1
|
Wang X, Tong Y, Zhang J, Khan N, Zhang K, Bai H, Zhang Q, Chen Y. Neuroinflammation changes with periodontal inflammation status during periodontitis in wild-type mice. Oral Dis 2020; 27:1001-1011. [PMID: 32815656 DOI: 10.1111/odi.13618] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 08/09/2020] [Accepted: 08/12/2020] [Indexed: 12/20/2022]
Abstract
OBJECTIVE To investigate neuroinflammation under different periodontal status. MATERIALS AND METHODS Experimental periodontitis was induced by molar ligation (Lig group) or periodontal injection of lipopolysaccharide (LPS, Lps group). Periodontal status was assessed by alveolar bone resorption and periodontal inflammation. Micro-computed tomography and haematoxylin-eosin staining were performed to assess alveolar bone resorption and periodontal inflammation, respectively. Neuroinflammation was assessed by glial cell proliferation and proinflammatory factor expression. Microgliosis was determined by immunofluorescence. Astrogliosis was determined by immunohistochemistry. Expressions of tumour necrosis factor-alpha (TNF-α) and interleukin (IL)-1β were assessed by enzyme-linked immunosorbent assay. RESULTS Microgliosis and astrogliosis in the Lig group were notable with molar ligation for 2 weeks and 4 weeks (p < .05), but were only slightly different similar from the control group by week 12. Microgliosis and astrogliosis in the Lps group were significant with LPS injection for 4 and 8 weeks (p < .05). The groups displayed a positive correlation between the degree of periodontal inflammation and the number of glial cells (p < .05). Expressions of IL-1β and TNF-α in the Lps group were significantly increased with LPS injection for 8 weeks (p < .05). In the Lig group, only TNF-α was highly expressed with molar ligation for 12 weeks (p < .05). CONCLUSION Both models demonstrated that the inflammatory response in the hippocampus of mice can change during periodontitis depending on the periodontal inflammation status.
Collapse
Affiliation(s)
- Xu Wang
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China.,Department of Periodontology, College of Stomatology, Xi'an Jiaotong University, Xi'an, China.,Xi'an Jiaotong University, Xi'an, China
| | - Yuxin Tong
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China.,Department of Periodontology, College of Stomatology, Xi'an Jiaotong University, Xi'an, China.,Xi'an Jiaotong University, Xi'an, China
| | - Jiayu Zhang
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China.,Department of Periodontology, College of Stomatology, Xi'an Jiaotong University, Xi'an, China.,Xi'an Jiaotong University, Xi'an, China
| | - Nazia Khan
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China.,Department of Periodontology, College of Stomatology, Xi'an Jiaotong University, Xi'an, China.,Xi'an Jiaotong University, Xi'an, China
| | - Kaili Zhang
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China.,Department of Periodontology, College of Stomatology, Xi'an Jiaotong University, Xi'an, China.,Xi'an Jiaotong University, Xi'an, China
| | - Huihui Bai
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China.,Department of Periodontology, College of Stomatology, Xi'an Jiaotong University, Xi'an, China.,Xi'an Jiaotong University, Xi'an, China
| | | | - Yue Chen
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China.,Department of Periodontology, College of Stomatology, Xi'an Jiaotong University, Xi'an, China.,Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
2
|
RTA 408 Inhibits Interleukin-1β-Induced MMP-9 Expression via Suppressing Protein Kinase-Dependent NF-κB and AP-1 Activation in Rat Brain Astrocytes. Int J Mol Sci 2019; 20:ijms20112826. [PMID: 31185608 PMCID: PMC6600142 DOI: 10.3390/ijms20112826] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 06/03/2019] [Accepted: 06/07/2019] [Indexed: 12/20/2022] Open
Abstract
Neuroinflammation is characterized by the elevated expression of various inflammatory proteins, including matrix metalloproteinases (MMPs), induced by various pro-inflammatory mediators, which play a critical role in neurodegenerative disorders. Interleukin-1β (IL-1β) has been shown to induce the upregulation of MMP-9 through nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (NOX)-reactive oxygen species (ROS)-dependent signaling pathways. N-(2-cyano-3,12-dioxo-28-noroleana-1,9(11)-dien-17-yl)-2-2-difluoropropanamide (RTA 408), a novel synthetic triterpenoid, has been shown to possess anti-oxidant and anti-inflammatory properties in various types of cells. Here, we evaluated the effects of RTA 408 on IL-1β-induced inflammatory responses by suppressing MMP-9 expression in a rat brain astrocyte (RBA-1) line. IL-1β-induced MMP-9 protein and mRNA expression, and promoter activity were attenuated by RTA 408. The increased level of ROS generation in RBA-1 cells exposed to IL-1β was attenuated by RTA 408, as determined by using 2′,7′-dichlorodihydrofluorescein diacetate (DCFH-DA) and CellROX. In addition, the inhibitory effects of RTA 408 on MMP-9 expression resulted from the suppression of the IL-1β-stimulated activation of Pyk2 (proline-rich tyrosine kinase), platelet-derived growth factor receptor β (PDGFRβ), Akt, ROS, and mitogen-activated protein kinases (MAPKs). Pretreatment with RTA 408 attenuated the IL-1β-induced c-Jun phosphorylation, mRNA expression, and promoter activity. IL-1β-stimulated nuclear factor-κB (NF-κB) p65 phosphorylation, translocation, and promoter activity were also attenuated by RTA 408. Furthermore, IL-1β-induced glial fibrillary acidic protein (GFAP) protein and mRNA expression, and cell migration were attenuated by pretreatment with RTA 408. These results provide new insights into the mechanisms by which RTA 408 attenuates IL-1β-mediated inflammatory responses and exerts beneficial effects for the management of brain diseases.
