1
|
Gupta A. Cardiac 31P MR spectroscopy: development of the past five decades and future vision-will it be of diagnostic use in clinics? Heart Fail Rev 2023; 28:485-532. [PMID: 36427161 DOI: 10.1007/s10741-022-10287-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/16/2022] [Indexed: 11/27/2022]
Abstract
In the past five decades, the use of the magnetic resonance (MR) technique for cardiovascular diseases has engendered much attention and raised the opportunity that the technique could be useful for clinical applications. MR has two arrows in its quiver: One is magnetic resonance imaging (MRI), and the other is magnetic resonance spectroscopy (MRS). Non-invasively, highly advanced MRI provides unique and profound information about the anatomical changes of the heart. Excellently developed MRS provides irreplaceable and insightful evidence of the real-time biochemistry of cardiac metabolism of underpinning diseases. Compared to MRI, which has already been successfully applied in routine clinical practice, MRS still has a long way to travel to be incorporated into routine diagnostics. Considering the exceptional potential of 31P MRS to measure the real-time metabolic changes of energetic molecules qualitatively and quantitatively, how far its powerful technique should be waited before a successful transition from "bench-to-bedside" is enticing. The present review highlights the seminal studies on the chronological development of cardiac 31P MRS in the past five decades and the future vision and challenges to incorporating it for routine diagnostics of cardiovascular disease.
Collapse
Affiliation(s)
- Ashish Gupta
- Centre of Biomedical Research, SGPGIMS Campus, Lucknow, 226014, India.
| |
Collapse
|
2
|
Illigens BMW, Casar Berazaluce A, Poutias D, Gasser R, Del Nido PJ, Friehs I. Vascular Endothelial Growth Factor Prevents Endothelial-to-Mesenchymal Transition in Hypertrophy. Ann Thorac Surg 2017; 104:932-939. [PMID: 28483153 DOI: 10.1016/j.athoracsur.2017.01.112] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 01/27/2017] [Accepted: 01/30/2017] [Indexed: 01/19/2023]
Abstract
BACKGROUND In hypertrophy, progressive loss of function caused by impaired diastolic compliance correlates with advancing cardiac fibrosis. Endothelial cells contribute to this process through endothelial-to-mesenchymal transition (EndMT) resulting from inductive signals such as transforming growth factor (TGF-β). Vascular endothelial growth factor (VEGF) has proven effective in preserving systolic function and delaying the onset of failure. In this study, we hypothesize that VEGF inhibits EndMT and prevents cardiac fibrosis, thereby preserving diastolic function. METHODS The descending aorta was banded in newborn rabbits. At 4 and 6 weeks, hypertrophied animals were treated with intrapericardial VEGF protein and compared with controls (n = 7 per group). Weekly transthoracic echocardiography measured peak systolic stress. At 7 weeks, diastolic stiffness was determined through pressure-volume curves, fibrosis by Masson trichrome stain and hydroxyproline assay, EndMT by immunohistochemistry, and activation of TGF-β and SMAD2/3 by quantitative real-time polymerase chain reaction. RESULTS Peak systolic stress was preserved during the entire observation period, and diastolic compliance was maintained in treated animals (hypertrophied: 20 ± 1 vs treated: 11 ± 3 and controls: 12 ± 2; p < 0.05). Collagen was significantly higher in the hypertrophied group by Masson trichrome (hypertrophied: 3.1 ± 0.9 vs treated: 1.8 ± 0.6) and by hydroxyproline assay (hypertrophied: 2.8 ± 0.6 vs treated: 1.4 ± 0.4; p < 0.05). Fluorescent immunostaining showed active EndMT in the hypertrophied group but significantly less in treated hearts, which was directly associated with a significant increase in TGF-β/SMAD-2 messenger RNA expression. CONCLUSIONS EndMT contributes to cardiac fibrosis in hypertrophied hearts. VEGF treatment inhibits EndMT and prevents the deposition of collagen that leads to myocardial stiffness through TGF-β/SMAD-dependent activation. This presents a therapeutic opportunity to prevent diastolic failure and preserve cardiac function in pressure-loaded hearts.
