1
|
Fonseca MDC, Marazzi-Diniz PHS, Leite MF, Ehrlich BE. Calcium signaling in chemotherapy-induced neuropathy. Cell Calcium 2023; 113:102762. [PMID: 37244172 DOI: 10.1016/j.ceca.2023.102762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/18/2023] [Accepted: 05/19/2023] [Indexed: 05/29/2023]
Abstract
Alterations in calcium (Ca2+) signaling is a major mechanism in the development of chemotherapy-induced peripheral neuropathy (CIPN), a side effect caused by multiple chemotherapy regimens. CIPN is associated with numbness and incessant tingling in hands and feet which diminishes quality of life during treatment. In up to 50% of survivors, CIPN is essentially irreversible. There are no approved, disease-modifying treatments for CIPN. The only recourse for oncologists is to modify the chemotherapy dose, a situation that can compromise optimal chemotherapy and impact patient outcomes. Here we focus on taxanes and other chemotherapeutic agents that work by altering microtubule assemblies to kill cancer cells, but also have off-target toxicities. There have been many molecular mechanisms proposed to explain the effects of microtubule-disrupting drugs. In neurons, an initiating step in the off-target effects of treatment by taxane is binding to neuronal calcium sensor 1 (NCS1), a sensitive Ca2+ sensor protein that maintains the resting Ca2+ concentration and dynamically enhances responses to cellular stimuli. The taxane/NCS1 interaction causes a Ca2+ surge that starts a pathophysiological cascade of consequences. This same mechanism contributes to other conditions including chemotherapy-induced cognitive impairment. Strategies to prevent the Ca2+ surge are the foundation of current work.
Collapse
Affiliation(s)
- Matheus de Castro Fonseca
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, United States.
| | - Paulo H S Marazzi-Diniz
- Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - M Fatima Leite
- Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Barbara E Ehrlich
- Department of Pharmacology, School of Medicine, Yale University, New Haven, CT, United States.
| |
Collapse
|
2
|
Alam MS, Leyva D, Michelin W, Fernandez-Lima F, Miksovska J. Distinct mechanism of Tb 3+ and Eu 3+ binding to NCS1. Phys Chem Chem Phys 2023; 25:9500-9512. [PMID: 36938969 PMCID: PMC10840756 DOI: 10.1039/d2cp05765d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Abstract
Lanthanides have been frequently used as biomimetic compounds for NMR and fluorescence studies of Ca2+ binding proteins due to having similar physical properties and coordination geometry to Ca2+ ions. Here we report that a member of the neuronal calcium sensor family, neuronal calcium sensor 1, complexes with two lanthanide ions Tb3+ and Eu3+. The affinity for Tb3+ is nearly 50 times higher than that for Ca2+ (Kd,Tb3+ = 0.002 ± 0.0001 μM and Kd, Ca2+ = 91 nM) whereas Eu3+ binding is notably weaker, Kd,Eu3+ = 26 ± 1 μM. Interestingly, despite having identical charge and similar ionic radii, Tb3+ and Eu3+ ions exhibit a distinct binding stoichiometry for NCS1 with one Eu3+ and two Tb3+ ions bound per NCS1 monomer, as demonstrated in fluorescence titration and mass spectrometry studies. These results suggest that the lanthanides' affinity for the individual EF hands is fine-tuned by a small variation in the ion charge density as well as EF hand binding loop amino acid sequence. As observed previously for other lanthanide:protein complexes, the emission intensity of Ln3+ is enhanced upon complexation with the protein, likely due to the displacement of water molecules by oxygen atoms from the coordinating amino acid residues. The overall shape of the Tb3+NCS1 and Eu3+NCS1 monomer shows high levels of similarity compared to the Ca2+ bound protein based on their collision cross section. However, the distinct occupation of EF hands impacts NCS1 oligomerization and affinity for the D2R peptide that mimics the NCS1 binding site on the D2R receptor. Specifically, the Tb3+NCS1 complex populates the dimer and has comparable affinity for the D2R peptide, whereas Eu3+ bound NCS1 remains in the monomeric form with a negligible affinity for the D2R peptide.
Collapse
Affiliation(s)
- Md Shofiul Alam
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, USA.
| | - Dennys Leyva
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, USA.
| | - Woodline Michelin
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, USA.
| | - Francisco Fernandez-Lima
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, USA.
- Biomolecular Sciences Institute, Florida International University, Miami, FL, USA
| | - Jaroslava Miksovska
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, USA.
- Biomolecular Sciences Institute, Florida International University, Miami, FL, USA
| |
Collapse
|
3
|
Kanie T, Ng R, Abbott KL, Pongs O, Jackson PK. Myristoylated Neuronal Calcium Sensor-1 captures the ciliary vesicle at distal appendages. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.06.523037. [PMID: 36712037 PMCID: PMC9881967 DOI: 10.1101/2023.01.06.523037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The primary cilium is a microtubule-based organelle that cycles through assembly and disassembly. In many cell types, formation of the cilium is initiated by recruitment of ciliary vesicles to the distal appendage of the mother centriole. However, the distal appendage mechanism that directly captures ciliary vesicles is yet to be identified. In an accompanying paper, we show that the distal appendage protein, CEP89, is important for thef ciliary vesicle recruitment, but not for other steps of cilium formation (Tomoharu Kanie, Love, Fisher, Gustavsson, & Jackson, 2023). The lack of a membrane binding motif in CEP89 suggests that it may indirectly recruit ciliary vesicles via another binding partner. Here, we identify Neuronal Calcium Sensor-1 (NCS1) as a stoichiometric interactor of CEP89. NCS1 localizes to the position between CEP89 and a ciliary vesicle marker, RAB34, at the distal appendage. This localization was completely abolished in CEP89 knockouts, suggesting that CEP89 recruits NCS1 to the distal appendage. Similarly to CEP89 knockouts, ciliary vesicle recruitment as well as subsequent cilium formation was perturbed in NCS1 knockout cells. The ability of NCS1 to recruit the ciliary vesicle is dependent on its myristoylation motif and NCS1 knockout cells expressing myristoylation defective mutant failed to rescue the vesicle recruitment defect despite localizing proper localization to the centriole. In sum, our analysis reveals the first known mechanism for how the distal appendage recruits the ciliary vesicles.
Collapse
Affiliation(s)
- Tomoharu Kanie
- Baxter Laboratory, Department of Microbiology & Immunology and Department of Pathology, Stanford University, Stanford, CA, 94305
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma, OK, 73112
| | - Roy Ng
- Baxter Laboratory, Department of Microbiology & Immunology and Department of Pathology, Stanford University, Stanford, CA, 94305
| | - Keene L. Abbott
- Baxter Laboratory, Department of Microbiology & Immunology and Department of Pathology, Stanford University, Stanford, CA, 94305
| | - Olaf Pongs
- Institute for Physiology, Center for Integrative Physiology and Molecular Medicine (CIPPM), Saarland University, Homburg, Germany
| | - Peter K. Jackson
- Baxter Laboratory, Department of Microbiology & Immunology and Department of Pathology, Stanford University, Stanford, CA, 94305
| |
Collapse
|
4
|
Halbgebauer S, Steinacker P, Riedel D, Oeckl P, Anderl-Straub S, Lombardi J, von Arnim CAF, Nagl M, Giese A, Ludolph AC, Otto M. Visinin-like protein 1 levels in blood and CSF as emerging markers for Alzheimer's and other neurodegenerative diseases. Alzheimers Res Ther 2022; 14:175. [PMID: 36419075 PMCID: PMC9682835 DOI: 10.1186/s13195-022-01122-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 11/08/2022] [Indexed: 11/24/2022]
Abstract
BACKGROUND Visinin-like protein 1 (VILIP-1) belongs to the group of emerging biomarkers with the potential to support the early diagnosis of Alzheimer's disease (AD). However, studies investigating the differential diagnostic potential in cerebrospinal fluid (CSF) are rare and are not available for blood. METHODS We set up a novel, sensitive single molecule array (Simoa) assay for the detection of VILIP-1 in CSF and serum. In total, paired CSF and serum samples from 234 patients were investigated: 73 AD, 18 behavioral variant frontotemporal dementia (bvFTD), 26 parkinsonian syndromes, 20 amyotrophic lateral sclerosis (ALS), 22 Creutzfeldt-Jakob disease (CJD), and 75 non-neurodegenerative control (Con) patients. The differential diagnostic potential of CSF and serum VILIP-1 was assessed using the receiver operating characteristic curve analysis and findings were compared to core AD biomarkers. RESULTS CSF and serum VILIP-1 levels correlated weakly (r=0.32 (CI: 0.20-0.43), p<0.0001). VILIP-1 concentrations in CSF and serum were elevated in AD compared to Con (p<0.0001 and p<0.01) and CJD (p<0.0001 for CSF and serum), and an increase in CSF was observed already in early AD stages (p<0.0001). In the discrimination of AD versus Con, we could demonstrate a strong diagnostic potential for CSF VILIP-1 alone (area under the curve (AUC): 0.87), CSF VILIP-1/CSF Abeta 1-42 (AUC: 0.98), and serum VILIP-1/CSF Abeta 1-42 ratio (AUC: 0.89). CONCLUSIONS We here report on the successful establishment of a novel Simoa assay for VILIP-1 and illustrate the potential of CSF and serum VILIP-1 in the differential diagnosis of AD with highest levels in CJD.
