | | |
Collapse
|
15
|
Abstract
Calpains, a family of Ca(2+)-dependent cytosolic cysteine proteases, can modulate their substrates' structure and function through limited proteolytic activity. In the human genome, there are 15 calpain genes. The most-studied calpains, referred to as conventional calpains, are ubiquitous. While genetic studies in mice have improved our understanding about the conventional calpains' physiological functions, especially those essential for mammalian life as in embryogenesis, many reports have pointed to overactivated conventional calpains as an exacerbating factor in pathophysiological conditions such as cardiovascular diseases and muscular dystrophies. For treatment of these diseases, calpain inhibitors have always been considered as drug targets. Recent studies have introduced another aspect of calpains that calpain activity is required to protect the heart and skeletal muscle against stress. This review summarizes the functions and regulation of calpains, focusing on the relevance of calpains to cardiovascular disease.
Collapse
Affiliation(s)
- Hiroyuki Sorimachi
- Calpain Project, Department of Advanced Science for Biomolecules, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan.
| | | |
Collapse
|
16
|
Ono Y, Sorimachi H. Calpains: an elaborate proteolytic system. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2011; 1824:224-36. [PMID: 21864727 DOI: 10.1016/j.bbapap.2011.08.005] [Citation(s) in RCA: 256] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2011] [Revised: 08/03/2011] [Accepted: 08/05/2011] [Indexed: 01/26/2023]
Abstract
Calpain is an intracellular Ca(2+)-dependent cysteine protease (EC 3.4.22.17; Clan CA, family C02). Recent expansion of sequence data across the species definitively shows that calpain has been present throughout evolution; calpains are found in almost all eukaryotes and some bacteria, but not in archaebacteria. Fifteen genes within the human genome encode a calpain-like protease domain. Interestingly, some human calpains, particularly those with non-classical domain structures, are very similar to calpain homologs identified in evolutionarily distant organisms. Three-dimensional structural analyses have helped to identify calpain's unique mechanism of activation; the calpain protease domain comprises two core domains that fuse to form a functional protease only when bound to Ca(2+)via well-conserved amino acids. This finding highlights the mechanistic characteristics shared by the numerous calpain homologs, despite the fact that they have divergent domain structures. In other words, calpains function through the same mechanism but are regulated independently. This article reviews the recent progress in calpain research, focusing on those studies that have helped to elucidate its mechanism of action. This article is part of a Special Issue entitled: Proteolysis 50 years after the discovery of lysosome.
Collapse
Affiliation(s)
- Yasuko Ono
- Calpain Project, Department of Advanced Science for Biomolecules, Tokyo Metropolitan Institute of medical Science, Tokyo, Japan.
| | | |
Collapse
|
17
|
Sorimachi H, Hata S, Ono Y. Calpain chronicle--an enzyme family under multidisciplinary characterization. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2011; 87:287-327. [PMID: 21670566 PMCID: PMC3153876 DOI: 10.2183/pjab.87.287] [Citation(s) in RCA: 109] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2011] [Accepted: 03/04/2011] [Indexed: 05/29/2023]
Abstract
Calpain is an intracellular Ca2+-dependent cysteine protease (EC 3.4.22.17; Clan CA, family C02) discovered in 1964. It was also called CANP (Ca2+-activated neutral protease) as well as CASF, CDP, KAF, etc. until 1990. Calpains are found in almost all eukaryotes and a few bacteria, but not in archaebacteria. Calpains have a limited proteolytic activity, and function to transform or modulate their substrates' structures and activities; they are therefore called, "modulator proteases." In the human genome, 15 genes--CAPN1, CAPN2, etc.--encode a calpain-like protease domain. Their products are calpain homologs with divergent structures and various combinations of functional domains, including Ca2+-binding and microtubule-interaction domains. Genetic studies have linked calpain deficiencies to a variety of defects in many different organisms, including lethality, muscular dystrophies, gastropathy, and diabetes. This review of the study of calpains focuses especially on recent findings about their structure-function relationships. These discoveries have been greatly aided by the development of 3D structural studies and genetic models.
Collapse
Affiliation(s)
- Hiroyuki Sorimachi
- Calpain Project, Department of Advanced Science for Biomolecules, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan.
| | | | | |
Collapse
|
18
|
Olmos G, Arenas MI, Bienes R, Calzada MJ, Aragonés J, Garcia-Bermejo ML, Landazuri MO, Lucio-Cazaña J. 15-Deoxy-Delta(12,14)-prostaglandin-J(2) reveals a new pVHL-independent, lysosomal-dependent mechanism of HIF-1alpha degradation. Cell Mol Life Sci 2009; 66:2167-80. [PMID: 19458911 PMCID: PMC11115852 DOI: 10.1007/s00018-009-0039-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2008] [Revised: 03/25/2009] [Accepted: 04/21/2009] [Indexed: 11/28/2022]
Abstract
Hypoxia-inducible factor-1alpha (HIF-1alpha) protein is degraded under normoxia by its association to von Hippel-Lindau protein (pVHL) and further proteasomal digestion. However, human renal cells HK-2 treated with 15-deoxy-Delta(12,14)-prostaglandin-J(2) (15d-PGJ(2)) accumulate HIF-1alpha in normoxic conditions. Thus, we aimed to investigate the mechanism involved in this accumulation. We found that 15d-PGJ(2) induced an over-accumulation of HIF-1alpha in RCC4 cells, which lack pVHL and in HK-2 cells treated with inhibitors of the pVHL-proteasome pathway. These results indicated that pVHL-proteasome-independent mechanisms are involved, and therefore we aimed to ascertain them. We have identified a new lysosomal-dependent mechanism of HIF-1alpha degradation as a target for 15d-PGJ(2) based on: (1) HIF-1alpha colocalized with the specific lysosomal marker Lamp-2a, (2) 15d-PGJ(2) inhibited the activity of cathepsin B, a lysosomal protease, and (3) inhibition of lysosomal activity did not result in over-accumulation of HIF-1alpha in 15d-PGJ(2)-treated cells. Therefore, expression of HIF-1alpha is also modulated by lysosomal degradation.