Collapse
Affiliation(s)
- Ben M-W Illigens
- Department of Cardiac Surgery, Children's Hospital Boston, Harvard Medical School, Boston, Massachusetts
| | - Alejandra Casar Berazaluce
- Department of Cardiac Surgery, Children's Hospital Boston, Harvard Medical School, Boston, Massachusetts
| | - Dimitrios Poutias
- Department of Cardiac Surgery, Children's Hospital Boston, Harvard Medical School, Boston, Massachusetts
| | - Robert Gasser
- Department of Cardiology, Medical University of Graz, Graz, Austria
| | - Pedro J Del Nido
- Department of Cardiac Surgery, Children's Hospital Boston, Harvard Medical School, Boston, Massachusetts
| | - Ingeborg Friehs
- Department of Cardiac Surgery, Children's Hospital Boston, Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
3
|
Gao L, Zhao YC, Liang Y, Lin XH, Tan YJ, Wu DD, Li XZ, Ye BZ, Kong FQ, Sheng JZ, Huang HF. The impaired myocardial ischemic tolerance in adult offspring of diabetic pregnancy is restored by maternal melatonin treatment. J Pineal Res 2016; 61:340-52. [PMID: 27299979 DOI: 10.1111/jpi.12351] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 06/13/2016] [Indexed: 01/01/2023]
Abstract
Diabetic pregnancy, with ever increasing prevalence, adversely affects embryogenesis and increases vasculometabolic disorder risks in adult offspring. However, it remains poorly understood whether maternal diabetes increases the offspring's susceptibility to heart injuries in adulthood. In this study, we observed that cardiac function and structure were comparable between adult offspring born to diabetic mice and their counterparts born to nondiabetic mice at baseline. However, in response to myocardial ischemia/reperfusion (MIR), diabetic mother offspring exhibited augmented infarct size, cardiac dysfunction, and myocardial apoptosis compared with control, in association with exaggerated activation of mitochondria- and endoplasmic reticulum (ER) stress-mediated apoptosis pathways and oxidative stress. Molecular analysis showed that the impaired myocardial ischemic tolerance in diabetic mother offspring was mainly attributable to blunted cardiac insulin receptor substrate (IRS)-1/Akt signaling. Furthermore, the effect of maternal melatonin administration on offspring's response to MIR was determined, and the results indicated that melatonin treatment in diabetic dams during pregnancy significantly improved the tolerance to MIR injury in their offspring, via restoring cardiac IRS-1/Akt signaling. Taken together, these data suggest that maternal diabetes predisposes offspring to augmented MIR injury in adulthood, and maternal melatonin supplementation during diabetic pregnancy may hold promise for improving myocardial ischemic tolerance in the offspring.
Collapse
Affiliation(s)
- Ling Gao
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yi-Chao Zhao
- Department of Cardiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yan Liang
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xian-Hua Lin
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ya-Jing Tan
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Dan-Dan Wu
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xin-Zhu Li
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Bo-Zhi Ye
- Department of Cardiology, The First Affiliated Hospital, School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Fan-Qi Kong
- Department of Cardiology, The First Affiliated Hospital, School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Jian-Zhong Sheng
- The Key Laboratory of Reproductive Genetics, Ministry of Education (Zhejiang University), Hangzhou, China
- Department of Pathology and Pathophysiology, School of Medicine, Zhejiang University, Hangzhou, China
| | - He-Feng Huang
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
- The Key Laboratory of Reproductive Genetics, Ministry of Education (Zhejiang University), Hangzhou, China.
- Institute of Embryo-Fetal Original Adult Diseases, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
4
|
Qi Y, Zhu Q, Zhang K, Thomas C, Wu Y, Kumar R, Baker KM, Xu Z, Chen S, Guo S. Activation of Foxo1 by insulin resistance promotes cardiac dysfunction and β-myosin heavy chain gene expression. Circ Heart Fail 2014; 8:198-208. [PMID: 25477432 DOI: 10.1161/circheartfailure.114.001457] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
BACKGROUND Heart failure is a leading cause of morbidity and mortality in the USA and is closely associated with diabetes mellitus. The molecular link between diabetes mellitus and heart failure is incompletely understood. We recently demonstrated that insulin receptor substrates 1, 2 (IRS1, 2) are key components of insulin signaling and loss of IRS1 and IRS2 mediates insulin resistance, resulting in metabolic dysregulation and heart failure, which is associated with downstream Akt inactivation and in turn activation of the forkhead transcription factor Foxo1. METHODS AND RESULTS To determine the role of Foxo1 in control of heart failure in insulin resistance and diabetes mellitus, we generated mice lacking Foxo1 gene specifically in the heart. Mice lacking both IRS1 and IRS2 in adult hearts exhibited severe heart failure and a remarkable increase in the β-isoform of myosin heavy chain (β-MHC) gene expression, whereas deletion of cardiac Foxo1 gene largely prevented the heart failure and resulted in a decrease in β-MHC expression. The effect of Foxo1 deficiency on rescuing cardiac dysfunction was also observed in db/db mice and high-fat diet mice. Using cultures of primary ventricular cardiomyocytes, we found that Foxo1 interacts with the promoter region of β-MHC and stimulates gene expression, mediating an effect of insulin that suppresses β-MHC expression. CONCLUSIONS Our study suggests that Foxo1 has important roles in promoting diabetic cardiomyopathy and controls β-MHC expression in the development of cardiac dysfunction. Targeting Foxo1 and its regulation will provide novel strategies in preventing metabolic and myocardial dysfunction and influencing MHC plasticity in diabetes mellitus.