Collapse
Affiliation(s)
- Steffen Halbgebauer
- grid.410712.10000 0004 0473 882XDepartment of Neurology, Ulm University Hospital, University of Ulm, Oberer Eselsberg 45, 89081 Ulm, Germany ,grid.424247.30000 0004 0438 0426Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE e.V.), Ulm, Germany
| | - Petra Steinacker
- grid.410712.10000 0004 0473 882XDepartment of Neurology, Ulm University Hospital, University of Ulm, Oberer Eselsberg 45, 89081 Ulm, Germany ,grid.461820.90000 0004 0390 1701Department of Neurology, University Clinic, Halle University Hospital, Martin Luther University Halle/Wittenberg, Ernst-Grube Strasse 49, 06120 Halle (Saale), Germany
| | - Daniel Riedel
- grid.410712.10000 0004 0473 882XDepartment of Neurology, Ulm University Hospital, University of Ulm, Oberer Eselsberg 45, 89081 Ulm, Germany
| | - Patrick Oeckl
- grid.410712.10000 0004 0473 882XDepartment of Neurology, Ulm University Hospital, University of Ulm, Oberer Eselsberg 45, 89081 Ulm, Germany ,grid.424247.30000 0004 0438 0426Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE e.V.), Ulm, Germany
| | - Sarah Anderl-Straub
- grid.410712.10000 0004 0473 882XDepartment of Neurology, Ulm University Hospital, University of Ulm, Oberer Eselsberg 45, 89081 Ulm, Germany
| | - Jolina Lombardi
- grid.410712.10000 0004 0473 882XDepartment of Neurology, Ulm University Hospital, University of Ulm, Oberer Eselsberg 45, 89081 Ulm, Germany
| | - Christine A. F. von Arnim
- grid.410712.10000 0004 0473 882XDepartment of Neurology, Ulm University Hospital, University of Ulm, Oberer Eselsberg 45, 89081 Ulm, Germany ,grid.411984.10000 0001 0482 5331Division of Geriatrics, University Medical Center Göttingen, Göttingen, Germany
| | - Magdalena Nagl
- grid.410712.10000 0004 0473 882XDepartment of Neurology, Ulm University Hospital, University of Ulm, Oberer Eselsberg 45, 89081 Ulm, Germany
| | - Armin Giese
- grid.5252.00000 0004 1936 973XDepartment of Neuropathology, Ludwig-Maximilians-University, Munich, Germany
| | - Albert C. Ludolph
- grid.410712.10000 0004 0473 882XDepartment of Neurology, Ulm University Hospital, University of Ulm, Oberer Eselsberg 45, 89081 Ulm, Germany ,grid.424247.30000 0004 0438 0426Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE e.V.), Ulm, Germany
| | - Markus Otto
- grid.410712.10000 0004 0473 882XDepartment of Neurology, Ulm University Hospital, University of Ulm, Oberer Eselsberg 45, 89081 Ulm, Germany ,grid.461820.90000 0004 0390 1701Department of Neurology, University Clinic, Halle University Hospital, Martin Luther University Halle/Wittenberg, Ernst-Grube Strasse 49, 06120 Halle (Saale), Germany
| |
Collapse
|
5
|
Wu P, Liang S, He Y, Lv R, Yang B, Wang M, Wang C, Li Y, Song X, Sun W. Network pharmacology analysis to explore mechanism of three flower tea against nonalcoholic fatty liver disease with experimental support using high-fat diet-induced rats. CHINESE HERBAL MEDICINES 2022; 14:273-282. [PMID: 36117665 PMCID: PMC9476824 DOI: 10.1016/j.chmed.2022.03.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 09/12/2021] [Accepted: 10/18/2021] [Indexed: 12/30/2022] Open
Abstract
Objective Nonalcoholic fatty liver disease (NAFLD) has become a common chronic liver disease that is harmful to human health. Moreover, there is currently no FDA-approved first-line drug for the treatment of nonalcoholic steatohepatitis (NASH) or NAFLD. Traditional Chinese medicine (TCM) is widely used to ameliorate liver diseases, such as the traditional ancient recipe called Three Flower Tea (TFT), which consists of double rose (Rosa rugosa), white chrysanthemum (Chrysanthemum morifolium), and Daidaihua (Citrus aurantium). However, the mechanisms of the action of TFT are not clear. Therefore, this study aimed to elucidate the mechanisms of TFT against NAFLD in high-fat diet (HFD)-induced rats. Methods This study utilized bioinformatics and network pharmacology to establish the active and potential ingredient-target networks of TFT. Furthermore, a protein–protein interaction (PPI) network was constructed, and enrichment analysis was performed to determine the key targets of TFT against NAFLD. Furthermore, an animal experiment was conducted to evaluate the therapeutic effect and confirm the key targets of TFT against NAFLD. Results A total of 576 NAFLD-related genes were searched in GeneCards, and under the screening criteria of oral bioavailability (OB) ≥30% and drug-likeness (DL) ≥0.18, a total of 19 active ingredients and 210 targets were identified in TFT. Network pharmacology analysis suggested that 55 matching targets in PPIs were closely associated with roles for NAFLD treatment. Through the evaluation of network topology parameters, four key central genes, PPARγ, SREBP, AKT, and RELA, were identified. Furthermore, animal experiments indicated that TFT could reduce plasma lipid profiles, hepatic lipid profiles and hepatic fat accumulation, improve liver function, suppress inflammatory factors, and reduce oxidative stress. Through immunoblotting and immunofluorescence analysis, PPARγ, SREBP, AKT, and RELA were confirmed as targets of TFT in HFD-induced rats. Conclusion In summary, our results indicate that TFT can prevent and treat NAFLD via multiple targets, including lipid accumulation, antioxidation, insulin sensitivity, and inflammation.
Collapse
Affiliation(s)
- Peixuan Wu
- Institute of Biomedical Research, School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255000, China
| | - Shufei Liang
- Institute of Biomedical Research, School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255000, China
| | - Yanping He
- Institute of Biomedical Research, School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255000, China
| | - Rui Lv
- Institute of Biomedical Research, School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255000, China
| | - Bendong Yang
- Institute of Biomedical Research, School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255000, China
| | - Meng Wang
- Institute of Biomedical Research, School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255000, China
| | - Chao Wang
- Institute of Biomedical Research, School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255000, China
| | - Yong Li
- Shandong Tianyin Biotechnology Co., Ltd., Zibo 255000, China
| | - Xinhua Song
- Institute of Biomedical Research, School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255000, China
- Shandong Qingyujiangxing Biotechnology Co., Ltd., Zibo 255000, China
- Corresponding authors.
| | - Wenlong Sun
- Institute of Biomedical Research, School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255000, China
- Shandong Qingyujiangxing Biotechnology Co., Ltd., Zibo 255000, China
- Corresponding authors.
| |
Collapse
|
6
|
Vladimirov VI, Baksheeva VE, Mikhailova IV, Ismailov RG, Litus EA, Tikhomirova NK, Nazipova AA, Permyakov SE, Zernii EY, Zinchenko DV. A Novel Approach to Bacterial Expression and Purification of Myristoylated Forms of Neuronal Calcium Sensor Proteins. Biomolecules 2020; 10:biom10071025. [PMID: 32664359 PMCID: PMC7407513 DOI: 10.3390/biom10071025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 07/05/2020] [Accepted: 07/07/2020] [Indexed: 11/18/2022] Open
Abstract
N-terminal myristoylation is a common co-and post-translational modification of numerous eukaryotic and viral proteins, which affects their interaction with lipids and partner proteins, thereby modulating various cellular processes. Among those are neuronal calcium sensor (NCS) proteins, mediating transduction of calcium signals in a wide range of regulatory cascades, including reception, neurotransmission, neuronal growth and survival. The details of NCSs functioning are of special interest due to their involvement in the progression of ophthalmological and neurodegenerative diseases and their role in cancer. The well-established procedures for preparation of native-like myristoylated forms of recombinant NCSs via their bacterial co-expression with N-myristoyl transferase from Saccharomyces cerevisiae often yield a mixture of the myristoylated and non-myristoylated forms. Here, we report a novel approach to preparation of several NCSs, including recoverin, GCAP1, GCAP2, neurocalcin δ and NCS-1, ensuring their nearly complete N-myristoylation. The optimized bacterial expression and myristoylation of the NCSs is followed by a set of procedures for separation of their myristoylated and non-myristoylated forms using a combination of hydrophobic interaction chromatography steps. We demonstrate that the refolded and further purified myristoylated NCS-1 maintains its Са2+-binding ability and stability of tertiary structure. The developed approach is generally suited for preparation of other myristoylated proteins.
Collapse
Affiliation(s)
- Vasiliy I. Vladimirov
- Laboratory of pharmacokinetics, Department of Biological Testing, Branch of Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences in Puschino, Pushchino, 142290 Moscow Region, Russia; (V.I.V.); (I.V.M.)
| | - Viktoriia E. Baksheeva
- Department of Cell Signaling, Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia; (V.E.B.); (N.K.T.); (E.Y.Z.)
| | - Irina V. Mikhailova
- Laboratory of pharmacokinetics, Department of Biological Testing, Branch of Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences in Puschino, Pushchino, 142290 Moscow Region, Russia; (V.I.V.); (I.V.M.)