Collapse
Affiliation(s)
- Gemma Olmos
- Departamento de Fisiología, Facultad de Medicina, Universidad de Alcalá, 28471 Alcalá de Henares, Madrid, Spain
| | - María I. Arenas
- Departamento de Biología Celular y Genética, Universidad de Alcalá, Alcalá de Henares, Madrid, Spain
| | - Raquel Bienes
- Servicio de Inmunología, Hospital de la Princesa, Universidad Autónoma de Madrid, Madrid, Spain
| | - María Jose Calzada
- Servicio de Inmunología, Hospital de la Princesa, Universidad Autónoma de Madrid, Madrid, Spain
| | - Julián Aragonés
- Servicio de Inmunología, Hospital de la Princesa, Universidad Autónoma de Madrid, Madrid, Spain
| | | | - Manuel O. Landazuri
- Servicio de Inmunología, Hospital de la Princesa, Universidad Autónoma de Madrid, Madrid, Spain
| | - Javier Lucio-Cazaña
- Departamento de Fisiología, Facultad de Medicina, Universidad de Alcalá, 28471 Alcalá de Henares, Madrid, Spain
| |
Collapse
|
19
|
Moretti D, Del Bello B, Cosci E, Biagioli M, Miracco C, Maellaro E. Novel variants of muscle calpain 3 identified in human melanoma cells: cisplatin-induced changes in vitro and differential expression in melanocytic lesions. Carcinogenesis 2009; 30:960-7. [PMID: 19386580 DOI: 10.1093/carcin/bgp098] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Calpains are cysteine proteases comprising members ubiquitously expressed in human tissues and other tissue-specific isoforms. Alterations of calpain 3 (p94), the muscle-specific isoform that contains three peculiar sequences (NS, IS1 and IS2), are strictly associated to the limb-girdle muscular dystrophy type 2A, in which a myonuclear apoptosis has been documented. Our recent demonstration of a proapoptotic role of ubiquitous calpains in drug-induced apoptosis of melanoma cells prompted us to investigate the expression of calpain 3 in human melanoma cell lines undergoing apoptosis and in melanocytic lesions. In melanoma cell lines, we have identified two novel splicing variants of calpain 3 (hMp78 and hMp84): they have an atypical initiation exon and a putative nuclear localization signal, the shorter one lacks IS1 inset and both proteins are extremely unstable. Virtually, both isoforms (prevalently as cleavage forms) are localized in cytoplasm and in nucleoli. In cisplatin-treated preapoptotic cells, an increase of both transcription and autoproteolytic cleavage of the novel variants is observed; the latter event is prevented by the inhibitor of ubiquitous calpains, calpeptin, which is also able to protect from apoptosis. Interestingly, among melanocytic lesions, the expression of these novel variants is significantly downregulated, compared with benign nevi, in the most aggressive ones, i.e. in vertical growth phase melanoma and, even more, in metastatic melanoma cells, characterized by invasiveness properties and usually highly resistant to apoptosis. On the whole, our observations suggest that calpain 3 variants can play a proapoptotic role in melanoma cells and its downregulation, as observed in highly aggressive lesions, could contribute to melanoma progression.
Collapse
Affiliation(s)
- D Moretti
- Department of Physiopathology, Experimental Medicine and Public Health, University of Siena, Italy
| | | | | | | | | | | |
Collapse
|
20
|
Russo R, Rotiroti D, Tassorelli C, Nucci C, Bagetta G, Bucci MG, Corasaniti MT, Morrone LA. Identification of novel pharmacological targets to minimize excitotoxic retinal damage. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2009; 85:407-23. [PMID: 19607984 DOI: 10.1016/s0074-7742(09)85028-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Excitotoxic neuronal death is a common feature of neurodegenerative and ischemic diseases of the central nervous system (CNS) and of a variety of ocular diseases, including glaucoma. Glaucoma, one of the leading causes of blindness in the world, is characterized by a progressive degeneration of retinal ganglion cells (RGCs) and their axons and is often associated with elevated intraocular pressure (IOP). Retinal ischemia/reperfusion induced by experimental elevation of IOP leads to damage and loss of RGCs. Under these conditions, structural, functional, and biochemical changes implicate the accumulation of extracellular glutamate and activation of the excitotoxic cascade. Beside the activation of associated pathways, death of RGCs is accompanied by impaired endogenous defenses, such as the PI3K/Akt prosurvival pathway. Original neurochemical and pharmacological evidence are discussed here to strengthen the role for excitotoxicity in RGCs death occurring in experimental, angle closure, glaucoma in conjunction with the discovery of novel molecular targets to potentiate endogenous prosurvival defenses in the glaucomatous retina.
Collapse
Affiliation(s)
- Rossella Russo
- Department of Pharmacobiology, University of Calabria, 87036 Arcavacata di Rende, Italy
| | | | | | | | | | | | | | | |
Collapse
|
21
|
A new epicatechin gallate and calpain inhibitory activity from Orostachys japonicus. Fitoterapia 2009; 80:73-6. [DOI: 10.1016/j.fitote.2008.10.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2008] [Revised: 10/08/2008] [Accepted: 10/08/2008] [Indexed: 11/18/2022]
|
22
|
Hsieh YY, Chang CC, Hsu KH, Tsai FJ, Chen CP, Tsai HD. Effect of exercise training on calpain systems in lean and obese Zucker rats. Int J Biol Sci 2008; 4:300-8. [PMID: 18802475 PMCID: PMC2536707 DOI: 10.7150/ijbs.4.300] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2008] [Accepted: 09/05/2008] [Indexed: 02/05/2023] Open
Abstract
Exercise training plays a major role in the improving physiology of diabetes. Herein we aimed to investigate the influence of exercise upon the calcium-dependent calpain-isoform expressions of lean or obese Zucker rats, a model of obesity and type II diabetes (NIDDM). Five-month-old rats were divided: (1) obese sedentary (OS, n=7); (2) obese exercise (OE, n=7); (3) lean sedentary (LS, n=7); (4) lean exercise (LE, n=7). After 2-month exercise (treadmill running), the body weight (BW) and expression of calpain 10, mu-calpain, and m-calpain in skeletal muscles were determined by RT-PCR, using beta-actin as internal standard. We found exercise is useful for BW lossing, especially in the obese rats. The BW difference between OS and OE rats (69 g vs. 18.2 g) was more significantly than that between LS and LE rats (41.8 g vs. 28.7 g). The calpain 10 expression of LS rats (0.965) was lower than that of LE rats (1.006), whereas those of OS and OE were comparable. The mu- or m-calpain expressions of sedentary groups (OS, LS) was significantly higher than those of exercise groups (OE, LE). The mu-calpain expression (1.13/0.92) and m-calpain expression (1.01/0.99) of OS/LS rats was significantly higher than those of OE/LE rats [1.07/0.9 (micro-calpain); 0.97/0.95 (m-calpain)]. We concluded that the micro- or m-calpains in skeletal muscle are regulated by exercise in both lean and obese Zucker rats. Exercise and BW controlling might improve the physiopathology of obesity and diabetes. Both micro- or m-calpains might become useful markers for prognoses of diabetes.
