1
|
Kumar A, BharathwajChetty B, Manickasamy MK, Unnikrishnan J, Alqahtani MS, Abbas M, Almubarak HA, Sethi G, Kunnumakkara AB. Natural compounds targeting YAP/TAZ axis in cancer: Current state of art and challenges. Pharmacol Res 2024; 203:107167. [PMID: 38599470 DOI: 10.1016/j.phrs.2024.107167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/01/2024] [Accepted: 04/02/2024] [Indexed: 04/12/2024]
Abstract
Cancer has become a burgeoning global healthcare concern marked by its exponential growth and significant economic ramifications. Though advancements in the treatment modalities have increased the overall survival and quality of life, there are no definite treatments for the advanced stages of this malady. Hence, understanding the diseases etiologies and the underlying molecular complexities, will usher in the development of innovative therapeutics. Recently, YAP/TAZ transcriptional regulation has been of immense interest due to their role in development, tissue homeostasis and oncogenic transformations. YAP/TAZ axis functions as coactivators within the Hippo signaling cascade, exerting pivotal influence on processes such as proliferation, regeneration, development, and tissue renewal. In cancer, YAP is overexpressed in multiple tumor types and is associated with cancer stem cell attributes, chemoresistance, and metastasis. Activation of YAP/TAZ mirrors the cellular "social" behavior, encompassing factors such as cell adhesion and the mechanical signals transmitted to the cell from tissue structure and the surrounding extracellular matrix. Therefore, it presents a significant vulnerability in the clogs of tumors that could provide a wide window of therapeutic effectiveness. Natural compounds have been utilized extensively as successful interventions in the management of diverse chronic illnesses, including cancer. Owing to their capacity to influence multiple genes and pathways, natural compounds exhibit significant potential either as adjuvant therapy or in combination with conventional treatment options. In this review, we delineate the signaling nexus of YAP/TAZ axis, and present natural compounds as an alternate strategy to target cancer.
Collapse
Affiliation(s)
- Aviral Kumar
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, Assam 781039, India
| | - Bandari BharathwajChetty
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, Assam 781039, India
| | - Mukesh Kumar Manickasamy
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, Assam 781039, India
| | - Jyothsna Unnikrishnan
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, Assam 781039, India
| | - Mohammed S Alqahtani
- Radiological Sciences Department, College of Applied Medical Sciences, King Khalid University, Abha 61421, Saudi Arabia; BioImaging Unit, Space Research Centre, Michael Atiyah Building, University of Leicester, Leicester LE1 7RH, United Kingdom
| | - Mohamed Abbas
- Electrical Engineering Department, College of Engineering, King Khalid University, Abha 61421, Saudi Arabia
| | - Hassan Ali Almubarak
- Division of Radiology, Department of Medicine, College of Medicine and Surgery, King Khalid University, Abha 61421, Saudi Arabia
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 16 Medical Drive, Singapore 117600, Singapore; NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, 117699, Singapore.
| | - Ajaikumar B Kunnumakkara
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, Assam 781039, India.
| |
Collapse
|
2
|
Li X, Lou Y, Hu W, Wang K, Zhang Y, Xu R, Zhang T, Yang W, Qian Y. Activation of TAZ by XMU-MP-1 inhibits osteoclastogenesis and attenuates ovariectomy-induced cancellous bone loss. Biochem Biophys Res Commun 2024; 692:149323. [PMID: 38043154 DOI: 10.1016/j.bbrc.2023.149323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 11/09/2023] [Accepted: 11/22/2023] [Indexed: 12/05/2023]
Abstract
Osteoporosis is a metabolic bone loss disorder usually accompanied by overactivated osteoclast formation and increased bone resorption. Transcriptional co-activator with PDZ-binding motif (TAZ) is an emerging potential target for the treatment of osteoporosis. Our previous research showed that TAZ overexpression inhibited osteoclast formation while TAZ silencing had the opposite effect. In addition, TAZ knockout in mouse osteoclasts induced osteoporosis in animal experiments. XMU-MP-1 (XMU) is a selective MST1/2 inhibitor that can theoretically activate TAZ; however, its effect on osteoporosis remains unknown. In this study, we found that XMU treatment significantly increased TAZ expression in osteoclasts and inhibited osteoclast formation in vitro; however, this inhibitory effect was eliminated after the deletion of TAZ. Furthermore, XMU treatment upregulated TAZ expression in osteoclasts and alleviated ovariectomy (OVX)-induced osteoporosis in bilateral OVX mouse models. These findings suggest that XMU can effectively activate TAZ and that pharmacological activation of TAZ may be a promising option for the treatment of osteoporosis.