- Faculty of BioMedPharmTechnological, Pushchino State Institute of Natural Sciences, Pushchino, 142290 Moscow Region, Russia
| | - Ramis G. Ismailov
- Laboratory of New Methods in Biology, Institute for Biological Instrumentation of the Russian Academy of Sciences, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, Pushchino, 142290 Moscow Region, Russia; (R.G.I.); (E.A.L.); (A.A.N.); (S.E.P.)
| | - Ekaterina A. Litus
- Laboratory of New Methods in Biology, Institute for Biological Instrumentation of the Russian Academy of Sciences, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, Pushchino, 142290 Moscow Region, Russia; (R.G.I.); (E.A.L.); (A.A.N.); (S.E.P.)
| | - Natalia K. Tikhomirova
- Department of Cell Signaling, Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia; (V.E.B.); (N.K.T.); (E.Y.Z.)
| | - Aliya A. Nazipova
- Laboratory of New Methods in Biology, Institute for Biological Instrumentation of the Russian Academy of Sciences, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, Pushchino, 142290 Moscow Region, Russia; (R.G.I.); (E.A.L.); (A.A.N.); (S.E.P.)
| | - Sergei E. Permyakov
- Laboratory of New Methods in Biology, Institute for Biological Instrumentation of the Russian Academy of Sciences, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, Pushchino, 142290 Moscow Region, Russia; (R.G.I.); (E.A.L.); (A.A.N.); (S.E.P.)
| | - Evgeni Yu. Zernii
- Department of Cell Signaling, Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia; (V.E.B.); (N.K.T.); (E.Y.Z.)
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | - Dmitry V. Zinchenko
- Laboratory of pharmacokinetics, Department of Biological Testing, Branch of Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences in Puschino, Pushchino, 142290 Moscow Region, Russia; (V.I.V.); (I.V.M.)
- Correspondence:
| |
Collapse
|
7
|
Liu D, Dong X, Yang R, Guo H, Wang T, Xu G. Visinin-like protein-1 level is associated with short-term functional outcome of acute ischemic stroke: A prospective cohort study. Medicine (Baltimore) 2020; 99:e19252. [PMID: 32118731 PMCID: PMC7478586 DOI: 10.1097/md.0000000000019252] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Stroke is a serious disease that can lead to disability and death in adults, and the prediction of functional outcome is important in the management of acute ischemic stroke (AIS). Blood biomarker is a promising technique, for the measurement is fast, cheap and convenient. Visinin-like protein-1 (VILIP-1) is a classic stroke biomarker, thus we tried to investigate the predictive value of VILIP-1 for early functional outcomes of AIS.A total of 70 AIS patients were enrolled in our study. Venous blood samples of all patients were taken at day 3 after admission to the stroke unit, and levels of serum VILIP-1 were analyzed by the use of the enzyme-linked immunosorbent assay. All subjects underwent diffusion weighted imaging (DWI) of the brain MRI scanning at 72 hours after stroke onset, and infarct volumes were calculated. Initial neurological status was evaluated by the National Institutes of Health Stroke Scale (NIHSS) on admission. The short-term functional outcome was graded by the modified Rankin Scale (mRS) at discharge from the hospital. Baseline data between the favorable outcome group and poor outcome group were compared, and univariate and multivariable logistic regression analysis were used to identify risk factors of early functional outcome of AIS.The multivariate logistic regression analysis showed age, initial NIHSS scores and levels of VILIP had a strong association with poor clinical outcomes.Levels of serum VILIP-1 are associated with short-term functional outcomes in patients with AIS.
Collapse
Affiliation(s)
- Dengjun Liu
- Department of Neurology, the fourth central hospital of baoding city, Baoding
| | | | | | | | - Tao Wang
- Department of Nephrology, Hebei general hospital, Shijiazhuang, Heibei, China
| | | |
Collapse
|
8
|
Helios modulates the maturation of a CA1 neuronal subpopulation required for spatial memory formation. Exp Neurol 2019; 323:113095. [PMID: 31712124 DOI: 10.1016/j.expneurol.2019.113095] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 10/17/2019] [Accepted: 10/29/2019] [Indexed: 01/05/2023]
Abstract
Currently, molecular, electrophysiological and structural studies delineate several neural subtypes in the hippocampus. However, the precise developmental mechanisms that lead to this diversity are still unknown. Here we show that alterations in a concrete hippocampal neuronal subpopulation during development specifically affect hippocampal-dependent spatial memory. We observed that the genetic deletion of the transcription factor Helios in mice, which is specifically expressed in developing hippocampal calbindin-positive CA1 pyramidal neurons (CB-CA1-PNs), induces adult alterations affecting spatial memory. In the same mice, CA3-CA1 synaptic plasticity and spine density and morphology in adult CB-CA1-PNs were severely compromised. RNAseq experiments in developing hippocampus identified an aberrant increase on the Visinin-like protein 1 (VSNL1) expression in the hippocampi devoid of Helios. This aberrant increase on VSNL1 levels was localized in the CB-CA1-PNs. Normalization of VSNL1 levels in CB-CA1-PNs devoid of Helios rescued their spine loss in vitro. Our study identifies a novel and specific developmental molecular pathway involved in the maturation and function of a CA1 pyramidal neuronal subtype.
Collapse
|
9
|
Burgoyne RD, Helassa N, McCue HV, Haynes LP. Calcium Sensors in Neuronal Function and Dysfunction. Cold Spring Harb Perspect Biol 2019; 11:cshperspect.a035154. [PMID: 30833454 DOI: 10.1101/cshperspect.a035154] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Calcium signaling in neurons as in other cell types can lead to varied changes in cellular function. Neuronal Ca2+ signaling processes have also become adapted to modulate the function of specific pathways over a wide variety of time domains and these can have effects on, for example, axon outgrowth, neuronal survival, and changes in synaptic strength. Ca2+ also plays a key role in synapses as the trigger for fast neurotransmitter release. Given its physiological importance, abnormalities in neuronal Ca2+ signaling potentially underlie many different neurological and neurodegenerative diseases. The mechanisms by which changes in intracellular Ca2+ concentration in neurons can bring about diverse responses is underpinned by the roles of ubiquitous or specialized neuronal Ca2+ sensors. It has been established that synaptotagmins have key functions in neurotransmitter release, and, in addition to calmodulin, other families of EF-hand-containing neuronal Ca2+ sensors, including the neuronal calcium sensor (NCS) and the calcium-binding protein (CaBP) families, play important physiological roles in neuronal Ca2+ signaling. It has become increasingly apparent that these various Ca2+ sensors may also be crucial for aspects of neuronal dysfunction and disease either indirectly or directly as a direct consequence of genetic variation or mutations. An understanding of the molecular basis for the regulation of the targets of the Ca2+ sensors and the physiological roles of each protein in identified neurons may contribute to future approaches to the development of treatments for a variety of human neuronal disorders.
Collapse
Affiliation(s)
- Robert D Burgoyne
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Nordine Helassa
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Hannah V McCue
- Centre for Genomic Research, University of Liverpool, Liverpool, United Kingdom
| | - Lee P Haynes
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
10
|
Boeckel GR, Ehrlich BE. NCS-1 is a regulator of calcium signaling in health and disease. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2018; 1865:1660-1667. [PMID: 29746899 DOI: 10.1016/j.bbamcr.2018.05.005] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 05/02/2018] [Accepted: 05/04/2018] [Indexed: 02/07/2023]
Abstract
Neuronal Calcium Sensor-1 (NCS-1) is a highly conserved calcium binding protein which contributes to the maintenance of intracellular calcium homeostasis and regulation of calcium-dependent signaling pathways. It is involved in a variety of physiological cell functions, including exocytosis, regulation of calcium permeable channels, neuroplasticity and response to neuronal damage. Over the past 30 years, continuing investigation of cellular functions of NCS-1 and associated disease states have highlighted its function in the pathophysiology of several disorders and as a therapeutic target. Among the diseases that were found to be associated with NCS-1 are neurological disorders such as bipolar disease and non-neurological conditions such as breast cancer. Furthermore, alteration of NCS-1 expression is associated with substance abuse disorders and severe side effects of chemotherapeutic agents. The objective of this article is to summarize the current body of evidence describing NCS-1 and its interactions on a molecular and cellular scale, as well as describing macroscopic implications in physiology and medicine. Particular attention is paid to the role of NCS-1 in development and prevention of chemotherapy induced peripheral neuropathy (CIPN).