Collapse
Affiliation(s)
- Yao-Yuan Hsieh
- Department of Obstetrics and Gynecology, China Medical University Hospital, Taichung, Taiwan
| | | | | | | | | | | |
Collapse
|
23
|
Disulfide bond within µ-calpain active site inhibits activity and autolysis. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2008; 1784:1215-21. [DOI: 10.1016/j.bbapap.2008.04.018] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2007] [Revised: 04/22/2008] [Accepted: 04/23/2008] [Indexed: 12/11/2022]
|
24
|
Kiss R, Kovács D, Tompa P, Perczel A. Local Structural Preferences of Calpastatin, the Intrinsically Unstructured Protein Inhibitor of Calpain. Biochemistry 2008; 47:6936-45. [DOI: 10.1021/bi800201a] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Robert Kiss
- Laboratory of Structural Chemistry and Biology, Institute of Chemistry, Eötvös Loránd University, Budapest, Hungary, Institute of Enzymology, Biological Research Center, Hungarian Academy of Sciences, Budapest, Hungary, and Protein Modeling Group MTA-ELTE, Institute of Chemistry, Eötvös Loránd University, H-1538 Budapest, P.O. Box 32, Hungary
| | - Dénes Kovács
- Laboratory of Structural Chemistry and Biology, Institute of Chemistry, Eötvös Loránd University, Budapest, Hungary, Institute of Enzymology, Biological Research Center, Hungarian Academy of Sciences, Budapest, Hungary, and Protein Modeling Group MTA-ELTE, Institute of Chemistry, Eötvös Loránd University, H-1538 Budapest, P.O. Box 32, Hungary
| | - Péter Tompa
- Laboratory of Structural Chemistry and Biology, Institute of Chemistry, Eötvös Loránd University, Budapest, Hungary, Institute of Enzymology, Biological Research Center, Hungarian Academy of Sciences, Budapest, Hungary, and Protein Modeling Group MTA-ELTE, Institute of Chemistry, Eötvös Loránd University, H-1538 Budapest, P.O. Box 32, Hungary
| | - András Perczel
- Laboratory of Structural Chemistry and Biology, Institute of Chemistry, Eötvös Loránd University, Budapest, Hungary, Institute of Enzymology, Biological Research Center, Hungarian Academy of Sciences, Budapest, Hungary, and Protein Modeling Group MTA-ELTE, Institute of Chemistry, Eötvös Loránd University, H-1538 Budapest, P.O. Box 32, Hungary
| |
Collapse
|
25
|
Sha D, Jin Y, Wu H, Wei J, Lin CH, Lee YH, Buddhala C, Kuchay S, Chishti AH, Wu JY. Role of mu-calpain in proteolytic cleavage of brain L-glutamic acid decarboxylase. Brain Res 2008; 1207:9-18. [PMID: 18377878 DOI: 10.1016/j.brainres.2008.02.033] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2007] [Revised: 01/29/2008] [Accepted: 02/01/2008] [Indexed: 11/15/2022]
Abstract
Glutamic acid decarboxylase (GAD) is the rate-limiting enzyme for gamma-aminobutyric acid (GABA) biosynthesis. Previously, we reported the presence of truncated forms of GAD in vivo and in vitro. In addition, an unidentified endogenous protease responsible for proteolytic cleavage of full-length GAD (fGAD) to its truncated form (tGAD) was also observed. In this communication, we report that mu-calpain is a good candidate for conversion of fGAD(67) to tGAD(67). This conclusion is based on the following observations: 1. purified recombinant GAD(67) is cleaved by mu-calpain at specific sites; 2. in brain synaptosomal preparation, GAD(67) is cleaved to its truncated form by an endogenous protease which is inhibited by specific calpain inhibitors; 3. in mu-calpain knockout mice, the level of tGAD in the brain is greatly reduced compared with the wild type; 4. when mu-calpain gene is silenced by siRNA, the level of tGAD is also markedly reduced compared to the control group; and 5. mu-calpain is activated by neuronal stimulation and Ca(2+)-influx. The physiological significance of calpain in regulation of GABA synthesis and GABAergic neurotransmission is also discussed.
Collapse
Affiliation(s)
- Di Sha
- Department of Biomedical Sciences, Florida Atlantic University, Boca Raton, FL 33431, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Post-translational Regulation of l-Glutamic Acid Decarboxylase in the Brain. Neurochem Res 2008; 33:1459-65. [DOI: 10.1007/s11064-008-9600-5] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2007] [Accepted: 01/18/2008] [Indexed: 11/25/2022]
|
27
|
Russo R, Cavaliere F, Rombolà L, Gliozzi M, Cerulli A, Nucci C, Fazzi E, Bagetta G, Corasaniti MT, Morrone LA. Rational basis for the development of coenzyme Q10 as a neurotherapeutic agent for retinal protection. PROGRESS IN BRAIN RESEARCH 2008; 173:575-82. [PMID: 18929135 DOI: 10.1016/s0079-6123(08)01139-4] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Glaucoma is a worldwide leading cause of irreversible vision loss characterized by progressive death of retinal ganglion cells (RGCs). In the course of glaucoma, RGC death may be the consequence of energy impairment that triggers secondary excitotoxicity and free radical generation. There is substantial evidence also that a number of free radical scavengers and/or agents that improve mitochondrial function may be useful as therapies to ameliorate cell death in various neurological disorders including glaucoma. Coenzyme Q10 (CoQ10), an essential cofactor of the electron transport chain, has been reported to afford neuroprotection in neurodegenerative diseases, such as Alzheimer's and Parkinson's diseases, and its protective effect has been attributed in part to its free radical scavenger ability and to a specific regulation of the mitochondrial permeability transition pore. Using an established animal model of transient retinal ischemia, we have conclusively identified a role for abnormal elevation of extracellular glutamate in the mechanisms underlying RGC death that occurs, at least in part, via activation of the apoptotic program. Under these experimental conditions, N-methyl-D-aspartate (NMDA) and non-NMDA subtype of glutamate receptor antagonists, nitric oxide synthase inhibitors, and CoQ10 afford retinal protection supporting an important role for excitotoxicity in the mechanisms underlying RGC death.
