1
|
Woo JS, Jeong SY, Park JH, Choi JH, Lee EH. Calsequestrin: a well-known but curious protein in skeletal muscle. Exp Mol Med 2020; 52:1908-1925. [PMID: 33288873 PMCID: PMC8080761 DOI: 10.1038/s12276-020-00535-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 10/14/2020] [Accepted: 10/19/2020] [Indexed: 12/23/2022] Open
Abstract
Calsequestrin (CASQ) was discovered in rabbit skeletal muscle tissues in 1971 and has been considered simply a passive Ca2+-buffering protein in the sarcoplasmic reticulum (SR) that provides Ca2+ ions for various Ca2+ signals. For the past three decades, physiologists, biochemists, and structural biologists have examined the roles of the skeletal muscle type of CASQ (CASQ1) in skeletal muscle and revealed that CASQ1 has various important functions as (1) a major Ca2+-buffering protein to maintain the SR with a suitable amount of Ca2+ at each moment, (2) a dynamic Ca2+ sensor in the SR that regulates Ca2+ release from the SR to the cytosol, (3) a structural regulator for the proper formation of terminal cisternae, (4) a reverse-directional regulator of extracellular Ca2+ entries, and (5) a cause of human skeletal muscle diseases. This review is focused on understanding these functions of CASQ1 in the physiological or pathophysiological status of skeletal muscle.
Collapse
Affiliation(s)
- Jin Seok Woo
- Department of Physiology, David Geffen School of Medicine, UCLA, Los Angeles, CA, 10833, USA
| | - Seung Yeon Jeong
- Department of Physiology, College of Medicine, The Catholic University of Korea, Seoul, 06591, Korea
- Department of Biomedicine & Health Sciences, Graduate School, The Catholic University of Korea, Seoul, 06591, Korea
| | - Ji Hee Park
- Department of Physiology, College of Medicine, The Catholic University of Korea, Seoul, 06591, Korea
- Department of Biomedicine & Health Sciences, Graduate School, The Catholic University of Korea, Seoul, 06591, Korea
| | - Jun Hee Choi
- Department of Physiology, College of Medicine, The Catholic University of Korea, Seoul, 06591, Korea
- Department of Biomedicine & Health Sciences, Graduate School, The Catholic University of Korea, Seoul, 06591, Korea
| | - Eun Hui Lee
- Department of Physiology, College of Medicine, The Catholic University of Korea, Seoul, 06591, Korea.
- Department of Biomedicine & Health Sciences, Graduate School, The Catholic University of Korea, Seoul, 06591, Korea.
| |
Collapse
|
2
|
Truong KM, Pessah IN. Comparison of Chlorantraniliprole and Flubendiamide Activity Toward Wild-Type and Malignant Hyperthermia-Susceptible Ryanodine Receptors and Heat Stress Intolerance. Toxicol Sci 2019; 167:509-523. [PMID: 30329129 PMCID: PMC6358238 DOI: 10.1093/toxsci/kfy256] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Chlorantraniliprole (CP) and flubendiamide (FD) are widely used in agriculture globally to control lepidopteran pests. Both insecticides target ryanodine receptors (RyRs) and promote Ca2+ leak from sarcoplasmic reticulum (SR) within insect skeletal muscle yet are purportedly devoid of activity toward mammalian RyR1 and muscle. RyRs are ion channels that regulate intracellular Ca2+ release from SR during physiological excitation-contraction coupling. Mutations in RYR1 genes confer malignant hyperthermia susceptibility (MHS), a potentially lethal pharmacogenetic disorder in humans and animals. Compared with vehicle control, CP (10 µM) triggers a 65-fold higher rate of Ca2+ efflux from Ca2+-loaded mammalian WT-RyR1 SR vesicles, whereas FD (10 µM) produces negligible influence on Ca2+ leak. We, therefore, compared whether CP or FD differentially influence patterns of high-affinity [3H]ryanodine ([3H]Ry) binding to RyR1 isolated from muscle SR membranes prepared from adult C57BL/6J mice expressing WT, homozygous C-terminal MHS mutation T4826I, or heterozygous N-terminal MHS mutation R163C. Basal [3H]Ry binding differed among genotypes with rank order T4826I ≫R163C∼WT, regardless of [Ca2+] in the assay medium. Both CP and FD (0.01-100 µM) elicited concentration-dependent increase in [3H]Ry binding, although CP showed greater efficacy regardless of genotype or [Ca2+]. Exposure to CP (500 mg/kg; p.o) failed to shift intolerance to heat stress (38°C) characteristic of R163C and T4826I MHS mice, nor cause lethality in WT mice. Although nM-µM of either diamide is capable of differentially altering WT and MHS RyR1 conformation in vitro, human RyR1 mutations within putative diamide N- and C-terminal interaction domains do not alter heat stress intolerance (HSI) in vivo.
Collapse
Affiliation(s)
| | - Isaac N Pessah
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, California 95616-5270
| |
Collapse
|
3
|
Alkhunaizi E, Shuster S, Shannon P, Siu VM, Darilek S, Mohila CA, Boissel S, Ellezam B, Fallet-Bianco C, Laberge AM, Zandberg J, Injeyan M, Hazrati LN, Hamdan F, Chitayat D. Homozygous/compound heterozygote RYR1 gene variants: Expanding the clinical spectrum. Am J Med Genet A 2019; 179:386-396. [PMID: 30652412 DOI: 10.1002/ajmg.a.61025] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 11/26/2018] [Accepted: 12/05/2018] [Indexed: 02/06/2023]
Abstract
The ryanodine receptor 1 (RYR1) is a calcium release channel essential for excitation-contraction coupling in the sarcoplasmic reticulum of skeletal muscles. Dominant variants in the RYR1 have been well associated with the known pharmacogenetic ryanodinopathy and malignant hyperthermia. With the era of next-generation gene sequencing and growing number of causative variants, the spectrum of ryanodinopathies has been evolving with dominant and recessive variants presenting with RYR1-related congenital myopathies such as central core disease, minicore myopathy with external ophthalmoplegia, core-rod myopathy, and congenital neuromuscular disease. Lately, the spectrum was broadened to include fetal manifestations, causing a rare recessive and lethal form of fetal akinesia deformation sequence syndrome (FADS)/arthrogryposis multiplex congenita (AMC) and lethal multiple pterygium syndrome. Here we broaden the spectrum of clinical manifestations associated with homozygous/compound heterozygous RYR1 gene variants to include a wide range of manifestations from FADS through neonatal hypotonia to a 35-year-old male with AMC and PhD degree. We report five unrelated families in which three presented with FADS. One of these families was consanguineous and had three affected fetuses with FADS, one patient with neonatal hypotonia who is alive, and one individual with AMC who is 35 years old with normal intellectual development and uses a wheelchair. Muscle biopsies on these cases demonstrated a variety of histopathological abnormalities, which did not assist with the diagnostic process. Neither the affected living individuals nor the parents who are obligate heterozygotes had history of malignant hyperthermia.
Collapse
Affiliation(s)
- Ebba Alkhunaizi
- The Prenatal Diagnosis and Medical Genetics Program, Department of Obstetrics and Gynecology, Mount Sinai Hospital, University of Toronto, Toronto, Ontario, Canada.,Department of Pediatrics, Division of Clinical and Metabolic Genetics, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Shirley Shuster
- The Prenatal Diagnosis and Medical Genetics Program, Department of Obstetrics and Gynecology, Mount Sinai Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Patrick Shannon
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Victoria Mok Siu
- Division of Medical Genetics, Department of Pediatrics, London Health Sciences Centre, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Sandra Darilek
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | - Carrie A Mohila
- Department of Pathology, Texas Children's Hospital, Houston, Texas.,Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas
| | - Sarah Boissel
- Department of Medical Genetics, CHU Sainte-Justine Research Center, Montreal, Quebec, Canada
| | - Benjamin Ellezam
- Department of Medical Genetics, CHU Sainte-Justine Research Center, Montreal, Quebec, Canada
| | | | - Anne-Marie Laberge
- Department of Medical Genetics, CHU Sainte-Justine Research Center, Montreal, Quebec, Canada
| | - Julianne Zandberg
- Division of Medical Genetics, Department of Pediatrics, London Health Sciences Centre, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Marie Injeyan
- The Prenatal Diagnosis and Medical Genetics Program, Department of Obstetrics and Gynecology, Mount Sinai Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Lili-Naz Hazrati
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Fadi Hamdan
- Department of Medical Genetics, CHU Sainte-Justine Research Center, Montreal, Quebec, Canada
| | - David Chitayat
- The Prenatal Diagnosis and Medical Genetics Program, Department of Obstetrics and Gynecology, Mount Sinai Hospital, University of Toronto, Toronto, Ontario, Canada.,Department of Pediatrics, Division of Clinical and Metabolic Genetics, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
4
|
Lopez RJ, Byrne S, Vukcevic M, Sekulic-Jablanovic M, Xu L, Brink M, Alamelu J, Voermans N, Snoeck M, Clement E, Muntoni F, Zhou H, Radunovic A, Mohammed S, Wraige E, Zorzato F, Treves S, Jungbluth H. An RYR1 mutation associated with malignant hyperthermia is also associated with bleeding abnormalities. Sci Signal 2016; 9:ra68. [PMID: 27382027 DOI: 10.1126/scisignal.aad9813] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Malignant hyperthermia is a potentially fatal hypermetabolic disorder triggered by halogenated anesthetics and the myorelaxant succinylcholine in genetically predisposed individuals. About 50% of susceptible individuals carry dominant, gain-of-function mutations in RYR1 [which encodes ryanodine receptor type 1 (RyR1)], though they have normal muscle function and no overt clinical symptoms. RyR1 is predominantly found in skeletal muscle but also at lower amounts in immune and smooth muscle cells, suggesting that RYR1 mutations may have a wider range of effects than previously suspected. Mild bleeding abnormalities have been described in patients with malignant hyperthermia carrying gain-of-function RYR1 mutations. We sought to determine the frequency and molecular basis for this symptom. We found that some patients with specific RYR1 mutations had abnormally high bleeding scores, whereas their healthy relatives did not. Knock-in mice with the malignant hyperthermia susceptibility RYR1 mutation Y522S (MHS RYR1Y522S) had longer bleeding times than their wild-type littermates. Primary vascular smooth muscle cells from RYR1Y522S knock-in mice exhibited a higher frequency of subplasmalemmal Ca(2+) sparks, leading to a more negative resting membrane potential. The bleeding defect of RYR1Y522S mice and of one patient was reversed by treatment with the RYR1 antagonist dantrolene, and Ca(2+) sparks in primary vascular smooth muscle cells from the MHS RYR1Y522S mice were blocked by ryanodine or dantrolene. Thus, RYR1 mutations may lead to prolonged bleeding by altering vascular smooth muscle cell function. The reversibility of the bleeding phenotype emphasizes the potential therapeutic value of dantrolene in the treatment of such bleeding disorders.