Collapse
|
3
|
Ilievski V, Zuchowska PK, Green SJ, Toth PT, Ragozzino ME, Le K, Aljewari HW, O’Brien-Simpson NM, Reynolds EC, Watanabe K. Chronic oral application of a periodontal pathogen results in brain inflammation, neurodegeneration and amyloid beta production in wild type mice. PLoS One 2018; 13:e0204941. [PMID: 30281647 PMCID: PMC6169940 DOI: 10.1371/journal.pone.0204941] [Citation(s) in RCA: 227] [Impact Index Per Article: 37.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 09/16/2018] [Indexed: 01/08/2023] Open
Abstract
Background The results from cross sectional and longitudinal studies show that periodontitis is closely associated with cognitive impairment (CI) and Alzhemer’s Disease (AD). Further, studies using animal model of periodontitis and human post-mortem brain tissues from subjects with AD strongly suggest that a gram-negative periodontal pathogen, Porphyromonas gingivalis (Pg) and/or its product gingipain is/are translocated to the brain. However, neuropathology resulting from Pg oral application is not known. In this work, we tested the hypothesis that repeated exposure of wild type C57BL/6 mice to orally administered Pg results in neuroinflammation, neurodegeneration, microgliosis, astrogliosis and formation of intra- and extracellular amyloid plaque and neurofibrillary tangles (NFTs) which are pathognomonic signs of AD. Methods Experimental chronic periodontitis was induced in ten wild type 8-week old C57BL/6 WT mice by repeated oral application (MWF/week) of Pg/gingipain for 22 weeks (experimental group). Another 10 wild type 8-week old C57BL/6 mice received vehicle alone (control group) MWF per week for 22 weeks. Brain tissues were collected and the presence of Pg/gingipain was determined by immunofluorescence (IF) microscopy, confocal microscopy, and quantitative PCR (qPCR). The hippocampi were examined for the signs of neuropathology related to AD: TNFα, IL1β, and IL6 expression (neuroinflammation), NeuN and Fluoro Jade C staining (neurodegeneration) and amyloid beta1-42 (Aβ42) production and phosphorylation of tau protein at Ser396 were assessed by IF and confocal microscopy. Further, gene expression of amyloid precursor protein (APP), beta-site APP cleaving enzyme 1 (BACE1), a disintegrin and metalloproteinase domain-containing protein10 (ADAM10) for α-secretase and presenilin1 (PSEN1) for ɣ-secretase, and NeuN (rbFox3) were determined by RT-qPCR. Microgliosis and astrogliosis were also determined by IF microscopy. Results Pg/gingipain was detected in the hippocampi of mice in the experimental group by immunohistochemistry, confocal microscopy, and qPCR confirming the translocation of orally applied Pg to the brain. Pg/gingipain was localized intra-nuclearly and peri-nuclearly in microglia (Iba1+), astrocytes (GFAP+), neurons (NeuN+) and was evident extracellularly. Significantly greater levels of expression of IL6, TNFα and IL1β were evident in experimental as compared to control group (p<0.01, p<0.00001, p<0.00001 respectively). In addition, microgliosis and astrogliosis were evident in the experimental but not in control group (p <0.01, p<0.0001 respectively). Neurodegeneration was evident in the experimental group based on a fewer number of intact neuronal cells assessed by NeuN positivity and rbFOX3 gene expression, and there was a greater number of degenerating neurons in the hippocampi of experimental mice assessed by Fluoro Jade C positivity. APP and BACE1 gene expression were increased in experimental group compared with control group (p<0.05, p<0.001 respectively). PSEN1 gene expression was higher in experimental than control group but the difference was not statistically significant (p = 0.07). ADAM10 gene expression was significantly decreased in experimental group compared with control group (p<0.01). Extracellular Aβ42 was detected in the parenchyma in the experimental but not in the control group (p< 0.00001). Finally, phospho-Tau (Ser396) protein was detected and NFTs were evident in experimental but not in the control group (p<0.00001). Conclusions This study is the first to show neurodegeneration and the formation of extracellular Aβ42 in young adult WT mice after repeated oral application of Pg. The neuropathological features observed in this study strongly suggest that low grade chronic periodontal pathogen infection can result in the development of neuropathology that is consistent with that of AD.
