1
|
Zhang Y, Wang Y, Zheng H, Wei J. Increased mortality risk from airborne exposure to polycyclic aromatic hydrocarbons. JOURNAL OF HAZARDOUS MATERIALS 2024; 474:134714. [PMID: 38820754 DOI: 10.1016/j.jhazmat.2024.134714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 05/15/2024] [Accepted: 05/22/2024] [Indexed: 06/02/2024]
Abstract
BACKGROUND The potential health effects of airborne polycyclic aromatic hydrocarbons (PAHs) among general population remained extensively unstudied. This study sought to investigate the association of short-term exposure to low-level total and 7 carcinogenic PAHs with mortality risk. METHODS We conducted an individual-level time-stratified case-crossover study in Jiangsu province of eastern China, by investigating over 2 million death cases during 2016-2019. Daily concentrations of total PAH and its 7 carcinogenic species including benzo[a]anthracene (BaA), benzo[a]pyrene (BaP), benzo[b]fluoranthene (BbF), benzo[k]fluoranthene (BkF), chrysene (Chr), dibenz[a,h]anthracene (DahA), and indeno[1,2,3-cd]pyrene (IcdP), predicted by well-validated spatiotemporal models, were assigned to death cases according to their residential addresses. We estimated mortality risk associated with short-term exposure to increase of an interquartile range (IQR) for aforementioned PAHs using conditional logistic regression. RESULTS An IQR increase (16.9 ng/m3) in 2-day (the current and prior day) moving average of total PAH concentration was associated with risk increases of 1.90% (95% confidence interval [CI]: 1.71-2.09) in all-cause mortality, 1.90% (95% CI: 1.70-2.10) in nonaccidental mortality, 2.01% (95% CI: 1.72-2.29) in circulatory mortality, and 2.53% (95% CI: 2.03-3.02) in respiratory mortality. Risk increases of cause-specific mortality ranged between 1.42-1.90% for BaA (IQR: 1.6 ng/m3), 1.94-2.53% for BaP (IQR: 1.6 ng/m3), 2.45-3.16% for BbF (IQR: 2.8 ng/m3), 2.80-3.65% for BkF (IQR: 1.0 ng/m3), 1.36-1.77% for Chr (IQR: 1.8 ng/m3), 0.77-1.24% for DahA (IQR: 0.8 ng/m3), and 2.96-3.85% for IcdP (IQR: 1.7 ng/m3). CONCLUSIONS This study provided suggested evidence for heightened mortality risk in relation to short-term exposure to airborne PAHs in general population. Our findings suggest that airborne PAHs may pose a potential threat to public health, emphasizing the need of more population-based evidence to enhance the understanding of health risk under the low-dose exposure scenario.
Collapse
Affiliation(s)
- Yunquan Zhang
- Institute of Social Development and Health Management, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Public Health, Wuhan University of Science and Technology, Wuhan 430065, China.
| | - Yaqi Wang
- Institute of Social Development and Health Management, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Public Health, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Hao Zheng
- Department of Environmental Health, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing 210009, China.
| | - Jing Wei
- Department of Atmospheric and Oceanic Science, Earth System Science Interdisciplinary Center, University of Maryland, College Park, MD 20742, United States.
| |
Collapse
|
2
|
Zhou H, Liang X, Zhang X, Wu J, Jiang Y, Guo B, Wang J, Meng Q, Ding X, Baima Y, Li J, Wei J, Zhang J, Zhao X. Associations of Long-Term Exposure to Fine Particulate Constituents With Cardiovascular Diseases and Underlying Metabolic Mediations: A Prospective Population-Based Cohort in Southwest China. J Am Heart Assoc 2024; 13:e033455. [PMID: 38761074 PMCID: PMC11179805 DOI: 10.1161/jaha.123.033455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 04/01/2024] [Indexed: 05/20/2024]
Abstract
BACKGROUND The health effects of particulate matter with an aerodynamic diameter ≤2.5 μm (PM2.5) might differ depending on compositional variations. Little is known about the joint effect of PM2.5 constituents on metabolic syndrome and cardiovascular disease (CVD). This study aims to evaluate the combined associations of PM2.5 components with CVD, identify the most detrimental constituent, and further quantify the mediation effect of metabolic syndrome. METHODS AND RESULTS A total of 14 427 adults were included in a cohort study in Sichuan, China, and were followed to obtain the diagnosis of CVD until 2021. Metabolic syndrome was defined by the simultaneous occurrence of multiple metabolic disorders measured at baseline. The concentrations of PM2.5 chemical constituents within a 1-km2 grid were derived based on satellite- and ground-based detection methods. Cox proportional hazard models showed that black carbon, organic matter (OM), nitrate, ammonium, chloride, and sulfate were positively associated with CVD risks, with hazard ratios (HRs) ranging from 1.24 to 2.11 (all P<0.05). Quantile g-computation showed positive associations with 4 types of CVD risks (HRs ranging from 1.48 to 2.25, all P<0.05). OM and chloride had maximum weights for CVD risks. Causal mediation analysis showed that the positive association of OM with total CVD was mediated by metabolic syndrome, with a mediation proportion of 1.3% (all P<0.05). CONCLUSIONS Long-term exposure to PM2.5 chemical constituents is positively associated with CVD risks. OM and chloride appear to play the most responsible role in the positive associations between PM2.5 and CVD. OM is probably associated with CVD through metabolic-related pathways.
Collapse
Affiliation(s)
- Hanwen Zhou
- West China School of Public Health and West China Fourth Hospital Sichuan University Chengdu Sichuan China
| | - Xian Liang
- Chengdu Center for Disease Control and Prevention Chengdu Sichuan China
| | - Xueli Zhang
- Health Information Center of Sichuan Province Chengdu Sichuan China
| | - Jialong Wu
- West China School of Public Health and West China Fourth Hospital Sichuan University Chengdu Sichuan China
| | - Ye Jiang
- West China School of Public Health and West China Fourth Hospital Sichuan University Chengdu Sichuan China
| | - Bing Guo
- West China School of Public Health and West China Fourth Hospital Sichuan University Chengdu Sichuan China
| | - Junhua Wang
- School of Public Health, The key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education Guizhou Medical University Guiyang China
| | - Qiong Meng
- Department of Epidemiology and Health Statistics, School of Public Health Kunming Medical University Kunming Yunnan China
| | - Xianbin Ding
- Chongqing Municipal Center for Disease Control and Prevention Chongqing China
| | | | - Jingzhong Li
- Tibet Center for Disease Control and Prevention Lhasa Tibet China
| | - Jing Wei
- Department of Atmospheric and Oceanic Science, Earth System Science Interdisciplinary Center University of Maryland College Park MD USA
| | - Juying Zhang
- West China School of Public Health and West China Fourth Hospital Sichuan University Chengdu Sichuan China
| | - Xing Zhao
- West China School of Public Health and West China Fourth Hospital Sichuan University Chengdu Sichuan China
| |
Collapse
|
3
|
Ridany I, Akika R, Saliba NA, Tamim H, Badr K, Zgheib NK. Aromatic Hydrocarbon Receptor Repressor (AHRR) is a biomarker of ambient air pollution exposure and Coronary Artery Disease (CAD). ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 105:104344. [PMID: 38103810 DOI: 10.1016/j.etap.2023.104344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 12/12/2023] [Indexed: 12/19/2023]
Abstract
Two hundred and twenty subjects were recruited while undergoing cardiac catheterization. AHRR cg05575921 methylation was shown to be significantly decreased in ever smokers compared to never smokers (Mean± SD = 64.2 ± 17.2 vs 80.1 ± 11.1 respectively; P < 0.0001). In addition, higher urinary levels of 2-OHNAP and 2-OHFLU were significantly associated with more AHRR cg05575921 hypomethylation, even after correcting for smoking (β[95%CI]= -4.161[-7.553, -0.769]; P = 0.016 and -5.190[-9.761, -0.618]; P = 0.026, respectively) but not 1-OHPYR (β[95%CI]= -3.545 [-10.935, 3.845]; P = 0.345). Additionally, hypomethylation of AHRR ROI was significantly associated with obstructive coronary artery disease (CAD) after adjusting for smoking, age, sex, diabetes and dyslipidemia (OR [95%CI] = 1.024[1.000 - 1.048]; P = 0.046). Results of this study necessitate further validation to potentially consider clinical incorporation of AHRR methylation status as an early predictive biomarker for the potential association between ambient air pollution and CAD.