Collapse
Affiliation(s)
- Rubén J Lopez
- Departments of Biomedicine and Anesthesia, Basel University Hospital, Hebelstrasse 20, 4031 Basel, Switzerland
| | - Susan Byrne
- Department of Paediatric Neurology, Neuromuscular Service, Evelina Children's Hospital, St Thomas' Hospital, London SE1 7EH, UK
| | - Mirko Vukcevic
- Departments of Biomedicine and Anesthesia, Basel University Hospital, Hebelstrasse 20, 4031 Basel, Switzerland. Department of Biomedicine, Basel University Hospital, Hebelstrasse 20, 4031 Basel, Switzerland
| | - Marijana Sekulic-Jablanovic
- Departments of Biomedicine and Anesthesia, Basel University Hospital, Hebelstrasse 20, 4031 Basel, Switzerland
| | - Lifen Xu
- Department of Biomedicine, Basel University Hospital, Hebelstrasse 20, 4031 Basel, Switzerland
| | - Marijke Brink
- Department of Biomedicine, Basel University Hospital, Hebelstrasse 20, 4031 Basel, Switzerland
| | - Jay Alamelu
- Department of Haematology, Evelina Children's Hospital, St Thomas' Hospital, London SE1 7EH, UK
| | - Nicol Voermans
- Department of Neurology, Radboud University Medical Centre, Nijmegen, Netherlands
| | - Marc Snoeck
- National MH Investigation Unit, Department of Anesthesiology, Canisius Wilhelmina Hospital, 6532 Nijmegen, Netherlands
| | - Emma Clement
- Department of Clinical Genetics, Guy's Hospital, London SE1 7EH, UK
| | - Francesco Muntoni
- Dubowitz Neuromuscular Centre, Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Haiyan Zhou
- Dubowitz Neuromuscular Centre, Institute of Child Health, University College London, London WC1N 1EH, UK
| | | | - Shehla Mohammed
- Department of Clinical Genetics, Guy's Hospital, London SE1 7EH, UK
| | - Elizabeth Wraige
- Department of Paediatric Neurology, Neuromuscular Service, Evelina Children's Hospital, St Thomas' Hospital, London SE1 7EH, UK
| | - Francesco Zorzato
- Departments of Biomedicine and Anesthesia, Basel University Hospital, Hebelstrasse 20, 4031 Basel, Switzerland. Department of Life Sciences, General Pathology Section, University of Ferrara, Via Borsari 46, 44100 Ferrara, Italy
| | - Susan Treves
- Departments of Biomedicine and Anesthesia, Basel University Hospital, Hebelstrasse 20, 4031 Basel, Switzerland. Department of Life Sciences, General Pathology Section, University of Ferrara, Via Borsari 46, 44100 Ferrara, Italy
| | - Heinz Jungbluth
- Department of Paediatric Neurology, Neuromuscular Service, Evelina Children's Hospital, St Thomas' Hospital, London SE1 7EH, UK. Randall Division of Cell and Molecular Biophysics, Muscle Signalling Section, King's College, London SE1 1UL, UK. Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London SE5 9RX, UK
| |
Collapse
|
5
|
Hernández-Ochoa EO, Pratt SJP, Lovering RM, Schneider MF. Critical Role of Intracellular RyR1 Calcium Release Channels in Skeletal Muscle Function and Disease. Front Physiol 2016; 6:420. [PMID: 26793121 PMCID: PMC4709859 DOI: 10.3389/fphys.2015.00420] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 12/21/2015] [Indexed: 01/25/2023] Open
Abstract
The skeletal muscle Ca2+ release channel, also known as ryanodine receptor type 1 (RyR1), is the largest ion channel protein known and is crucial for effective skeletal muscle contractile activation. RyR1 function is controlled by Cav1.1, a voltage gated Ca2+ channel that works mainly as a voltage sensor for RyR1 activity during skeletal muscle contraction and is also fine-tuned by Ca2+, several intracellular compounds (e.g., ATP), and modulatory proteins (e.g., calmodulin). Dominant and recessive mutations in RyR1, as well as acquired channel alterations, are the underlying cause of various skeletal muscle diseases. The aim of this mini review is to summarize several current aspects of RyR1 function, structure, regulation, and to describe the most common diseases caused by hereditary or acquired RyR1 malfunction.
Collapse
Affiliation(s)
- Erick O Hernández-Ochoa
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine Baltimore, MD, USA
| | - Stephen J P Pratt
- Department of Orthopaedics, University of Maryland School of Medicine Baltimore, MD, USA
| | - Richard M Lovering
- Department of Orthopaedics, University of Maryland School of Medicine Baltimore, MD, USA
| | - Martin F Schneider
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine Baltimore, MD, USA
| |
Collapse
|
6
|
Vervliet T, Lemmens I, Vandermarliere E, Decrock E, Ivanova H, Monaco G, Sorrentino V, Kasri NN, Missiaen L, Martens L, De Smedt H, Leybaert L, Parys JB, Tavernier J, Bultynck G. Ryanodine receptors are targeted by anti-apoptotic Bcl-XL involving its BH4 domain and Lys87 from its BH3 domain. Sci Rep 2015; 5:9641. [PMID: 25872771 PMCID: PMC4397538 DOI: 10.1038/srep09641] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2014] [Accepted: 03/13/2015] [Indexed: 11/29/2022] Open
Abstract
Anti-apoptotic B-cell lymphoma 2 (Bcl-2) family members target several intracellular Ca(2+)-transport systems. Bcl-2, via its N-terminal Bcl-2 homology (BH) 4 domain, inhibits both inositol 1,4,5-trisphosphate receptors (IP3Rs) and ryanodine receptors (RyRs), while Bcl-XL, likely independently of its BH4 domain, sensitizes IP3Rs. It remains elusive whether Bcl-XL can also target and modulate RyRs. Here, Bcl-XL co-immunoprecipitated with RyR3 expressed in HEK293 cells. Mammalian protein-protein interaction trap (MAPPIT) and surface plasmon resonance (SPR) showed that Bcl-XL bound to the central domain of RyR3 via its BH4 domain, although to a lesser extent compared to the BH4 domain of Bcl-2. Consistent with the ability of the BH4 domain of Bcl-XL to bind to RyRs, loading the BH4-Bcl-XL peptide into RyR3-overexpressing HEK293 cells or in rat hippocampal neurons suppressed RyR-mediated Ca(2+) release. In silico superposition of the 3D-structures of Bcl-2 and Bcl-XL indicated that Lys87 of the BH3 domain of Bcl-XL could be important for interacting with RyRs. In contrast to Bcl-XL, the Bcl-XL(K87D) mutant displayed lower binding affinity for RyR3 and a reduced inhibition of RyR-mediated Ca(2+) release. These data suggest that Bcl-XL binds to RyR channels via its BH4 domain, but also its BH3 domain, more specific Lys87, contributes to the interaction.