Collapse
Affiliation(s)
- Rossella Russo
- Department of Pharmacobiology, University of Calabria, 87036 Arcavacata di Rende, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Sánchez-Sánchez F, Martínez-Redondo F, Aroca-Aguilar JD, Coca-Prados M, Escribano J. Characterization of the Intracellular Proteolytic Cleavage of Myocilin and Identification of Calpain II as a Myocilin-processing Protease. J Biol Chem 2007; 282:27810-24. [PMID: 17650508 DOI: 10.1074/jbc.m609608200] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
MYOC, a gene involved in different types of glaucoma, encodes myocilin, a secreted glycoprotein of unknown function, consisting of an N-terminal leucine-zipper-like domain, a central linker region, and a C-terminal olfactomedin-like domain. Recently, we have shown that myocilin undergoes an intracellular endoproteolytic processing. We show herein that the proteolytic cleavage in the linker region splits the two terminal domains. The C-terminal domain is secreted to the culture medium, whereas the N-terminal domain mainly remains intracellularly retained. In transiently transfected 293T cells, the cleavage was prevented by calpain inhibitors, such as calpeptin, calpain inhibitor IV, and calpastatin. Since calpains are calcium-activated proteases, we analyzed how changes in either intra- or extracellular calcium affected the cleavage of myocilin. Intracellular ionomycin-induced calcium uptake enhanced myocilin cleavage, whereas chelation of extracellular calcium by EGTA inhibited the proteolytic processing. Calpains I and II cleaved myocilin in vitro. However, in cells in culture, only RNA interference knockdown of calpain II reduced myocilin processing. Subcellular fractionation and digestion of the obtained fractions with proteinase K showed that full-length myocilin resides in the lumen of the endoplasmic reticulum together with a subpopulation of calpain II. These data revealed that calpain II is responsible for the intracellular processing of myocilin in the lumen of the endoplasmic reticulum. We propose that this cleavage might regulate extracellular interactions of myocilin, contributing to the control of intraocular pressure.
Collapse
Affiliation(s)
- Francisco Sánchez-Sánchez
- Area de Genética, Facultad de Medicina/Centro Regional de Investigaciones Biomédicas, Universidad de Castilla-La Mancha, Avda. de Almansa, no. 14, 02006 Albacete, Spain
| | | | | | | | | |
Collapse
|
29
|
Harris F, Biswas S, Singh J, Dennison S, Phoenix DA. Calpains and their multiple roles in diabetes mellitus. Ann N Y Acad Sci 2007; 1084:452-80. [PMID: 17151322 DOI: 10.1196/annals.1372.011] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Type 2 diabetes mellitus (T2DM) can lead to death without treatment and it has been predicted that the condition will affect 215 million people worldwide by 2010. T2DM is a multifactorial disorder whose precise genetic causes and biochemical defects have not been fully elucidated, but at both levels, calpains appear to play a role. Positional cloning studies mapped T2DM susceptibility to CAPN10, the gene encoding the intracellular cysteine protease, calpain 10. Further studies have shown a number of noncoding polymorphisms in CAPN10 to be functionally associated with T2DM while the identification of coding polymorphisms, suggested that mutant calpain 10 proteins may also contribute to the disease. Here we review recent studies, which in addition to the latter enzyme, have linked calpain 5, calpain 3, and its splice variants, calpain 2 and calpain 1 to T2DM-related metabolic pathways along with T2DM-associated phenotypes, such as obesity and impaired insulin secretion, and T2DM-related complications, such as epithelial dysfunction and diabetic cataract.
Collapse
Affiliation(s)
- Frederick Harris
- Department of Forensic and Investigative Science, University of Central Lancashire, Preston, PR1 2HE, United Kingdom
| | | | | | | | | |
Collapse
|
30
|
Shirasaki Y, Yamaguchi M, Miyashita H. Retinal Penetration of Calpain Inhibitors in Rats After Oral Administration. J Ocul Pharmacol Ther 2006; 22:417-24. [PMID: 17238807 DOI: 10.1089/jop.2006.22.417] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Calpain-mediated proteolysis has been involved in neuronal cell death of retinal neurological degeneration. An aldehyde-based calpain inhibitor, SJA6017 (1), was effective following oral administration in a rat retinal ischemia model but had low oral bioavailability. The aim of this study was to identify calpain inhibitors with good retinal penetration after oral dosing. The orally bioavailable inhibitors, hemiacetal 3 (SNJ-1715), amphipathic ketoamide 5 (SNJ-1945), and pyridine ketoamide 6 (SNJ-2008), were evaluated for their retinal pharmacokinetic (PK) profiles. The retinal drug exposure of these inhibitors was more than tenfold higher than 1. Among these compounds, 5 exhibited the most favorable retinal PK properties, such as good penetration and long half-life. Comparisons of 5 and the structurally related ketoamide 6 suggested that the presence of a methoxy diethylene glycol moiety resulted in the inhibitor with high penetration into the retina and the sustained high retinal levels. Ketoamide 5 was selected as the development candidate for the treatment of retinal diseases.
Collapse
Affiliation(s)
- Yoshihisa Shirasaki
- Pharmacokinetic group, Laboratory for Preclinical Research, Senju Pharmaceutical Co., Ltd., Hyogo, Japan.
| | | | | |
Collapse
|
31
|
Oka T, Nakajima T, Tamada Y, Shearer TR, Azuma M. Contribution of calpains to photoreceptor cell death in N-methyl-N-nitrosourea-treated rats. Exp Neurol 2006; 204:39-48. [PMID: 17069801 DOI: 10.1016/j.expneurol.2006.09.011] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2006] [Revised: 09/15/2006] [Accepted: 09/22/2006] [Indexed: 11/17/2022]
Abstract
The purpose of the present study was to determine if proteolysis by the calcium-dependent enzyme calpains (EC 3.4.22.17) contributed to retinal cell death in a rat model of photoreceptor degeneration induced by intraperitoneal injection of N-methyl-N-nitrosourea (MNU). Retinal degeneration was evaluated by H&E staining, and cell death was determined by TUNEL assay. Total calcium in retina was measured by atomic absorption spectrophotometry. Activation of calpains was determined by casein zymography and immunoblotting. Proteolysis of alpha-spectrin and p35 (regulator of Cdk5) were evaluated by immunoblotting. Calpain inhibitor SNJ-1945 was orally administrated to MNU-treated rats to test drug efficacy. MNU decreased the thickness of photoreceptor cell layer, composed of the outer nuclear layer (ONL) and outer segment (OS). Numerous cells in the ONL showed positive TUNEL staining. Total calcium was increased in retina after MNU. Activation of calpains and calpain-specific proteolysis of alpha-spectrin were observed after MNU injection. Oral administration of SNJ-1945 to MNU-treated rats showed a significant protective effect against photoreceptor cell loss, confirming involvement of calpains in photoreceptor degeneration. Conversion of p35 to p25 was well correlated with calpain activation, suggesting prolonged activation of Cdk5/p25 as a possible downstream mechanism for MNU-induced photoreceptor cell death. SNJ-1945 reduced photoreceptor cells death, even though MNU is one of the most severe models of photoreceptor cell degeneration. Oral calpain inhibitor SNJ-1945 may be a candidate for testing as a medication against retinal degeneration in retinitis pigmentosa.