Collapse
Affiliation(s)
- Ibrahim Ridany
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Reem Akika
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Najat Aoun Saliba
- Department of Chemistry, Faculty of Arts and Sciences, American University of Beirut, Beirut, Lebanon; Vascular Medicine Program, American University of Beirut, Beirut, Lebanon
| | - Hani Tamim
- Vascular Medicine Program, American University of Beirut, Beirut, Lebanon; Clinical Research Institute, Faculty of Medicine, American University of Beirut Medical Center, Beirut, Lebanon; College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - Kamal Badr
- Vascular Medicine Program, American University of Beirut, Beirut, Lebanon; Division of Nephrology, Department of Internal Medicine, Faculty of Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - Nathalie Khoueiry Zgheib
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon; Vascular Medicine Program, American University of Beirut, Beirut, Lebanon.
| |
Collapse
|
4
|
He Q, Zhao X, Wu D, Jia S, Liu C, Cheng Z, Huang F, Chen Y, Lu T, Lu S. Hydrophobic tag-based protein degradation: Development, opportunity and challenge. Eur J Med Chem 2023; 260:115741. [PMID: 37607438 DOI: 10.1016/j.ejmech.2023.115741] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/07/2023] [Accepted: 08/16/2023] [Indexed: 08/24/2023]
Abstract
Targeted protein degradation (TPD) has emerged as a promising approach for drug development, particularly for undruggable targets. TPD technology has also been instrumental in overcoming drug resistance. While some TPD molecules utilizing proteolysis-targeting chimera (PROTACs) or molecular glue strategies have been approved or evaluated in clinical trials, hydrophobic tag-based protein degradation (HyT-PD) has also gained significant attention as a tool for medicinal chemists. The increasing number of reported HyT-PD molecules possessing high efficiency in degrading protein and good pharmacokinetic (PK) properties, has further fueled interest in this approach. This review aims to present the design rationale, hydrophobic tags in use, and diverse mechanisms of action of HyT-PD. Additionally, the advantages and disadvantages of HyT-PD in protein degradation are discussed. This review may help inspire the development of more HyT-PDs with superior drug-like properties for clinical evaluation.
Collapse
Affiliation(s)
- Qindi He
- School of Science, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Xiaofei Zhao
- School of Science, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Donglin Wu
- School of Science, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Siming Jia
- School of Science, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Canlin Liu
- School of Science, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Zitian Cheng
- School of Science, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Fei Huang
- School of Science, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Yadong Chen
- Laboratory of Molecular Design and Drug Discovery, China Pharmaceutical University, Nanjing, 211198, PR China.
| | - Tao Lu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, PR China.
| | - Shuai Lu
- School of Science, China Pharmaceutical University, Nanjing, 211198, PR China.
| |
Collapse
|
5
|
Mallah MA, Changxing L, Mallah MA, Noreen S, Liu Y, Saeed M, Xi H, Ahmed B, Feng F, Mirjat AA, Wang W, Jabar A, Naveed M, Li JH, Zhang Q. Polycyclic aromatic hydrocarbon and its effects on human health: An overeview. CHEMOSPHERE 2022; 296:133948. [PMID: 35151703 DOI: 10.1016/j.chemosphere.2022.133948] [Citation(s) in RCA: 171] [Impact Index Per Article: 85.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 02/02/2022] [Accepted: 02/09/2022] [Indexed: 06/14/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are a class of chemicals of considerable environmental significance. PAHs are chemical contaminants of fused carbon and hydrogen aromatic rings, basically white, light-yellow, or solid compounds without color. Natural sources of pollution are marginal or less significant, such as volcanic eruptions, natural forest fires, and moorland fires that trigger lightning bursts. The significant determinants of PAH pollution are anthropogenic pollution sources, classified into four groups, i.e., industrial, mobile, domestic, and agricultural pollution sources. Humans can consume PAHs via different routes, such as inhalation, dermal touch, and ingestion. The Effect of PAHs on human health is primarily based on the duration and route of exposure, the volume or concentration of PAHs to which one is exposed, and the relative toxicity of PAHs. Many PAHs are widely referred to as carcinogens, mutagens, and teratogens and thus pose a significant danger to human health and the well-being of humans. Skin, lung, pancreas, esophagus, bladder, colon, and female breast are numerous organs prone to tumor development due to long-term PAH exposure. PAH exposure may increase the risk of lung cancer as well as cardiovascular disease (CVD), including atherosclerosis, thrombosis, hypertension, and myocardial infarction (MI). Preclinical studies have found a relationship between PAH exposure, oxidative stress, and atherosclerosis. In addition, investigations have discovered a relationship between PAH exposure at work and CVD illness and mortality development. This review aims to explain PAH briefly, its transportation, its effects on human health, and a relationship between environmental exposures to PAHs and CVD risk in humans.