Collapse
Affiliation(s)
- Tim Vervliet
- KU Leuven, Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine, B-3000 Leuven, Belgium
| | - Irma Lemmens
- University of Gent, Cytokine Receptor Lab, VIB Department of Medical Protein Research, B-9000 Gent, Belgium
| | - Elien Vandermarliere
- University of Gent, Computational Omics and Systems Biology Group, VIB Department of Medical Protein Research, B-9000 Gent, Belgium
| | - Elke Decrock
- University of Gent, Physiology Group, Department of Basic Medical Sciences, B-9000 Gent, Belgium
| | - Hristina Ivanova
- KU Leuven, Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine, B-3000 Leuven, Belgium
| | - Giovanni Monaco
- KU Leuven, Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine, B-3000 Leuven, Belgium
| | - Vincenzo Sorrentino
- University of Siena, Molecular Medicine Section, Department of Molecular and Developmental Medicine, and Interuniversitary Institute of Myology, 53100 Siena, Italy
| | - Nael Nadif Kasri
- Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Department of Cognitive Neuroscience, Department of Human Genetics, 6500HB Nijmegen, The Netherlands
| | - Ludwig Missiaen
- KU Leuven, Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine, B-3000 Leuven, Belgium
| | - Lennart Martens
- University of Gent, Computational Omics and Systems Biology Group, VIB Department of Medical Protein Research, B-9000 Gent, Belgium
| | - Humbert De Smedt
- KU Leuven, Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine, B-3000 Leuven, Belgium
| | - Luc Leybaert
- University of Gent, Physiology Group, Department of Basic Medical Sciences, B-9000 Gent, Belgium
| | - Jan B. Parys
- KU Leuven, Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine, B-3000 Leuven, Belgium
| | - Jan Tavernier
- University of Gent, Cytokine Receptor Lab, VIB Department of Medical Protein Research, B-9000 Gent, Belgium
| | - Geert Bultynck
- KU Leuven, Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine, B-3000 Leuven, Belgium
| |
Collapse
|
7
|
Abstract
Evolution has exploited the chemical properties of Ca(2+), which facilitate its reversible binding to the sites of irregular geometry offered by biological macromolecules, to select it as a carrier of cellular signals. A number of proteins bind Ca(2+) to specific sites: those intrinsic to membranes play the most important role in the spatial and temporal regulation of the concentration and movements of Ca(2+) inside cells. Those which are soluble, or organized in non-membranous structures, also decode the Ca(2+) message to be then transmitted to the targets of its regulation. Since Ca(2+) controls the most important processes in the life of cells, it must be very carefully controlled within the cytoplasm, where most of the targets of its signaling function reside. Membrane channels (in the plasma membrane and in the organelles) mediate the entrance of Ca(2+) into the cytoplasm, ATPases, exchangers, and the mitochondrial Ca(2+) uptake system remove Ca(2+) from it. The concentration of Ca(2+) in the external spaces, which is controlled essentially by its dynamic exchanges in the bone system, is much higher than inside cells, and can, under conditions of pathology, generate a situation of dangerous internal Ca(2+) overload. When massive and persistent, the Ca(2+) overload culminates in the death of the cell. Subtle conditions of cellular Ca(2+) dyshomeostasis that affect individual systems that control Ca(2+), generate cell disease phenotypes that are particularly severe in tissues in which the signaling function of Ca(2+) has special importance, e.g., the nervous system.
Collapse
Affiliation(s)
- Marisa Brini
- Department of Biology, University of Padova, Via U. Bassi 58/B, I-35131, Padova, Italy,
| | | | | | | |
Collapse
|
8
|
Guerrero-Hernández A, Ávila G, Rueda A. Ryanodine receptors as leak channels. Eur J Pharmacol 2013; 739:26-38. [PMID: 24291096 DOI: 10.1016/j.ejphar.2013.11.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Accepted: 11/21/2013] [Indexed: 01/18/2023]
Abstract
Ryanodine receptors are Ca(2+) release channels of internal stores. This review focuses on those situations and conditions that transform RyRs from a finely regulated ion channel to an unregulated Ca(2+) leak channel and the pathological consequences of this alteration. In skeletal muscle, mutations in either CaV1.1 channel or RyR1 results in a leaky behavior of the latter. In heart cells, RyR2 functions normally as a Ca(2+) leak channel during diastole within certain limits, the enhancement of this activity leads to arrhythmogenic situations that are tackled with different pharmacological strategies. In smooth muscle, RyRs are involved more in reducing excitability than in stimulating contraction so the leak activity of RyRs in the form of Ca(2+) sparks, locally activates Ca(2+)-dependent potassium channels to reduce excitability. In neurons the enhanced activity of RyRs is associated with the development of different neurodegenerative disorders such as Alzheimer and Huntington diseases. It appears then that the activity of RyRs as leak channels can have both physiological and pathological consequences depending on the cell type and the metabolic condition.
Collapse
Affiliation(s)
| | | | - Angélica Rueda
- Departamento de Bioquímica, Cinvestav, Mexico city, México
| |
Collapse
|
9
|
Franklin AD, Lorinc AN, Donahue BS. Malignant hyperthermia-like manifestations in a two-month-old child with Holt-Oram syndrome undergoing cardiac surgery. J Cardiothorac Vasc Anesth 2013; 28:1326-7. [PMID: 24011877 DOI: 10.1053/j.jvca.2013.03.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Indexed: 11/11/2022]
Affiliation(s)
- Andrew D Franklin
- Monroe Carell Jr. Children's Hospital at Vanderbilt, Vanderbilt University School of Medicine, Nashville, TN.
| | - Amanda N Lorinc
- Monroe Carell Jr. Children's Hospital at Vanderbilt, Vanderbilt University School of Medicine, Nashville, TN
| | - Brian S Donahue
- Monroe Carell Jr. Children's Hospital at Vanderbilt, Vanderbilt University School of Medicine, Nashville, TN
| |
Collapse
|
10
|
O-Uchi J, Pan S, Sheu SS. Perspectives on: SGP symposium on mitochondrial physiology and medicine: molecular identities of mitochondrial Ca2+ influx mechanism: updated passwords for accessing mitochondrial Ca2+-linked health and disease. ACTA ACUST UNITED AC 2013; 139:435-43. [PMID: 22641638 PMCID: PMC3362516 DOI: 10.1085/jgp.201210795] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Jin O-Uchi
- Department of Medicine, Center for Translational Medicine, Jefferson Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | | | | |
Collapse
|
11
|
Lefebvre R, Legrand C, Groom L, Dirksen RT, Jacquemond V. Ca2+ release in muscle fibers expressing R4892W and G4896V type 1 ryanodine receptor disease mutants. PLoS One 2013; 8:e54042. [PMID: 23308296 PMCID: PMC3538700 DOI: 10.1371/journal.pone.0054042] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Accepted: 12/05/2012] [Indexed: 12/17/2022] Open
Abstract
The large and rapidly increasing number of potentially pathological mutants in the type 1 ryanodine receptor (RyR1) prompts the need to characterize their effects on voltage-activated sarcoplasmic reticulum (SR) Ca2+ release in skeletal muscle. Here we evaluated the function of the R4892W and G4896V RyR1 mutants, both associated with central core disease (CCD) in humans, in myotubes and in adult muscle fibers. For both mutants expressed in RyR1-null (dyspedic) myotubes, voltage-gated Ca2+ release was absent following homotypic expression and only partially restored following heterotypic expression with wild-type (WT) RyR1. In muscle fibers from adult WT mice, both mutants were expressed in restricted regions of the fibers with a pattern consistent with triadic localization. Voltage-clamp-activated confocal Ca2+ signals showed that fiber regions endowed with G4896V-RyR1s exhibited an ∼30% reduction in the peak rate of SR Ca2+ release, with no significant change in SR Ca2+ content. Immunostaining revealed no associated change in the expression of either α1S subunit (Cav1.1) of the dihydropyridine receptor (DHPR) or type 1 sarco(endo)plasmic reticulum Ca2+ ATPase (SERCA1), indicating that the reduced Ca2+ release resulted from defective RyR1 function. Interestingly, in spite of robust localized junctional expression, the R4892W mutant did not affect SR Ca2+ release in adult muscle fibers, consistent with a low functional penetrance of this particular CCD-associated mutant.
Collapse
Affiliation(s)
- Romain Lefebvre
- Centre de Génétique et de Physiologie Moléculaire et Cellulaire, CNRS UMR 5534 – Université Lyon 1, Villeurbanne, France
| | - Claude Legrand
- Centre de Génétique et de Physiologie Moléculaire et Cellulaire, CNRS UMR 5534 – Université Lyon 1, Villeurbanne, France
| | - Linda Groom
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Robert T. Dirksen
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Vincent Jacquemond
- Centre de Génétique et de Physiologie Moléculaire et Cellulaire, CNRS UMR 5534 – Université Lyon 1, Villeurbanne, France
- * E-mail:
| |
Collapse
|
12
|
Mittendorf KF, Deatherage CL, Ohi MD, Sanders CR. Tailoring of membrane proteins by alternative splicing of pre-mRNA. Biochemistry 2012; 51:5541-56. [PMID: 22708632 DOI: 10.1021/bi3007065] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Alternative splicing (AS) of RNA is a key mechanism for diversification of the eukaryotic proteome. In this process, different mRNA transcripts can be produced through altered excision and/or inclusion of exons during processing of the pre-mRNA molecule. Since its discovery, AS has been shown to play roles in protein structure, function, and localization. Dysregulation of this process can result in disease phenotypes. Moreover, AS pathways are promising therapeutic targets for a number of diseases. Integral membrane proteins (MPs) represent a class of proteins that may be particularly amenable to regulation by alternative splicing because of the distinctive topological restraints associated with their folding, structure, trafficking, and function. Here, we review the impact of AS on MP form and function and the roles of AS in MP-related disorders such as Alzheimer's disease.