Collapse
Affiliation(s)
- Yajuan Qi
- From the Division of Molecular Cardiology, Department of Medicine, College of Medicine, Texas A&M University Health Science Center, Baylor Scott & White Health, Central Texas Veterans Health Care System, Temple (Y.Q., Q.Z., K.Z., C.T., Y.W., R.K., K.M.B., Z.X., S.C., S.G.); and Department of Pharmacology, Hebei United University, Tangshan, China (Y.Q.)
| | - Qinglei Zhu
- From the Division of Molecular Cardiology, Department of Medicine, College of Medicine, Texas A&M University Health Science Center, Baylor Scott & White Health, Central Texas Veterans Health Care System, Temple (Y.Q., Q.Z., K.Z., C.T., Y.W., R.K., K.M.B., Z.X., S.C., S.G.); and Department of Pharmacology, Hebei United University, Tangshan, China (Y.Q.)
| | - Kebin Zhang
- From the Division of Molecular Cardiology, Department of Medicine, College of Medicine, Texas A&M University Health Science Center, Baylor Scott & White Health, Central Texas Veterans Health Care System, Temple (Y.Q., Q.Z., K.Z., C.T., Y.W., R.K., K.M.B., Z.X., S.C., S.G.); and Department of Pharmacology, Hebei United University, Tangshan, China (Y.Q.)
| | - Candice Thomas
- From the Division of Molecular Cardiology, Department of Medicine, College of Medicine, Texas A&M University Health Science Center, Baylor Scott & White Health, Central Texas Veterans Health Care System, Temple (Y.Q., Q.Z., K.Z., C.T., Y.W., R.K., K.M.B., Z.X., S.C., S.G.); and Department of Pharmacology, Hebei United University, Tangshan, China (Y.Q.)
| | - Yuxin Wu
- From the Division of Molecular Cardiology, Department of Medicine, College of Medicine, Texas A&M University Health Science Center, Baylor Scott & White Health, Central Texas Veterans Health Care System, Temple (Y.Q., Q.Z., K.Z., C.T., Y.W., R.K., K.M.B., Z.X., S.C., S.G.); and Department of Pharmacology, Hebei United University, Tangshan, China (Y.Q.)
| | - Rajesh Kumar
- From the Division of Molecular Cardiology, Department of Medicine, College of Medicine, Texas A&M University Health Science Center, Baylor Scott & White Health, Central Texas Veterans Health Care System, Temple (Y.Q., Q.Z., K.Z., C.T., Y.W., R.K., K.M.B., Z.X., S.C., S.G.); and Department of Pharmacology, Hebei United University, Tangshan, China (Y.Q.)
| | - Kenneth M Baker
- From the Division of Molecular Cardiology, Department of Medicine, College of Medicine, Texas A&M University Health Science Center, Baylor Scott & White Health, Central Texas Veterans Health Care System, Temple (Y.Q., Q.Z., K.Z., C.T., Y.W., R.K., K.M.B., Z.X., S.C., S.G.); and Department of Pharmacology, Hebei United University, Tangshan, China (Y.Q.)
| | - Zihui Xu
- From the Division of Molecular Cardiology, Department of Medicine, College of Medicine, Texas A&M University Health Science Center, Baylor Scott & White Health, Central Texas Veterans Health Care System, Temple (Y.Q., Q.Z., K.Z., C.T., Y.W., R.K., K.M.B., Z.X., S.C., S.G.); and Department of Pharmacology, Hebei United University, Tangshan, China (Y.Q.)
| | - Shouwen Chen
- From the Division of Molecular Cardiology, Department of Medicine, College of Medicine, Texas A&M University Health Science Center, Baylor Scott & White Health, Central Texas Veterans Health Care System, Temple (Y.Q., Q.Z., K.Z., C.T., Y.W., R.K., K.M.B., Z.X., S.C., S.G.); and Department of Pharmacology, Hebei United University, Tangshan, China (Y.Q.)
| | - Shaodong Guo
- From the Division of Molecular Cardiology, Department of Medicine, College of Medicine, Texas A&M University Health Science Center, Baylor Scott & White Health, Central Texas Veterans Health Care System, Temple (Y.Q., Q.Z., K.Z., C.T., Y.W., R.K., K.M.B., Z.X., S.C., S.G.); and Department of Pharmacology, Hebei United University, Tangshan, China (Y.Q.).