Collapse
Affiliation(s)
- Xinyu Li
- Department of Orthopedics, Shaoxing Hospital, Zhejiang University School of Medicine, Shaoxing, Zhejiang, 312000, China; Department of Orthopaedics, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310000, China
| | - Yun Lou
- Department of Orthopedics, Shaoxing Hospital, Zhejiang University School of Medicine, Shaoxing, Zhejiang, 312000, China
| | - Wenjun Hu
- Department of Orthopedics, Shaoxing Hospital, Zhejiang University School of Medicine, Shaoxing, Zhejiang, 312000, China
| | - Kelei Wang
- Department of Orthopedics, Shaoxing Hospital, Zhejiang University School of Medicine, Shaoxing, Zhejiang, 312000, China
| | - Yufeng Zhang
- Department of Orthopedics, Shaoxing Hospital, Zhejiang University School of Medicine, Shaoxing, Zhejiang, 312000, China
| | - Rongjian Xu
- Department of Orthopedics, Shaoxing Hospital, Zhejiang University School of Medicine, Shaoxing, Zhejiang, 312000, China
| | - Tan Zhang
- Department of Orthopedics, Shaoxing Hospital, Zhejiang University School of Medicine, Shaoxing, Zhejiang, 312000, China
| | - Wanlei Yang
- Department of Orthopaedics, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, 310006, China.
| | - Yu Qian
- Department of Orthopaedics, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, 310006, China.
| |
Collapse
|
3
|
Glinkina KA, Teunisse AF, Gelmi MC, de Vries J, Jager MJ, Jochemsen AG. Combined Mcl-1 and YAP1/TAZ inhibition for treatment of metastatic uveal melanoma. Melanoma Res 2023; 33:345-356. [PMID: 37467061 PMCID: PMC10470438 DOI: 10.1097/cmr.0000000000000911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 05/30/2023] [Indexed: 07/21/2023]
Abstract
Uveal melanoma is the most common intraocular tumor in adults, representing approximately 5% of all melanoma cases. Up to 50% of uveal melanoma patients develop metastases that are resistant to most of the commonly used antineoplastic treatments. Virtually all uveal melanoma tumors harbor activating mutations in GNAQ or GNA11 , encoding Gαq and Gα11, respectively. Constant activity of these proteins causes deregulation of multiple downstream signaling pathways including PKC, MAPK and YAP1/TAZ. While the importance of YAP1 signaling for the proliferation of uveal melanoma has recently been demonstrated, much less is known about the paralog of YAP1 transcriptional coactivator, named TAZ; however, similar to YAP1, TAZ is expected to be a therapeutic target in uveal melanoma. We performed a small-scale drug screen to discover a compound synergistically inhibiting uveal melanoma proliferation/survival in combination with YAP1/TAZ inhibition. We found that the combination of genetic depletion of YAP1/TAZ together with Mcl-1 inhibition demonstrates a synergistic inhibitory effect on the viability of uveal melanoma cell lines. Similarly, indirect attenuation of the YAP1/TAZ signaling pathway with an inhibitor of the mevalonate pathway, that is, the geranyl-geranyl transferase inhibitor GGTI-298, synergizes with Mcl-1 inhibition. This combination could be potentially used as a treatment for metastatic uveal melanoma.
Collapse
Affiliation(s)
| | | | - Maria Chiara Gelmi
- Department of Ophthalmology, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Martine J. Jager
- Department of Ophthalmology, Leiden University Medical Center, Leiden, The Netherlands
| | | |
Collapse
|
4
|
Mokhtari RB, Ashayeri N, Baghaie L, Sambi M, Satari K, Baluch N, Bosykh DA, Szewczuk MR, Chakraborty S. The Hippo Pathway Effectors YAP/TAZ-TEAD Oncoproteins as Emerging Therapeutic Targets in the Tumor Microenvironment. Cancers (Basel) 2023; 15:3468. [PMID: 37444578 DOI: 10.3390/cancers15133468] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/21/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
Various cancer cell-associated intrinsic and extrinsic inputs act on YAP/TAZ proteins to mediate the hyperactivation of the TEAD transcription factor-based transcriptome. This YAP/TAZ-TEAD activity can override the growth-limiting Hippo tumor-suppressor pathway that maintains normal tissue homeostasis. Herein, we provide an integrated summary of the contrasting roles of YAP/TAZ during normal tissue homeostasis versus tumor initiation and progression. In addition to upstream factors that regulate YAP/TAZ in the TME, critical insights on the emerging functions of YAP/TAZ in immune suppression and abnormal vasculature development during tumorigenesis are illustrated. Lastly, we discuss the current methods that intervene with the YAP/TAZ-TEAD oncogenic signaling pathway and the emerging applications of combination therapies, gut microbiota, and epigenetic plasticity that could potentiate the efficacy of chemo/immunotherapy as improved cancer therapeutic strategies.