Collapse
Affiliation(s)
- Takayuki Oka
- Kobe Creative Center, Senju Pharmaceutical Co., Ltd., 1-5-4 Murotani, Nishiku, Kobe, Hyogo 651-2241, Japan
| | | | | | | | | |
Collapse
|
32
|
Wei J, Lin CH, Wu H, Jin Y, Lee YH, Wu JY. Activity-dependent cleavage of brain glutamic acid decarboxylase 65 by calpain. J Neurochem 2006; 98:1688-95. [PMID: 16879709 DOI: 10.1111/j.1471-4159.2006.04074.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Previously, we reported that l-glutamic acid decarboxylase isoform 65 (GAD65) could be cleaved in vitro to release a stable truncated form which lacks amino acid 1-69 from the N-terminus, GAD65(Delta1-69). However, whether such a truncated form is also present under certain physiological conditions remains elusive. In the present study, we showed that, upon sustained neuronal stimulation, GAD65 could be cleaved into a truncated form in a rat synaptosomal preparation. This truncated form had similar electrophoretic mobility to purified recombinant human GAD65(Delta1-69). Furthermore, we demonstrated that this conversion was calcium dependent. Calcium-chelating reagents such as EDTA and 1,2-bis-(o-aminphenoxy)-ethane-N,N,N',N'-tetra-acetic acid tetra-acetoxy-methyl ester prevented the cleavage of GAD65. In addition, our data suggested that calpain, a calcium-dependent cysteine protease, is activated upon neuronal stimulation and could be responsible for the conversion of full-length GAD65 to truncated GAD65 in the brain. Moreover, calpain inhibitors such as calpain inhibitor I or calpastatin could block the cleavage. Results of our in vitro cleavage assay using purified calpain and immunopurified rat GAD65 also supported the idea that GAD65 could be directly cleaved by calpain.
Collapse
Affiliation(s)
- Jianning Wei
- Department of Biomedical Sciences, Florida Atlantic University, Boca Raton, Florida 33431, USA
| | | | | | | | | | | |
Collapse
|
33
|
Oka T, Tamada Y, Nakajima E, Shearer TR, Azuma M. Presence of calpain-induced proteolysis in retinal degeneration and dysfunction in a rat model of acute ocular hypertension. J Neurosci Res 2006; 83:1342-51. [PMID: 16528750 DOI: 10.1002/jnr.20827] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The purpose of this study was to determine if calpain-induced proteolysis was associated with retinal degeneration or dysfunction in the rat acute ocular hypertensive model. Acute glaucoma was produced by elevation of IOP to 120 mm Hg for 1 hr. Retinal degeneration was evaluated by H&E staining and apoptosis was determined by TUNEL staining in histologic sections of retina. Electroretinogram (ERG) was carried out to evaluate changes in functionality. Activation of calpains was determined by casein zymography and immunoblotting. Total calcium in retina was measured by atomic absorption spectrophotometry. Proteolysis of alpha-spectrin, tau, cdk5, and p35 (a regulator of cdk5) were evaluated by immunoblotting. The thickness of inner plexiform layer (IPL) and inner nuclear layer (INL), and the number of cells in the ganglion cell layer (GCL) decreased after ocular hypertension. Numerous cells in the INL stained positive for TUNEL and some cells in the outer nuclear layer (ONL) showed TUNEL staining. The a-wave in ERG was temporarily decreased after ocular hypertension and then recovered to normal. In contrast, the b-wave was completely lost. Calpains were activated after ocular hypertension. Activation of calpains was associated with increased calcium in retina. Calpain-dependent proteolysis of alpha-spectrin, tau, and p35 were observed in retina after ocular hypertension. The results suggested that increased calcium and subsequent proteolysis by activated calpains was associated with the death of inner retinal cells due to acute ocular hypertension in the rat model. Calpain inhibitors may be candidate drugs for treatment of retinal degeneration and dysfunction resulting from glaucoma.
Collapse
Affiliation(s)
- Takayuki Oka
- Kobe Creative Center, Senju Pharmaceutical Co., Ltd., Kobe, Hyogo, Japan
| | | | | | | | | |
Collapse
|
34
|
Oka T, Walkup RD, Tamada Y, Nakajima E, Tochigi A, Shearer TR, Azuma M. Amelioration of retinal degeneration and proteolysis in acute ocular hypertensive rats by calpain inhibitor ((1S)-1-((((1S)-1-benzyl-3-cyclopropylamino-2,3-di-oxopropyl)amino)carbonyl)-3-methylbutyl)carbamic acid 5-methoxy-3-oxapentyl ester. Neuroscience 2006; 141:2139-45. [PMID: 16843603 DOI: 10.1016/j.neuroscience.2006.05.060] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2006] [Revised: 05/25/2006] [Accepted: 05/27/2006] [Indexed: 10/24/2022]
Abstract
BACKGROUND Our recent study suggested involvement of calpain-induced proteolysis in retinal degeneration and dysfunction in acute ocular hypertensive rats. The purpose of the present study was to determine if an orally available form of calpain inhibitor, ((1S)-1-((((1S)-1-benzyl-3-cyclopropylamino-2,3-di-oxopropyl)amino)carbonyl)-3-methylbutyl)carbamic acid 5-methoxy-3-oxapentyl ester (SNJ-1945), ameliorated retinal degeneration induced by acute hypertension in rats. To help extrapolate the effect of SNJ-1945 from the rat model to the human glaucomatous patient, in vitro inhibition of calpain-induced proteolysis by SNJ-1945 in monkey and human retinal proteins was compared with proteolysis in rat proteins. METHODS Intraocular pressure (IOP) in rats was elevated to 110 mm Hg for 50 min. SNJ-1945 was administrated i.p. or orally before ocular hypertension. Retinal degeneration was evaluated by hematoxylin and eosin (H&E) staining and cell counting. Transcripts for calpains and calpastatin in rat, monkey, and human retinas were measured by quantitative RT-PCR. Calpain activities were determined by casein zymography. Soluble retinal proteins from rat, monkey, and humans were incubated with calcium to activate calpains, with or without SNJ-1945. Proteolysis of calpain substrate alpha-spectrin was analyzed by immunoblotting. RESULTS Elevated IOP caused retinal degeneration and proteolysis of alpha-spectrin. Both i.p. and oral administration of SNJ-1945 inhibited proteolysis of alpha-spectrin and ameliorated retinal degeneration. Transcript levels for calpain 1 and calpastatin were similar in rat, monkey, and human retinas. Calpain 2 transcript levels were higher in rats compared with monkey and human. Appreciable caseinolytic activities due to calpains were observed in monkey and human retinas. Incubation of retinal soluble proteins with calcium led to proteolysis of alpha-spectrin due to calpains in rat, monkey, and human samples. SNJ-1945 similarly inhibited proteolysis in all species. CONCLUSION Our results suggested that orally available calpain inhibitor SNJ-1945 might be a possible candidate drug for testing in preventing progression of glaucomatous retinal degeneration.