| |
Collapse
|
5
|
Qi Y, Xu Z, Zhu Q, Thomas C, Kumar R, Feng H, Dostal DE, White MF, Baker KM, Guo S. Myocardial loss of IRS1 and IRS2 causes heart failure and is controlled by p38α MAPK during insulin resistance. Diabetes 2013; 62:3887-900. [PMID: 24159000 PMCID: PMC3806607 DOI: 10.2337/db13-0095] [Citation(s) in RCA: 133] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cardiac failure is a major cause of death in patients with type 2 diabetes, but the molecular mechanism that links diabetes to heart failure remains unclear. Insulin resistance is a hallmark of type 2 diabetes, and insulin receptor substrates 1 and 2 (IRS1 and IRS2) are the major insulin-signaling components regulating cellular metabolism and survival. To determine the role of IRS1 and IRS2 in the heart and examine whether hyperinsulinemia causes myocardial insulin resistance and cellular dysfunction via IRS1 and IRS2, we generated heart-specific IRS1 and IRS2 gene double-knockout (H-DKO) mice and liver-specific IRS1 and IRS2 double-knockout (L-DKO) mice. H-DKO mice had reduced ventricular mass; developed cardiac apoptosis, fibrosis, and failure; and showed diminished Akt→forkhead box class O-1 signaling that was accompanied by impaired cardiac metabolic gene expression and reduced ATP content. L-DKO mice had decreased cardiac IRS1 and IRS2 proteins and exhibited features of heart failure, with impaired cardiac energy metabolism gene expression and activation of p38α mitogen-activated protein kinase (p38). Using neonatal rat ventricular cardiomyocytes, we further found that chronic insulin exposure reduced IRS1 and IRS2 proteins and prevented insulin action through activation of p38, revealing a fundamental mechanism of cardiac dysfunction during insulin resistance and type 2 diabetes.
Collapse
Affiliation(s)
- Yajuan Qi
- Division of Molecular Cardiology, Department of Medicine, College of Medicine, Texas A&M University Health Science Center, and Scott & White, Central Texas Veterans Health Care System, Temple, Texas
- Department of Pharmacology, Hebei United University, Tangshan, China
| | - Zihui Xu
- Division of Molecular Cardiology, Department of Medicine, College of Medicine, Texas A&M University Health Science Center, and Scott & White, Central Texas Veterans Health Care System, Temple, Texas
- Division of Endocrinology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Qinglei Zhu
- Division of Molecular Cardiology, Department of Medicine, College of Medicine, Texas A&M University Health Science Center, and Scott & White, Central Texas Veterans Health Care System, Temple, Texas
| | - Candice Thomas
- Division of Molecular Cardiology, Department of Medicine, College of Medicine, Texas A&M University Health Science Center, and Scott & White, Central Texas Veterans Health Care System, Temple, Texas
| | - Rajesh Kumar
- Division of Molecular Cardiology, Department of Medicine, College of Medicine, Texas A&M University Health Science Center, and Scott & White, Central Texas Veterans Health Care System, Temple, Texas
| | - Hao Feng
- Division of Molecular Cardiology, Department of Medicine, College of Medicine, Texas A&M University Health Science Center, and Scott & White, Central Texas Veterans Health Care System, Temple, Texas
| | - David E. Dostal
- Division of Molecular Cardiology, Department of Medicine, College of Medicine, Texas A&M University Health Science Center, and Scott & White, Central Texas Veterans Health Care System, Temple, Texas
| | - Morris F. White
- Howard Hughes Medical Institute, Division of Endocrinology, Children’s Hospital Boston, Harvard Medical School, Boston, Massachusetts
| | - Kenneth M. Baker
- Division of Molecular Cardiology, Department of Medicine, College of Medicine, Texas A&M University Health Science Center, and Scott & White, Central Texas Veterans Health Care System, Temple, Texas
| | - Shaodong Guo
- Division of Molecular Cardiology, Department of Medicine, College of Medicine, Texas A&M University Health Science Center, and Scott & White, Central Texas Veterans Health Care System, Temple, Texas
- Corresponding author: Shaodong Guo,
| |
Collapse
|
6
|
Semple DJ, Bhandari S, Seymour AML. Uremic cardiomyopathy is characterized by loss of the cardioprotective effects of insulin. Am J Physiol Renal Physiol 2012; 303:F1275-86. [DOI: 10.1152/ajprenal.00048.2012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Chronic kidney disease is associated with a unique cardiomyopathy, characterized by a combination of structural and cellular remodeling, and an enhanced susceptibility to ischemia-reperfusion injury. This may represent dysfunction of the reperfusion injury salvage kinase pathway due to insulin resistance. The susceptibility of the uremic heart to ischemia-reperfusion injury and the cardioprotective effects of insulin and rosiglitazone were investigated. Uremia was induced in Sprague-Dawley rats by subtotal nephrectomy. Functional recovery from ischemia was investigated in vitro in control and uremic hearts ± insulin ± rosiglitazone. The response of myocardial oxidative metabolism to insulin was determined by13C-NMR spectroscopy. Activation of reperfusion injury salvage kinase pathway intermediates (Akt and GSK3β) were assessed by SDS-PAGE and immunoprecipitation. Insulin improved postischemic rate pressure product in control but not uremic hearts, [recovered rate pressure product (%), control 59.6 ± 10.7 vs. 88.9 ± 8.5, P < 0.05; uremic 19.3 ± 4.6 vs. 28.5 ± 10.4, P = ns]. Rosiglitazone resensitized uremic hearts to insulin-mediated cardioprotection [recovered rate pressure product (%) 12.7 ± 7.0 vs. 61.8 ± 15.9, P < 0.05]. Myocardial carbohydrate metabolism remained responsive to insulin in uremic hearts. Uremia was associated with increased phosphorylation of Akt (1.00 ± 0.08 vs. 1.31 ± 0.11, P < 0.05) in normoxia, but no change in postischemic phosphorylation of Akt or GSK3β. Akt2 isoform expression was decreased postischemia in uremic hearts ( P < 0.05). Uremia is associated with enhanced susceptibility to ischemia-reperfusion injury and a loss of insulin-mediated cardioprotection, which can be restored by administration of rosiglitazone. Altered Akt2 expression in uremic hearts post-ischemia-reperfusion and impaired activation of the reperfusion injury salvage kinase pathway may underlie these findings.