Collapse
Affiliation(s)
- Manthar Ali Mallah
- Department of Toxicology, College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Li Changxing
- Department of Human Anatomy, Medical College of Qinghai University, Xining, 81000, China
| | - Mukhtiar Ali Mallah
- Department of Chemical Engineering, Quaid-e-Awam University of Engineering, Science & Technology, Nawabshah, 67480, Sindh, Pakistan
| | - Sobia Noreen
- Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, 6300, Pakistan
| | - Yang Liu
- Department of Toxicology, College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Muhammad Saeed
- The Cholestane University of Veterinary and Animal Sciences, Bahawalpur, Pakistan
| | - He Xi
- Department of Toxicology, College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Bilal Ahmed
- Department of Clinical Pharmacy, School of Pharmacy. Nanjing Medical University, Nanjing, 211166, China
| | - Feifei Feng
- Department of Toxicology, College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Ali Asghar Mirjat
- School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Wei Wang
- Department of Occupational and Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Abdul Jabar
- Faculty of Pharmacy, University of Sargodha, Sargodha, 40100, Punjab, Pakistan
| | - Muhammad Naveed
- Department of Clinical Pharmacy, School of Pharmacy. Nanjing Medical University, Nanjing, 211166, China
| | - Jian-Hua Li
- Department of Human Anatomy, Medical College of Qinghai University, Xining, 81000, China.
| | - Qiao Zhang
- Department of Toxicology, College of Public Health, Zhengzhou University, Zhengzhou, 450001, China.
| |
Collapse
|
6
|
Increased Pericardial Adipose Tissue in Smokers. J Clin Med 2021; 10:jcm10153382. [PMID: 34362164 PMCID: PMC8348719 DOI: 10.3390/jcm10153382] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 07/27/2021] [Accepted: 07/29/2021] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Pericardial adipose tissue (PAT), a visceral fat depot directly located to the heart, is associated with atherosclerotic and inflammatory processes. The extent of PAT is related to the prevalence of coronary heart disease and might be used for cardiovascular risk prediction. This study aimed to determine the effect of smoking on the extent of PAT. METHODS We retrospectively examined 1217 asymptomatic patients (490 females, age 58.3 ± 8.3 years, smoker n = 573, non-smoker n = 644) with a multislice CT scanner and determined the PAT volume. Coronary risk factors were determined at inclusion, and a multivariate analysis was performed to evaluate the influence of smoking on PAT independent from accompanying risk factors. RESULTS The mean PAT volume was 215 ± 107 mL in all patients. The PAT volume in smokers was significantly higher compared to PAT volume in non-smokers (231 ± 104 mL vs. 201 ± 99 mL, p = 0.03). Patients without cardiovascular risk factors showed a significantly lower PAT volume (153 ± 155 mL, p < 0.05) compared to patients with more than 1 risk factor. Odds ratio was 2.92 [2.31, 3.61; p < 0.001] for elevated PAT in smokers. CONCLUSION PAT as an individual marker of atherosclerotic activity and inflammatory burden was elevated in smokers. The finding was independent from metabolic risk factors and might therefore illustrate the increased inflammatory activity in smokers in comparison to non-smokers.
Collapse
|
7
|
Ye G, Gao H, Zhang X, Liu X, Chen J, Liao X, Zhang H, Huang Q. Aryl hydrocarbon receptor mediates benzo[a]pyrene-induced metabolic reprogramming in human lung epithelial BEAS-2B cells. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 756:144130. [PMID: 33288249 DOI: 10.1016/j.scitotenv.2020.144130] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 11/09/2020] [Accepted: 11/21/2020] [Indexed: 06/12/2023]
Abstract
Polycyclic aromatic hydrocarbon exposure accelerates the initiation and progression of lung cancer through aryl hydrocarbon receptor (AHR) signaling. Metabolic reprogramming is a hallmark of cancer. However, how AHR reprograms metabolism related to the malignant transformation in of benzo[a]pyrene (BaP)-exposed lung cells remains unclear. After confirming that BaP exposure activated AHR signaling and relevant downstream factors and then promoted epithelial-mesenchymal transition, an untargeted metabolomics approach was employed to discover AHR-mediated metabolic reprogramming and potential therapeutic targets in BaP-exposed BEAS-2B cells. We found that 52 metabolites were significantly altered in BaP-exposed BEAS-2B cells and responsive to resveratrol (RSV) intervention. Pathway analysis revealed that 28 and 30 metabolic pathways were significantly altered in response to BaP exposure and RSV intervention, respectively. Notably, levels of most amino acids were significantly decreased, while those of most fatty acids were significantly increased in BaP-exposed BEAS-2B cells, and above changes were abolished by RSV intervention. Besides, levels of amino acids and fatty acids were highly correlated with those of many metabolites and AHR signaling upon BaP exposure and RSV intervention (the absolute values of Pearson correlation coefficients above 0.8). We further discovered a decrease in peroxisome proliferator-activated receptor (PPAR) A/G signaling and an increase in fatty acid import by the transporter FATP1 in BaP-exposed BEAS-2B cells. Furthermore, inhibition of AHR signaling by CH-223191 abolished BaP-induced repression of PPARA/G signaling and activation of FATP1 in BEAS-2B cells, demonstrating the regulatory role of AHR signaling in fatty acid accumulation via mediating PPARA/G-FATP1 signaling. These data suggested amino acid and fatty acid metabolism, AHR and PPAR-FATP1 signaling as potential therapeutic targets for intervening BaP-induced toxicity and related diseases. As far as we known, fatty acid accumulation and high correlations of AHR signaling with amino acid and fatty acid metabolism are novel phenomena discovered in BaP-exposed lung epithelial cells.
Collapse
Affiliation(s)
- Guozhu Ye
- Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China; Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China.
| | - Han Gao
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China; University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China
| | - Xu Zhang
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China; University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China
| | - Xinyu Liu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Jinsheng Chen
- Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China; Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China
| | - Xu Liao
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China
| | - Han Zhang
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China
| | - Qiansheng Huang
- Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China; Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China.
| |
Collapse
|
8
|
Khan EA, Zhang X, Hanna EM, Bartosova Z, Yadetie F, Jonassen I, Goksøyr A, Arukwe A. Quantitative transcriptomics, and lipidomics in evaluating ovarian developmental effects in Atlantic cod (Gadus morhua) caged at a capped marine waste disposal site. ENVIRONMENTAL RESEARCH 2020; 189:109906. [PMID: 32980003 DOI: 10.1016/j.envres.2020.109906] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 05/29/2020] [Accepted: 07/01/2020] [Indexed: 06/11/2023]
Abstract
In the present study, a previously capped waste disposal site at Kollevåg (Norway) was selected to study the effects of contaminant leakage on biomarkers associated with Atlantic cod (Gadus morhua) reproductive endocrinology and development. Immature cod were caged for 6 weeks at 3 locations, selected to achieve a spatial gradient of contamination, and compared to a reference station. Quantitative transcriptomic, and lipidomic analysis was used to evaluate the effects of the potential complex contaminant mixture on ovarian developmental and endocrine physiology. The number of expressed transcripts, with 0.75 log2-fold differential expression or more, varied among stations and paralleled the severity of contamination. Particularly, significant bioaccumulation of ∑PCB-7, ∑DDTs and ∑PBDEs were observed at station 1, compared to the other station, including the reference station. Respectively 1416, 698 and 719 differentially expressed genes (DEGs), were observed at stations 1, 2 and 3, compared to the reference station, with transcripts belonging to steroid hormone synthesis pathway being significantly upregulation. Transcription factors such as esr2 and ahr2 were increased at all three stations, with highest fold-change at Station 1. MetaCore pathway maps identified affected pathways that are involved in ovarian physiology, where some unique pathways were significantly affected at each station. For the lipidomics, sphingolipid metabolism was particularly affected at station 1, and these effects paralleled the high contaminant burden at this station. Overall, our findings showed a novel and direct association between contaminant burden and ovarian toxicological and endocrine physiological responses in cod caged at the capped Kollevåg waste disposal site.