Collapse
Affiliation(s)
- Reza Bayat Mokhtari
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Neda Ashayeri
- Division of Hematology and Oncology, Department of Pediatrics, Ali-Asghar Children Hospital, Iran University of Medical Science, Tehran 1449614535, Iran
| | - Leili Baghaie
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Manpreet Sambi
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Kosar Satari
- Division of Hematology and Oncology, Department of Pediatrics, Ali-Asghar Children Hospital, Iran University of Medical Science, Tehran 1449614535, Iran
| | - Narges Baluch
- Department of Immunology and Allergy, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Dmitriy A Bosykh
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Myron R Szewczuk
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Sayan Chakraborty
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| |
Collapse
|
5
|
Wu S, He H, Huang J, Jiang S, Deng X, Huang J, Chen Y, Jiang Y. FMR1 is identified as an immune-related novel prognostic biomarker for renal clear cell carcinoma: A bioinformatics analysis of TAZ/YAP. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2022; 19:9295-9320. [PMID: 35942760 DOI: 10.3934/mbe.2022432] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
WW domain-containing transcription regulator 1 (TAZ, or WWTR1) and Yes-associated protein 1 (YAP) are both important effectors of the Hippo pathway and exhibit different functions. However, few studies have explored their co-regulatory mechanisms in kidney renal clear cell carcinoma (KIRC). Here, we used bioinformatics approaches to evaluate the co-regulatory roles of TAZ/YAP and screen novel biomarkers in KIRC. GSE121689 and GSE146354 were downloaded from the GEO. The limma was applied to identify the differential expression genes (DEGs) and the Venn diagram was utilized to screen co-expressed DEGs. Co-expressed DEGs obtained the corresponding pathways through GO and KEGG analysis. The protein-protein interaction (PPI) network was constructed using STRING. The hub genes were selected applying MCODE and CytoHubba. GSEA was further applied to identify the hub gene-related signaling pathways. The expression, survival, receiver operating character (ROC), and immune infiltration of the hub genes were analyzed by HPA, UALCAN, GEPIA, pROC, and TIMER. A total of 51 DEGs were co-expressed in the two datasets. The KEGG results showed that the enriched pathways were concentrated in the TGF-β signaling pathway and endocytosis. In the PPI network, the hub genes (STAU2, AGO2, FMR1) were identified by the MCODE and CytoHubba. The GSEA results revealed that the hub genes were correlated with the signaling pathways of metabolism and immunomodulation. We found that STAU2 and FMR1 were weakly expressed in tumors and were negatively associated with the tumor stages. The overall survival (OS) and disease-free survival (DFS) rate of the high-expressed group of FMR1 was greater than that of the low-expressed group. The ROC result exhibited that FMR1 had certainly a predictive ability. The TIMER results indicated that FMR1 was positively correlated to immune cell infiltration. The abovementioned results indicated that TAZ/YAP was involved in the TGF-β signaling pathway and endocytosis. FMR1 possibly served as an immune-related novel prognostic gene in KIRC.
Collapse
Affiliation(s)
- Sufang Wu
- The Key Laboratory of Model Animal and Stem Cell Biology in Hunan Province, Hunan Normal University, Changsha 410013, Hunan, China
- School of Medicine, Hunan Normal University, Changsha 410013, Hunan, China
| | - Hua He
- The Key Laboratory of Model Animal and Stem Cell Biology in Hunan Province, Hunan Normal University, Changsha 410013, Hunan, China
- School of Medicine, Hunan Normal University, Changsha 410013, Hunan, China
| | - Jingjing Huang
- The Key Laboratory of Model Animal and Stem Cell Biology in Hunan Province, Hunan Normal University, Changsha 410013, Hunan, China
- School of Medicine, Hunan Normal University, Changsha 410013, Hunan, China
| | - Shiyao Jiang
- The Key Laboratory of Model Animal and Stem Cell Biology in Hunan Province, Hunan Normal University, Changsha 410013, Hunan, China
- School of Medicine, Hunan Normal University, Changsha 410013, Hunan, China
| | - Xiyun Deng
- The Key Laboratory of Model Animal and Stem Cell Biology in Hunan Province, Hunan Normal University, Changsha 410013, Hunan, China
- School of Medicine, Hunan Normal University, Changsha 410013, Hunan, China
| | - Jun Huang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Yuanbing Chen
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Yiqun Jiang
- The Key Laboratory of Model Animal and Stem Cell Biology in Hunan Province, Hunan Normal University, Changsha 410013, Hunan, China
- School of Medicine, Hunan Normal University, Changsha 410013, Hunan, China
| |
Collapse
|
6
|
Selvaraj V, Subramanian R, Sekaran S, Veeraiyan DN, Thangavelu L. Ferulic acid-Cu(II) and Zn(II) complexes promote bone formation. Process Biochem 2021. [DOI: 10.1016/j.procbio.2021.05.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
7
|
Yang W, Lu X, Zhang T, Han W, Li J, He W, Jia Y, Zhao K, Qin A, Qian Y. TAZ inhibits osteoclastogenesis by attenuating TAK1/NF-κB signaling. Bone Res 2021; 9:33. [PMID: 34253712 PMCID: PMC8275679 DOI: 10.1038/s41413-021-00151-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 01/25/2021] [Accepted: 03/17/2021] [Indexed: 12/22/2022] Open
Abstract
Osteoporosis is an osteolytic disorder commonly associated with excessive osteoclast formation. Transcriptional coactivator with PDZ-binding motif (TAZ) is a key downstream effector of the Hippo signaling pathway; it was suggested to be involved in the regulation of bone homeostasis. However, the exact role of TAZ in osteoclasts has not yet been established. In this study, we demonstrated that global knockout and osteoclast-specific knockout of TAZ led to a low-bone mass phenotype due to elevated osteoclast formation, which was further evidenced by in vitro osteoclast formation assays. Moreover, the overexpression of TAZ inhibited RANKL-induced osteoclast formation, whereas silencing of TAZ reduced it. Mechanistically, TAZ bound to TGF-activated kinase 1 (TAK1) and reciprocally inhibited NF-κB signaling, suppressing osteoclast differentiation. Collectively, our findings highlight an essential role of TAZ in the regulation of osteoclastogenesis in osteoporosis and its underlying mechanism.