Collapse
Affiliation(s)
- Kathleen F Mittendorf
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | | | | | | |
Collapse
|
13
|
Techniques and Methodologies to Study the Ryanodine Receptor at the Molecular, Subcellular and Cellular Level. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 740:183-215. [DOI: 10.1007/978-94-007-2888-2_8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
14
|
Tang ZZ, Yarotskyy V, Wei L, Sobczak K, Nakamori M, Eichinger K, Moxley RT, Dirksen RT, Thornton CA. Muscle weakness in myotonic dystrophy associated with misregulated splicing and altered gating of Ca(V)1.1 calcium channel. Hum Mol Genet 2011; 21:1312-24. [PMID: 22140091 DOI: 10.1093/hmg/ddr568] [Citation(s) in RCA: 123] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Myotonic dystrophy type 1 and type 2 (DM1 and DM2) are genetic diseases in which mutant transcripts containing expanded CUG or CCUG repeats cause cellular dysfunction by altering the processing or metabolism of specific mRNAs and miRNAs. The toxic effects of mutant RNA are mediated partly through effects on proteins that regulate alternative splicing. Here we show that alternative splicing of exon 29 (E29) of Ca(V)1.1, a calcium channel that controls skeletal muscle excitation-contraction coupling, is markedly repressed in DM1 and DM2. The extent of E29 skipping correlated with severity of weakness in tibialis anterior muscle of DM1 patients. Two splicing factors previously implicated in DM1, MBNL1 and CUGBP1, participated in the regulation of E29 splicing. In muscle fibers of wild-type mice, the Ca(V)1.1 channel conductance and voltage sensitivity were increased by splice-shifting oligonucleotides that induce E29 skipping. In contrast to human DM1, expression of CUG-expanded RNA caused only a modest increase in E29 skipping in mice. However, forced skipping of E29 in these mice, to levels approaching those observed in human DM1, aggravated the muscle pathology as evidenced by increased central nucleation. Together, these results indicate that DM-associated splicing defects alter Ca(V)1.1 function, with potential for exacerbation of myopathy.
Collapse
Affiliation(s)
- Zhen Zhi Tang
- Department of Neurology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Protasi F, Paolini C, Canato M, Reggiani C, Quarta M. Lessons from calsequestrin-1 ablation in vivo: much more than a Ca(2+) buffer after all. J Muscle Res Cell Motil 2011; 32:257-70. [PMID: 22130610 DOI: 10.1007/s10974-011-9277-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Accepted: 11/09/2011] [Indexed: 10/15/2022]
Abstract
Calsequestrin type-1 (CASQ1), the main sarcoplasmic reticulum (SR) Ca(2+) binding protein, plays a dual role in skeletal fibers: a) it provides a large pool of rapidly-releasable Ca(2+) during excitation-contraction (EC) coupling; and b) it modulates the activity of ryanodine receptors (RYRs), the SR Ca(2+) release channels. We have generated a mouse lacking CASQ1 in order to further characterize the role of CASQ1 in skeletal muscle. Contrary to initial expectations, CASQ1 ablation is compatible with normal motor activity, in spite of moderate muscle atrophy. However, CASQ1 deficiency results in profound remodeling of the EC coupling apparatus: shrinkage of junctional SR lumen; proliferation of SR/transverse-tubule contacts; and increased density of RYRs. While force development during a twitch is preserved, it is nevertheless characterized by a prolonged time course, likely reflecting impaired Ca(2+) re-uptake by the SR. Finally, lack of CASQ1 also results in increased rate of SR Ca(2+) depletion and inability of muscle to sustain tension during a prolonged tetani. All modifications are more pronounced (or only found) in fast-twitch extensor digitorum longus muscle compared to slow-twitch soleus muscle, likely because the latter expresses higher amounts of calsequestrin type-2 (CASQ2). Surprisingly, male CASQ1-null mice also exhibit a marked increased rate of spontaneous mortality suggestive of a stress-induced phenotype. Consistent with this idea, CASQ1-null mice exhibit an increased susceptibility to undergo a hypermetabolic syndrome characterized by whole body contractures, rhabdomyolysis, hyperthermia and sudden death in response to halothane- and heat-exposure, a phenotype remarkably similar to human malignant hyperthermia and environmental heat-stroke. The latter findings validate the CASQ1 gene as a candidate for linkage analysis in human muscle disorders.
Collapse
Affiliation(s)
- Feliciano Protasi
- CeSI-Center for Research on Ageing & DNI-Department of Neuroscience and Imaging, University Gabriele d’Annunzioof Chieti, Via Colle dell’Ara, 66100 Chieti, Italy.
| | | | | | | | | |
Collapse
|
16
|
Lefebvre R, Legrand C, González-Rodríguez E, Groom L, Dirksen RT, Jacquemond V. Defects in Ca2+ release associated with local expression of pathological ryanodine receptors in mouse muscle fibres. J Physiol 2011; 589:5361-82. [PMID: 21969454 DOI: 10.1113/jphysiol.2011.216408] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Mutations of the gene encoding the type 1 ryanodine receptor (RyR1) are associated with skeletal muscle disorders including malignant hyperthermia susceptibility (MHS) and central core disease (CCD). We used in vivo expression of EGFP-RyR1 constructs in fully differentiated mouse muscle fibres to characterize the function of several RyR1 mutants. Wild-type and Y523S, R615C, R2163H and I4897T mutants of RyR1 were separately expressed and found to be present within restricted regions of fibres with a pattern consistent with triadic localization. Confocal measurements of voltage-clamp-activated myoplasmic Ca(2+) transients demonstrated alterations of sarcoplasmic reticulum (SR) Ca(2+) release spatially correlated with the presence of exogenous RyR1s. The Y523S, R615C and R2163H RyR1 MHS-related mutants were associated with enhanced peak Ca(2+) release for low and moderate levels of depolarization, whereas the I4897T CCD mutant produced a chronic reduction of peak SR Ca(2+) release. For example, peak Ca(2+) release in response to a depolarization to -20 mV in regions of fibres expressing Y523S and I4897T was 2.0 ± 0.3 (n = 9) and 0.46 ± 0.1 (n = 5) times the corresponding value in adjacent, non-expressing regions of the same fibre, respectively. Interestingly no significant change in the estimated total amount of Ca(2+) released at the end of large depolarizing pulses was observed for any of the mutant RyR1 channels. Overall, results are consistent with an 'inherent' increase in RyR1 sensitivity to activation by the voltage sensor for the MHS-related RyR1 mutants and a partial failure of voltage-gated release for the CCD-related I4897T mutant, that occur with no sign of change in SR Ca(2+) content. Furthermore, the results indicate that RyR1 channel density is tightly regulated even under the present conditions of forced exogenous expression.
Collapse
Affiliation(s)
- Romain Lefebvre
- CNRS UMR 5534, Université Lyon 1, Centre de Génétique et de Physiologie Moléculaire et Cellulaire, Villeurbanne, France
| | | | | | | | | | | |
Collapse
|
17
|
Vega AV, Ramos-Mondragón R, Calderón-Rivera A, Zarain-Herzberg A, Avila G. Calcitonin gene-related peptide restores disrupted excitation-contraction coupling in myotubes expressing central core disease mutations in RyR1. J Physiol 2011; 589:4649-69. [PMID: 21825032 DOI: 10.1113/jphysiol.2011.210765] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Central core disease (CCD) is a congenital human myopathy associated with mutations in the gene encoding the skeletal muscle ryanodine receptor (RyR1), resulting in skeletal muscle weakness and lower limb deformities. The muscle weakness can be at least partially explained by a reduced magnitude of voltage-gated Ca(2+) release (VGCR). To date, only a few studies have focused on identifying potential therapeutic agents for CCD. Therefore, in this work we investigated the potential use of the calcitonin gene related peptide (CGRP) to restore VGCR in myotubes expressing CCD RyR1 mutants. We also examined the influence of CCD mutants on Ca(2+)-dependent processes involved in myogenesis (myoblast fusion and sarcoendoplasmic reticulum Ca(2+)-ATPase isoform 2 (SERCA2) gene expression). C2C12 cells were transfected with cDNAs encoding either wild-type RyR1 or CCD mutants, and then exposed to CGRP (100 nm, 1-4 h). Expression of the I4897T mutant significantly inhibited SERCA2 gene expression and myoblast fusion, whereas the Y523S mutant exerted the opposite effect. Interestingly, both mutants clearly inhibited VGCR (50%), due to a reduction in SR Ca(2+) content. However, no major changes due to CGRP or CCD mutants were observed in I(CaL). Our data suggest that the Y523S mutant results in store depletion via decompensated SR Ca(2+) leak, while the I4897T mutant inhibits SERCA2 gene expression. Remarkably, in both cases CGRP restored VGCR, likely to have been by enhancing phospholamban (PLB) phosphorylation, SERCA activity and SR Ca(2+) content. Taken together, our data show that in the C2C12 model system, changes in excitation-contraction coupling induced by the expression of RyR1 channels bearing CCD mutations Y523S or I4897T can be reversed by CGRP.