Collapse
Affiliation(s)
- Essa A Khan
- Department of Biology, Norwegian University of Science and Technology (NTNU), N-7491, Trondheim, Norway
| | - Xiaokang Zhang
- Computational Biology Unit, Department of Informatics, University of Bergen, N-5008, Bergen, Norway
| | - Eileen M Hanna
- Computational Biology Unit, Department of Informatics, University of Bergen, N-5008, Bergen, Norway
| | - Zdenka Bartosova
- Department of Biotechnology and Food Science, NTNU, N-7491, Trondheim, Norway
| | - Fekadu Yadetie
- Department of Biological Sciences, University of Bergen, N-5020, Bergen, Norway
| | - Inge Jonassen
- Computational Biology Unit, Department of Informatics, University of Bergen, N-5008, Bergen, Norway
| | - Anders Goksøyr
- Department of Biological Sciences, University of Bergen, N-5020, Bergen, Norway
| | - Augustine Arukwe
- Department of Biology, Norwegian University of Science and Technology (NTNU), N-7491, Trondheim, Norway.
| |
Collapse
|
9
|
Holme JA, Brinchmann BC, Refsnes M, Låg M, Øvrevik J. Potential role of polycyclic aromatic hydrocarbons as mediators of cardiovascular effects from combustion particles. Environ Health 2019; 18:74. [PMID: 31439044 PMCID: PMC6704565 DOI: 10.1186/s12940-019-0514-2] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 08/09/2019] [Indexed: 05/05/2023]
Abstract
Air pollution is the most important environmental risk factor for disease and premature death, and exposure to combustion particles from vehicles is a major contributor. Human epidemiological studies combined with experimental studies strongly suggest that exposure to combustion particles may enhance the risk of cardiovascular disease (CVD), including atherosclerosis, hypertension, thrombosis and myocardial infarction.In this review we hypothesize that adhered organic chemicals like polycyclic aromatic hydrocarbons (PAHs), contribute to development or exacerbation of CVD from combustion particles exposure. We summarize present knowledge from existing human epidemiological and clinical studies as well as experimental studies in animals and relevant in vitro studies. The available evidence suggests that organic compounds attached to these particles are significant triggers of CVD. Furthermore, their effects seem to be mediated at least in part by the aryl hydrocarbon receptor (AhR). The mechanisms include AhR-induced changes in gene expression as well as formation of reactive oxygen species (ROS) and/or reactive electrophilic metabolites. This is in accordance with a role of PAHs, as they seem to be the major chemical group on combustion particles, which bind AhR and/or is metabolically activated by CYP-enzymes. In some experimental models however, it seems as PAHs may induce an inflammatory atherosclerotic plaque phenotype irrespective of DNA- and/or AhR-ligand binding properties. Thus, various components and several signalling mechanisms/pathways are likely involved in CVD induced by combustion particles.We still need to expand our knowledge about the role of PAHs in CVD and in particular the relative importance of the different PAH species. This warrants further studies as enhanced knowledge on this issue may amend risk assessment of CVD caused by combustion particles and selection of efficient measures to reduce the health effects of particular matters (PM).
Collapse
Affiliation(s)
- Jørn A Holme
- Department of Air Pollution and Noise, Division of Infection Control and Environmental Health, Norwegian Institute of Public Health, PO Box 222, Skøyen, N-0213, Oslo, Norway.
| | - Bendik C Brinchmann
- Department of Air Pollution and Noise, Division of Infection Control and Environmental Health, Norwegian Institute of Public Health, PO Box 222, Skøyen, N-0213, Oslo, Norway
| | - Magne Refsnes
- Department of Air Pollution and Noise, Division of Infection Control and Environmental Health, Norwegian Institute of Public Health, PO Box 222, Skøyen, N-0213, Oslo, Norway
| | - Marit Låg
- Department of Air Pollution and Noise, Division of Infection Control and Environmental Health, Norwegian Institute of Public Health, PO Box 222, Skøyen, N-0213, Oslo, Norway
| | - Johan Øvrevik
- Department of Air Pollution and Noise, Division of Infection Control and Environmental Health, Norwegian Institute of Public Health, PO Box 222, Skøyen, N-0213, Oslo, Norway.
- Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway.
| |
Collapse
|
10
|
Vondráček J, Pivnička J, Machala M. Polycyclic aromatic hydrocarbons and disruption of steroid signaling. CURRENT OPINION IN TOXICOLOGY 2018. [DOI: 10.1016/j.cotox.2018.12.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
11
|
May P, Bremond P, Sauzet C, Piccerelle P, Grimaldi F, Champion S, Villard PH. In Vitro Cocktail Effects of PCB-DL (PCB118) and Bulky PCB (PCB153) with BaP on Adipogenesis and on Expression of Genes Involved in the Establishment of a Pro-Inflammatory State. Int J Mol Sci 2018. [PMID: 29534036 PMCID: PMC5877702 DOI: 10.3390/ijms19030841] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
(1) Objective: Highlight the in vitro effects of 3T3-L1 cell exposure to polychlorinated biphenyls (PCB118 and 153) or benzo(a)pyrene (BaP) alone or as a cocktail on adipogenesis (ADG) by focusing on changes in lipid metabolism and inflammatory-related genes expression (INFG) and ADG-related genes expression (ADGG); (2) Results: Treatment from the early stage of cell differentiation by BaP alone or in combination with PCBs decreased the expression of some of the ADGG (PPARγGlut-4, FAS, Lipin-1a, Leptin, and Adiponectin). BaP enhanced the INFG, especially MCP-1 and TNFα. Co-exposure to BaP and PCB153 showed a synergistic effect on TNFα and IL6 expression. Treatment with BaP and PCBs during only the maturation period up-regulated the INFG (IL6, TNFα, CXCL-10 & MCP-1). PCB118 alone also enhanced TNFα, CXCL-10, and PAI-1 expression. The change in MCP-1 protein expression was in agreement with that of the gene. Finally, the BaP-induced up-regulation of the xenobiotic responsive element (XRE)-controlled luciferase activity was impaired by PCB153 but not by PCB118; (3) Conclusion: BaP and PCBs down-regulate a part of ADGG and enhance INFG. The direct regulatory effect of PCBs on both ADGG and INFG is usually rather lower than that of BaP and synergistic or antagonistic cocktail effects are clearly observed.