Collapse
Affiliation(s)
- Wanlei Yang
- Department of Orthopaedics, Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing, Zhejiang, PR China
| | - Xuanyuan Lu
- Department of Orthopaedics, Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing, Zhejiang, PR China
| | - Tan Zhang
- Department of Orthopaedics, Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing, Zhejiang, PR China
| | - Weiqi Han
- Department of Orthopaedics, Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing, Zhejiang, PR China
| | - Jianlei Li
- Department of Orthopaedics, Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing, Zhejiang, PR China
| | - Wei He
- Department of Orthopaedics, Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing, Zhejiang, PR China
| | - Yewei Jia
- Department of Orthopaedics, Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing, Zhejiang, PR China
| | - Kangxian Zhao
- Department of Orthopaedics, Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing, Zhejiang, PR China
| | - An Qin
- Department of Orthopedic Surgery, Shanghai Key Laboratory of Orthopedic Implants, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Yu Qian
- Department of Orthopaedics, Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing, Zhejiang, PR China.
| |
Collapse
|
8
|
Wu D, Jia H, Zhang Z, Li S. Circ_0000511 accelerates the proliferation, migration and invasion, and restrains the apoptosis of breast cancer cells through the miR‑326/TAZ axis. Int J Oncol 2021; 58:1. [PMID: 33649821 PMCID: PMC7891826 DOI: 10.3892/ijo.2021.5181] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Accepted: 11/27/2020] [Indexed: 12/11/2022] Open
Abstract
Circular RNA 0000511 (circ_0000511) has been observed to be dysregulated in breast cancer (BC). However, the functions of circ_0000511 in breast cancer remain unknown. The expression levels of circ_0000511, ribonuclease P RNA component H1, microRNA-326 (miR-326) and transcriptional co-activator with PDZ-binding motif (TAZ) were examined by reverse transcription-quantitative PCR. Colony formation and MTT assays were conducted to analyze the cellular proliferative ability. The apoptotic rate was assessed by flow cytometry. Western blot analysis was used to evaluate the expression levels of B cell leukemia/lymphoma 2 (Bcl-2), Bcl-2 associated X apoptosis regulator, cleaved caspase-3 and TAZ. Transwell assays were performed to evaluate the migration and invasion of BC cells. The target interaction between miR-326 and circ_0000511 or TAZ was confirmed by dual-luciferase reporter assay. Xenograft assay was used to identify the function of circ_0000511 in vivo. Circ_0000511 abundance was abnormally elevated in BC tissue samples and cell lines compared with in matched normal cases. Circ_0000511 interference suppressed the proliferation, migration and invasion, and induced apoptosis of BC cells. miR-326 was a direct target of circ_0000511, and circ_0000511 silencing-mediated effects in BC cells were largely reversed by the knockdown of miR-326. miR-326 directly bound to TAZ mRNA, and TAZ accumulation largely attenuated miR-326 overexpression-induced effects in BC cells. Circ_0000511 upregulated the expression levels of TAZ partly via targeting miR-326 in BC cells. Circ_0000511 silencing restrained tumor growth in vivo. Circ_0000511 accelerated the proliferation, migration and invasion, while inhibiting the apoptosis of BC cells through upregulating TAZ expression via sponging miR-326. The circ_0000511/miR-326/TAZ axis may be a novel therapeutic target for BC treatment.
Collapse
Affiliation(s)
- Di Wu
- Department of Breast Surgery, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Hongyao Jia
- Department of Breast Surgery, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Zhiru Zhang
- Department of Breast Surgery, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Sijie Li
- Department of Breast Surgery, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| |
Collapse
|
9
|
Roberto J, Sykes CE, Vacratsis PO. Characterization of Phosphopeptide Positional Isomers on the Transcriptional Co-activator TAZ. Biochemistry 2020; 59:4148-4154. [PMID: 33086783 DOI: 10.1021/acs.biochem.0c00521] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The transcriptional co-activator with the PDZ binding motif (TAZ) is a critical regulator of numerous cellular processes such as cell differentiation, development, proliferation, and cell growth. Aberrant expression and activity of TAZ are also featured in many human malignancies. A hallmark of TAZ biology is its cytoplasmic retention mediated by 14-3-3 isoforms in response to phosphorylation of Ser89 by members of the LATS family of kinases. Following the observation that TAZ is a highly phosphorylated protein even when Ser89 is mutated, high-resolution mass spectrometry employing data-independent acquisition and ion mobility separation was conducted to elucidate additional TAZ phosphorylation sites that may play a role in regulating this critical transcriptional rheostat. Numerous phosphorylation sites on TAZ were identified, including several novel modifications. Of notable interest was the identification of positional phosphoisomers on a phosphopeptide containing Ser89. Optimized use of a so-called wideband enhancement acquisition technique yielded higher-quality fragmentation data that confirmed the detection of Ser93 as the positional phosphoisomer partner of Ser89 and identified diagnostic fragment ions for the phosphorylation events. Functional analysis indicated that Ser93 phosphorylation reduces the level of 14-3-3 association and increases the level of nuclear translocation, indicating this phosphorylation event attenuates the 14-3-3-mediated TAZ cytoplasmic retention mechanism. These findings suggest that the biological activities of TAZ are likely dynamically regulated by multisite phosphorylation.