Collapse
Affiliation(s)
- David J. Semple
- Department of Biological Sciences and Hull York Medical School, University of Hull, Kingston-upon-Hull, United Kingdom; and
| | - Sunil Bhandari
- Department of Renal Medicine, Hull and East Yorkshire Hospital NHS Trust, and Hull York Medical School, Kingston-upon-Hull, United Kingdom
| | - Anne-Marie L. Seymour
- Department of Biological Sciences and Hull York Medical School, University of Hull, Kingston-upon-Hull, United Kingdom; and
| |
Collapse
|
7
|
Nikolova A, Ablasser K, Wyler von Ballmoos MC, Poutias D, Kaza E, McGowan FX, Moses MA, Del Nido PJ, Friehs I. Endogenous angiogenesis inhibitors prevent adaptive capillary growth in left ventricular pressure overload hypertrophy. Ann Thorac Surg 2012; 94:1509-17. [PMID: 22795062 DOI: 10.1016/j.athoracsur.2012.05.052] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Revised: 05/10/2012] [Accepted: 05/11/2012] [Indexed: 10/28/2022]
Abstract
BACKGROUND In left ventricular (LV) pressure-overload hypertrophy, lack of adaptive capillary growth contributes to progression to failure. Remodeling of the hypertrophied myocardium requires proteolysis of the extracellular matrix (ECM) carried out by matrix metalloproteinases (MMPs). MMPs, specifically MMP-9, are known to cleave ECM components to generate angiogenesis inhibitors (angiostatin, endostatin, tumstatin). We hypothesize that MMP-9 releases antiangiogenic factors during compensated and decompensated hypertrophy, which results in lack of adaptive capillary growth. METHODS Newborn rabbits underwent aortic banding. Myocardial tissue from age-matched and banded animals at compensated (4 weeks) and decompensated hypertrophy (7 weeks), as identified by serial echocardiography, was analyzed by immunoblotting for angiostatin, endostatin, and tumstatin. MMP-9 activity was determined by zymography. A cell-permeable, potent, selective MMP-9 inhibitor was administered intrapericardially to animals with hypertrophied hearts and tissue was analyzed. RESULTS MMP-9 is activated in hypertrophied myocardium versus in control hearts (22 ± 2 versus 16 ± 1; p = 0.04), which results in significantly increased levels of angiostatin (115 ± 10 versus 86 ± 7; p = 0.02), endostatin (33 ± 1 versus 28 ± 1; p = 0.006), and tumstatin (35 ± 6 versus 17 ± 4; p = 0.04). Zymography confirms inhibition of MMP-9 (hypertrophy + MMP-9 inhibitor, 14 ± 0.6 versus hypertrophy + vehicle, 17 ± 1; p = 0.01) and angiostatin, endostatin, and tumstatin are down-regulated, accompanied by up-regulation of capillary density (hypertrophy + MMP-9 inhibitor, 2.99 ± 0.07 versus hypertrophy + vehicle, 2.7 ± 0.05; p = 0.002). CONCLUSIONS Up-regulation of angiogenesis inhibitors prevents adaptive capillary growth in pressure-overload hypertrophied myocardium. Therapeutic interventions aimed at inhibition of angiogenesis inhibitors are useful in maintaining capillary density and thereby preventing heart failure.