Collapse
Affiliation(s)
- Vladimir Ilievski
- Department of Periodontics, College of Dentistry, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Paulina K. Zuchowska
- Undergraduate Program, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Stefan J. Green
- Department of Biological Sciences University of Illinois at Chicago, Chicago, Illinois, Unites States of America
| | - Peter T. Toth
- Department of Pharmacology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Michael E. Ragozzino
- Department of Psychology, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Khuong Le
- Undergraduate Program, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Haider W. Aljewari
- Department of Periodontics, College of Dentistry, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | | | - Eric C. Reynolds
- Melbourne Dental School, University of Melbourne, Melbourne, Victoria, Australia
| | - Keiko Watanabe
- Department of Periodontics, College of Dentistry, University of Illinois at Chicago, Chicago, Illinois, United States of America
- * E-mail:
| |
Collapse
|
4
|
León-Flores A, Del Río Estrada PM, Álvarez-García LX, Piten-Isidro E, Reyes-Terán G. Increased levels of soluble co-stimulatory molecule PD-L1 (B7-H1) in the plasma of viraemic HIV-1 + individuals. Immunol Lett 2018; 203:70-79. [PMID: 30236481 DOI: 10.1016/j.imlet.2018.09.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 07/27/2018] [Accepted: 09/11/2018] [Indexed: 12/14/2022]
Abstract
Recent evidence has revealed that PD-L1 is expressed in two functional forms, namely, a membrane-bound form (mPD-L1) and a soluble form (sPD-L1). The identification of the soluble form of PD-L1 represents the discovery of a new potential mechanism for the activation of the PD-1 pathway that may mediate a physiological apoptotic mechanism through a cell-cell signalling-independent pathway and may also favour T cell dysfunction during HIV infection. Since the presence of sPD-L1 has not been well established in the scenario of chronic viral infection, we investigated the presence of sPD-L1 in the plasma of viraemic HIV+ individuals and the potential mechanism that promotes its production. We report the following: 1) the level of the soluble form of PD-L1 is increased in the plasma of viraemic HIV+ individuals, 2) the level of the soluble form of PD-L1 in viraemic HIV+ individuals correlates with markers of microbial product translocation and inflammation, 3) the expression of the membrane-bound form of PD-L1 on conventional dendritic cells from viraemic HIV+ individuals correlates with the levels of soluble PD-L1 and MMP-2, and 4) monocyte-derived dendritic cells not only increase their expression of mPD-L1 and MMP-2 but also produce sPD-L1 after LPS and TNF-α stimulation, as demonstrated by functional in vitro experiments, which provides insight into the potential source of sPD-L1 production.
Collapse
Affiliation(s)
- A León-Flores
- Departamento de Investigación en Enfermedades Infecciosas, Instituto Nacional de Enfermedades Respiratorias, "Ismael Cosío Villegas", Ciudad de Mexico, Mexico
| | - P M Del Río Estrada
- Departamento de Investigación en Enfermedades Infecciosas, Instituto Nacional de Enfermedades Respiratorias, "Ismael Cosío Villegas", Ciudad de Mexico, Mexico.