Collapse
Affiliation(s)
- Phealay May
- Aix Marseille Univ, Univ Avignon, CNRS, IRD, IMBE, Faculté de Pharmacie 27 Bd Jean Moulin, 13385 Marseille CEDEX 5, France.
| | - Patricia Bremond
- Aix Marseille Univ, Univ Avignon, CNRS, IRD, IMBE, Faculté de Pharmacie 27 Bd Jean Moulin, 13385 Marseille CEDEX 5, France.
| | - Christophe Sauzet
- Aix Marseille Univ, Univ Avignon, CNRS, IRD, IMBE, Faculté de Pharmacie 27 Bd Jean Moulin, 13385 Marseille CEDEX 5, France.
| | - Philippe Piccerelle
- Aix Marseille Univ, Univ Avignon, CNRS, IRD, IMBE, Faculté de Pharmacie 27 Bd Jean Moulin, 13385 Marseille CEDEX 5, France.
| | - Frédérique Grimaldi
- Aix Marseille Univ, Univ Avignon, CNRS, IRD, IMBE, Faculté de Pharmacie 27 Bd Jean Moulin, 13385 Marseille CEDEX 5, France.
| | - Serge Champion
- Aix Marseille Univ, Univ Avignon, CNRS, IRD, IMBE, Faculté de Pharmacie 27 Bd Jean Moulin, 13385 Marseille CEDEX 5, France.
| | - Pierre-Henri Villard
- Aix Marseille Univ, Univ Avignon, CNRS, IRD, IMBE, Faculté de Pharmacie 27 Bd Jean Moulin, 13385 Marseille CEDEX 5, France.
| |
Collapse
|
12
|
Cigarette Smoking and Adipose Tissue: The Emerging Role in Progression of Atherosclerosis. Mediators Inflamm 2017; 2017:3102737. [PMID: 29445255 PMCID: PMC5763059 DOI: 10.1155/2017/3102737] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 11/08/2017] [Accepted: 11/27/2017] [Indexed: 12/14/2022] Open
Abstract
Smoking is an established risk factor for atherosclerosis through several underlying pathways. Moreover, in the development of atherosclerotic plaque formation, obesity, defined as excess fat mass accumulation, also plays a vital role in dyslipidemia and insulin resistance. Substantial evidence shows that cigarette smoking induces multiple pathological effects in adipose tissue, such as differentiation of adipocytes, lipolysis, and secretion properties in adipose tissue. Therefore, there is an emerging speculation in which adipose tissue abnormality induced by smoking or nicotine is likely to accelerate the progression of atherosclerosis. Herein, this review aims to investigate the possible interplay between smoking and adipose tissue dysfunction in the development of atherosclerosis.
Collapse
|
13
|
Marinković N, Pasalić D, Potocki S. Polymorphisms of genes involved in polycyclic aromatic hydrocarbons' biotransformation and atherosclerosis. Biochem Med (Zagreb) 2013; 23:255-65. [PMID: 24266295 PMCID: PMC3900076 DOI: 10.11613/bm.2013.032] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are among the most prevalent environmental pollutants and result from the incomplete combustion of hydrocarbons (coal and gasoline, fossil fuel combustion, byproducts of industrial processing, natural emission, cigarette smoking, etc.). The first phase of xenobiotic biotransformation in the PAH metabolism includes activities of cytochrome P450 from the CYP1 family and microsomal epoxide hydrolase. The products of this biotransformation are reactive oxygen species that are transformed in the second phase through the formation of conjugates with glutathione, glucuronate or sulphates. PAH exposure may lead to PAH-DNA adduct formation or induce an inflammatory atherosclerotic plaque phenotype. Several genetic polymorphisms of genes encoded for enzymes involved in PAH biotransformation have been proven to lead to the development of diseases. Enzyme CYP P450 1A1, which is encoded by the CYP1A1 gene, is vital in the monooxygenation of lipofilic substrates, while GSTM1 and GSTT1 are the most abundant isophorms that conjugate and neutralize oxygen products. Some single nucleotide polymorphisms of the CYP1A1 gene as well as the deletion polymorphisms of GSTT1 and GSTM1 may alter the final specific cellular inflammatory respond. Occupational exposure or conditions from the living environment can contribute to the production of PAH metabolites with adverse effects on human health. The aim of this study was to obtain data on biotransformation and atherosclerosis, as well as data on the gene polymorphisms involved in biotransformation, in order to better study gene expression and further elucidate the interaction between genes and the environment.
Collapse
|
14
|
Zeliger HI. Lipophilic chemical exposure as a cause of cardiovascular disease. Interdiscip Toxicol 2013; 6:55-62. [PMID: 24179429 PMCID: PMC3798856 DOI: 10.2478/intox-2013-0010] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2013] [Revised: 06/18/2013] [Accepted: 06/24/2013] [Indexed: 01/06/2023] Open
Abstract
Environmental chemical exposure has been linked to numerous diseases in humans. These diseases include cancers; neurological and neurodegenerative diseases; metabolic disorders including type 2 diabetes, metabolic syndrome and obesity; reproductive and developmental disorders; and endocrine disorders. Many studies have associated the link between exposures to environmental chemicals and cardiovascular disease (CVD). These chemicals include persistent organic pollutants (POPs); the plastic exudates bisphenol A and phthalates; low molecular weight hydrocarbons (LMWHCs); and poly nuclear aromatic hydrocarbons (PAHs). Here it is reported that though the chemicals reported on differ widely in chemical properties and known points of attack in humans, a common link exists between them. All are lipophilic species that are found in serum. Environmentally induced CVD is related to total lipophilic chemical load in the blood. Lipophiles serve to promote the absorption of otherwise not absorbed toxic hydrophilic species that promote CVD.
Collapse
Affiliation(s)
- Harold I Zeliger
- Zeliger Chemical, Toxicological and Environmental Research, West Charlton, New York, USA
| |
Collapse
|
15
|
Kerley-Hamilton JS, Trask HW, Ridley CJA, Dufour E, Lesseur C, Ringelberg CS, Moodie KL, Shipman SL, Korc M, Gui J, Shworak NW, Tomlinson CR. Inherent and benzo[a]pyrene-induced differential aryl hydrocarbon receptor signaling greatly affects life span, atherosclerosis, cardiac gene expression, and body and heart growth in mice. Toxicol Sci 2012; 126:391-404. [PMID: 22228805 DOI: 10.1093/toxsci/kfs002] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Little is known of the environmental factors that initiate and promote disease. The aryl hydrocarbon receptor (AHR) is a key regulator of xenobiotic metabolism and plays a major role in gene/environment interactions. The AHR has also been demonstrated to carry out critical functions in development and disease. A qualitative investigation into the contribution by the AHR when stimulated to different levels of activity was undertaken to determine whether AHR-regulated gene/environment interactions are an underlying cause of cardiovascular disease. We used two congenic mouse models differing at the Ahr gene, which encodes AHRs with a 10-fold difference in signaling potencies. Benzo[a]pyrene (BaP), a pervasive environmental toxicant, atherogen, and potent agonist for the AHR, was used as the environmental agent for AHR activation. We tested the hypothesis that activation of the AHR of different signaling potencies by BaP would have differential effects on the physiology and pathology of the mouse cardiovascular system. We found that differential AHR signaling from an exposure to BaP caused lethality in mice with the low-affinity AHR, altered the growth rates of the body and several organs, induced atherosclerosis to a greater extent in mice with the high-affinity AHR, and had a huge impact on gene expression of the aorta. Our studies also demonstrated an endogenous role for AHR signaling in regulating heart size. We report a gene/environment interaction linking differential AHR signaling in the mouse to altered aorta gene expression profiles, changes in body and organ growth rates, and atherosclerosis.