Collapse
Affiliation(s)
- Göran R Boeckel
- Department of Pharmacology, Yale University, New Haven, CT, United States; Institut für Physiologie, Universität zu Lübeck, Ratzeburger Allee 160, D-23562 Lübeck, Germany
| | - Barbara E Ehrlich
- Department of Pharmacology, Yale University, New Haven, CT, United States; Institut für Physiologie, Universität zu Lübeck, Ratzeburger Allee 160, D-23562 Lübeck, Germany.
| |
Collapse
|
11
|
Groblewska M, Muszyński P, Wojtulewska-Supron A, Kulczyńska-Przybik A, Mroczko B. The Role of Visinin-Like Protein-1 in the Pathophysiology of Alzheimer's Disease. J Alzheimers Dis 2016; 47:17-32. [PMID: 26402751 DOI: 10.3233/jad-150060] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Calcium ions are crucial in the process of information transmission and integration in the central nervous system (CNS). These ions participate not only in intracellular mechanisms but also in intercellular processes. The changes in the concentration of Ca2 + ions modulate synaptic transmission, whereas neuronal activity induces calcium ion waves. Disturbed calcium homeostasis is thought to be one of the main features in the pathophysiology of Alzheimer's disease (AD), and AD pathogenesis is closely connected to Ca2 + signaling pathways. The effects of changes in neuronal Ca2 + are mediated by neuronal calcium sensor (NCS) proteins. It has been revealed that NCS proteins, with special attention to visinin-like protein 1 (VILIP-1), might have a connection to the etiology of AD. In the CNS, VILIP-1 influences the intracellular neuronal signaling pathways involved in synaptic plasticity, such as cyclic nucleotide cascades and nicotinergic signaling. This particular protein is implicated in calcium-mediated neuronal injury as well. VILIP-1 also participates in the pathological mechanisms of altered Ca2 + homeostasis, leading to neuronal loss. These findings confirm the utility of VILIP-1 as a useful biomarker of neuronal injury. Moreover, VILIP-1 plays a vital role in linking calcium-mediated neurotoxicity and AD-type pathological changes. The disruption of Ca2 + homeostasis caused by AD-type neurodegeneration may result in the damage of VILIP-1-containing neurons in the brain, leading to increased cerebrospinal fluid levels of VILIP-1. Thus, the aim of this overview is to describe the relationships of the NCS protein VILIP-1 with the pathogenetic factors of AD and neurodegenerative processes, as well as its potential clinical usefulness as a biomarker of AD. Moreover, we describe the current and probable therapeutic strategies for AD, targeting calcium-signaling pathways and VILIP-1.
Collapse
Affiliation(s)
| | - Paweł Muszyński
- Department of Neurodegeneration Diagnostics, Medical University of Białystok, Poland
| | | | | | - Barbara Mroczko
- Department of Biochemical Diagnostics, University Hospital in Białystok, Poland.,Department of Neurodegeneration Diagnostics, Medical University of Białystok, Poland
| |
Collapse
|
12
|
Trejter M, Hochol A, Tyczewska M, Ziolkowska A, Jopek K, Szyszka M, Malendowicz LK, Rucinski M. Visinin-like peptide 1 in adrenal gland of the rat. Gene expression and its hormonal control. Peptides 2015; 63:22-9. [PMID: 25451331 DOI: 10.1016/j.peptides.2014.10.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Revised: 10/29/2014] [Accepted: 10/29/2014] [Indexed: 10/24/2022]
Abstract
VSNL1 encodes the calcium-sensor protein visinin-like 1 and was identified previously as an upregulated gene in a sample set of aldosterone-producing adenomas. Recently, by means of microarray studies we demonstrated high expression of Vsnl1 gene in rat adrenal zona glomerulosa (ZG). Only scanty data are available on the role of this gene in adrenal function as well as on regulation of its expression by factors affecting adrenal cortex structure and function. Therefore we performed relevant studies aimed at clarifying some of the above issues. By Affymetrix(®) Rat Gene 1.1 ST Array Strip, QPCR and immunohistochemistry we demonstrated that expression levels of Vsnl1 in the rat adrenal ZG are notably higher than in the fasciculata/reticularis zone. In QPCR assay this difference was approximately 10 times higher. Expression of this gene in the rat adrenal gland or adrenocortical cells was acutely down regulated by ACTH, while chronic administration of corticotrophin or dexamethasone did not change Vsnl1 mRNA levels. In enucleation-induced adrenocortical regeneration expression levels of both Vsnl1 and Cyp11b2 were notably lowered and positively correlated. Despite these findings, the physiological significance of adrenal Vsnl1 remains unclear, and requires further investigation.
Collapse
Affiliation(s)
- Marcin Trejter
- Department of Histology and Embryology, Poznań University of Medical Sciences, Poznań, Poland
| | - Anna Hochol
- Department of Histology and Embryology, Poznań University of Medical Sciences, Poznań, Poland
| | - Marianna Tyczewska
- Department of Histology and Embryology, Poznań University of Medical Sciences, Poznań, Poland
| | - Agnieszka Ziolkowska
- Department of Histology and Embryology, Poznań University of Medical Sciences, Poznań, Poland
| | - Karol Jopek
- Department of Histology and Embryology, Poznań University of Medical Sciences, Poznań, Poland
| | - Marta Szyszka
- Department of Histology and Embryology, Poznań University of Medical Sciences, Poznań, Poland
| | - Ludwik K Malendowicz
- Department of Histology and Embryology, Poznań University of Medical Sciences, Poznań, Poland.
| | - Marcin Rucinski
- Department of Histology and Embryology, Poznań University of Medical Sciences, Poznań, Poland
| |
Collapse
|
13
|
Burgoyne RD, Haynes LP. Sense and specificity in neuronal calcium signalling. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1853:1921-32. [PMID: 25447549 PMCID: PMC4728190 DOI: 10.1016/j.bbamcr.2014.10.029] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Revised: 10/25/2014] [Accepted: 10/29/2014] [Indexed: 11/02/2022]
Abstract
Changes in the intracellular free calcium concentration ([Ca²⁺]i) in neurons regulate many and varied aspects of neuronal function over time scales from microseconds to days. The mystery is how a single signalling ion can lead to such diverse and specific changes in cell function. This is partly due to aspects of the Ca²⁺ signal itself, including its magnitude, duration, localisation and persistent or oscillatory nature. The transduction of the Ca²⁺ signal requires Ca²⁺binding to various Ca²⁺ sensor proteins. The different properties of these sensors are important for differential signal processing and determine the physiological specificity of Ca(2+) signalling pathways. A major factor underlying the specific roles of particular Ca²⁺ sensor proteins is the nature of their interaction with target proteins and how this mediates unique patterns of regulation. We review here recent progress from structural analyses and from functional analyses in model organisms that have begun to reveal the rules that underlie Ca²⁺ sensor protein specificity for target interaction. We discuss three case studies exemplifying different aspects of Ca²⁺ sensor/target interaction. This article is part of a special issue titled the 13th European Symposium on Calcium.
Collapse
Affiliation(s)
- Robert D Burgoyne
- Department of Cellular and Molecular Physiology, The Physiological Laboratory, Institute of Translational Medicine, University of Liverpool, Crown Street, Liverpool, L69 3BX, United Kingdom.
| | - Lee P Haynes
- Department of Cellular and Molecular Physiology, The Physiological Laboratory, Institute of Translational Medicine, University of Liverpool, Crown Street, Liverpool, L69 3BX, United Kingdom
| |
Collapse
|
14
|
de Rezende VB, Rosa DV, Comim CM, Magno LAV, Rodrigues ALS, Vidigal P, Jeromin A, Quevedo J, Romano-Silva MA. NCS-1 deficiency causes anxiety and depressive-like behavior with impaired non-aversive memory in mice. Physiol Behav 2014; 130:91-8. [PMID: 24631552 DOI: 10.1016/j.physbeh.2014.03.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Revised: 02/13/2014] [Accepted: 03/07/2014] [Indexed: 12/31/2022]
Abstract
Sensing and regulating intracellular levels of calcium are essential for proper cellular function. In neurons, calcium sensing plays important roles in neuronal plasticity, neurotransmitter release, long-term synapse modification and ion channel activity. Neuronal calcium sensor-1 (NCS-1) is a member of the highly conserved neuronal calcium sensor family. Although NCS-1 has been associated with psychiatric conditions including autism, bipolar disorder and schizophrenia, it is unclear which role NCS-1 plays in behavior. To understand the involvement of NCS-1 in psychiatric conditions, we provided a comprehensive behavioral characterization of NCS-1 knockout (KO) mice. These mice grow and develop normally without apparent abnormalities in comparison to wild type littermates. However, open field showed that NCS-1 deficiency impairs novelty-induced exploratory activity in both KO and heterozygote (HT) mice. Moreover, NCS-1-deficiency also resulted in anxiety- and depressive-like behaviors as demonstrated by elevated plus maze, large open field, forced swim and tail suspension tasks. Furthermore, based on spontaneous object recognition test, non-aversive long-term memory was impaired in NCS-1 KO mice. In contrast, neither social behavior nor a kind of aversive memory was affected under NCS-1 deficiency. These data implicate NCS-1 in exploratory activity, memory and mood-related behaviors, suggesting that NCS-1 gene ablation may result in phenotypic abnormalities associated with neuropsychiatric disorders.