| | - L X Álvarez-García
- Departamento de Investigación en Enfermedades Infecciosas, Instituto Nacional de Enfermedades Respiratorias, "Ismael Cosío Villegas", Ciudad de Mexico, Mexico
| | - E Piten-Isidro
- Departamento de Investigación en Enfermedades Infecciosas, Instituto Nacional de Enfermedades Respiratorias, "Ismael Cosío Villegas", Ciudad de Mexico, Mexico
| | - G Reyes-Terán
- Departamento de Investigación en Enfermedades Infecciosas, Instituto Nacional de Enfermedades Respiratorias, "Ismael Cosío Villegas", Ciudad de Mexico, Mexico.
| |
Collapse
|
5
|
Sanchez AB, Medders KE, Maung R, Sánchez-Pavón P, Ojeda-Juárez D, Kaul M. CXCL12-induced neurotoxicity critically depends on NMDA receptor-gated and L-type Ca 2+ channels upstream of p38 MAPK. J Neuroinflammation 2016; 13:252. [PMID: 27664068 PMCID: PMC5035480 DOI: 10.1186/s12974-016-0724-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 09/16/2016] [Indexed: 11/25/2022] Open
Abstract
Background The chemokine receptor CXCR4 (CD184) and its natural ligand CXCL12 contribute to many physiological processes, including decisions about cell death and survival in the central nervous system. In addition, CXCR4 is a co-receptor for human immunodeficiency virus (HIV)-1 and mediates the neurotoxicity of the viral envelope protein gp120. However, we previously observed that CXCL12 also causes toxicity in cerebrocortical neurons but the cellular mechanism remained incompletely defined. Methods Primary neuronal-glial cerebrocortical cell cultures from rat were exposed to a neurotoxicity-inducing CXCL12 concentration for different times and the activity of the stress-associated mitogen-activated protein kinase p38 (p38 MAPK) was assessed using an in vitro kinase assay. Neurotoxicity of CXCL12 and cellular localization of p38 MAPK was analyzed by immunofluorescence microscopy. Pharmacological inhibition of NMDA-type glutamate receptor-gated ion channels (NMDAR) of l-type Ca2+ channels was employed during 12- and 24-h exposure to neurotoxic amounts of CXCL12 to study the effects on active p38 MAPK and neuronal survival by Western blotting and microscopy, respectively. Neurotoxicity of CXCL12 was also assessed during pharmacological inhibition of p38 MAPK. Results Here, we show that a neurotoxic amount of CXCL12 triggers a significant increase of endogenous p38 MAPK activity in cerebrocortical cells. Immunofluorescence and Western blotting experiments with mixed neuronal-glial and neuron-depleted glial cerebrocortical cells revealed that the majority of active/phosphorylated p38 MAPK was located in neurons. Blockade of NMDAR-gated ion channels or l-type Ca2+ channels both abrogated an increase of active p38 MAPK and toxicity of CXCL12 in cerebrocortical neurons. Inhibition of l-type Ca2+ channels with nimodipine kept the active kinase at levels not significantly different from baseline while blocking NMDAR with MK-801 strongly reduced phosphorylated p38 MAPK below baseline. Finally, we confirmed that directly blocking p38 MAPK also abrogated neurotoxicity of CXCL12. Conclusions Our findings link CXCL12-induced neuronal death to the regulation of NMDAR-gated ion channels and l-type Ca2+ channels upstream of p38 MAPK activation.
Collapse
Affiliation(s)
- Ana B Sanchez
- Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, Bldg. 10, La Jolla, CA, 92037, USA
| | - Kathryn E Medders
- Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, Bldg. 10, La Jolla, CA, 92037, USA.,Present address: UC San Diego Health, 200 W. Arbor Drive #8765, San Diego, CA, 92103, USA
| | - Ricky Maung
- Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, Bldg. 10, La Jolla, CA, 92037, USA
| | - Paloma Sánchez-Pavón
- Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, Bldg. 10, La Jolla, CA, 92037, USA
| | - Daniel Ojeda-Juárez
- Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, Bldg. 10, La Jolla, CA, 92037, USA
| | - Marcus Kaul
- Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, Bldg. 10, La Jolla, CA, 92037, USA. .,Department of Psychiatry, University of California, San Diego, 9500 Gilman Drive, San Diego, CA, 92093, USA.