Collapse
Affiliation(s)
- Justin Roberto
- Department of Chemistry and Biochemistry, University of Windsor, 401 Sunset Avenue, Windsor, Ontario N9B 3P4, Canada
| | - Catherine E Sykes
- Department of Chemistry and Biochemistry, University of Windsor, 401 Sunset Avenue, Windsor, Ontario N9B 3P4, Canada
| | - Panayiotis O Vacratsis
- Department of Chemistry and Biochemistry, University of Windsor, 401 Sunset Avenue, Windsor, Ontario N9B 3P4, Canada
| |
Collapse
|
10
|
Abstract
Autosomal-dominant polycystic kidney disease (ADPKD) is the most common genetic renal disease, primarily caused by germline mutation of PKD1 or PKD2, leading to end-stage renal disease. There are few cures for ADPKD, although many researchers are trying to find a cure. The Hippo signaling pathway regulates organ growth and cell proliferation. Transcriptional coactivator with PDZ-binding motif (TAZ) is a Hippo signaling effector. In this study, we demonstrated that the PKD1–TAZ–Wnt–β-catenin–c-MYC signaling axis plays a critical role in cystogenesis. Endo IWR1 treatment, which inhibited β-catenin activity via AXIN stabilization, reduced cyst growth in an ADPKD model. Our findings provide a potential therapeutic target against ADPKD and would be important for clinical translation. Autosomal-dominant polycystic kidney disease (ADPKD) is the most common genetic renal disease, primarily caused by germline mutation of PKD1 or PKD2, leading to end-stage renal disease. The Hippo signaling pathway regulates organ growth and cell proliferation. Herein, we demonstrate the regulatory mechanism of cystogenesis in ADPKD by transcriptional coactivator with PDZ-binding motif (TAZ), a Hippo signaling effector. TAZ was highly expressed around the renal cyst-lining epithelial cells of Pkd1-deficient mice. Loss of Taz in Pkd1-deficient mice reduced cyst formation. In wild type, TAZ interacted with PKD1, which inactivated β-catenin. In contrast, in PKD1-deficient cells, TAZ interacted with AXIN1, thus increasing β-catenin activity. Interaction of TAZ with AXIN1 in PKD1-deficient cells resulted in nuclear accumulation of TAZ together with β-catenin, which up-regulated c-MYC expression. Our findings suggest that the PKD1–TAZ–Wnt–β-catenin–c-MYC signaling axis plays a critical role in cystogenesis and might be a potential therapeutic target against ADPKD.
Collapse
|
11
|
Reggiani F, Gobbi G, Ciarrocchi A, Sancisi V. YAP and TAZ Are Not Identical Twins. Trends Biochem Sci 2020; 46:154-168. [PMID: 32981815 DOI: 10.1016/j.tibs.2020.08.012] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 08/13/2020] [Accepted: 08/27/2020] [Indexed: 12/12/2022]
Abstract
Yes-associated protein (YAP) and TAZ (WW domain containing transcription regulator 1, or WWTR1) are paralog transcriptional regulators, able to integrate mechanical, metabolic, and signaling inputs to regulate cell growth and differentiation during development and neoplastic progression. YAP and TAZ hold common and distinctive structural features, reflecting only partially overlapping regulatory mechanisms. The two paralogs interact with both shared and specific transcriptional partners and control nonidentical transcriptional programs. Although most of the available literature considers YAP and TAZ as functionally redundant, they play distinctive or even contrasting roles in different contexts. The issue of their divergent roles is currently underexplored but holds fundamental implications for mechanistic and translational studies. Here, we aim to review the available literature on the biological functions of YAP and TAZ, highlighting differential roles that distinguish these two paralogues.
Collapse
Affiliation(s)
- Francesca Reggiani
- Laboratory of Translational Research, Azienda USL- IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Giulia Gobbi
- Laboratory of Translational Research, Azienda USL- IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Alessia Ciarrocchi
- Laboratory of Translational Research, Azienda USL- IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Valentina Sancisi
- Laboratory of Translational Research, Azienda USL- IRCCS di Reggio Emilia, Reggio Emilia, Italy.