Collapse
Affiliation(s)
- T Oka
- Kobe Creative Center, Senju Pharmaceutical Co., Ltd., 1-5-4 Murotani, Nishiku, Kobe, Hyogo 651-2241, Japan
| | | | | | | | | | | | | |
Collapse
|
35
|
Takahashi M, Tanonaka K, Yoshida H, Koshimizu M, Daicho T, Oikawa R, Takeo S. Possible involvement of calpain activation in pathogenesis of chronic heart failure after acute myocardial infarction. J Cardiovasc Pharmacol 2006; 47:413-21. [PMID: 16633084 DOI: 10.1097/01.fjc.0000210074.56614.3b] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Changes in proteolytic activity of the myocardium during the development of heart failure after left coronary artery ligation (CAL) of rats were examined. Hemodynamics of the rats at the eighth week (8w-CAL rat), but not at the second week (2w-CAL rat), after CAL showed the symptoms of chronic heart failure. Contents of mu-calpin and m-calpain, but not an intrinsic calpain inhibitor calpastatin, in the viable left ventricular muscle (viable LV) and the right ventricular muscle (RV) of the 2w-CAL and 8w-CAL rats were increased, which was associated with an elevation of intrinsic activities of leupeptin-sensitive, Ca(2+)-activated proteolysis in the cytosolic fractions of the viable LV and RV. Oral administration of 3 mg/kg/d trandolapril or 1 mg/kg/d candesartan from the second to eighth week after CAL improved the hemodynamics of 8w-CAL rats. The drug treatment attenuated the increases in mu-calpain and m-calpain contents and the elevation of the proteolytic activity of the viable LV and RV in the 8w-CAL rat. The drug treatment increased calpastatin content of the RV in the 8w-CAL rat. These results suggest that sustained activation of calpain is involved in the development of chronic heart failure and that trandolapril and candesartan prevent the activation of calpains after CAL.
Collapse
Affiliation(s)
- Masaya Takahashi
- Department of Molecular and Cellular Pharmacology, Tokyo University of Pharmacy and Life Science, Hachioji, Japan
| | | | | | | | | | | | | |
Collapse
|
36
|
Qiu K, Su Y, Block ER. Use of recombinant calpain-2 siRNA adenovirus to assess calpain-2 modulation of lung endothelial cell migration and proliferation. Mol Cell Biochem 2006; 292:69-78. [PMID: 16733798 DOI: 10.1007/s11010-006-9219-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2006] [Accepted: 05/01/2006] [Indexed: 12/14/2022]
Abstract
In this study, we developed an adenoviral vector harboring calpain-2 siRNA expression unit in which sense and anti-sense strands composing the siRNA duplex were connected by a loop and transcribed into a siRNA in porcine pulmonary artery endothelial cells (PAEC). We screened one efficient adenoviral vector Ad/si-m187 and found that Ad/si-m187 successfully exerted a gene knockdown effect on calpain-2 mRNA transcription and protein expression levels. The protein content of calpain-2 was reduced by 30%-80% in PAEC infected with Ad/si-m187 in comparison to a control adenoviral vector Ad/si-luc. The mRNA levels of calpain-2 were measured by real-time PCR and were decreased by 60%-100% and in a dose dependent manner. In correspondence to silencing calpain-2 gene expression, calpain-2 activity was decreased significantly. We further evaluated the role of calpain-2 in endothelial cell migration and proliferation. PAEC infected with Ad/si-m187 displayed impaired migration and cell proliferation in comparison to cells infected with control adenoviral vector (Ad/si-luc). These results indicate that adenoviral vector harboring calpain-2 siRNA expression unit is a valuable tool to study the biology of calpains and that calpain-2 plays an important role in lung endothelial cell migration and proliferation.
Collapse
Affiliation(s)
- Kai Qiu
- Department of Medicine, University of Florida College of Medicine, Gainesville, FL 32608-1197, USA
| | | | | |
Collapse
|
37
|
Wu M, Yu Z, Fan J, Caron A, Whiteway M, Shen SH. Functional dissection of human protease μ-calpain in cell migration using RNAi. FEBS Lett 2006; 580:3246-56. [PMID: 16697376 DOI: 10.1016/j.febslet.2006.05.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2006] [Revised: 04/28/2006] [Accepted: 05/02/2006] [Indexed: 11/20/2022]
Abstract
Calpains are a family of calcium-dependent cysteine proteases involved in a variety of cellular functions. Two isoforms, m-calpain and mu-calpain, have been implicated in cell migration. However, since conventional inhibitors used for the studies of the functions of these enzymes lack specificity, the individual physiological function and biochemical mechanism of these two isoforms, especially mu-calpain, are not clear. In contrast, RNA interference has the potential to allow a sequence-specific destruction of target RNA for functional assay of gene of interest. In the present study, we found that small interfering RNAs-mediated knockdown of mu-calpain expression in MCF-7 cells that do not express m-Calpain led to a reduction of cell migration. This isoform-specific function of mu-calpain was further confirmed by the rescue experiment as overexpression of mu-calpain but not m-calpain could restore the cell migration rate. Knockdown of mu-calpain also altered cell morphology with increased filopodial projections and a highly elongated tail that seemed to prevent cell spreading and migration with reduced rear detachment ability. Furthermore, knockdown of mu-calpain decreased the proteolytic products of filamin and talin, which were specifically rescued by overexpression of mu-calpain but not m-calpain, suggesting that their proteolysis could be one of the key mechanisms by which mu-calpain regulates cell migration.