| |
Collapse
|
6
|
Borgmann K, Ghorpade A. HIV-1, methamphetamine and astrocytes at neuroinflammatory Crossroads. Front Microbiol 2015; 6:1143. [PMID: 26579077 PMCID: PMC4621459 DOI: 10.3389/fmicb.2015.01143] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 10/05/2015] [Indexed: 12/30/2022] Open
Abstract
As a popular psychostimulant, methamphetamine (METH) use leads to long-lasting, strong euphoric effects. While METH abuse is common in the general population, between 10 and 15% of human immunodeficiency virus-1 (HIV-1) patients report having abused METH. METH exacerbates the severity and onset of HIV-1-associated neurocognitive disorders (HAND) through direct and indirect mechanisms. Repetitive METH use impedes adherence to antiretroviral drug regimens, increasing the likelihood of HIV-1 disease progression toward AIDS. METH exposure also directly affects both innate and adaptive immunity, altering lymphocyte numbers and activity, cytokine signaling, phagocytic function and infiltration through the blood brain barrier. Further, METH triggers the dopamine reward pathway and leads to impaired neuronal activity and direct toxicity. Concurrently, METH and HIV-1 alter the neuroimmune balance and induce neuroinflammation, which modulates a wide range of brain functions including neuronal signaling and activity, glial activation, viral infection, oxidative stress, and excitotoxicity. Pathologically, reactive gliosis is a hallmark of both HIV-1- and METH-associated neuroinflammation. Significant commonality exists in the neurotoxic mechanisms for both METH and HAND; however, the pathways dysregulated in astroglia during METH exposure are less clear. Thus, this review highlights alterations in astrocyte intracellular signaling pathways, gene expression and function during METH and HIV-1 comorbidity, with special emphasis on HAND-associated neuroinflammation. Importantly, this review carefully evaluates interventions targeting astrocytes in HAND and METH as potential novel therapeutic approaches. This comprehensive overview indicates, without a doubt, that during HIV-1 infection and METH abuse, a complex dialog between all neural cells is orchestrated through astrocyte regulated neuroinflammation.
Collapse
Affiliation(s)
- Kathleen Borgmann
- Department of Cell Biology and Immunology, University of North Texas Health Science Center Fort Worth, TX, USA
| | - Anuja Ghorpade
- Department of Cell Biology and Immunology, University of North Texas Health Science Center Fort Worth, TX, USA
| |
Collapse
|
7
|
Nash B, Meucci O. Functions of the chemokine receptor CXCR4 in the central nervous system and its regulation by μ-opioid receptors. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2014; 118:105-28. [PMID: 25175863 PMCID: PMC4369781 DOI: 10.1016/b978-0-12-801284-0.00005-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Activation of the G protein-coupled receptor CXCR4 by its chemokine ligand CXCL12 regulates a number of physiopathological functions in the central nervous system, during development as well as later in life. In addition to the more classical roles of the CXCL12/CXCR4 axis in the recruitment of immune cells or migration and proliferation of neural precursor cells, recent studies suggest that CXCR4 signaling also modulates synaptic function and neuronal survival in the mature brain, through direct and indirect effects on neurons and glia. These effects, which include regulation of glutamate receptors and uptake, and of dendritic spine density, can significantly alter the ability of neurons to face excitotoxic insults. Therefore, they are particularly relevant to neurodegenerative diseases featuring alterations of glutamate neurotransmission, such as HIV-associated neurocognitive disorders. Importantly, CXCR4 signaling can be dysregulated by HIV viral proteins, host HIV-induced factors, and opioids. Potential mechanisms of opioid regulation of CXCR4 include heterologous desensitization, transcriptional regulation and changes in receptor expression levels, opioid-chemokine receptor dimer or heteromer formation, and the newly described modulation by the protein ferritin heavy chain-all leading to inhibition of CXCR4 signaling. After reviewing major effects of chemokines and opioids in the CNS, this chapter discusses chemokine-opioid interactions in neuronal and immune cells, focusing on their potential contribution to HIV-associated neurocognitive disorders.