| |
Collapse
|
12
|
Zhou W, Zhang L, Chen P, Li S, Cheng Y. Thymine DNA glycosylase-regulated TAZ promotes radioresistance by targeting nonhomologous end joining and tumor progression in esophageal cancer. Cancer Sci 2020; 111:3613-3625. [PMID: 32808385 PMCID: PMC7541017 DOI: 10.1111/cas.14622] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 08/12/2020] [Accepted: 08/14/2020] [Indexed: 12/16/2022] Open
Abstract
Radiation resistance is a major cause of esophageal cancer relapse or metastasis. Transcriptional coactivator with PDZ binding domain (TAZ) is a final effector of the Hippo signaling pathway and plays critical roles in several types of cancer, but how it participates in the progression and radiation resistance of esophageal cancer remains unclear. Here, we revealed that TAZ was the strongest prognostic factor among Hippo pathway members. Overexpression of TAZ predicted poor outcome and adverse pathological features. In cell and animal models, TAZ facilitated cell proliferation, motility, and radiation resistance. Additionally, TAZ promoted expression of nonhomologous end joining (NHEJ)‐related genes, which are the main contributors to repair irradiation‐induced DNA breaks and result in radiation resistance. Amplification of the TAZ gene occurred in 2.5%‐3.2% of esophageal cancers. In addition, the CpG islands of the TAZ gene were demethylated in esophageal cancer under thymine DNA glycosylase (TDG) regulation. Knockdown of TDG inhibited cell growth, motility, and radiation resistance, which were overridden by TAZ overexpression. Collectively, these findings suggest that the TDG/TAZ/NHEJ axis is a critical player in esophageal cancer progression and radiation resistance, as well as a potential target for radiotherapy.
Collapse
Affiliation(s)
- Wei Zhou
- Department of Radiation Oncology, Cheeloo College of Medicine, Qilu Hospital, Shandong University, Jinan, China
| | - Lin Zhang
- Department of Radiation Oncology, Cheeloo College of Medicine, Qilu Hospital, Shandong University, Jinan, China
| | - Pengxiang Chen
- Department of Radiation Oncology, Cheeloo College of Medicine, Qilu Hospital, Shandong University, Jinan, China
| | - Song Li
- Department of Medical Oncology, Cheeloo College of Medicine, Qilu Hospital, Shandong University, Jinan, China
| | - Yufeng Cheng
- Department of Radiation Oncology, Cheeloo College of Medicine, Qilu Hospital, Shandong University, Jinan, China
| |
Collapse
|
13
|
Characterization of a novel compound that promotes myogenesis via Akt and transcriptional co-activator with PDZ-binding motif (TAZ) in mouse C2C12 cells. PLoS One 2020; 15:e0231265. [PMID: 32267872 PMCID: PMC7141682 DOI: 10.1371/journal.pone.0231265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 03/19/2020] [Indexed: 11/19/2022] Open
Abstract
Transcriptional co-activator with PDZ-binding motif (TAZ) plays versatile roles in the regulation of cell proliferation and differentiation. TAZ activity changes in response to the cellular environment such as mechanic and nutritional stimuli, osmolarity, and hypoxia. To understand the physiological roles of TAZ, chemical compounds that activate TAZ in cells are useful as experimental reagents. Kaempferol, TM-25659, and ethacridine are reported as TAZ activators. However, as each TAZ activator has a distinct property in cellular functions, additional TAZ activators are awaiting. We screened for TAZ activators and previously reported IB008738 as a TAZ activator that promotes myogenesis in C2C12 cells. In this study, we have characterized IBS004735 that was obtained in the same screening. IBS004735 also promotes myogenesis in C2C12 cells, but is not similar to IBS008738 in the structure. IBS004735 activates TAZ via Akt and has no effect on TAZ phosphorylation, which is the well-described key modification to regulate TAZ activity. Thus, we introduce IBS004735 as a novel TAZ activator that regulates TAZ in a yet unidentified mechanism.
Collapse
|
14
|
Shin JH, Lee G, Jeong MG, Kim HK, Won HY, Choi Y, Lee JH, Nam M, Choi CS, Hwang GS, Hwang ES. Transcriptional coactivator with PDZ-binding motif suppresses the expression of steroidogenic enzymes by nuclear receptor 4 A1 in Leydig cells. FASEB J 2020; 34:5332-5347. [PMID: 32067268 DOI: 10.1096/fj.201900695rrrr] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 02/04/2020] [Accepted: 02/05/2020] [Indexed: 01/20/2023]
Abstract
Transcriptional coactivator with PDZ-binding motif (TAZ) plays crucial role in maintaining testicular structure and function via regulation of senescence of spermatogenic cells. However, it remains unclear whether TAZ is involved in testosterone biosynthesis in testicular Leydig cells. We found that TAZ deficiency caused aberrant Leydig cell expansion and increased lipid droplet formation, which was significantly associated with increased lipogenic enzyme expression. Additionally, the expression of key steroidogenic enzymes, including steroidogenic acute regulatory protein, cytochrome P450 (CYP) 11A1, CYP17A1, and 3β-hydroxysteroid dehydrogenase, was greatly increased in TAZ-deficient testes and primary Leydig cells. Interestingly, the transcriptional activity of nuclear receptor 4 A1 (NR4A1) was dramatically suppressed by TAZ; however, the protein expression and the subcellular localization of NR4A1 were not affected by TAZ. TAZ directly associated with the N-terminal region of NR4A1 and substantially suppressed its DNA-binding and transcriptional activities. Stable expression of TAZ in the mouse Leydig TM3 cell line decreased the expression of key steroidogenic enzymes, whereas knockdown of endogenous TAZ in TM3 cells increased transcripts of steroidogenic genes induced by NR4A1. Consistently, testosterone production was enhanced within TAZ-deficient Leydig cells. However, TAZ deficiency resulted in decreased testosterone secretion caused by dysfunctional mitochondria and lysosomes. Therefore, TAZ plays essential role in NR4A1-induced steroidogenic enzyme expression and testosterone production in Leydig cells.