Collapse
Affiliation(s)
- Joanna S Kerley-Hamilton
- Norris Cotton Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire 03756, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Shibahara N, Masunaga Y, Iwano S, Yamazaki H, Kiyotani K, Kamataki T. Human Cytochrome P450 1A1 Is a Novel Target Gene of Liver X Receptor α. Drug Metab Pharmacokinet 2011; 26:451-7. [DOI: 10.2133/dmpk.dmpk-11-rg-030] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
17
|
Xu Y, Zhang M, Wang Y, Kadambi P, Dave V, Lu LJ, Whitsett JA. A systems approach to mapping transcriptional networks controlling surfactant homeostasis. BMC Genomics 2010; 11:451. [PMID: 20659319 PMCID: PMC3091648 DOI: 10.1186/1471-2164-11-451] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2009] [Accepted: 07/26/2010] [Indexed: 12/15/2022] Open
Abstract
Background Pulmonary surfactant is required for lung function at birth and throughout life. Lung lipid and surfactant homeostasis requires regulation among multi-tiered processes, coordinating the synthesis of surfactant proteins and lipids, their assembly, trafficking, and storage in type II cells of the lung. The mechanisms regulating these interrelated processes are largely unknown. Results We integrated mRNA microarray data with array independent knowledge using Gene Ontology (GO) similarity analysis, promoter motif searching, protein interaction and literature mining to elucidate genetic networks regulating lipid related biological processes in lung. A Transcription factor (TF) - target gene (TG) similarity matrix was generated by integrating data from different analytic methods. A scoring function was built to rank the likely TF-TG pairs. Using this strategy, we identified and verified critical components of a transcriptional network directing lipogenesis, lipid trafficking and surfactant homeostasis in the mouse lung. Conclusions Within the transcriptional network, SREBP, CEBPA, FOXA2, ETSF, GATA6 and IRF1 were identified as regulatory hubs displaying high connectivity. SREBP, FOXA2 and CEBPA together form a common core regulatory module that controls surfactant lipid homeostasis. The core module cooperates with other factors to regulate lipid metabolism and transport, cell growth and development, cell death and cell mediated immune response. Coordinated interactions of the TFs influence surfactant homeostasis and regulate lung function at birth.
Collapse
Affiliation(s)
- Yan Xu
- Division of Pulmonary Biology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| | | | | | | | | | | | | |
Collapse
|
18
|
Iwano S, Ichikawa M, Takizawa S, Hashimoto H, Miyamoto Y. Identification of AhR-regulated genes involved in PAH-induced immunotoxicity using a highly-sensitive DNA chip, 3D-Gene Human Immunity and Metabolic Syndrome 9k. Toxicol In Vitro 2009; 24:85-91. [PMID: 19737606 DOI: 10.1016/j.tiv.2009.08.030] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2009] [Revised: 08/08/2009] [Accepted: 08/28/2009] [Indexed: 12/17/2022]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous environmental contaminants with various toxic effects including immune suppression. However, the molecular mechanism of their toxicity has not been fully clarified. The purpose of this study was to identify novel aryl hydrocarbon receptor (AhR)-regulated genes involved in PAH-induced immunotoxicity using a highly-sensitive DNA chip, 3D-Gene(TM) Human Immunity & Metabolic Syndrome 9k. Leucine-rich repeat-containing protein 25, glucosaminyl (N-acetyl) transferase 3 (GCNT3), thyroxine-binding globulin, aldehyde dehydrogenase 8A1, diacylglycerol O-acyltransferase homolog 2 (DGAT2), haptoglobin, neuron navigator 2 isoform 1, hemopexin and bile acid receptor were found to be up- or down-regulated by PAHs via AhR. Among these genes, GCTN3 and DGAT2 were responsible for immune responses. Therefore, disruption of the expression of these genes via AhR may be one of the causes of the immunotoxicity of PAHs.
Collapse
Affiliation(s)
- Shunsuke Iwano
- Toxicology and Pharmacokinetics Laboratories, Pharmaceutical Research Laboratories, Toray Industries Inc., Kamakura, Kanagawa, Japan
| | | | | | | | | |
Collapse
|
19
|
Sato S, Shirakawa H, Tomita S, Ohsaki Y, Haketa K, Tooi O, Santo N, Tohkin M, Furukawa Y, Gonzalez FJ, Komai M. Low-dose dioxins alter gene expression related to cholesterol biosynthesis, lipogenesis, and glucose metabolism through the aryl hydrocarbon receptor-mediated pathway in mouse liver. Toxicol Appl Pharmacol 2008; 229:10-9. [DOI: 10.1016/j.taap.2007.12.029] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2007] [Revised: 12/25/2007] [Accepted: 12/28/2007] [Indexed: 02/07/2023]
|
20
|
Ryan EP, Holz JD, Mulcahey M, Sheu TJ, Gasiewicz TA, Puzas JE. Environmental toxicants may modulate osteoblast differentiation by a mechanism involving the aryl hydrocarbon receptor. J Bone Miner Res 2007; 22:1571-80. [PMID: 17576166 DOI: 10.1359/jbmr.070615] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
UNLABELLED The AHR mediates many of the toxicological effects of aromatic hydrocarbons. We show that AHR expression in osteoblasts parallels the induction of early bone-specific genes involved in maturation. The AHR may not only mediate the effects of toxicants, but with an as yet unidentified ligand, be involved in the differentiation pathways of osteoblasts. INTRODUCTION Metabolic bone diseases arise as a result of an imbalance in bone cell activities. Recent evidence suggests that environmental toxicants may be contributing factors altering these activities. One candidate molecule implicated in mediating the toxic effects of exogenous compounds is the aryl hydrocarbon receptor (AHR). MATERIALS AND METHODS Osteoblasts isolated from neonatal rat calvaria were analyzed for AHR expression by quantitative PCR, Western blot, and immunohistochemistry. In addition, AHR activation was evaluated by electromobility gel shift assay and fluorescence microscopy. RESULTS Our findings showed AHR expression in mature osteoblasts in vivo. The pattern of AHR expression peaks after alkaline phosphatase and before induction of osteocalcin. We first show that AHR functions as a transactivating receptor in osteoblasts, as evidenced by its ligand-dependent migration to the nucleus and its association with known dioxin response elements. AHR activation by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) mediated the induction of cytochrome p450 1A1 and cycloxygenase-2 protein levels. This effect could be inhibited by the potent AHR antagonist, 3'4 methoxynitroflavone. Furthermore, lead treatment of osteoblasts upregulates the expression of AHR mRNA and protein levels, supporting a novel mechanism whereby lead in the skeleton may increase the sensitivity of bone cells to toxicant exposure. CONCLUSIONS These data imply that the AHR mediates the effects of aromatic toxicants on bone and that AHR expression is regulated during osteoblast differentiation.