Collapse
Affiliation(s)
- Andriana Nikolova
- Department of Cardiac Surgery, Children's Hospital Boston, Harvard Medical School, Boston, MA, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Kaza E, Ablasser K, Poutias D, Griffiths ER, Saad FA, Hofstaetter JG, del Nido PJ, Friehs I. Up-regulation of soluble vascular endothelial growth factor receptor-1 prevents angiogenesis in hypertrophied myocardium. Cardiovasc Res 2010; 89:410-8. [PMID: 20935166 DOI: 10.1093/cvr/cvq321] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
AIMS Inadequate capillary growth in pressure-overload hypertrophy impairs myocardial perfusion and substrate delivery, contributing to progression to failure. Capillary growth is tightly regulated by angiogenesis growth factors like vascular endothelial growth factor (VEGF) and endogenous inhibitors such as the splice variant of VEGF receptor-1, sVEGFR-1. We hypothesized that inadequate expression of VEGF and up-regulation of VEGFR-1 and its soluble splice variant, sVEGFR-1, restrict capillary growth in pressure-overload hypertrophy. METHODS AND RESULTS Neonatal New Zealand White rabbits underwent aortic banding. mRNA (qRT-PCR) and protein levels (immunoblotting) were determined in hypertrophied and control myocardium (7/group) for total VEGF, VEGFR-1, sVEGFR-1, VEGFR-2, and phospho-VEGFR-1 and -R-2. Free VEGF was determined by enzyme-linked immunoassay (ELISA) in hypertrophied myocardium, controls, and hypertrophied hearts following inhibition of sVEGFR-1 with placental growth factor (PlGF). VEGFR-1 and sVEGFR-1 mRNA (seven-fold up-regulation, P = 0.001) and protein levels were significantly up-regulated in hypertrophied hearts vs. controls (VEGFR-1: 44 ± 8 vs. 23 ± 1, P = 0.031; sVEGFR-1: 71 ± 13 vs. 31 ± 3, P = 0.016). There was no change in VEGF and VEGFR-2 mRNA or protein levels in hypertrophied compared with controls hearts. A significant decline in free, unbound VEGF was found in hypertrophied myocardium which was reversed following inhibition of sVEGFR-1 with PlGF, which was accompanied by phosphorylation of VEGFR-1 and VEGFR-2. CONCLUSION Up-regulation of the soluble VEGFR-1 in pressure-loaded myocardium prevents capillary growth by trapping VEGF. Inhibition of sVEGFR-1 released sufficient VEGF to induce angiogenesis and preserved contractile function. These data suggest sVEGFR-1 as possible therapeutic targets to prevent heart failure.
Collapse
Affiliation(s)
- Elisabeth Kaza
- Department of Cardiac Surgery, Children's Hospital Boston, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Semple D, Smith K, Bhandari S, Seymour AML. Uremic cardiomyopathy and insulin resistance: a critical role for akt? J Am Soc Nephrol 2010; 22:207-15. [PMID: 20634295 DOI: 10.1681/asn.2009090900] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Uremic cardiomyopathy is a classic complication of chronic renal failure whose cause is unclear and treatment remains disappointing. Insulin resistance is an independent predictor of cardiovascular mortality in chronic renal failure. Underlying insulin resistance are defects in insulin signaling through the protein kinase, Akt. Akt acts as a nodal point in the control of both the metabolic and pleiotropic effects of insulin. Imbalance among these effects leads to cardiac hypertrophy, fibrosis, and apoptosis; less angiogenesis; metabolic remodeling; and altered calcium cycling, all key features of uremic cardiomyopathy. Here we consider the role of Akt in the development of uremic cardiomyopathy, drawing parallels from models of hypertrophic cardiac disease.
Collapse
Affiliation(s)
- David Semple
- Department of Biological Sciences, University of Hull, Kingston-upon-Hull, HU6 7RX, UK
| | | | | | | |
Collapse
|
10
|
Griffiths ER, Friehs I, Scherr E, Poutias D, McGowan FX, Del Nido PJ. Electron transport chain dysfunction in neonatal pressure-overload hypertrophy precedes cardiomyocyte apoptosis independent of oxidative stress. J Thorac Cardiovasc Surg 2009; 139:1609-17. [PMID: 20038480 DOI: 10.1016/j.jtcvs.2009.08.060] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2009] [Revised: 07/03/2009] [Accepted: 08/09/2009] [Indexed: 11/16/2022]
Abstract
OBJECTIVES We have previously shown in a model of pressure-overload hypertrophy that there is increased cardiomyocyte apoptosis during the transition from peak hypertrophy to ventricular decompensation. Electron transport chain dysfunction is believed to play a role in this process through the production of excessive reactive oxygen species. In this study we sought to determine electron transport chain function in pressure-overload hypertrophy and the role of oxidative stress in myocyte apoptosis. METHODS AND RESULTS Neonatal rabbits underwent thoracic aortic banding at 10 days of age. Compensated hypertrophy (4 weeks of age), decompensated hypertrophy (6 weeks of age), and age-matched controls (n = 4-8 per group) as identified by serial echocardiography were studied. Electron transport chain complex activities were determined by spectophotometry in isolated mitochondria. Complex I was significantly decreased (P = .005) at 4 weeks and further decreased at 6 weeks (P = .001). Complex II was significantly decreased at both time points (4 weeks, P = .003; 6 weeks, P = .009). However, hyddrogen peroxide production, measured in isolated mitochondria by fluorescence spectroscopy, was significantly decreased at 4 weeks of age in banded animals compared with controls (P = .038), and mitochondrial DNA oxidative damage (measurement of 8- hydroxydeoxyguanosine by enzyme-linked immunosorbent assay) was also significantly decreased at 4 weeks of age (P = .031). Mitochondrial activated apoptosis was determined by Bax/Bcl-2 ratios (immunoblotting). Bax/Bcl-2 levels were significantly increased in banded animals at 6 weeks. CONCLUSIONS In pressure-overload hypertrophy, the transition from compensated left ventricular hypertrophy to failure and cardiomyocyte apoptosis is preceded by mitochondrial complex I and II dysfunction followed by an increase in Bax/Bcl-2 ratios. The mechanism of apoptosis initiation is independent of increased oxidative stress.