Collapse
Affiliation(s)
- Vitor Bortolo de Rezende
- Laboratório de Neurociência, INCT de Medicina Molecular, Departamento de Saúde Mental, Faculdade de Medicina da Universidade Federal de Minas Gerais, Av Alfredo Balena, 190, Belo Horizonte, 30130-100 MG, Brazil
| | - Daniela Valadão Rosa
- Laboratório de Neurociência, INCT de Medicina Molecular, Departamento de Saúde Mental, Faculdade de Medicina da Universidade Federal de Minas Gerais, Av Alfredo Balena, 190, Belo Horizonte, 30130-100 MG, Brazil
| | - Clarissa Martinelli Comim
- Laboratório de Neurociências, INCT Translacional em Medicina, Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, Av. Universitária, 1105, Bairro Universitário-C.P. 3167, 88806-000 Criciúma, SC, Brazil
| | - Luiz Alexandre Viana Magno
- Laboratório de Neurociência, INCT de Medicina Molecular, Departamento de Saúde Mental, Faculdade de Medicina da Universidade Federal de Minas Gerais, Av Alfredo Balena, 190, Belo Horizonte, 30130-100 MG, Brazil
| | - Ana Lucia Severo Rodrigues
- Laboratório de Neurobiologia da Depressão, Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Campus Universitário-Trindade, 88040-900 Florianópolis, SC, Brazil
| | - Paula Vidigal
- Laboratório de Patologia Molecular, Departamento de Anatomia Patológica e Medicina Legal, Faculdade de Medicina da Universidade Federal de Minas Gerais, Av. Alfredo Balena, 190, Belo Horizonte, 30130-100 MG, Brazil
| | | | - João Quevedo
- Laboratório de Neurociências, INCT Translacional em Medicina, Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, Av. Universitária, 1105, Bairro Universitário-C.P. 3167, 88806-000 Criciúma, SC, Brazil
| | - Marco Aurélio Romano-Silva
- Laboratório de Neurociência, INCT de Medicina Molecular, Departamento de Saúde Mental, Faculdade de Medicina da Universidade Federal de Minas Gerais, Av Alfredo Balena, 190, Belo Horizonte, 30130-100 MG, Brazil.
| |
Collapse
|
15
|
Raghuram V, Sharma Y, Kreutz MR. Ca(2+) sensor proteins in dendritic spines: a race for Ca(2+). Front Mol Neurosci 2012; 5:61. [PMID: 22586368 PMCID: PMC3347464 DOI: 10.3389/fnmol.2012.00061] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2012] [Accepted: 04/18/2012] [Indexed: 12/21/2022] Open
Abstract
Dendritic spines are believed to be micro-compartments of Ca2+ regulation. In a recent study, it was suggested that the ubiquitous and evolutionarily conserved Ca2+ sensor, calmodulin (CaM), is the first to intercept Ca2+ entering the spine and might be responsible for the fast decay of Ca2+ transients in spines. Neuronal calcium sensor (NCS) and neuronal calcium-binding protein (nCaBP) families consist of Ca2+ sensors with largely unknown synaptic functions despite an increasing number of interaction partners. Particularly how these sensors operate in spines in the presence of CaM has not been discussed in detail before. The limited Ca2+ resources and the existence of common targets create a highly competitive environment where Ca2+ sensors compete with each other for Ca2+ and target binding. In this review, we take a simple numerical approach to put forth possible scenarios and their impact on signaling via Ca2+ sensors of the NCS and nCaBP families. We also discuss the ways in which spine geometry and properties of ion channels, their kinetics and distribution, alter the spatio-temporal aspects of Ca2+ transients in dendritic spines, whose interplay with Ca2+ sensors in turn influences the race for Ca2+.
Collapse
Affiliation(s)
- Vijeta Raghuram
- Centre for Cellular and Molecular Biology, CSIR Hyderabad, India
| | | | | |
Collapse
|
16
|
Williams TA, Monticone S, Crudo V, Warth R, Veglio F, Mulatero P. Visinin-Like 1 Is Upregulated in Aldosterone-Producing Adenomas With
KCNJ5
Mutations and Protects From Calcium-Induced Apoptosis. Hypertension 2012; 59:833-9. [DOI: 10.1161/hypertensionaha.111.188532] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Visinin-like 1 (
VSNL1
) is upregulated in aldosterone-producing adenomas (APAs) compared with normal adrenals. We demonstrate that
VSNL1
overexpression in adrenocortical carcinoma cells (NCI H295R) upregulates basal and angiotensin II–stimulated
CYP11B2
gene expression 3.2- and 1.5-fold, respectively. Conversely, silencing
VSNL1
by RNA interference decreases angiotensin II–stimulated
CYP11B2
expression and aldosterone secretion by 41.0% and 34.5%, respectively. Mutations in the potassium channel
KCNJ5
have been identified in APAs that result in sodium influx and membrane depolarization and are postulated to result in calcium influx in adrenal glomerulosa cells.
VSNL1
and
CYP11B2
are 8.1- and 6.0-fold more highly expressed, respectively, in APAs harboring
KCNJ5
mutations compared with those without, and the upregulation of
VSNL1
in these APAs accounts for the overexpression of
VSNL1
in the total APA sample set compared with normal adrenals. Silencing
VSNL1
in H295R cells renders them sensitive to ionomycin-induced apoptosis, indicating that
VSNL1
protects these cells against calcium-induced cell death. Concomitant expression of mutated KCNJ5 (G151R) and silencing
VSNL1
results in apoptosis of H295R cells, an effect that is blocked by nifedipine and is absent using a control small-interfering RNA or when wild-type KCNJ5 is expressed and
VSNL1
is silenced. These data demonstrate that
VSNL1
plays a dual function in vitro in the regulation of
CYP11B2
gene expression and in the inhibition of calcium-induced apoptosis. In addition,
VSNL1
may play a role in the pathophysiology of APAs harboring mutations in the potassium channel
KCNJ5
via its antiapoptotic function in response to calcium cytotoxicity and its effect on aldosterone production.
Collapse
Affiliation(s)
- Tracy Ann Williams
- From the Division of Internal Medicine and Hypertension (T.A.W., S.M., V.C., F.V., P.M.), Department of Medicine and Experimental Oncology, University of Torino, Torino, Italy; Medical Cell Biology (R.W.), University of Regensburg, Regensburg, Germany
| | - Silvia Monticone
- From the Division of Internal Medicine and Hypertension (T.A.W., S.M., V.C., F.V., P.M.), Department of Medicine and Experimental Oncology, University of Torino, Torino, Italy; Medical Cell Biology (R.W.), University of Regensburg, Regensburg, Germany
| | - Valentina Crudo
- From the Division of Internal Medicine and Hypertension (T.A.W., S.M., V.C., F.V., P.M.), Department of Medicine and Experimental Oncology, University of Torino, Torino, Italy; Medical Cell Biology (R.W.), University of Regensburg, Regensburg, Germany
| | - Richard Warth
- From the Division of Internal Medicine and Hypertension (T.A.W., S.M., V.C., F.V., P.M.), Department of Medicine and Experimental Oncology, University of Torino, Torino, Italy; Medical Cell Biology (R.W.), University of Regensburg, Regensburg, Germany
| | - Franco Veglio
- From the Division of Internal Medicine and Hypertension (T.A.W., S.M., V.C., F.V., P.M.), Department of Medicine and Experimental Oncology, University of Torino, Torino, Italy; Medical Cell Biology (R.W.), University of Regensburg, Regensburg, Germany
| | - Paolo Mulatero
- From the Division of Internal Medicine and Hypertension (T.A.W., S.M., V.C., F.V., P.M.), Department of Medicine and Experimental Oncology, University of Torino, Torino, Italy; Medical Cell Biology (R.W.), University of Regensburg, Regensburg, Germany
| |
Collapse
|
17
|
Dason JS, Romero-Pozuelo J, Atwood HL, Ferrús A. Multiple roles for frequenin/NCS-1 in synaptic function and development. Mol Neurobiol 2012; 45:388-402. [PMID: 22396213 DOI: 10.1007/s12035-012-8250-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Accepted: 02/20/2012] [Indexed: 11/26/2022]
Abstract
The calcium-binding protein frequenin (Frq), discovered in the fruit fly Drosophila, and its mammalian homologue neuronal calcium sensor 1 (NCS-1) have been reported to affect several aspects of synaptic transmission, including basal levels of neurotransmission and short- and long-term synaptic plasticities. However, discrepant reports leave doubts about the functional roles of these conserved proteins. In this review, we attempt to resolve some of these seemingly contradictory reports. We discuss how stimulation protocols, sources of calcium (voltage-gated channels versus internal stores), and expression patterns (presynaptic versus postsynaptic) of Frq may result in the activation of various protein targets, leading to different synaptic effects. In addition, the potential interactions of Frq's C-terminal and N-terminal domains with other proteins are discussed. Frq also has a role in regulating neurite outgrowth, axonal regeneration, and synaptic development. We examine whether the effects of Frq on neurotransmitter release and neurite outgrowth are distinct or interrelated through homeostatic mechanisms. Learning and memory are affected by manipulations of Frq probably through changes in synaptic transmission and neurite outgrowth, raising the possibility that Frq may be implicated in human pathological conditions, including schizophrenia, bipolar disorder, and X-linked mental retardation.