Collapse
Affiliation(s)
- Elizabeth P Ryan
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642, USA
| | | | | | | | | | | |
Collapse
|
21
|
Abstract
This paper introduces one of our projects performed at Hokkaido University. During the course of pharmacokinetic studies of SM-12502, which was under development as an anti-platelet-activating factor agent, we found three individuals who showed a slow metabolic phenotype in its pharmacokinetics. Analyzing the genes for CYP2A6 from the three, we discovered that they had the whole CYP2A6 gene deletion (CYP2A6*4C). Genetically engineered Salmonella YG7108 cells expressing human P450 were established to compare the mutagen-producing capacity of the P450 enzymes for various N-nitrosamines. We found that CYP2A6 was involved in the metabolic activation of N-nitrosamines with relatively bulky alkyl chains such as a tobacco-specific nitrosamine, 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK), which has been known to cause lung tumors in rodents. Thus, to examine the hypothesis that individuals possessing the CYP2A6*4C have a reduced risk of cancer due to the lack of the metabolic activation of certain carcinogens in tobacco smoke, a case-control study was performed. The results clearly indicated a significant association between the CYP2A6 genotype and lung cancer risk in smokers. In contrast, there was no significant relationship between them in nonsmokers. In addition, our results showed that the reduced risk of cancer was caused by the reduced activity of CYP2A6. Thus it was expected that the inhibition of the enzyme would result in a reduced cancer risk caused by smoking. The results of experiments using mice which were treated with NNK, a carcinogenic nitrosamine contained in tobacco smoke, together with 8-methoxypsolaren, a strong inhibitor of CYP2A6, indicated that the inhibition of CYP2A6 completely abolished the occurrence of adenoma.
Collapse
Affiliation(s)
- Tetsuya Kamataki
- Laboratory of Drug Metabolism, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo City, Japan.
| |
Collapse
|
22
|
Korashy HM, El-Kadi AOS. The role of aryl hydrocarbon receptor in the pathogenesis of cardiovascular diseases. Drug Metab Rev 2006; 38:411-50. [PMID: 16877260 DOI: 10.1080/03602530600632063] [Citation(s) in RCA: 131] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Numerous experimental and epidemiological studies have demonstrated that polycyclic aromatic hydrocarbons (PAHs), which are major constituents of cigarette tobacco tar, are strongly involved in the pathogenesis of the cardiovascular diseases (CVDs). Knowing that PAH-induced toxicities are mediated by the activation of a cytosolic receptor, aryl hydrocarbon receptor (AhR), which regulates the expression of a group of xenobiotic metabolizing enzymes (XMEs) such as CYP1A1, CYP1A2, CYP1B1, NQO1, and GSTA1, suggests a direct link between AhR-regulated XMEs and CVDs. Therefore, identifying the localization and expression of the AhR and its regulated XMEs in the cardiovascular system (CVS) is of major importance in understanding their physiological and pathological roles. Generally, it was believed that the levels of AhR-regulated XMEs are lower in the CVS than in the liver; however, it has been shown that similar or even higher levels of expression are demonstrated in the CVS in a tissue- and species-specific manner. Moreover, most, if not all, AhR-regulated XMEs are differentially expressed in most of the CVS, particularly in the endothelium cells, aorta, coronary arteries, and ventricles. Although the exact mechanisms of PAH-mediated cardiotoxicity are not fully understood, several mechanisms are proposed. Generally, induction of CYP1A1, CYP1A2, and CYP1B1 is considered cardiotoxic through generating reactive oxygen species (ROS), DNA adducts, and endogenous arachidonic acid metabolites. However the cardioprotective properties of NQO1 and GSTA1 are mainly attributed to the antioxidant effect by decreasing ROS and increasing the levels of endogenous antioxidants. This review provides a clear understanding of the role of AhR and its regulated XMEs in the pathogenesis of CVDs, in which imbalance in the expression of cardioprotective and cardiotoxic XMEs is the main determinant of PAH-mediated cardiotoxicity.
Collapse
Affiliation(s)
- Hesham M Korashy
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada
| | | |
Collapse
|
23
|
Rifkind AB. CYP1A in TCDD toxicity and in physiology-with particular reference to CYP dependent arachidonic acid metabolism and other endogenous substrates. Drug Metab Rev 2006; 38:291-335. [PMID: 16684662 DOI: 10.1080/03602530600570107] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Toxicologic and physiologic roles of CYP1A enzyme induction, the major biochemical effect of aryl hydrocarbon receptor activation by TCDD and other receptor ligands, are unknown. Evidence is presented that CYP1A exerts biologic effects via metabolism of endogenous substrates (i.e., arachidonic acid, other eicosanoids, estrogens, bilirubin, and melatonin), production of reactive oxygen, and effects on K(+) and Ca(2+) channels. These interrelated pathways may connect CYP1A induction to TCDD toxicities, including cardiotoxicity, vascular dysfunction, and wasting. They may also underlie homeostatic roles for CYP1A, especially when transiently induced by common chemical exposures and environmental conditions (i.e., tryptophan photoproducts, dietary indoles, and changes in oxygen tension).
Collapse
Affiliation(s)
- Arleen B Rifkind
- Department of Pharmacology, Weill Medical College of Cornell University, New York, NY 10021, USA.
| |
Collapse
|
24
|
Bhattacharya A, Banu J, Rahman M, Causey J, Fernandes G. Biological effects of conjugated linoleic acids in health and disease. J Nutr Biochem 2006; 17:789-810. [PMID: 16650752 DOI: 10.1016/j.jnutbio.2006.02.009] [Citation(s) in RCA: 418] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2005] [Revised: 02/21/2006] [Accepted: 02/24/2006] [Indexed: 01/20/2023]
Abstract
Conjugated linoleic acid (CLA) is a mixture of positional and geometric isomers of octadecadienoic acid [linoleic acid (LA), 18:2n-6] commonly found in beef, lamb and dairy products. The most abundant isomer of CLA in nature is the cis-9, trans-11 (c9t11) isomer. Commercially available CLA is usually a 1:1 mixture of c9t11 and trans-10, cis-12 (t10c12) isomers with other isomers as minor components. Conjugated LA isomer mixture and c9t11 and t10c12 isomers alone have been attributed to provide several health benefits that are largely based on animal and in vitro studies. Conjugated LA has been attributed many beneficial effects in prevention of atherosclerosis, different types of cancer, hypertension and also known to improve immune function. More recent literature with availability of purified c9t11 and t10c12 isomers suggests that t10c12 is the sole isomer involved in antiadipogenic role of CLA. Other studies in animals and cell lines suggest that the two isomers may act similarly or antagonistically to alter cellular function and metabolism, and may also act through different signaling pathways. The effect of CLA and individual isomers shows considerable variation between different strains (BALB/C mice vs. C57BL/6 mice) and species (e.g., rats vs. mice). The dramatic effects seen in animal studies have not been reflected in some clinical studies. This review comprehensively discusses the recent studies on the effects of CLA and individual isomers on body composition, cardiovascular disease, bone health, insulin resistance, mediators of inflammatory response and different types of cancer, obtained from both in vitro and animal studies. This review also discusses the latest available information from clinical studies in these areas of research.