Collapse
Affiliation(s)
- Eric R Griffiths
- Department of Cardiac Surgery, Children's Hospital Boston, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | |
Collapse
|
11
|
Effects of myosin heavy chain manipulation in experimental heart failure. J Mol Cell Cardiol 2009; 48:999-1006. [PMID: 19854200 DOI: 10.1016/j.yjmcc.2009.10.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2009] [Revised: 10/13/2009] [Accepted: 10/15/2009] [Indexed: 11/21/2022]
Abstract
The myosin heavy chain (MHC) isoforms, alpha- and beta-MHC, are expressed in developmental- and chamber-specific patterns. Healthy human ventricle contains approximately 2-10% alpha-MHC and these levels are reduced even further in the failing ventricle. While down-regulation of alpha-MHC in failing myocardium is considered compensatory, we previously demonstrated that persistent transgenic (TG) alpha-MHC expression in the cardiomyocytes is cardioprotective in rabbits with tachycardia-induced cardiomyopathy (TIC). We sought to determine if this benefit extends to other types of experimental heart failure and focused on two models relevant to human heart failure: myocardial infarction (MI) and left ventricular pressure overload. TG and nontransgenic rabbits underwent either coronary artery ligation at 8 months or aortic banding at 10 days of age. The effects of alpha-MHC expression were assessed at molecular, histological and organ levels. In the MI experiments, we unexpectedly found modest functional advantages to alpha-MHC expression. In contrast, despite subtle benefits in TG rabbits subjected to aortic banding, cardiac function was minimally affected. We conclude that the benefits of persistent alpha-MHC expression depend upon the mechanism of heart failure. Importantly, in none of the scenarios studied did we find any detrimental effects associated with persistent alpha-MHC expression. Thus manipulation of MHC composition may be beneficial in certain types of heart failure and does not appear to compromise heart function in others. Future considerations of myosin isoform manipulation as a therapeutic strategy should consider the underlying etiology of cardiac dysfunction.
Collapse
|
12
|
Liang GY, Cai QY, Niu YM, Zheng H, Gao ZY, Liu DX, Xu G. Cardiac glucose uptake and suppressed expression/translocation of myocardium glucose transport-4 in dogs undergoing ischemia-reperfusion. Exp Biol Med (Maywood) 2008; 233:1142-8. [PMID: 18535164 DOI: 10.3181/0801-rm-33] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Impaired glucose metabolism is implicated in cardiac failure during ischemia-reperfusion. This study examined cardiac glucose uptake and expression of glucose transport-4 (GLUT-4) in dogs undergoing ischemia-reperfusion. Cardiac ischemia was induced by cardiopulmonary bypass for 30 min or 120 min in dogs. Plasma insulin and glucose concentrations were measured at pre-bypass (control), and aortic cross-clamp off (ischemia-reperfusion) at 15, 45, and 75 min. At the same time, the left ventricle biopsies were taken for GLUT-4 immunohistochemistry and glycogen content analysis. In dogs receiving 120-min ischemia, coronary arterial and venous glucose concentrations were increased, but the net glucose uptake in ischemia-reperfusion heart were significantly decreased from 25% (control) to zero at 15 and 45 min of reperfusion, and recovered to only 7% after 75 min reperfusion. Myocardium glycogen contents were decreased by 65%. Plasma insulin levels and Insulin Resistant Index were markedly increased in dogs undergoing 120-min ischemia and reperfusion. These changes were relatively mild and reversible in dogs receiving only 30-min ischemia followed by reperfusion. Expression of total GLUT-4 in myocardium was decreased 40% and translocation of GLUT-4 from cytoplasm to surface membrane was decreased 90% in dogs receiving 120-min ischemia followed by 15-min reperfusion. Suppressed translocation of GLUT-4 was also evident in dogs receiving 30-min ischemia, but to a lesser extent. Reduced myocardium glucose uptake, utilization, and glycogen content are clearly associated with ischemia-reperfusion heart injury. This appears to be due, at least in part, to suppressed expression and translocation of myocardium GLUT-4.