Collapse
Affiliation(s)
- Ji Hyun Shin
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul, Korea
| | - Gibbeum Lee
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul, Korea
| | - Mi Gyeong Jeong
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul, Korea
| | - Hyo Kyeong Kim
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul, Korea
| | - Hee Yeon Won
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul, Korea
| | - Yujeong Choi
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul, Korea
| | - Ji-Hyeok Lee
- Korea Mouse Metabolic Phenotyping Center, Lee Gil Ya Cancer and Diabetes Institute, Gachon University School of Medicine, Incheon, Korea
| | - Miso Nam
- Integrated Metabolomics Research Group, Western Seoul Center, Korea Basic Science Institute, Seoul, Korea
| | - Cheol Soo Choi
- Korea Mouse Metabolic Phenotyping Center, Lee Gil Ya Cancer and Diabetes Institute, Gachon University School of Medicine, Incheon, Korea
| | - Geum-Sook Hwang
- Integrated Metabolomics Research Group, Western Seoul Center, Korea Basic Science Institute, Seoul, Korea
| | - Eun Sook Hwang
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul, Korea
| |
Collapse
|
15
|
Abstract
The Hippo-YAP (Yes-associated protein) pathway is an evolutionarily and functionally conserved regulator of organ size and growth with crucial roles in cell proliferation, apoptosis, and differentiation. This pathway has great potential for therapeutic manipulation in different disease states and to promote organ regeneration. In this Review, we summarize findings from the past decade revealing the function and regulation of the Hippo-YAP pathway in cardiac development, growth, homeostasis, disease, and regeneration. In particular, we highlight the roles of the Hippo-YAP pathway in endogenous heart muscle renewal, including the pivotal role of the Hippo-YAP pathway in regulating cardiomyocyte proliferation and differentiation, stress response, and mechanical signalling. The human heart lacks the capacity to self-repair; therefore, the loss of cardiomyocytes after injury such as myocardial infarction can result in heart failure and death. Despite substantial advances in the treatment of heart failure, an enormous unmet clinical need exists for alternative treatment options. Targeting the Hippo-YAP pathway has tremendous potential for developing therapeutic strategies for cardiac repair and regeneration for currently intractable cardiovascular diseases such as heart failure. The lessons learned from cardiac repair and regeneration studies will also bring new insights into the regeneration of other tissues with limited regenerative capacity.
Collapse
|
16
|
Ruan H, Bao L, Song Z, Wang K, Cao Q, Tong J, Cheng G, Xu T, Chen X, Liu D, Yang H, Chen K, Zhang X. High expression of TAZ serves as a novel prognostic biomarker and drives cancer progression in renal cancer. Exp Cell Res 2019; 376:181-191. [PMID: 30731073 DOI: 10.1016/j.yexcr.2019.02.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 01/30/2019] [Accepted: 02/03/2019] [Indexed: 01/18/2023]
Abstract
Renal cell carcinomas are a group of most common renal malignancies whose clinical intervention is complicated by the lack of early diagnosis and reliable prognosis biomarkers, insensitive radiotherapy and chemotherapy and expensive molecular-targeted drugs. Transcriptional coactivator TAZ has been implicated in the formation and development of various malignancies. However, the biological characteristics and function of TAZ in renal cell carcinoma are still unclear. We attempted to evaluate the potential of TAZ as a promising diagnostic and prognostic molecular marker for renal cell carcinoma. In our study, we confirmed that TAZ was frequently elevated in renal cancer tissues and cells, consistent with the results of the publicly available cancer database. Moreover, elevated TAZ expression was positively correlated with poor overall survival time, high Fuhrman grade and distant metastasis. Our receiver operating characteristic curves analysis showed that high TAZ expression could distinguish renal cancer patients from normal persons (p < 0.0001). Kaplan-Meier curves demonstrated that high TAZ expression predicted poor overall survival (p < 0.0001). Multivariate regression analysis indicated that TAZ expression could be an independent prognostic factor (p = 0.002) in patients with renal cancer. Finally, the functional roles of TAZ knockdown were examined in renal cancer cell lines and nude mice subcutaneous tumor models. In conclusion, our results suggest that TAZ may serve as a promising diagnostic and prognostic molecular marker for patients with renal cancer. Moreover, TAZ may represent a novel clinical therapeutic target.