Collapse
Affiliation(s)
- Meiqun Wu
- Mammalian Cell Genetics Group, Biotechnology Research Institute, National Research Council of Canada, Montreal, Que., Canada H4P 2R2
| | | | | | | | | | | |
Collapse
|
38
|
Shirasaki Y, Miyashita H, Yamaguchi M. Exploration of orally available calpain inhibitors. Part 3: Dipeptidyl alpha-ketoamide derivatives containing pyridine moiety. Bioorg Med Chem 2006; 14:5691-8. [PMID: 16651001 DOI: 10.1016/j.bmc.2006.04.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2006] [Revised: 04/06/2006] [Accepted: 04/07/2006] [Indexed: 10/24/2022]
Abstract
Calpain-mediated proteolysis has been implicated as a major process in neuronal cell death including retinal neurological degeneration. The previously reported calpain inhibitor SJA6017 (1) showed oral efficacy in a retinal pharmacological model, but its oral bioavailability was low due to the metabolic lability and low water-solubility. The purpose of present study was to identify good orally bioavailable calpain inhibitors. A series of water-soluble dipeptidyl alpha-ketoamides containing a pyridine moiety at P3 were designed, synthesized, and evaluated for their oral bioavailability and retinal penetration. Introduction of a pyridineethanol moiety provided the potent alpha-ketoamide inhibitor 8 with good oral bioavailability. Compound 8 showed about 12-fold higher retinal AUC than 1.
Collapse
Affiliation(s)
- Yoshihisa Shirasaki
- Research Laboratory of Ocular Science, Senju Pharmaceutical Co. Ltd, Nishi-ku, Kobe, Hyogo, Japan.
| | | | | |
Collapse
|
39
|
Nangle MR, Cotter MA, Cameron NE. The calpain inhibitor, A-705253, corrects penile nitrergic nerve dysfunction in diabetic mice. Eur J Pharmacol 2006; 538:148-53. [PMID: 16650403 DOI: 10.1016/j.ejphar.2006.03.068] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2006] [Accepted: 03/28/2006] [Indexed: 11/19/2022]
Abstract
Calpains, a superfamily of Ca(2+)-activated proteases, are associated with an array of physiological and pathological events, including susceptibility to diabetes. Recently, increased calpain activity has been linked to reduced endothelium-derived nitric oxide-mediated vasodilatation in diabetes. However, a similar mechanism for neuronal-derived nitric oxide has not been examined. Thus, the aim was to investigate effects of the calpain inhibitor A-705253, N-(1-benzyl-2-carbamoyl-2-oxoethyl)-2-[E-2-(4-diethyl-aminomethylphenyl)ethen-1-yl]benzamide, on nitrergic neurovascular function in diabetic mice. Diabetes was induced by streptozotocin; duration was 6 weeks. Intervention A-705253 treatment (30 mg/kg/day) was given for 2 weeks following 4 weeks of untreated diabetes. After 6 weeks of diabetes, corpus cavernosa were isolated in organ baths for measurement of agonist- and electrical stimulation-evoked smooth muscle tensions. Adrenergic nerve- and phenylephrine-mediated contractions were not altered by diabetes or calpain inhibition. In contrast, maximum nitrergic nerve-mediated relaxation of phenylephrine-precontracted cavernosum was approximately 29% reduced by diabetes (P<0.001). This neurological deficit was 66% corrected by A-705253 treatment (P<0.05). Maximum nitric oxide-mediated endothelium-dependent relaxation to acetylcholine was attenuated approximately 39% by diabetes (P<0.01). Similarly, maximum endothelium-independent relaxation to the nitric oxide donor, sodium nitroprusside, was blunted approximately 23% by diabetes (P<0.001). A-705253 treatment partially improved endothelium-dependent relaxation to acetylcholine but had no effect on the deficit in response to nitroprusside. The data suggest that calpain contributes to the aetiology of diabetic nitrergic autonomic neuropathy and endothelial dysfunction, which may provide a novel therapeutic target for neurovascular complications.
Collapse
Affiliation(s)
- Matthew R Nangle
- School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, Scotland, United Kingdom
| | | | | |
Collapse
|
40
|
Auvin S, Pignol B, Navet E, Troadec M, Carré D, Camara J, Bigg D, Chabrier PE. Novel dual inhibitors of calpain and lipid peroxidation with enhanced cellular activity. Bioorg Med Chem Lett 2006; 16:1586-9. [PMID: 16380258 DOI: 10.1016/j.bmcl.2005.12.036] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2005] [Revised: 12/07/2005] [Accepted: 12/07/2005] [Indexed: 11/26/2022]
Abstract
A series of dipeptides with dual inhibitory activities on calpain and lipid peroxidation were prepared to target the intracellular calpain. This optimization program focused on the variations of the linker and the N-terminal amino acid of the peptidic core. Two compounds 6d-05 and 6d-08 exhibited potent intracellular calpain inhibition. The polar surface area and the number of rotors appeared to be critical descriptors to account for the behavior of these hybrid molecules in the cellular calpain assay.
Collapse
Affiliation(s)
- Serge Auvin
- Department of Medicinal Chemistry, Ipsen Research Laboratories, Institut Henri Beaufour, 5 Avenue du Canada, 91966 Les Ulis Cedex, France.
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Sanders ML, Donkor IO. A novel series of urea-based peptidomimetic calpain inhibitors. Bioorg Med Chem Lett 2006; 16:1965-8. [PMID: 16412635 DOI: 10.1016/j.bmcl.2005.12.068] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2005] [Revised: 12/19/2005] [Accepted: 12/20/2005] [Indexed: 11/18/2022]
Abstract
A series of peptide aldehyde derivatives in which the P(2) chiral carbon has been replaced with nitrogen were synthesized as urea-based peptidomimetic inhibitors of mu-calpain. The compounds mirrored the general SAR of peptidyl aldehyde calpain inhibitors but displayed greater selectivity for mu-calpain over cathepsin B.
Collapse
Affiliation(s)
- M Lee Sanders
- Department of Pharmaceutical Sciences, The University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | | |
Collapse
|
42
|
Abstract
Calpain-10 (CAPN10) is the first diabetes gene to be identified through a genome scan. Many investigators, but not all, have subsequently found associations between CAPN10 polymorphism and type 2 diabetes (T2D) as well as insulin action, insulin secretion, aspects of adipocyte biology and microvascular function. However, this has not always been with the same single nucleotide polymorphism (SNP) or haplotype or the same phenotype, suggesting that there might be more than one disease-associated CAPN10 variant and that these might vary between ethnic groups and the phenotype under study. Our understanding of calpain-10 physiological action has also been greatly augmented by our knowledge of the calpain family domain structure and function, and the relationship between calpain-10 and other calpains is discussed here. Both genetic and functional data indicates that calpain-10 has an important role in insulin resistance and intermediate phenotypes, including those associated with the adipocyte. In this regard, emerging evidence would suggest that calpain-10 facilitates GLUT4 translocation and acts in reorganization of the cytoskeleton. Calpain-10 is also an important molecule in the beta-cell. It is likely to be a determinant of fuel sensing and insulin exocytosis, with actions at the mitochondria and plasma membrane respectively. We postulate that the multiple actions of calpain-10 may relate to its different protein isoforms. In conclusion, the discovery of calpain-10 by a genetic approach has identified it as a molecule of importance to insulin signaling and secretion that may have relevance to the future development of novel therapeutic targets for the treatment of T2D.