Collapse
Affiliation(s)
- Bradley Nash
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| | - Olimpia Meucci
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA; Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
8
|
Réaux-Le Goazigo A, Van Steenwinckel J, Rostène W, Mélik Parsadaniantz S. Current status of chemokines in the adult CNS. Prog Neurobiol 2013; 104:67-92. [PMID: 23454481 DOI: 10.1016/j.pneurobio.2013.02.001] [Citation(s) in RCA: 169] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Revised: 02/01/2013] [Accepted: 02/03/2013] [Indexed: 12/13/2022]
Abstract
Chemokines - chemotactic cytokines - are small secreted proteins that attract and activate immune and non-immune cells in vitro and in vivo. It has been suggested that chemokines and their receptors play a role in the central nervous system (CNS), in addition to their well established role in the immune system. We focus here on three chemokines-CXCL12 (C-X-C motif ligand 12), CCL2 (C-C motif ligand 2), and CX3CL1 (C-X-3C motif ligand 1) - and their principal receptors - CXCR4 (C-X-C motif receptor 4), CCR2 (C-C motif receptor 2) and CX3CR1 (C-X-3C motif receptor 1), respectively. We first introduce the classification of chemokines and their G-protein coupled receptors and the main signaling pathways triggered by receptor activation. We then discuss the cellular distribution of CXCL12/CXCR4, CCL2/CCR2 and CX3CL1/CX3CR1 in adult brain and the neurotransmission and neuromodulation effects controlled by these chemokines in the adult CNS. Changes in the expression of CXCL12, CCL2 and CX3CL1 and their respective receptors are also increasingly being implicated in the pathogenesis of CNS disorders, such as Alzheimer's disease, Parkinson's disease, HIV-associated encephalopathy, stroke and multiple sclerosis, and are therefore plausible targets for future pharmacological intervention. The final section thus discusses the role of these chemokines in these pathophysiological states. In conclusion, the role of these chemokines in cellular communication may make it possible: (i) to identify new pathways of neuron-neuron, glia-glia or neuron-glia communications relevant to both normal brain function and neuroinflammatory and neurodegenerative diseases; (ii) to develop new therapeutic approaches for currently untreatable brain diseases.
Collapse
|
9
|
The role of inflammatory processes in Alzheimer's disease. Inflammopharmacology 2012; 20:109-26. [PMID: 22535513 DOI: 10.1007/s10787-012-0130-z] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2011] [Accepted: 03/05/2012] [Indexed: 02/07/2023]
Abstract
It has become increasingly clear that inflammatory processes play a significant role in the pathophysiology of Alzheimer's disease (AD). Neuroinflammation is characterized by the activation of astrocytes and microglia and the release of proinflammatory cytokines and chemokines. Vascular inflammation, mediated largely by the products of endothelial activation, is accompanied by the production and the release of a host of inflammatory factors which contribute to vascular, immune, and neuronal dysfunction. The complex interaction of these processes is still only imperfectly understood, yet as the mechanisms continue to be elucidated, targets for intervention are revealed. Although many of the studies to date on therapeutic or preventative strategies for AD have been narrowly focused on single target therapies, there is accumulating evidence to suggest that the most successful treatment strategy will likely incorporate a sequential, multifactorial approach, addressing direct neuronal support, general cardiovascular health, and interruption of deleterious inflammatory pathways.
Collapse
|
10
|
Bielefeldt-Ohmann H, Smirnova NP, Tolnay AE, Webb BT, Antoniazzi AQ, van Campen H, Hansen TR. Neuro-invasion by a 'Trojan Horse' strategy and vasculopathy during intrauterine flavivirus infection. Int J Exp Pathol 2012; 93:24-33. [PMID: 22264283 DOI: 10.1111/j.1365-2613.2011.00795.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The central nervous system (CNS) is a major target of several important human and animal viral pathogens causing congenital infections. However, despite the importance of neuropathological outcomes, for humans in particular, the pathogenesis, including mode of neuro-invasion, remains unresolved for most congenital virus infections. Using a natural model of congenital infection with an RNA virus, bovine viral diarrhoea virus in pregnant cattle, we sought to delineate the timing and mode of virus neuro-invasion of and spread within the brain of foetuses following experimental respiratory tract infection of the dams at day 75 of pregnancy, a time of maximal risk of tissue pathology without foetal death. Virus antigen was first detected in the foetal brains 14 days postinfection of dams and was initially restricted to amoeboid microglial cells in the periventricular germinal layer. The appearance of these cells was preceded by or concurrent with vasculopathy in the same region. While the affected microvessels were negative for virus antigen, they expressed high levels of the type I interferon-stimulated protein ISG15 and eventually disappeared in parallel with the appearance of microcavitary lesions. Subsequently, the virus spread to neurons and other glial cells. Our findings suggest that the virus enters the CNS via infected microglial precursors, the amoeboid microglial cells, in a 'Trojan horse' mode of invasion and that the microcavitary lesions are associated with loss of periventricular microvasculature, perhaps as a consequence of high, unrestricted induction of interferon-regulated proteins.