Collapse
|
18
|
MacLennan DH, Zvaritch E. Mechanistic models for muscle diseases and disorders originating in the sarcoplasmic reticulum. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2011; 1813:948-64. [DOI: 10.1016/j.bbamcr.2010.11.009] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2010] [Revised: 11/11/2010] [Accepted: 11/18/2010] [Indexed: 11/29/2022]
|
19
|
Bannister RA, Estève E, Eltit JM, Pessah IN, Allen PD, López JR, Beam KG. A malignant hyperthermia-inducing mutation in RYR1 (R163C): consequent alterations in the functional properties of DHPR channels. ACTA ACUST UNITED AC 2010; 135:629-40. [PMID: 20479108 PMCID: PMC2888063 DOI: 10.1085/jgp.200910329] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Bidirectional communication between the 1,4-dihydropyridine receptor (DHPR) in the plasma membrane and the type 1 ryanodine receptor (RYR1) in the sarcoplasmic reticulum (SR) is responsible for both skeletal-type excitation–contraction coupling (voltage-gated Ca2+ release from the SR) and increased amplitude of L-type Ca2+ current via the DHPR. Because the DHPR and RYR1 are functionally coupled, mutations in RYR1 that are linked to malignant hyperthermia (MH) may affect DHPR activity. For this reason, we investigated whether cultured myotubes originating from mice carrying an MH-linked mutation in RYR1 (R163C) had altered voltage-gated Ca2+ release from the SR, membrane-bound charge movement, and/or L-type Ca2+ current. In myotubes homozygous (Hom) for the R163C mutation, voltage-gated Ca2+ release from the SR was substantially reduced and shifted (∼10 mV) to more hyperpolarizing potentials compared with wild-type (WT) myotubes. Intramembrane charge movements of both Hom and heterozygous (Het) myotubes displayed hyperpolarizing shifts similar to that observed in voltage-gated SR Ca2+ release. The current–voltage relationships for L-type currents in both Hom and Het myotubes were also shifted to more hyperpolarizing potentials (∼7 and 5 mV, respectively). Compared with WT myotubes, Het and Hom myotubes both displayed a greater sensitivity to the L-type channel agonist ±Bay K 8644 (10 µM). In general, L-type currents in WT, Het, and Hom myotubes inactivated modestly after 30-s prepulses to −50, −10, 0, 10, 20, and 30 mV. However, L-type currents in Hom myotubes displayed a hyperpolarizing shift in inactivation relative to L-type currents in either WT or Het myotubes. Our present results indicate that mutations in RYR1 can alter DHPR activity and raise the possibility that this altered DHPR function may contribute to MH episodes.
Collapse
Affiliation(s)
- Roger A Bannister
- Department of Physiology and Biophysics, School of Medicine, University of Colorado-Anschutz Medical Campus, Aurora, CO 80045, USA
| | | | | | | | | | | | | |
Collapse
|
20
|
Klingler W, Rueffert H, Lehmann-Horn F, Girard T, Hopkins PM. Core Myopathies and Risk of Malignant Hyperthermia. Anesth Analg 2009; 109:1167-73. [DOI: 10.1213/ane.0b013e3181b5ae2d] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
21
|
Abstract
Malignant hyperthermia (MH) is a pharmacogenetic disorder triggered by volatile anesthetics or depolarizing muscle relaxants in predisposed individuals. Exercise or stress-induced MH episodes, in the absence of any obvious pharmacological trigger, have been reported, but these are rare. A considerable effort has taken place over the last two decades to identify mutations associated with MH and characterize their functional effects. A number of different, but complementary systems, have been developed and implemented to this end. The results of such studies have identified commonalities in functional affects of mutations, and also uncovered unexpected complexities in both the structure and function of the skeletal muscle calcium-release channel. The following review is an attempt to provide a summary of the background to current MH research, and highlight some recent advances in our knowledge of the molecular basis of the phenotypic expression of this disorder.
Collapse
Affiliation(s)
- Kathryn M Stowell
- Institute of Molecular Biosciences, Massey University, Palmerston North, New Zealand.
| |
Collapse
|
22
|
Dainese M, Quarta M, Lyfenko AD, Paolini C, Canato M, Reggiani C, Dirksen RT, Protasi F. Anesthetic- and heat-induced sudden death in calsequestrin-1-knockout mice. FASEB J 2009; 23:1710-20. [PMID: 19237502 DOI: 10.1096/fj.08-121335] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Calsequestrin-1 (CASQ1) is a moderate-affinity, high-capacity Ca(2+)-binding protein in the sarcoplasmic reticulum (SR) terminal cisternae of skeletal muscle. CASQ1 functions as both a Ca(2+)-binding protein and a luminal regulator of ryanodine receptor (RYR1)-mediated Ca(2+) release. Mice lacking skeletal CASQ1 are viable but exhibit reduced levels of releasable Ca(2+) and altered contractile properties. Here we report that CASQ1-null mice exhibit increased spontaneous mortality and susceptibility to heat- and anesthetic-induced sudden death. Exposure of CASQ1-null mice to either 2% halothane or heat stress triggers lethal episodes characterized by whole-body contractures, elevated core temperature, and severe rhabdomyolysis, which are prevented by prior dantrolene administration. The characteristics of these events are remarkably similar to analogous episodes observed in humans with malignant hyperthermia (MH) and animal models of MH and environmental heat stroke (EHS). In vitro studies indicate that CASQ1-null muscle exhibits increased contractile sensitivity to temperature and caffeine, temperature-dependent increases in resting Ca(2+), and an increase in the magnitude of depolarization-induced Ca(2+) release. These results demonstrate that CASQ1 deficiency alters proper control of RYR1 function and suggest CASQ1 as a potential candidate gene for linkage analysis in families with MH/EHS where mutations in the RYR1 gene are excluded.
Collapse
Affiliation(s)
- Marco Dainese
- Ce.S.I.-Department of Basic and Applied Medical Sciences, Interuniversity Institute of Myology, University G. d'Annunzio, I-66013 Chieti, Italy
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Cleland JC, Griggs RC. Treatment of neuromuscular channelopathies: current concepts and future prospects. Neurotherapeutics 2008; 5:607-12. [PMID: 19019313 PMCID: PMC4514704 DOI: 10.1016/j.nurt.2008.09.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Our understanding of the molecular pathogenesis of the neuromuscular ion channelopathies has increased rapidly over the past two decades due to the identification of many of the genes whose mutation causes these diseases. These molecular discoveries have facilitated identification and classification of the hereditary periodic paralyses and the myotonias, and are likely to shed light on acquired ion channelopathies as well. Despite our better understanding of the pathogenesis of these disorders, current treatments are largely empirical and the evidence in favor of specific therapy largely anecdotal. For periodic paralysis, dichlorphenamide--a carbonic anhydrase inhibitor--has been shown in a controlled trial to prevent attacks for many patients with both hypokalemic and hypokalemic periodic paralysis. A second trial, comparing dichlorphenamide with acetazolamide versus placebo, is currently in progress. For myotonia, there is only anecdotal evidence for treatment, but a controlled trial of mexiletine versus placebo is currently being funded by a Food and Drug Administration-orphan products grant and is scheduled to begin in late 2008. In the future, mechanism-based approaches are likely to be developed. For example, exciting advances have already been made in one disorder, myotonic dystrophy-1 (DM-1). In a mouse model of DM-1, a morpholino antisense oligonucleuotide targeting the 3' splice site of CLCN1 exon 7a repaired the RNA splicing defect by promoting the production of full-length chloride channel transcripts. Abnormal chloride conductance was restored, and myotonia was abolished. Similar strategies hold potential for DM-2. The era of molecularly-based treatments is about to begin.
Collapse
Affiliation(s)
- James C Cleland
- Department of Neurology, Waikato Hospital, Hamilton, New Zealand.
| | | |
Collapse
|
24
|
Jiang D, Chen W, Xiao J, Wang R, Kong H, Jones PP, Zhang L, Fruen B, Chen SRW. Reduced threshold for luminal Ca2+ activation of RyR1 underlies a causal mechanism of porcine malignant hyperthermia. J Biol Chem 2008; 283:20813-20. [PMID: 18505726 DOI: 10.1074/jbc.m801944200] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Naturally occurring mutations in the skeletal muscle Ca(2+) release channel/ryanodine receptor RyR1 are linked to malignant hyperthermia (MH), a life-threatening complication of general anesthesia. Although it has long been recognized that MH results from uncontrolled or spontaneous Ca(2+) release from the sarcoplasmic reticulum, how MH RyR1 mutations render the sarcoplasmic reticulum susceptible to volatile anesthetic-induced spontaneous Ca(2+) release is unclear. Here we investigated the impact of the porcine MH mutation, R615C, the human equivalent of which also causes MH, on the intrinsic properties of the RyR1 channel and the propensity for spontaneous Ca(2+) release during store Ca(2+) overload, a process we refer to as store overload-induced Ca(2+) release (SOICR). Single channel analyses revealed that the R615C mutation markedly enhanced the luminal Ca(2+) activation of RyR1. Moreover, HEK293 cells expressing the R615C mutant displayed a reduced threshold for SOICR compared with cells expressing wild type RyR1. Furthermore, the MH-triggering agent, halothane, potentiated the response of RyR1 to luminal Ca(2+) and SOICR. Conversely, dantrolene, an effective treatment for MH, suppressed SOICR in HEK293 cells expressing the R615C mutant, but not in cells expressing an RyR2 mutant. These data suggest that the R615C mutation confers MH susceptibility by reducing the threshold for luminal Ca(2+) activation and SOICR, whereas volatile anesthetics trigger MH by further reducing the threshold, and dantrolene suppresses MH by increasing the SOICR threshold. Together, our data support a view in which altered luminal Ca(2+) regulation of RyR1 represents a primary causal mechanism of MH.