Collapse
Affiliation(s)
- Mark D Turner
- Centre for Diabetes and Metabolic Medicine, Institute of Cell and Molecular Science, Barts and The London Queen Mary's School of Medicine and Dentistry, University of London, London, E1 2AT United Kingdom.
| | | | | |
Collapse
|
43
|
Garcia M, Bondada V, Geddes JW. Mitochondrial localization of mu-calpain. Biochem Biophys Res Commun 2005; 338:1241-7. [PMID: 16259951 DOI: 10.1016/j.bbrc.2005.10.081] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2005] [Accepted: 10/14/2005] [Indexed: 11/19/2022]
Abstract
Calcium-dependent cysteine proteases, calpains, have physiological roles in cell motility and differentiation but also play a pathological role following insult or disease. The ubiquitous calpains are widely considered to be cytosolic enzymes, although there has been speculation of a mitochondrial calpain. Within a highly enriched fraction of mitochondria obtained from rat cortex and SH-SY5Y human neuroblastoma cells, immunoblotting demonstrated enrichment of the 80kDa mu-calpain large subunit and 28kDa small subunit. In rat cortex, antibodies against domains II and III of the large mu-calpain subunit also detected a 40kDa fragment, similar to the autolytic fragment generated following incubation of human erythrocyte mu-calpain with Ca(2+). Mitochondrial proteins including apoptosis inducing factor and mitochondrial Bax are calpain substrates, but the mechanism by which calpains gain access to these proteins is uncertain. Mitochondrial localization of mu-calpain places the enzyme in proximity to its mitochondrial substrates and to Ca(2+) released from mitochondrial stores.
Collapse
Affiliation(s)
- Matthew Garcia
- Spinal Cord and Brain Injury Research Center and Department of Anatomy and Neurobiology, University of Kentucky, Lexington, KY 40536, USA
| | | | | |
Collapse
|
44
|
Tamada Y, Nakajima E, Nakajima T, Shearer TR, Azuma M. Proteolysis of neuronal cytoskeletal proteins by calpain contributes to rat retinal cell death induced by hypoxia. Brain Res 2005; 1050:148-55. [PMID: 15979593 DOI: 10.1016/j.brainres.2005.05.048] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2005] [Revised: 05/17/2005] [Accepted: 05/18/2005] [Indexed: 11/29/2022]
Abstract
Our previous studies in retina on the mechanism for hypoxia-induced cell death suggested activation of a class of calcium-activated proteases known as calpains. This conclusion was based on data showing proteolysis of a calpain substrate alpha-spectrin, autolysis of activated calpain, and reduction of cell damage by calpain inhibitor SJA6017. Less is known about changes in downstream pathways after calpain activation. Thus, the purpose of the present investigation was to measure proteolysis of neuronal cytoskeletal proteins and apoptotic cell signaling factors during hypoxia-induced retinal cell death. Rat retinas were incubated in RPMI medium with glucose and 95% O2/5% CO2 to supply sufficient oxygen for retinal cell survival. Hypoxia was induced with 95% N2/5% CO2 without glucose. Immunoblotting was used to detect activation of calpain and proteolysis of substrates. Amounts of mRNA for calpain 1 and 2 were determined by quantitative PCR. Twelve times more calpain 2 mRNA than calpain 1 was present in retinas. Activation of calpain 2 and production of a calpain-specific alpha-spectrin breakdown product at 150 kDa were confirmed in hypoxic retinas. Further, pro-caspase-3 at 32 kDa was proteolyzed to a fragment at 30 kDa, tau protein was lost, and p35 was proteolyzed to p25 suggesting prolonged activation of cdk5. SJA6017 partially inhibited the production of these fragments. During hypoxia in rat retinas, calpains may be major proteases causing breakdown of neuronal proteins involved in apoptotic cell death. Calpain inhibitor SJA6017 may have potential for testing as a therapeutic agent against retinal pathologies such those caused by glaucoma, although future studies such as testing in in vivo animal models are required.
Collapse
Affiliation(s)
- Yoshiyuki Tamada
- Senju Laboratory of Ocular Sciences, Senju Pharmaceutical Corporation Limited, Beaverton, OR 97006, USA
| | | | | | | | | |
Collapse
|
45
|
Dennison SR, Dante S, Hauss T, Brandenburg K, Harris F, Phoenix DA. Investigations into the membrane interactions of m-calpain domain V. Biophys J 2005; 88:3008-17. [PMID: 15653743 PMCID: PMC1305394 DOI: 10.1529/biophysj.104.049957] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
m-calpain is a calcium-dependent heterodimeric protease implicated in a number of pathological conditions. The activation of m-calpain appears to be modulated by membrane interaction, which has been predicted to involve oblique-orientated alpha-helix formation by a GTAMRILGGVI segment located in domain V of the protein's small subunit. Here, we have investigated this prediction. Fourier transform infrared conformational analysis showed that VP1, a peptide homolog of this segment, exhibited alpha-helicity of approximately 45% in the presence of dimyristoylphosphatidylcholine/dimyristoylphosphatidylserine (DMPS) vesicles. The level of helicity was unaffected over a 1- to 8-mM concentration range and did not alter when the anionic lipid composition of these vesicles was varied between 1% and 10% DMPS. Similar levels of alpha-helicity were observed in trifluoroethanol and the peptide appeared to adopt alpha-helical structure at an air/water interface with a molecular area of 164 A(2) at the monolayer collapse pressure. VP1 was found to penetrate dimyristoylphosphatidylcholine/DMPS monolayers, and at an initial surface pressure of 30 mN m(-1), the peptide induced surface pressure changes in these monolayers that correlated strongly with their anionic lipid content (maximal at 4 mN m(-1) in the presence of 10% DMPS). Neutron diffraction studies showed VP1 to be localized at the hydrophobic core of model palmitoyloleylphosphatidylcholine/palmitoyloleylphosphatidylserine (10:1 molar ratio) bilayer structures and, in combination, these results are consistent with the oblique membrane penetration predicted for the peptide. It would also appear that although not needed for structural stabilization anionic lipid was required for membrane penetration.
Collapse
Affiliation(s)
- Sarah R Dennison
- Department of Forensic and Investigative Science, University of Central Lancashire, Preston PR1 2HE, UK
| | | | | | | | | | | |
Collapse
|