Collapse
Affiliation(s)
- Gui-You Liang
- Affiliated Hospital of Zunyi Medical College, Department of Thoracic and Cardiovascular Surgery, 149 Da-Lian Road, Zunyi, Guizhou 563003, China.
| | | | | | | | | | | | | |
Collapse
|
13
|
Handa N, Magata Y, Mukai T, Nishina T, Konishi J, Komeda M. Quantitative FDG-uptake by positron emission tomography in progressive hypertrophy of rat hearts in vivo. Ann Nucl Med 2007; 21:569-76. [PMID: 18092133 DOI: 10.1007/s12149-007-0067-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2007] [Accepted: 08/20/2007] [Indexed: 11/29/2022]
Abstract
BACKGROUND Quantitative myocardial fluorodeoxyglucose positron emission tomography (FDG-PET) for assessing glucose uptake in vivo is reliable in normal rat heart. OBJECTIVE To assess the applicability of myocardial FDG-PET on multiple occasions in the longitudinal disease process of progressive hypertrophy of rat heart. METHODS Six salt-sensitive Dahl rats (Dahl-S) developing progressive hypertrophy with subsequent dilated cardiomyopathy were compared with salt-resistant Dahl rats (controls). FDG-PET was applied twice at early stage (ES: 14-18 weeks) and at late stage (LS: 22-26 weeks) of hypertrophy. Standardized uptake value (SUV) was calculated for comparing between different animal weights and different injection dosages of FDG. For validating the quantitative study, radioactivity of a total of 36 tissue samples was compared with the corresponding PET values. RESULTS The left ventricular mass in Dahl-S increased by 17% at ES and by 25% at LS. The SUV in Dahl-S was 95% of controls at ES and reduced to 62% at LS (P=0.023). The heart function started to deteriorate after LS. Linear regression analysis showed a good correlation between the radioactivity of tissue samples and PET values (Y=1.20X, P<0.0001, R2=0.979). CONCLUSIONS Small animal PET studies on longitudinal multiple occasions in vivo were feasible and useful for the repeating assessment of glucose uptake. The reduction of glucose uptake in progressive hypertrophy of heart over time may precede its progression to heart failure.
Collapse
Affiliation(s)
- Nobuhiro Handa
- Department of Cardiovascular Surgery, Kyoto University Graduate School of Medicine, 54 Kawaharacho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan.
| | | | | | | | | | | |
Collapse
|
14
|
Barillas R, Friehs I, Cao-Danh H, Martinez JF, del Nido PJ. Inhibition of glycogen synthase kinase-3beta improves tolerance to ischemia in hypertrophied hearts. Ann Thorac Surg 2007; 84:126-33. [PMID: 17588398 PMCID: PMC3444259 DOI: 10.1016/j.athoracsur.2007.02.015] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2006] [Revised: 02/04/2007] [Accepted: 02/06/2007] [Indexed: 11/16/2022]
Abstract
BACKGROUND Hypertrophied myocardium is more susceptible to ischemia/reperfusion injury, in part owing to impaired insulin-mediated glucose uptake. Glycogen synthase kinase-3beta (GSK-3beta) is a key regulatory enzyme in glucose metabolism that, when activated, phosphorylates/inactivates target enzymes of the insulin signaling pathway. Glycogen synthase kinase-3beta is regulated upstream by Akt-1. We sought to determine whether GSK-3beta is activated in ischemic hypertrophied myocardium owing to impaired Akt-1 function, and whether inhibition with lithium (Li) or indirubin-3'-monoxime,5-iodo- (IMI), a specific inhibitor, improves post-ischemic myocardial recovery by improving glucose metabolism. METHODS Pressure-overload hypertrophy was achieved by aortic banding in neonatal rabbits. At 6 weeks, isolated hypertrophied hearts underwent 30 minutes of normothermic ischemia and reperfusion with or without a GSK-3beta inhibitor (0.1 mM Li; 1 microM IMI) as cardioplegic additives. Cardiac function was measured before and after ischemia. Expression, activity of Akt-1 and GSK-3beta, and lactate were determined at end-ischemia. RESULTS Contractile function after ischemia was better preserved in hypertrophied hearts treated with GSK-3beta inhibitors. Activity of Akt-1 was significantly impaired in hypertrophied myocardium at end-ischemia. Glycogen synthase kinase-3beta enzymatic activity at end-ischemia was increased in hypertrophied hearts and was blocked by Li or IMI concomitant with significantly increased lactate production, indicating increased glycolysis. CONCLUSIONS Regulatory inhibition of GSK-3beta by Akt-1 in hypertrophied hearts is impaired, leading to activation during ischemia. Inhibition of GSK-3beta by Li or IMI improves tolerance to ischemia/reperfusion injury in hypertrophied myocardium. The likely protective mechanism is an increase in insulin-mediated glucose uptake, resulting in greater substrate availability for glycolysis during ischemia and early reperfusion.
Collapse
Affiliation(s)
- Rodrigo Barillas
- Department of Cardiac Surgery, Children's Hospital Boston and Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | |
Collapse
|