Collapse
Affiliation(s)
- Arunabh Bhattacharya
- Division of Clinical Immunology and Rheumatology, Department of Medicine, University of Texas Health Science Center, San Antonio, TX 78229-3900, USA
| | | | | | | | | |
Collapse
|
25
|
van Grevenynghe J, Monteiro P, Gilot D, Fest T, Fardel O. Human endothelial progenitors constitute targets for environmental atherogenic polycyclic aromatic hydrocarbons. Biochem Biophys Res Commun 2006; 341:763-9. [PMID: 16438934 DOI: 10.1016/j.bbrc.2006.01.028] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2006] [Accepted: 01/10/2006] [Indexed: 01/05/2023]
Abstract
Cigarette smoking, a well-known cardiovascular risk factor, has been recently demonstrated to decrease circulating endothelial progenitor cell (EPC) number. Owing to the fact that polycyclic aromatic hydrocarbons (PAHs) such as benzo(a)pyrene (BP) constitute major components of tobacco smoke, the present study was designed to analyze the effects of these chemicals on the development of human EPC cultures from peripheral blood mononuclear cells. Treatment by BP markedly impaired EPC number and EPC colonies in a dose-dependent manner. Such deleterious effects were abrogated using 3'-methoxy-4'-nitroflavone, a pure antagonist of the aryl hydrocarbon receptor, highlighting the involvement of this receptor in PAH toxicity towards EPCs. Additional events such as cytochrome P-450-dependent PAH metabolism and formation of PAH-related adducts to cellular macromolecules were also required. Overall, these data established EPCs as new cellular targets of PAHs, which may contribute to the deleterious cardiovascular effects of environmental substances containing these chemicals, especially tobacco smoke.
Collapse
|
26
|
Iwano S, Shibahara N, Saito T, Kamataki T. Activation of p53 as a causal step for atherosclerosis induced by polycyclic aromatic hydrocarbons. FEBS Lett 2006; 580:890-3. [PMID: 16427050 DOI: 10.1016/j.febslet.2006.01.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2005] [Revised: 01/02/2006] [Accepted: 01/02/2006] [Indexed: 11/26/2022]
Abstract
This study was performed to prove our hypothesis that the metabolite(s) of polycyclic aromatic hydrocarbons (PAHs) caused the activation or phosphorylation of p53 via DNA damage to suppress the liver X receptor (LXR)-mediated signal transductions as a probably more direct mechanism. We found that LXR-mediated trans-activation was inhibited by 3-methylchoranthrene (MC) and doxorubicin (Dox) in HepG2 cells carrying wild-type p53, but not in Hep3B cells possessing mutant p53. The exogenous expression of wild-type p53 suppressed the LXR-mediated trans-activation in Hep3B cells. The expression of mRNA for ATP binding cassette A1 was suppressed by MC and Dox in HepG2 cells. The protein expression of retinoid X receptor (RXR), a partner of LXR to form a heterodimer, was suppressed by MC and Dox in HepG2 cells.
Collapse
Affiliation(s)
- Shunsuke Iwano
- Laboratory of Drug Metabolism, Graduate School of Pharmaceutical Sciences, Hokkaido University, N12W6, Sapporo, Hokkaido 060-0812, Japan
| | | | | | | |
Collapse
|
27
|
Staal YCM, van Herwijnen MHM, van Schooten FJ, van Delft JHM. Modulation of gene expression and DNA adduct formation in HepG2 cells by polycyclic aromatic hydrocarbons with different carcinogenic potencies. Carcinogenesis 2005; 27:646-55. [PMID: 16269432 DOI: 10.1093/carcin/bgi255] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Polycyclic aromatic hydrocarbons (PAHs) can occur in relatively high concentrations in the air, and many PAHs are known or suspected carcinogens. In order to better understand differences in carcinogenic potency between PAHs, we investigated modulation of gene expression in human HepG2 cells after 6 h incubation with varying doses of benzo[a]pyrene (B[a]P), benzo[b]fluoranthene (B[b]F), fluoranthene (FA), dibenzo[a,h]anthracene (DB[a,h]A), 1-methylphenanthrene (1-MPA) or dibenzo[a,l]pyrene (DB[a,l]P), by using cDNA microarrays containing 600 toxicologically relevant genes. Furthermore, DNA adduct levels induced by the compounds were assessed with (32)P-post-labeling, and carcinogenic potency was determined by literature study. All tested PAHs, except 1-MPA, induced gene expression changes in HepG2 cells, although generally no dose-response relationship could be detected. Clustering and principal component analysis showed that gene expression changes were compound specific, since for each compound all concentrations grouped together. Furthermore, it showed that the six PAHs can be divided into three groups, first FA and 1-MPA, second B[a]P, B[b]F and DB[a,h]A, and third DB[a,l]P. This grouping corresponds with the carcinogenic potencies of the individual compounds. Many of the modulated genes are involved in biological pathways like apoptosis, cholesterol biosynthesis and fatty acid synthesis. The order of DNA adduct levels induced by the PAHs was: B[a]P >> DB[a,l]P > B[b]F > DB[a,h]A > 1-MPA >/= FA. When comparing the expression change of individual genes with DNA adduct levels, carcinogenic potency or Ah-receptor antagonicity (the last two were taken from literature), several highly correlated genes were found, of which CYP1A1, PRKCA, SLC22A3, NFKB1A, CYP1A2 and CYP2D6 correlated with all parameters. Our data indicate that discrimination of high and low carcinogenic PAHs by gene expression profiling is feasible. Also, the carcinogenic PAHs induce several pathways that were not affected by the least carcinogenic PAHs.
Collapse
Affiliation(s)
- Yvonne C M Staal
- Department of Health Risk Analysis and Toxicology, Maastricht University, The Netherlands
| | | | | | | |
Collapse
|
28
|
Iwano S, Asanuma F, Nukaya M, Saito T, Kamataki T. CYP1A1-mediated mechanism for atherosclerosis induced by polycyclic aromatic hydrocarbons. Biochem Biophys Res Commun 2005; 337:708-12. [PMID: 16202979 DOI: 10.1016/j.bbrc.2005.09.109] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2005] [Accepted: 09/18/2005] [Indexed: 11/18/2022]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) have been known to induce atherosclerosis. It has been reported that the metabolic activation of PAHs by cytochrome P450 (CYP) is an important step for PAH-induced atherosclerosis. We recently reported that PAHs down-regulated the liver X receptor (LXR) alpha-regulated genes via aryl hydrocarbon receptor (AHR) as one of the causes responsible for atherosclerosis induced by PAHs. Thus, the aim of this study was to clarify the role of CYP1A1 in the suppression of LXR-mediated signal transductions by 3-methlychoranthrene (MC), one of the PAHs. We found that LXR-mediated transactivation was inhibited by the PAH, but not by halogenated aromatic hydrocarbon, which is scarcely metabolized by CYP1A1. The repression of LXR-mediated signal transductions by MC was restored by co-treatment of HepG2 cells with a CYP1A1 inhibitor, alpha-naphthoflavone, and by the transfection of short interference RNA for CYP1A1. Based on these lines of evidence, we propose that the metabolic activation of PAHs by CYP1A1, but not the activation of AHR by PAHs, is a direct mechanism for atherosclerosis via the suppression of LXR-mediated signal transductions.
Collapse
Affiliation(s)
- Shunsuke Iwano
- Laboratory of Drug Metabolism, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | | | | | | | | |
Collapse
|