Collapse
Affiliation(s)
- Jeffrey S Dason
- Department of Physiology, University of Toronto, Toronto, ON, Canada, M5S 1A8.
| | | | | | | |
Collapse
|
18
|
Braunewell KH. The visinin-like proteins VILIP-1 and VILIP-3 in Alzheimer's disease-old wine in new bottles. Front Mol Neurosci 2012; 5:20. [PMID: 22375104 PMCID: PMC3284765 DOI: 10.3389/fnmol.2012.00020] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Accepted: 02/09/2012] [Indexed: 01/08/2023] Open
Abstract
The neuronal Ca2+-sensor (NCS) proteins VILIP-1 and VILIP-3 have been implicated in the etiology of Alzheimer's disease (AD). Genome-wide association studies (GWAS) show association of genetic variants of VILIP-1 (VSNL1) and VILIP-3 (HPCAL1) with AD+P (+psychosis) and late onset AD (LOAD), respectively. In AD brains the expression of VILIP-1 and VILIP-3 protein and mRNA is down-regulated in cortical and limbic areas. In the hippocampus, for instance, reduced VILIP-1 mRNA levels correlate with the content of neurofibrillary tangles (NFT) and amyloid plaques, the pathological characteristics of AD, and with the mini mental state exam (MMSE), a test for cognitive impairment. More recently, VILIP-1 was evaluated as a cerebrospinal fluid (CSF) biomarker and a prognostic marker for cognitive decline in AD. In CSF increased VILIP-1 levels correlate with levels of Aβ, tau, ApoE4, and reduced MMSE scores. These findings tie in with previous results showing that VILIP-1 is involved in pathological mechanisms of altered Ca2+-homeostasis leading to neuronal loss. In PC12 cells, depending on co-expression with the neuroprotective Ca2+-buffer calbindin D28K, VILIP-1 enhanced tau phosphorylation and cell death. On the other hand, VILIP-1 affects processes, such as cyclic nucleotide signaling and dendritic growth, as well as nicotinergic modulation of neuronal network activity, both of which regulate synaptic plasticity and cognition. Similar to VILIP-1, its interaction partner α4β2 nicotinic acetylcholine receptor (nAChR) is severely reduced in AD, causing severe cognitive deficits. Comparatively little is known about VILIP-3, but its interaction with cytochrome b5, which is part of an antioxidative system impaired in AD, hint toward a role in neuroprotection. A current hypothesis is that the reduced expression of visinin-like protein (VSNLs) in AD is caused by selective vulnerability of subpopulations of neurons, leading to the death of these VILIP-1-expressing neurons, explaining its increased CSF levels. While the Ca2+-sensor appears to be a good biomarker for the detrimental effects of Aβ in AD, its early, possibly Aβ-induced, down-regulation of expression may additionally attenuate neuronal signal pathways regulating the functions of dendrites and neuroplasticity, and as a consequence, this may contribute to cognitive decline in early AD.
Collapse
Affiliation(s)
- Karl H Braunewell
- Molecular and Cellular Neuroscience Laboratory, Department Biochemistry and Molecular Biology, Southern Research Institute, Birmingham AL, USA
| |
Collapse
|
19
|
The expression of Visinin-like 1 during mouse embryonic development. Gene Expr Patterns 2011; 12:53-62. [PMID: 22138150 DOI: 10.1016/j.gep.2011.11.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2011] [Revised: 11/04/2011] [Accepted: 11/07/2011] [Indexed: 11/23/2022]
Abstract
Visinin like 1 (Vsnl1) encodes a calcium binding protein which is well conserved between species. It was originally found in the brain and its biological functions in central nervous system have been addressed in several studies. Low expression levels have also been found in some peripheral organs, but very little information is available regarding its physiological roles in non-neuronal tissues. Except for the kidney, the expression pattern of Vsnl1 mRNA and protein has not yet been addressed during embryogenesis. By in situ hybridization and immunolabeling we have extensively analyzed the expression pattern of Vsnl1 during murine development. Vsnl1 specifies the cardiac primordia and its expression becomes restricted to the atrial myocardium after heart looping. However, in the adult heart, Vsnl1 is expressed by all four cardiac chambers. It also serves as a specific marker for the cardiomyocyte-derived structures in the systemic and pulmonary circulation. Vsnl1 is dynamically expressed also by many other organs during development e.g. taste buds, cochlea, thyroid, tooth, salivary and adrenal gland. The stage specific expression pattern of Vsnl1 makes it a potentially useful marker particularly in studies of cardiac and vascular morphogenesis.
Collapse
|
20
|
Sensing change: The emerging role of calcium sensors in neuronal disease. Semin Cell Dev Biol 2011; 22:530-5. [DOI: 10.1016/j.semcdb.2011.07.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2011] [Accepted: 07/18/2011] [Indexed: 11/20/2022]
|
21
|
Ola R, Jakobson M, Kvist J, Perälä N, Kuure S, Braunewell KH, Bridgewater D, Rosenblum ND, Chilov D, Immonen T, Sainio K, Sariola H. The GDNF target Vsnl1 marks the ureteric tip. J Am Soc Nephrol 2011; 22:274-84. [PMID: 21289216 DOI: 10.1681/asn.2010030316] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Glial cell line-derived neurotrophic factor (GDNF) is indispensable for ureteric budding and branching. If applied exogenously, GDNF promotes ectopic ureteric buds from the Wolffian duct. Although several downstream effectors of GDNF are known, the identification of early response genes is incomplete. Here, microarray screening detected several GDNF-regulated genes in the Wolffian duct, including Visinin like 1 (Vsnl1), which encodes a neuronal calcium-sensor protein. We observed renal Vsnl1 expression exclusively in the ureteric epithelium, but not in Gdnf-null kidneys. In the tissue culture of Gdnf-deficient kidney primordium, exogenous GDNF and alternative bud inducers (FGF7 and follistatin) restored Vsnl1 expression. Hence, Vsnl1 characterizes the tip of the ureteric bud epithelium regardless of the inducer. In the tips, Vsnl1 showed a mosaic expression pattern that was mutually exclusive with β-catenin transcriptional activation. Vsnl1 was downregulated in both β-catenin-stabilized and β-catenin-deficient kidneys. Moreover, in a mouse collecting duct cell line, Vsnl1 compromised β-catenin stability, suggesting a counteracting relationship between Vsnl1 and β-catenin. In summary, Vsnl1 marks ureteric bud tips in embryonic kidneys, and its mosaic pattern demonstrates a heterogeneity of cell types that may be critical for normal ureteric branching.
Collapse
Affiliation(s)
- Roxana Ola
- Biochemistry and Developmental Biology, Institute of Biomedicine, P.O. Box 63, Haartmaninkatu 8, University of Helsinki, FIN-00014, Finland
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Rosa DV, Souza RP, Souza BR, Lima FF, Valvassori SS, Gomez MV, Quevedo J, Romano-Silva MA. Inhibitory avoidance task does not change NCS-1 level in rat brain. Brain Res Bull 2010; 82:289-92. [DOI: 10.1016/j.brainresbull.2010.04.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2010] [Revised: 04/27/2010] [Accepted: 04/27/2010] [Indexed: 10/19/2022]
|
23
|
Fu J, Jin F, Zhang J, Fong K, Bassi DE, Lopez De Cicco R, Ramaraju D, Braunewell KH, Conti C, Benavides F, Klein-Szanto AJP. VILIP-1 expression in vivo results in decreased mouse skin keratinocyte proliferation and tumor development. PLoS One 2010; 5:e10196. [PMID: 20419170 PMCID: PMC2855367 DOI: 10.1371/journal.pone.0010196] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2010] [Accepted: 03/25/2010] [Indexed: 11/19/2022] Open
Abstract
VILIP-1, a member of the neuronal Ca2+ sensor protein family, is able to act as a tumor suppressor in carcinoma cells by inhibiting cell proliferation and migration. In order to study the role of VILIP-1 in skin carcinogenesis we generated transgenic mice overexpressing VILIP-1 in epidermis under the control of the bovine keratin K5 promoter (K5-VILIP-1). We studied the susceptibility of FVB wild type and VILIP-1 transgenic mice to chemically mediated carcinogenesis. After 30 weeks of treatment with a two-stage carcinogenesis protocol, all animals showed numerous skin tumors. Nevertheless, K5-VILIP-1 mice showed decreased squamous cell carcinoma (SCC) multiplicity of ∼49% (p<0.02) with respect to the corresponding SCC multiplicity observed in wild type (WT) mice. In addition, the relative percentage of low-grade cutaneous SCCs grade I (defined by the differentiation pattern according to the Broders grading scale) increased approximately 50% in the K5-VILIP1 mice when compared with SCCs in WT mice. Similar tendency was observed using a complete carcinogenesis protocol for skin carcinogenesis using benzo(a)pyrene (B(a)P). Further studies of tumors and primary epidermal keratinocyte cultures showed that matrix metalloproteinase 9 (MMP-9) levels and cell proliferation decreased in K5-VILIP-1 mice when compared with their wild counterparts. In addition tissue inhibitor of metalloproteinase 1 (TIMP-1) expression was higher in K5-VILIP-1 keratinocytes. These results show that VILIP-1 overexpression decreases the susceptibility to skin carcinogenesis in experimental mouse cancer models, thus supporting its role as a tumor suppressor gene.