Collapse
Affiliation(s)
- Dawei Jiang
- Libin Cardiovascular Institutes of Alberta, Department of Physiology, University of Calgary, Calgary, Alberta, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
L-type Ca2+ channel function is linked to dystrophin expression in mammalian muscle. PLoS One 2008; 3:e1762. [PMID: 18516256 PMCID: PMC2408559 DOI: 10.1371/journal.pone.0001762] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2007] [Accepted: 02/08/2008] [Indexed: 11/19/2022] Open
Abstract
Background In dystrophic mdx skeletal muscle, aberrant Ca2+ homeostasis and fibre degeneration are found. The absence of dystrophin in models of Duchenne muscular dystrophy (DMD) has been connected to altered ion channel properties e.g. impaired L-type Ca2+ currents. In regenerating mdx muscle, ‘revertant’ fibres restore dystrophin expression. Their functionality involving DHPR-Ca2+-channels is elusive. Methods and Results We developed a novel ‘in-situ’ confocal immuno-fluorescence and imaging technique that allows, for the first time, quantitative subcellular dystrophin-DHPR colocalization in individual, non-fixed, muscle fibres. Tubular DHPR signals alternated with second harmonic generation signals originating from myosin. Dystrophin-DHPR colocalization was substantial in wt fibres, but diminished in most mdx fibres. Mini-dystrophin (MinD) expressing fibres successfully restored colocalization. Interestingly, in some aged mdx fibres, colocalization was similar to wt fibres. Most mdx fibres showed very weak membrane dystrophin staining and were classified ‘mdx-like’. Some mdx fibres, however, had strong ‘wt-like’ dystrophin signals and were identified as ‘revertants’. Split mdx fibres were mostly ‘mdx-like’ and are not generally ‘revertants’. Correlations between membrane dystrophin and DHPR colocalization suggest a restored putative link in ‘revertants’. Using the two-micro-electrode-voltage clamp technique, Ca2+-current amplitudes (imax) showed very similar behaviours: reduced amplitudes in most aged mdx fibres (as seen exclusively in young mdx mice) and a few mdx fibres, most likely ‘revertants’, with amplitudes similar to wt or MinD fibres. Ca2+ current activation curves were similar in ‘wt-like’ and ‘mdx-like’ aged mdx fibres and are not the cause for the differences in current amplitudes. imax amplitudes were fully restored in MinD fibres. Conclusions We present evidence for a direct/indirect DHPR-dystrophin interaction present in wt, MinD and ‘revertant’ mdx fibres but absent in remaining mdx fibres. Our imaging technique reliably detects single isolated ‘revertant’ fibres that could be used for subsequent physiological experiments to study mechanisms and therapy concepts in DMD.
Collapse
|
26
|
Ogawa Y. Distinct mechanisms for dysfunctions of mutated ryanodine receptor isoforms. Biochem Biophys Res Commun 2007; 369:208-12. [PMID: 18067858 DOI: 10.1016/j.bbrc.2007.11.139] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2007] [Accepted: 11/22/2007] [Indexed: 11/26/2022]
Abstract
Ryanodine receptor (RyR) is the Ca(2+)-induced Ca(2+) release channel in cells. RyR1 and RyR2 are its isoforms expressed in the skeletal and cardiac muscles, respectively. Their missense mutations, which are clustered in three regions that correspond to each other, cause hereditary disorders such as malignant hyperthermia and central core disease in skeletal muscle and catecholaminergic polymorphic ventricular tachycardia in cardiac muscle. Their pathogeneses, however, are not well understood. The following hypotheses are favorably discussed in this article: phenotypes with RyR1 and RyR2 mutations are mainly caused by dysregulations of their functions through the interdomain interaction and luminal Ca(2+), respectively.
Collapse
Affiliation(s)
- Yasuo Ogawa
- Department of Pharmacology, Juntendo University School of Medicine, 2-1-1, Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| |
Collapse
|
27
|
Fernandes C, Azevedo D, Gomes J, Gonçalves B, Coelho G, Vasconcelos J, Garcia J. Malignant Hyperthermia in a Liver Transplant Patient: A Case Report. Transplant Proc 2007; 39:3530-2. [DOI: 10.1016/j.transproceed.2007.09.036] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2007] [Accepted: 09/13/2007] [Indexed: 10/22/2022]
|
28
|
Ikezoe K, Nakamori M, Furuya H, Arahata H, Kanemoto S, Kimura T, Imaizumi K, Takahashi MP, Sakoda S, Fujii N, Kira JI. Endoplasmic reticulum stress in myotonic dystrophy type 1 muscle. Acta Neuropathol 2007; 114:527-35. [PMID: 17661063 DOI: 10.1007/s00401-007-0267-9] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2007] [Revised: 05/31/2007] [Accepted: 06/30/2007] [Indexed: 11/30/2022]
Abstract
In myotonic dystrophy type 1 (DM1), alternative splicing of ryanodine receptor 1 (RyR1) and sarcoplasmic/endoplasmic reticulum Ca2+ ATPase (SERCA) genes has been reported. These proteins are essential for maintaining intracellular Ca2+ in skeletal muscle. To clarify involvement of endoplasmic reticulum (ER) stress in DM1 muscles, we examined the activation of ER stress-related proteins by immunohistochemistry, western blot analysis and RT-PCR. In four of five DM1 muscle biopsies, except for a muscle biopsy from a patient with the shortest CTG expansion and no myotonia, increased expression of GRP78 and calnexin, and phosphorylation of PERK and eIF-2 alpha were revealed in fibers with sarcoplasmic masses and in highly atrophic fibers with pyknotic nuclear clumps. Caspase-3 and -7 were also expressed in these fibers. Increased expression of GRP78 in these DM1 muscles was confirmed by western blot analysis. GRP78 mRNA and spliced isoform of XBP1 mRNA were also increased in DM1 muscle biopsies. Furthermore, we demonstrated increased expression of GRP78 in highly atrophic fibers with pyknotic nuclear clumps in all three muscle biopsies from neurogenic muscular atrophies. However, five muscle biopsies from central core disease presumably with disturbed intracellular Ca2+ homeostasis and a muscle biopsy from paramyotonia congenita with myotonia showed no activation of these proteins. Taken together, ER stress is involved in muscle wasting in DM1. However, it seems to be evoked not only by disrupted intracellular Ca2+ homeostasis.
Collapse
Affiliation(s)
- Koji Ikezoe
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Uemura Y, Liu TY, Narita Y, Suzuki M, Ohshima S, Mizukami S, Ichihara Y, Kikuchi H, Matsushita S. Identification of functional type 1 ryanodine receptors in human dendritic cells. Biochem Biophys Res Commun 2007; 362:510-5. [PMID: 17707769 DOI: 10.1016/j.bbrc.2007.08.024] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2007] [Accepted: 08/06/2007] [Indexed: 02/02/2023]
Abstract
Ryanodine receptor (RyR) is a Ca(2+) channel that mediates Ca(2+) release from intracellular stores. Altered Ca(2+) homeostasis in skeletal muscle which usually occurs as a result of point mutations in type 1 RyR1 (RyR1) is a key molecular event triggering malignant hyperthermia (MH). There are three RyR isoforms, and we herein show, for the first time, that human dendritic cells (DCs) preferentially express RyR1 mRNA among them. The RyR activator, 4-chloro-m-cresol (4CmC), induced Ca(2+) release in DCs, and this response was eliminated by dantrolene, an inhibitor of the RyR1, and was unaffected by xestospongin C, a selective inhibitor of IP(3) receptor. Activation of RyR1 reduced LPS-induced IL-10 production, promoted the expression of HLA-DR and CD86, and thereby exhibited an improved capacity to stimulate allogeneic T cells. These findings demonstrate that RyR1-mediated calcium signaling modifies diverse DC responses and suggest the feasibility of using DC preparations for the diagnosis of MH.