Collapse
|
11
|
Zhang D, Hu X, Qian L, O'Callaghan JP, Hong JS. Astrogliosis in CNS pathologies: is there a role for microglia? Mol Neurobiol 2010; 41:232-41. [PMID: 20148316 PMCID: PMC3629545 DOI: 10.1007/s12035-010-8098-4] [Citation(s) in RCA: 224] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2009] [Accepted: 01/07/2010] [Indexed: 12/18/2022]
Abstract
Astrogliosis, a cellular reaction with specific structural and functional characteristics, represents a remarkably homotypic response of astrocytes to all kinds of central nervous system (CNS) pathologies. Astrocytes play diverse functions in the brain, both harmful and beneficial. Mounting evidence indicates that astrogliosis is an underlying component of a diverse range of diseases and associated neuropathologies. The mechanisms that lead to astrogliosis are not fully understood, nevertheless, damaged neurons have long been reported to induce astrogliosis and astrogliosis has been used as an index for underlying neuronal damage. As the predominant source of proinflammatory factors in the CNS, microglia are readily activated under certain pathological conditions. An increasing body of evidence suggests that release of cytokines and other soluble products by activated microglia can significantly influence the subsequent development of astrogliosis and scar formation in CNS. It is well known that damaged neurons activate microglia very quickly, therefore, it is possible that activated microglia contribute factors/mediators through which damaged neuron induce astrogliosis. The hypothesis that activated microglia initiate and maintain astrogliosis suggests that suppression of microglial overactivation might effectively attenuate reactive astrogliosis. Development of targeted anti-microglial activation therapies might slow or halt the progression of astrogliosis and, therefore, help achieve a more beneficial environment in various CNS pathologies.
Collapse
Affiliation(s)
- Dan Zhang
- Laboratory of Pharmacology and Chemistry, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, 27709, USA,
| | | | | | | | | |
Collapse
|
12
|
Development of a platelet-activating factor antagonist for HIV-1 associated neurocognitive disorders. J Neuroimmunol 2009; 213:47-59. [PMID: 19541372 DOI: 10.1016/j.jneuroim.2009.06.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2009] [Revised: 05/27/2009] [Accepted: 06/01/2009] [Indexed: 02/07/2023]
Abstract
The neuroregulatory activities of PMS-601, a platelet activating factor antagonist, were investigated in laboratory and animal models of HIV-1 encephalitis (HIVE). For the former, PMS-601 reduced monocyte-derived macrophage pro-inflammatory secretions, multinucleated giant cell (MGC) formation, and neuronal loss independent of antiretroviral responses. PMS-601 treatment of HIVE severe combined immunodeficient mice showed reduced microgliosis, MGCs and neurodegeneration. These observations support the further development of PMS-601 as an adjunctive therapy for HIV-1 associated neurocognitive disorders.
Collapse
|
13
|
de Haas AH, van Weering HRJ, de Jong EK, Boddeke HWGM, Biber KPH. Neuronal chemokines: versatile messengers in central nervous system cell interaction. Mol Neurobiol 2007; 36:137-51. [PMID: 17952658 PMCID: PMC2039784 DOI: 10.1007/s12035-007-0036-8] [Citation(s) in RCA: 141] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2006] [Accepted: 01/17/2007] [Indexed: 01/07/2023]
Abstract
Whereas chemokines are well known for their ability to induce cell migration, only recently it became evident that chemokines also control a variety of other cell functions and are versatile messengers in the interaction between a diversity of cell types. In the central nervous system (CNS), chemokines are generally found under both physiological and pathological conditions. Whereas many reports describe chemokine expression in astrocytes and microglia and their role in the migration of leukocytes into the CNS, only few studies describe chemokine expression in neurons. Nevertheless, the expression of neuronal chemokines and the corresponding chemokine receptors in CNS cells under physiological and pathological conditions indicates that neuronal chemokines contribute to CNS cell interaction. In this study, we review recent studies describing neuronal chemokine expression and discuss potential roles of neuronal chemokines in neuron-astrocyte, neuron-microglia, and neuron-neuron interaction.
Collapse
Affiliation(s)
- A H de Haas
- Department of Medical Physiology, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, Groningen, 9713 AV, The Netherlands
| | | | | | | | | |
Collapse
|
14
|
Milward EA, Fitzsimmons C, Szklarczyk A, Conant K. The matrix metalloproteinases and CNS plasticity: an overview. J Neuroimmunol 2007; 187:9-19. [PMID: 17555826 DOI: 10.1016/j.jneuroim.2007.04.010] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2006] [Revised: 04/03/2007] [Accepted: 04/04/2007] [Indexed: 01/06/2023]
Abstract
The matrix metalloproteinases (MMPs) are expressed in response to pro-inflammatory stimuli and other triggers. The MMPs cleave numerous substrates including extracellular matrix components, cytokines and growth factors. In the CNS, while most studied in the context of disease, the many physiological functions of the MMPs are now becoming appreciated. This review provides an overview of the growing body of evidence for physiological roles of MMPs both in CNS development and in CNS plasticity in normal brain functioning, including learning and memory, as well as in CNS repair and reorganization as part of the neuroimmune response to injury.