Collapse
Affiliation(s)
- Jian Fu
- Department of Pathology, Fox Chase Cancer Center, Philadelphia, Pennsylvania, United States of America
- Cancer Biology Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania, United States of America
| | - Fang Jin
- Department of Pathology, Fox Chase Cancer Center, Philadelphia, Pennsylvania, United States of America
| | - Jirong Zhang
- Department of Pathology, Fox Chase Cancer Center, Philadelphia, Pennsylvania, United States of America
| | - Kathryn Fong
- Department of Pathology, Fox Chase Cancer Center, Philadelphia, Pennsylvania, United States of America
| | - Daniel E. Bassi
- Department of Pathology, Fox Chase Cancer Center, Philadelphia, Pennsylvania, United States of America
- Cancer Biology Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania, United States of America
| | - Ricardo Lopez De Cicco
- Department of Pathology, Fox Chase Cancer Center, Philadelphia, Pennsylvania, United States of America
- Cancer Biology Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania, United States of America
| | - Divya Ramaraju
- Department of Pathology, Fox Chase Cancer Center, Philadelphia, Pennsylvania, United States of America
| | | | - Claudio Conti
- Department of Carcinogenesis, M.D. Anderson Cancer Center, Smithville, Texas, United States of America
| | - Fernando Benavides
- Department of Carcinogenesis, M.D. Anderson Cancer Center, Smithville, Texas, United States of America
| | - Andres J. P. Klein-Szanto
- Department of Pathology, Fox Chase Cancer Center, Philadelphia, Pennsylvania, United States of America
- Cancer Biology Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
24
|
Hyperpolarization-activated and cyclic nucleotide-gated channels are differentially expressed in juxtaglomerular cells in the olfactory bulb of mice. Cell Tissue Res 2010; 339:463-79. [PMID: 20140458 PMCID: PMC2838509 DOI: 10.1007/s00441-009-0904-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2009] [Accepted: 10/30/2009] [Indexed: 10/25/2022]
Abstract
In the olfactory bulb, input from olfactory receptor neurons is processed by neuronal networks before it is relayed to higher brain regions. In many neurons, hyperpolarization-activated and cyclic nucleotide-gated (HCN) channels generate and control oscillations of the membrane potential. Oscillations also appear crucial for information processing in the olfactory bulb. Four channel isoforms exist (HCN1-HCN4) that can form homo- or heteromers. Here, we describe the expression pattern of HCN isoforms in the olfactory bulb of mice by using a novel and comprehensive set of antibodies against all four isoforms. HCN isoforms are abundantly expressed in the olfactory bulb. HCN channels can be detected in most cell populations identified by commonly used marker antibodies. The combination of staining with marker and HCN antibodies has revealed at least 17 different staining patterns in juxtaglomerular cells. Furthermore, HCN isoforms give rise to an unexpected wealth of co-expression patterns but are rarely expressed in the same combination and at the same level in two given cell populations. Therefore, heteromeric HCN channels may exist in several cell populations in vivo. Our results suggest that HCN channels play an important role in olfactory information processing. The staining patterns are consistent with the possibility that both homomeric and heteromeric HCN channels are involved in oscillations of the membrane potential of juxtaglomerular cells.
Collapse
|
25
|
Molecular cloning and expression of visinin-like protein 1 from Gekko japonicus spinal cord. Biologia (Bratisl) 2010. [DOI: 10.2478/s11756-009-0225-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
26
|
Fu J, Zhang J, Jin F, Patchefsky J, Braunewell KH, Klein-Szanto AJ. Promoter regulation of the visinin-like subfamily of neuronal calcium sensor proteins by nuclear respiratory factor-1. J Biol Chem 2009; 284:27577-86. [PMID: 19674972 DOI: 10.1074/jbc.m109.049361] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
VILIP-1 (gene name VSNL1), a member of the neuronal Ca(2+) sensor protein family, acts as a tumor suppressor gene by inhibiting cell proliferation, adhesion, and invasiveness. VILIP-1 expression is down-regulated in several types of human cancer. In human non-small cell lung cancer, we found that down-regulation was due to epigenetic changes. Consequently, in this study we analyzed the VSNL1 promoter and its regulation. Serial truncation of the proximal 2-kb VSNL1 promoter (VP-1998) from its 5' terminus disclosed that the last 3' terminal 100-bp promoter fragment maintained similar promoter activity as compared with VP-1998 and therefore was referred to as VSNL1 minimal promoter. When the 5' terminal 50 bp were deleted from the minimal promoter, the activity was dramatically decreased, suggesting that the deleted 50 bp contained a potential cis-acting element crucial for promoter activity. Deletion and site-directed mutagenesis combined with in silico transcription factor binding analysis of VSNL1 promoter identified nuclear respiratory factor (NRF)-1/alpha-PAL as a major player in regulating VSNL1 minimal promoter activity. The function of NRF-1 was further confirmed using dominant-negative NRF-1 overexpression and NRF-1 small interfering RNA knockdown. Electrophoretic mobility shift assay and chromatin immunoprecipitation provided evidence for direct NRF-1 binding to the VSNL1 promoter. Methylation of the NRF-1-binding site was found to be able to regulate VSNL1 promoter activity. Our results further indicated that NRF-1 could be a regulatory factor for gene expression of the other visinin-like subfamily members including HPCAL4, HPCAL1, HPCA, and NCALD.
Collapse
Affiliation(s)
- Jian Fu
- Department of Pathology, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, USA
| | | | | | | | | | | |
Collapse
|
27
|
Chen KC, Wang LK, Chang LS. Regulatory elements and functional implication for the formation of dimeric visinin-like protein-1. J Pept Sci 2009; 15:89-94. [DOI: 10.1002/psc.1097] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
28
|
Visinin-like proteins (VSNLs): interaction partners and emerging functions in signal transduction of a subfamily of neuronal Ca2+ -sensor proteins. Cell Tissue Res 2008; 335:301-16. [PMID: 18989702 DOI: 10.1007/s00441-008-0716-3] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2008] [Accepted: 09/29/2008] [Indexed: 10/21/2022]
Abstract
The visinin-like protein (VSNL) subfamily, including VILIP-1 (the founder protein), VILIP-2, VILIP-3, hippocalcin, and neurocalcin delta, constitute a highly homologous subfamily of neuronal calcium sensor (NCS) proteins. Comparative studies have shown that VSNLs are expressed predominantly in the brain with restricted expression patterns in various subsets of neurons but are also found in peripheral organs. In addition, the proteins display differences in their calcium affinities, in their membrane-binding kinetics, and in the intracellular targets to which they associate after calcium binding. Even though the proteins use a similar calcium-myristoyl switch mechanism to translocate to cellular membranes, they show calcium-dependent localization to various subcellular compartments when expressed in the same neuron. These distinct calcium-myristoyl switch properties might be explained by specificity for defined phospholipids and membrane-bound targets; this enables VSNLs to modulate various cellular signal transduction pathways, including cyclic nucleotide and MAPK signaling. An emerging theme is the direct or indirect effect of VSNLs on gene expression and their interaction with components of membrane trafficking complexes, with a possible role in membrane trafficking of different receptors and ion channels, such as glutamate receptors of the kainate and AMPA subtype, nicotinic acetylcholine receptors, and Ca(2+)-channels. One hypothesis is that the highly homologous VSNLs have evolved to fulfil specialized functions in membrane trafficking and thereby affect neuronal signaling and differentiation in defined subsets of neurons. VSNLs are involved in differentiation processes showing a tumor-invasion-suppressor function in peripheral organs. Finally, VSNLs play neuroprotective and neurotoxic roles and have been implicated in neurodegenerative diseases.
Collapse
|
29
|
VILIP-1 downregulation in non-small cell lung carcinomas: mechanisms and prediction of survival. PLoS One 2008; 3:e1698. [PMID: 18301774 PMCID: PMC2246032 DOI: 10.1371/journal.pone.0001698] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2007] [Accepted: 01/30/2008] [Indexed: 12/16/2022] Open
Abstract
VILIP-1, a member of the neuronal Ca++ sensor protein family, acts as a tumor suppressor gene in an experimental animal model by inhibiting cell proliferation, adhesion and invasiveness of squamous cell carcinoma cells. Western Blot analysis of human tumor cells showed that VILIP-1 expression was undetectable in several types of human tumor cells, including 11 out of 12 non-small cell lung carcinoma (NSCLC) cell lines. The down-regulation of VILIP-1 was due to loss of VILIP-1 mRNA transcripts. Rearrangements, large gene deletions or mutations were not found. Hypermethylation of the VILIP-1 promoter played an important role in gene silencing. In most VILIP-1-silent cells the VILIP-1 promoter was methylated. In vitro methylation of the VILIP-1 promoter reduced its activity in a promoter-reporter assay. Transcriptional activity of endogenous VILIP-1 promoter was recovered by treatment with 5′-aza-2′-deoxycytidine (5′-Aza-dC). Trichostatin A (TSA), a histone deacetylase inhibitor, potently induced VILIP-1 expression, indicating that histone deacetylation is an additional mechanism of VILIP-1 silencing. TSA increased histone H3 and H4 acetylation in the region of the VILIP-1 promoter. Furthermore, statistical analysis of expression and promoter methylation (n = 150 primary NSCLC samples) showed a significant relationship between promoter methylation and protein expression downregulation as well as between survival and decreased or absent VILIP-1 expression in lung cancer tissues (p<0.0001). VILIP-1 expression is silenced by promoter hypermethylation and histone deacetylation in aggressive NSCLC cell lines and primary tumors and its clinical evaluation could have a role as a predictor of short-term survival in lung cancer patients.