Collapse
Affiliation(s)
- Yasushi Uemura
- Department of Allergy and Immunology, Faculty of Medicine, Saitama Medical University, 38 Morohongo, Moroyama, Saitama 350-0495, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Hirata H, Watanabe T, Hatakeyama J, Sprague SM, Saint-Amant L, Nagashima A, Cui WW, Zhou W, Kuwada JY. Zebrafish relatively relaxed mutants have a ryanodine receptor defect, show slow swimming and provide a model of multi-minicore disease. Development 2007; 134:2771-81. [PMID: 17596281 DOI: 10.1242/dev.004531] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Wild-type zebrafish embryos swim away in response to tactile stimulation. By contrast, relatively relaxed mutants swim slowly due to weak contractions of trunk muscles. Electrophysiological recordings from muscle showed that output from the CNS was normal in mutants, suggesting a defect in the muscle. Calcium imaging revealed that Ca2+ transients were reduced in mutant fast muscle. Immunostaining demonstrated that ryanodine and dihydropyridine receptors, which are responsible for Ca2+ release following membrane depolarization, were severely reduced at transverse-tubule/sarcoplasmic reticulum junctions in mutant fast muscle. Thus, slow swimming is caused by weak muscle contractions due to impaired excitation-contraction coupling. Indeed, most of the ryanodine receptor 1b(ryr1b) mRNA in mutants carried a nonsense mutation that was generated by aberrant splicing due to a DNA insertion in an intron of the ryr1b gene, leading to a hypomorphic condition in relatively relaxed mutants. RYR1 mutations in humans lead to a congenital myopathy,multi-minicore disease (MmD), which is defined by amorphous cores in muscle. Electron micrographs showed minicore structures in mutant fast muscles. Furthermore, following the introduction of antisense morpholino oligonucleotides that restored the normal splicing of ryr1b, swimming was recovered in mutants. These findings suggest that zebrafish relatively relaxed mutants may be useful for understanding the development and physiology of MmD.
Collapse
Affiliation(s)
- Hiromi Hirata
- Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Wang R, Chen W, Cai S, Zhang J, Bolstad J, Wagenknecht T, Liu Z, Chen SRW. Localization of an NH(2)-terminal disease-causing mutation hot spot to the "clamp" region in the three-dimensional structure of the cardiac ryanodine receptor. J Biol Chem 2007; 282:17785-93. [PMID: 17452324 PMCID: PMC2800043 DOI: 10.1074/jbc.m700660200] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A region between residues 414 and 466 in the cardiac ryanodine receptor (RyR2) harbors more than half of the known NH(2)-terminal mutations associated with cardiac arrhythmias and sudden death. To gain insight into the structural basis of this NH(2)-terminal mutation hot spot, we have determined its location in the three-dimensional structure of RyR2. Green fluorescent protein (GFP), used as a structural marker, was inserted into the middle of this mutation hot spot after Ser-437 in the RyR2 sequence. The resultant GFP-RyR2 fusion protein, RyR2(S437-GFP,) was expressed in HEK293 cells and characterized using Ca(2+) release, [(3)H]ryanodine binding, and single cell Ca(2+) imaging studies. These functional analyses revealed that RyR2(S437-GFP) forms a caffeine- and ryanodine-sensitive Ca(2+) release channel that possesses Ca(2+) and caffeine dependence of activation indistinguishable from that of wild type (wt) RyR2. HEK293 cells expressing RyR2(S437-GFP) displayed a propensity for store overload-induced Ca(2+) release similar to that in cells expressing RyR2-wt. The three-dimensional structure of the purified RyR2(S437-GFP) was reconstructed using cryo-electron microscopy and single particle image processing. Subtraction of the three-dimensional reconstructions of RyR2-wt and RyR2(S437-GFP) revealed the location of the inserted GFP, and hence the NH(2)-terminal mutation hot spot, in a region between domains 5 and 9 in the clamp-shaped structure. This location is close to a previously mapped central disease-causing mutation site located in a region between domains 5 and 6. These results, together with findings from previous studies, suggest that the proposed interactions between the NH(2)-terminal and central regions of RyR2 are likely to take place between domains 5 and 6 and that the clamp-shaped structure, which shows substantial conformational differences between the closed and open states, is highly susceptible to disease-causing mutations.
Collapse
Affiliation(s)
- Ruiwu Wang
- Departments of Physiology & Biophysics, and of Biochemistry & Molecular Biology, University of Calgary, Calgary, Alberta, Canada T2N 4N1
| | - Wenqian Chen
- Departments of Physiology & Biophysics, and of Biochemistry & Molecular Biology, University of Calgary, Calgary, Alberta, Canada T2N 4N1
| | - Shitian Cai
- Departments of Physiology & Biophysics, and of Biochemistry & Molecular Biology, University of Calgary, Calgary, Alberta, Canada T2N 4N1
| | - Jing Zhang
- Departments of Physiology & Biophysics, and of Biochemistry & Molecular Biology, University of Calgary, Calgary, Alberta, Canada T2N 4N1
| | - Jeff Bolstad
- Departments of Physiology & Biophysics, and of Biochemistry & Molecular Biology, University of Calgary, Calgary, Alberta, Canada T2N 4N1
| | - Terence Wagenknecht
- Wadsworth Center, New York State Department of Health, Albany, NY 12201
- Department of Biomedical Sciences, School of Public Health, State University of New York at Albany, Albany, NY 12201
| | - Zheng Liu
- Wadsworth Center, New York State Department of Health, Albany, NY 12201
| | - S. R. Wayne Chen
- Departments of Physiology & Biophysics, and of Biochemistry & Molecular Biology, University of Calgary, Calgary, Alberta, Canada T2N 4N1
| |
Collapse
|
32
|
Lyfenko AD, Ducreux S, Wang Y, Xu L, Zorzato F, Ferreiro A, Meissner G, Treves S, Dirksen RT. Two central core disease (CCD) deletions in the C-terminal region of RYR1 alter muscle excitation-contraction (EC) coupling by distinct mechanisms. Hum Mutat 2007; 28:61-8. [PMID: 16958053 DOI: 10.1002/humu.20409] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Central core disease (CCD) and malignant hyperthermia (MH) are skeletal muscle disorders that are linked to mutations in the gene that encodes the type 1 ryanodine receptor (RYR1). The RYR1 ion channel plays a central role in excitation-contraction (EC) coupling by releasing Ca(2+) from an internal store. Pathogenic CCD mutations in RYR1 result in changes in the magnitude of Ca(2+) release during EC coupling. CCD has recently been linked to two novel deletions (c.12640_12648delCGCCAGTTC [p.Arg4214_Phe4216del] and c.14779_14784delGTCATC [p.Val4927_Ile4928del]) in the C-terminal region of RYR1. To determine the phenotypic consequences of these mutations and extend our understanding of the pathogenic mechanisms that underlie CCD, we determined functional effects on Ca(2+) release channel activity of analogous deletions (p.Arg4215_Phe4217del and p.Val4926_Ile4927del) engineered into rabbit RYR1 following expression in RYR1-null (dyspedic) myotubes and HEK293 cells. In addition, we assessed effects of the p.Arg4214 Phe4216del mutation on RYR1 function in lymphoblastoid cells obtained from CCD patients heterozygous for the mutation. Here we report that both deletions significantly reduce Ca(2+) release following RYR1 activation, but by different mechanisms. While the p.Arg4214_Phe4216del deletion promotes Ca(2+) depletion from intracellular stores by exhibiting a classic "leaky channel" behavior, the p.Val4927_Ile4928del deletion reduces Ca(2+) release by disrupting Ca(2+) gating and eliminating Ca(2+) permeation through the open channel.
Collapse
Affiliation(s)
- Alla D Lyfenko
- Department of Physiology and Pharmacology, University of Rochester, Rochester, New York 14642, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Kimura T, Pace SM, Wei L, Beard NA, Dirksen RT, Dulhunty AF. A variably spliced region in the type 1 ryanodine receptor may participate in an inter-domain interaction. Biochem J 2007; 401:317-24. [PMID: 16989644 PMCID: PMC1698670 DOI: 10.1042/bj20060686] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The aim of the present study was to examine residues that are variably spliced in the juvenile and adult isoforms of the skeletal-muscle RyR1 (type 1 ryanodine receptor). The juvenile ASI(-) splice variant is less active than the adult ASI(+) variant and is overexpressed in patients with DM (myotonic dystrophy) [Kimura, Nakamori, Lueck, Pouliquin, Aoike, Fujimura, Dirksen, Takahashi, Dulhunty and Sakoda (2005) Hum. Mol. Genet. 14, 2189-2200]. In the present study, we explore the ASI region using synthetic peptides corresponding to rabbit RyR1 residues Thr3471-Gly3500 either containing [PASI(+)] or lacking [PASI(-)] the ASI residues. Both peptides increased [3H]ryanodine binding to rabbit RyR1s, increased Ca2+ release from sarcoplasmic reti-culum vesicles and increased single RyR1 channel activity. The peptide PASI(-) was more active in each case than PASI(+). [3H]Ryanodine binding to recombinant ASI(+)RyR1 or ASI(-)-RyR1 was enhanced more by PASI(-) than PASI(+), with the greatest increase seen when PASI(-) was added to ASI(-)RyR1. The activation of the RyR channels is consistent with the hypo-thesis that the peptides interrupt an inhibitory inter-domain inter-action and that PASI(-) is more effective at interrupting this interaction than PASI(+). We therefore suggest that the ASI(-) sequence interacts more tightly than the ASI(+) sequence with its binding partner, so that the ASI(-)RyR1 is more strongly inhibited (less active) than the ASI(+)RyR1. Thus the affinity of the binding partners in this inter-domain interaction may deter-mine the activities of the mature and juvenile isoforms of RyR1 and the stronger inhibition in the juvenile isoform may contribute to the myopathy in DM.