Collapse
Affiliation(s)
- E A Milward
- School of Biomedical Sciences, University of Newcastle and Hunter Medical Research Institute, Callaghan NSW 2308, Australia.
| | | | | | | |
Collapse
|
15
|
PENG HUI, ERDMANN NATHAN, WHITNEY NICHOLAS, DOU HUANGYU, GORANTLA SANTHI, GENDELMAN HOWARDE, GHORPADE ANUJA, ZHENG JIALIN. HIV-1-infected and/or immune activated macrophages regulate astrocyte SDF-1 production through IL-1beta. Glia 2006; 54:619-29. [PMID: 16944452 PMCID: PMC1919406 DOI: 10.1002/glia.20409] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Stromal cell-derived factor 1 alpha (SDF-1alpha) and its receptor CXCR4 play important roles in the pathogenesis of human immunodeficiency virus type one (HIV-1)-associated dementia (HAD) by serving as a HIV-1 co-receptor and affecting cell migration, virus-mediated neurotoxicity, and neurodegeneration. However, the underlying mechanisms regulating SDF-1 production during disease are not completely understood. In this report we investigated the role of HIV-1 infected and immune competent macrophage, the principal target cell and mediator of neuronal injury and death in HAD, in regulating SDF-1 production by astrocytes. Our data demonstrated that astrocytes are the primary cell type expressing SDF-1 in the brain. Immune-activated or HIV-1-infected human monocyte-derived-macrophage (MDM) conditioned media (MCM) induced a substantial increase in SDF-1 production by human astrocytes. This SDF-1 production was directly dependent on MDM IL-1beta following both viral and immune activation. The MCM-induced production of SDF-1 was prevented by IL-1beta receptor antagonist (IL-1Ra) and IL-1beta siRNA treatment of human MDM. These laboratory observations were confirmed in severe combined immunodeficient (SCID) mice with HIV-1 encephalitis (HIVE). In these HIVE mice, reactive astrocytes showed a significant increase in SDF-1 expression, as observed by immunocytochemical staining. Similarly, SDF-1 mRNA levels were increased in the encephalitic region as measured by real time RT-PCR, and correlated with IL-1beta mRNA expression. These observations provide direct evidence that IL-1beta, produced from HIV-1-infected and/or immune competent macrophage, induces production of SDF-1 by astrocytes, and as such contribute to ongoing SDF-1 mediated CNS regulation during HAD.
Collapse
Affiliation(s)
- HUI PENG
- Laboratory of Neurotoxicology, Center for Neurovirology and Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, Nebraska
- Center for Neurovirology and Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, Nebraska
- Department of Pharmacology/Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska
| | - NATHAN ERDMANN
- Laboratory of Neurotoxicology, Center for Neurovirology and Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, Nebraska
- Center for Neurovirology and Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, Nebraska
- Department of Pharmacology/Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska
| | - NICHOLAS WHITNEY
- Laboratory of Neurotoxicology, Center for Neurovirology and Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, Nebraska
- Center for Neurovirology and Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, Nebraska
- Department of Pharmacology/Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska
| | - HUANGYU DOU
- Center for Neurovirology and Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, Nebraska
- Department of Pharmacology/Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska
| | - SANTHI GORANTLA
- Center for Neurovirology and Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, Nebraska
- Department of Pharmacology/Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska
| | - HOWARD E. GENDELMAN
- Center for Neurovirology and Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, Nebraska
- Department of Pharmacology/Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska
| | - ANUJA GHORPADE
- Center for Neurovirology and Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, Nebraska
- Department of Pharmacology/Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska
- Department of Pathology/Microbiology, University of Nebraska Medical Center, Omaha, Nebraska
| | - JIALIN ZHENG
- Laboratory of Neurotoxicology, Center for Neurovirology and Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, Nebraska
- Center for Neurovirology and Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, Nebraska
- Department of Pharmacology/Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska
- Department of Pathology/Microbiology, University of Nebraska Medical Center, Omaha, Nebraska
- *Correspondence to: Department of Pharmacology/Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198–5880, USA. E-mail:
| |
Collapse
|