Collapse
|
30
|
Hui K, Feng ZP. NCS-1 differentially regulates growth cone and somata calcium channels in Lymnaea neurons. Eur J Neurosci 2008; 27:631-43. [PMID: 18279316 DOI: 10.1111/j.1460-9568.2008.06023.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Local voltage-gated calcium channels, which regulate intracellular Ca2+ levels by allowing Ca2+ influx, play an important role in guiding and shaping growth cones, and in regulating the outgrowth and branching of neurites. Therefore, elucidating the mechanisms that regulate the biophysical properties of whole-cell calcium currents in the growth cones and somata of growing neurons is important to improving our understanding of neuronal development and regeneration. In this study, taking advantage of the large size of the pedal A (PeA) neurons in Lymnaea stagnalis, we compared the biophysical properties of somata and growth cone whole-cell calcium channel currents using Ba2+ and Ca2+ as current carriers. We found that somata and growth cone currents exhibit similar high-voltage activation properties. However, Ba2+ and Ca2+ currents in growth cones and somata are differentially affected by a dominant-negative peptide containing the C-terminal amino acid sequence of neuronal calcium sensor-1 (NCS-1). The peptide selectively reduces the peak and sustained components of current densities and the slope conductance in growth cones, and shifts the reversal potential of the growth cone currents to more hyperpolarized voltages. In contrast, the peptide had no significant effect on the somata calcium channels. Thus, we conclude that NCS-1 differentially modulates Ca2+ currents in the somata and growth cones of regenerating neurons, and may serve as a key regulator to facilitate the growth cone calcium channel activity.
Collapse
Affiliation(s)
- Kwokyin Hui
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Canada M5S 1A8
| | | |
Collapse
|
31
|
Burgoyne RD. Neuronal calcium sensor proteins: generating diversity in neuronal Ca2+ signalling. Nat Rev Neurosci 2007; 8:182-93. [PMID: 17311005 PMCID: PMC1887812 DOI: 10.1038/nrn2093] [Citation(s) in RCA: 387] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In neurons, intracellular calcium signals have crucial roles in activating neurotransmitter release and in triggering alterations in neuronal function. Calmodulin has been widely studied as a Ca(2+) sensor that has several defined roles in neuronal Ca(2+) signalling, but members of the neuronal calcium sensor protein family have also begun to emerge as key components in a number of regulatory pathways and have increased the diversity of neuronal Ca(2+) signalling pathways. The differing properties of these proteins allow them to have discrete, non-redundant functions.
Collapse
Affiliation(s)
- Robert D Burgoyne
- The Physiological Laboratory, School of Biomedical Sciences, University of Liverpool, UK.
| |
Collapse
|
32
|
Dai FF, Zhang Y, Kang Y, Wang Q, Gaisano HY, Braunewell KH, Chan CB, Wheeler MB. The neuronal Ca2+ sensor protein visinin-like protein-1 is expressed in pancreatic islets and regulates insulin secretion. J Biol Chem 2006; 281:21942-21953. [PMID: 16731532 DOI: 10.1074/jbc.m512924200] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Visinin-like protein-1 (VILIP-1) is a member of the neuronal Ca2+ sensor protein family that modulates Ca2+-dependent cell signaling events. VILIP-1, which is expressed primarily in the brain, increases cAMP formation in neural cells by modulating adenylyl cyclase, but its functional role in other tissues remains largely unknown. In this study, we demonstrate that VILIP-1 is expressed in murine pancreatic islets and beta-cells. To gain insight into the functions of VILIP-1 in beta-cells, we used both overexpression and small interfering RNA knockdown strategies. Overexpression of VILIP-1 in the MIN6 beta-cell line or isolated mouse islets had no effect on basal insulin secretion but significantly increased glucose-stimulated insulin secretion. cAMP accumulation was elevated in VILIP-1-overexpressing cells, and the protein kinase A inhibitor H-89 attenuated increased glucose-stimulated insulin secretion. Overexpression of VILIP-1 in isolated mouse beta-cells increased cAMP content accompanied by increased cAMP-responsive element-binding protein gene expression and enhanced exocytosis as detected by cell capacitance measurements. Conversely, VILIP-1 knockdown by small interfering RNA caused a reduction in cAMP accumulation and produced a dramatic increase in preproinsulin mRNA, basal insulin secretion, and total cellular insulin content. The increase in preproinsulin mRNA in these cells was attributed to enhanced insulin gene transcription. Taken together, we have shown that VILIP-1 is expressed in pancreatic beta-cells and modulates insulin secretion. Increased VILIP-1 enhanced insulin secretion in a cAMP-associated manner. Down-regulation of VILIP-1 was accompanied by decreased cAMP accumulation but increased insulin gene transcription.
Collapse
Affiliation(s)
- Feihan F Dai
- Departments of Physiology and Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Yi Zhang
- Departments of Physiology and Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Youhou Kang
- Departments of Physiology and Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Qinghua Wang
- Departments of Physiology and Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Herbert Y Gaisano
- Departments of Physiology and Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Karl-Heinz Braunewell
- Signal Transduction Research Group, Neuroscience Research Center of the Charité, Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Catherine B Chan
- Department of Biomedical Sciences, University of Prince Edward Island, Charlottetown, Prince Edward Island C1A 4P3, Canada
| | - Michael B Wheeler
- Departments of Physiology and Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada.
| |
Collapse
|
33
|
Wickborn C, Klein-Szanto AJ, Schlag PM, Braunewell KH. Correlation ofvisinin-like-protein-1 expression with clinicopathological features in squamous cell carcinoma of the esophagus. Mol Carcinog 2006; 45:572-81. [PMID: 16683251 DOI: 10.1002/mc.20201] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
EF-hand Ca(2+)-sensor proteins are key molecules for transducing Ca(2+) signals into physiological answers and changes in cytosolic Ca(2+) concentration control a variety of cellular responses, including proliferation, migration, and differentiation, which are relevant for tumor progression. The Ca(2+)-sensor visinin-like protein-1 (VILIP-1) has recently attracted major interest due to its putative tumor suppressor function. Whereas VILIP-1 is expressed in normal skin, it is downregulated in skin tumors in a murine tumor model. The aim of this study was to investigate the expression of the Ca(2+)-sensor VILIP-1 in squamous cell carcinoma of the esophagus and to correlate expression levels with clinicopathological features of the tumor. We examined VILIP-1 expression in 54 specimens of esophageal squamous cell carcinomas and 24 normal esophagus tissues, with immunohistochemical staining and immunofluorescence co-staining techniques. VILIP-1 expression was completely lost or significantly reduced in esophageal tumor tissue compared with normal squamous epithelium. Correlation with clinicopathological features indicated that there was significantly less VILIP-1 expression in lymph node positive (N = 1) versus lymph node negative (N = 0) tumors (P = 0.002). Although there was no significant difference between highly (G(1)), moderately (G(2)) and poorly differentiated (G(3)) tumors (P = 0.177), VILIP-1 expression in tumors is significantly correlated with the depth of tumor invasion (P = 0.028 between T1, T2, T3, and T4). In contrast, co-staining with the proliferation marker Ki-67 indicated no significant correlation with proliferation rates in tumors (Ki-67 index of the tumor). In summary, the expression of the Ca(2+)-sensor VILIP-1 was found to be lost during development of squamous cell carcinoma of the esophagus. The protein expression level significantly correlates with invasive features, such as depth of tumor invasion and local lymph node metastasis, but not with proliferation rate of tumor cells.
Collapse
Affiliation(s)
- Carla Wickborn
- Signal Transduction Research Group, Neuroscience Research Center/Institute for Physiology, Charité-Universitätsmedizin Berlin, Campus Mitte, Berlin, Germany
| | | | | | | |
Collapse
|
34
|
Kobayashi M, Masaki T, Hori K, Masuo Y, Miyamoto M, Tsubokawa H, Noguchi H, Nomura M, Takamatsu K. Hippocalcin-deficient mice display a defect in cAMP response element-binding protein activation associated with impaired spatial and associative memory. Neuroscience 2005; 133:471-84. [PMID: 15878804 DOI: 10.1016/j.neuroscience.2005.02.034] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2004] [Revised: 01/06/2005] [Accepted: 02/04/2005] [Indexed: 11/21/2022]
Abstract
Hippocalcin is a member of the neuronal calcium sensor (NCS) protein family that is highly expressed in hippocampal pyramidal cells and moderately expressed in the neurons of cerebral cortex, cerebellum and striatum. Here we examined the physiological roles of hippocalcin using targeted gene disruption. Hippocalcin-deficient (-/-) mice displayed no obvious structural abnormalities in the brain including hippocampal formation at the light microscopic level. Deletion of hippocalcin did not result in up-regulation of the hippocalcin-related proteins; neural visinin-like Ca(2+)-binding proteins (NVP) 1, 2, and 3. The synaptic excitability of hippocampal CA1 neurons appeared to be normal, as estimated by the shape of field excitatory postsynaptic potentials elicited by single- and paired-pulse stimuli, and by tetanic stimulation. However, N-methyl-d-aspartate stimulation- and depolarization-induced phosphorylation of cAMP-response element-binding protein (CREB) was significantly attenuated in -/- hippocampal neurons, suggesting an impairment in an activity-dependent gene expression cascade. In the Morris water maze test, the performance of -/- mice was comparable to that of wild-type littermates except in the probe test, where -/- mice crossed the previous location of the platform significantly less often than +/+ mice. Hippocalcin-deficient mice were also impaired on a discrimination learning task in which they needed to respond to a lamp illuminated on the left or right side to obtain food reinforcement. No abnormalities were observed in motor activity, anxiety behavior, or fear learning. These results suggest that hippocalcin plays a crucial role in the Ca(2+)-signaling pathway that underlies long-lasting neural plasticity and that leads to spatial and associative memory.
Collapse
Affiliation(s)
- M Kobayashi
- Department of Physiology, Toho University School of Medicine, 5-21-16 Ohmori-nishi, Ohta-ku, Tokyo 143-8540, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|