Collapse
Affiliation(s)
- Takashi Kimura
- Division of Molecular Bioscience, JCSMR (John Curtin School of Medical Research), Australian National University, P.O. Box 334, Canberra, ACT 2601, Australia.
| | | | | | | | | | | |
Collapse
|
34
|
Halsall PJ, Robinson RL. Malignant hyperthermia and associated conditions. HANDBOOK OF CLINICAL NEUROLOGY 2007; 86:107-124. [PMID: 18808997 DOI: 10.1016/s0072-9752(07)86005-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
|
35
|
Affiliation(s)
- Nigel G Laing
- Centre for Medical Research, University of Western Australia, West Australian Institute for Medical Research, Nedlands, Western Australia, Australia
| | | | | |
Collapse
|
36
|
Durham WJ, Wehrens XHT, Sood S, Hamilton SL. Diseases associated with altered ryanodine receptor activity. Subcell Biochem 2007; 45:273-321. [PMID: 18193641 DOI: 10.1007/978-1-4020-6191-2_10] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Mutations in two intracellular Ca2+ release channels or ryanodine receptors (RyR1 and RyR2) are associated with a number of human skeletal and cardiac diseases. This chapter discusses these diseases in terms of known mechanisms, controversies, and unanswered questions. We also compare the cardiac and skeletal muscle diseases to explore common mechanisms.
Collapse
Affiliation(s)
- W J Durham
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | |
Collapse
|
37
|
Cleland JC, Griggs RC. Channelopathies of the Nervous System. Neurobiol Dis 2007. [DOI: 10.1016/b978-012088592-3/50033-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
38
|
Ducreux S, Zorzato F, Ferreiro A, Jungbluth H, Muntoni F, Monnier N, Müller CR, Treves S. Functional properties of ryanodine receptors carrying three amino acid substitutions identified in patients affected by multi-minicore disease and central core disease, expressed in immortalized lymphocytes. Biochem J 2006; 395:259-66. [PMID: 16372898 PMCID: PMC1422771 DOI: 10.1042/bj20051282] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
More than 80 mutations in the skeletal muscle ryanodine receptor gene have been found to be associated with autosomal dominant forms of malignant hyperthermia and central core disease, and with recessive forms of multi-minicore disease. Studies on the functional effects of pathogenic dominant mutations have shown that they mostly affect intracellular Ca2+ homoeostasis, either by rendering the channel hypersensitive to activation (malignant hyperthermia) or by altering the amount of Ca2+ released subsequent to physiological or pharmacological activation (central core disease). In the present paper, we show, for the first time, data on the functional effect of two recently identified recessive ryanodine receptor 1 amino acid substitutions, P3527S and V4849I, as well as that of R999H, another substitution that was identified in two siblings that were affected by multi-minicore disease. We studied the intracellular Ca2+ homoeostasis of EBV (Epstein-Barr virus)-transformed lymphoblastoid cells from the affected patients, their healthy relatives and control individuals. Our results show that the P3527S substitution in the homozygous state affected the amount of Ca2+ released after pharmacological activation with 4-chloro-m-cresol and caffeine, but did not affect the size of the thapsigargin-sensitive Ca2+ stores. The other substitutions had no effect on either the size of the intracellular Ca2+ stores, or on the amount of Ca2+ released after ryanodine receptor activation; however, both the P3527S and V4849I substitutions had a small but significant effect on the resting Ca2+ concentration.
Collapse
Affiliation(s)
- Sylvie Ducreux
- Department of Anaesthesia and Research, Basel University Hospital, 4031 Basel, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Gouadon E, Schuhmeier RP, Ursu D, Anderson AA, Treves S, Zorzato F, Lehmann-Horn F, Melzer W. A possible role of the junctional face protein JP-45 in modulating Ca2+ release in skeletal muscle. J Physiol 2006; 572:269-80. [PMID: 16423849 PMCID: PMC1779648 DOI: 10.1113/jphysiol.2005.104406] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
We investigated the functional role of JP-45, a recently discovered protein of the junctional face membrane (JFM) of skeletal muscle. For this purpose, we expressed JP-45 C-terminally tagged with the fluorescent protein DsRed2 by nuclear microinjection in myotubes derived from the C2C12 skeletal muscle cell line and performed whole-cell voltage-clamp experiments. We recorded in parallel cell membrane currents and Ca(2+) signals using fura-2 during step depolarization. It was found that properties of the voltage-activated Ca(2+) current were not significantly changed in JP-45-DsRed2-expressing C2C12 myotubes whereas the amplitude of depolarization-induced Ca(2+) transient was decreased compared to control myotubes expressing only DsRed2. Converting Ca(2+) transients to Ca(2+) input flux using a model fit approach to quantify Ca(2+) removal, the change could be attributed to an alteration in voltage-activated Ca(2+) permeability rather than to altered removal properties or a lower Ca(2+) content of the sarcoplasmic reticulum (SR). Determining non-linear capacitive currents revealed a reduction of Ca(2+) permeability per voltage-sensor charge. The results may be explained by a modulatory effect of JP-45 related to its reported in vitro interaction with the dihydropyridine receptor and the SR Ca(2+) binding protein calsequestrin (CSQ).
Collapse
Affiliation(s)
- E Gouadon
- University of Ulm, Department of Applied Physiology, Albert-Einstein-Allee 11, D-89069 Ulm, Germany
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Divet A, Paesante S, Bleunven C, Anderson A, Treves S, Zorzato F. Novel sarco(endo)plasmic reticulum proteins and calcium homeostasis in striated muscles. J Muscle Res Cell Motil 2005; 26:7-12. [PMID: 16096683 DOI: 10.1007/s10974-005-9001-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2005] [Revised: 06/09/2005] [Accepted: 06/17/2005] [Indexed: 10/25/2022]
Abstract
The impact of calcium signaling on many cellular functions is reflected by the tight regulation of the intracellular Ca(2+) concentration that is ensured by diverse pumps, channels, transporters and Ca(2+) binding proteins. In this review, we present recently identified novel sarco(endo)plasmic reticulum proteins that may have a potential involvement in the regulation of Ca(2+) homeostasis in striated muscles.
Collapse
Affiliation(s)
- A Divet
- Department of Experimental and Diagnostic Medicine, Section of General Pathology, University of Ferrara, Italy
| | | | | | | | | | | |
Collapse
|
41
|
Kimura T, Nakamori M, Lueck JD, Pouliquin P, Aoike F, Fujimura H, Dirksen RT, Takahashi MP, Dulhunty AF, Sakoda S. Altered mRNA splicing of the skeletal muscle ryanodine receptor and sarcoplasmic/endoplasmic reticulum Ca2+-ATPase in myotonic dystrophy type 1. Hum Mol Genet 2005; 14:2189-200. [PMID: 15972723 DOI: 10.1093/hmg/ddi223] [Citation(s) in RCA: 195] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Myotonic dystrophy type 1 (DM1) is a debilitating multisystemic disorder caused by a CTG repeat expansion in the DMPK gene. Aberrant splicing of several genes has been reported to contribute to some symptoms of DM1, but the cause of muscle weakness in DM1 and elevated Ca2+ concentrations in cultured DM muscle cells is unknown. Here, we investigated the alternative splicing of mRNAs of two major proteins of the sarcoplasmic reticulum, the ryanodine receptor 1 (RyR1) and sarcoplasmic/endoplasmic reticulum Ca2+-ATPase (SERCA) 1 or 2. The fetal variants, ASI(-) of RyR1 which lacks residue 3481-3485, and SERCA1b which differs at the C-terminal were significantly increased in skeletal muscles from DM1 patients and the transgenic mouse model of DM1 (HSA(LR)). In addition, a novel variant of SERCA2 was significantly decreased in DM1 patients. The total amount of mRNA for RyR1, SERCA1 and SERCA2 in DM1 and the expression levels of their proteins in HSA(LR) mice were not significantly different. However, heterologous expression of ASI(-) in cultured cells showed decreased affinity for [3H]ryanodine but similar Ca2+ dependency, and decreased channel activity in single-channel recording when compared with wild-type (WT) RyR1. In support of this, RyR1-knockout myotubes expressing ASI(-) exhibited a decreased incidence of Ca2+ oscillations during caffeine exposure compared with that observed for myotubes expressing WT-RyR1. We suggest that aberrant splicing of RyR1 and SERCA1 mRNAs might contribute to impaired Ca2+ homeostasis in DM1 muscle.
Collapse
Affiliation(s)
- Takashi Kimura
- Division of Molecular Bioscience, John Curtin School of Medical Research, Australian National University, PO Box 334, Canberra ACT 2601, Australia
| | | | | | | | | | | | | | | | | | | |
Collapse
|