Collapse
Affiliation(s)
- Hailong Ruan
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Institute of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Lin Bao
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Institute of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Zhengshuai Song
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Institute of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Keshan Wang
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Institute of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Qi Cao
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Institute of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Junwei Tong
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Institute of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Gong Cheng
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Institute of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Tianbo Xu
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Institute of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xuanyu Chen
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Institute of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Di Liu
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Institute of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Hongmei Yang
- Department of Pathogenic Biology, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Ke Chen
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Institute of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Xiaoping Zhang
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Institute of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
17
|
TAZ couples Hippo/Wnt signalling and insulin sensitivity through Irs1 expression. Nat Commun 2019; 10:421. [PMID: 30679431 PMCID: PMC6345998 DOI: 10.1038/s41467-019-08287-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Accepted: 12/28/2018] [Indexed: 12/24/2022] Open
Abstract
Insulin regulates blood glucose levels by binding its receptor and stimulating downstream proteins through the insulin receptor substrate (IRS). Impaired insulin signalling leads to metabolic syndrome, but the regulation of this process is not well understood. Here, we describe a novel insulin signalling regulatory pathway involving TAZ. TAZ upregulates IRS1 and stimulates Akt- and Glut4-mediated glucose uptake in muscle cells. Muscle-specific TAZ-knockout mice shows significantly decreased Irs1 expression and insulin sensitivity. Furthermore, TAZ is required for Wnt signalling-induced Irs1 expression, as observed by decreased Irs1 expression and insulin sensitivity in muscle-specific APC- and TAZ-double-knockout mice. TAZ physically interacts with c-Jun and Tead4 to induce Irs1 transcription. Finally, statin administration decreases TAZ, IRS1 level and insulin sensitivity. However, in myoblasts, the statin-mediated decrease in insulin sensitivity is counteracted by the expression of a constitutively active TAZ mutant. These results suggest that TAZ is a novel insulin signalling activator that increases insulin sensitivity and couples Hippo/Wnt signalling and insulin sensitivity. Insulin resistance is associated with development of type 2 diabetes. Here the authors show that TAZ interacts with c-Jun and Tead4, inducing expression of the insulin receptor substrate 1 (IRS1) leading to increased glucose uptake in muscle, and that its activity is counteracted by statin administration.
Collapse
|
18
|
Callus BA, Finch-Edmondson ML, Fletcher S, Wilton SD. YAPping about and not forgetting TAZ. FEBS Lett 2019; 593:253-276. [PMID: 30570758 DOI: 10.1002/1873-3468.13318] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 12/05/2018] [Accepted: 12/14/2018] [Indexed: 12/14/2022]
Abstract
The Hippo pathway has emerged as a major eukaryotic signalling pathway and is increasingly the subject of intense interest, as are the key effectors of canonical Hippo signalling, YES-associated protein (YAP) and TAZ. The Hippo pathway has key roles in diverse biological processes, including network signalling regulation, development, organ growth, tissue repair and regeneration, cancer, stem cell regulation and mechanotransduction. YAP and TAZ are multidomain proteins and function as transcriptional coactivators of key genes to evoke their biological effects. YAP and TAZ interact with numerous partners and their activities are controlled by a complex set of processes. This review provides an overview of Hippo signalling and its role in growth. In particular, the functional domains of YAP and TAZ and the complex mechanisms that regulate their protein stability and activity are discussed. Notably, the similarities and key differences are highlighted between the two paralogues including which partner proteins interact with which functional domains to regulate their activity.
Collapse
Affiliation(s)
| | - Megan L Finch-Edmondson
- Discipline of Child and Adolescent Health, Children's Hospital at Westmead Clinical School, University of Sydney Medical School, Australia.,Cerebral Palsy Alliance Research Institute, University of Sydney, Australia
| | - Sue Fletcher
- Centre for Comparative Genomics, Murdoch University, Australia.,Perron Institute for Neurological and Translational Research, Nedlands, Australia
| | - Steve D Wilton
- Centre for Comparative Genomics, Murdoch University, Australia.,Perron Institute for Neurological and Translational Research, Nedlands, Australia
| |
Collapse
|
19
|
Abstract
Transcription coactivators Yes-associated protein (YAP) and transcriptional coactivator with PDZ-binding motif (TAZ, also known as WWTR1) are homologs of the Drosophila Yorkie (Yki) protein and are major downstream effectors of the evolutionarily conserved Hippo pathway. YAP/TAZ play critical roles in regulation of cell proliferation, apoptosis, and stemness, thus mediate functions of the Hippo pathway in organ size control and tumorigenesis. The Hippo pathway inhibits YAP/TAZ through phosphorylation, which leads to YAP/TAZ cytoplasmic retention and degradation. Dephosphorylated and nuclear-localized YAP/TAZ bind to transcription factors, especially the TEAD family proteins, thus transactivate the expression of specific genes. Therefore, measuring the expression level of YAP/TAZ target genes is a critical approach to assess Hippo pathway activity. Through gene expression profiling in different tissues and cells using techniques such as microarray and RNA-seq, many target genes of YAP/TAZ have been identified. Some of these genes were confirmed to be direct YAP/TAZ targets by chromatin immunoprecipitation (ChIP)-PCR or ChIP-seq. These works made it possible to quickly determine YAP/TAZ activity by measuring the mRNA levels of several YAP/TAZ target genes, such as CTGF, CYR61, and miR-130a by quantitative real-time PCR (qPCR). In this chapter, we demonstrate the use of qPCR to measure YAP/TAZ activity in MCF10A cells.
Collapse
|
20
|
Dehghanian F, Hojati Z, Hosseinkhan N, Mousavian Z, Masoudi-Nejad A. Reconstruction of the genome-scale co-expression network for the Hippo signaling pathway in colorectal cancer. Comput Biol Med 2018; 99:76-84. [PMID: 29890510 DOI: 10.1016/j.compbiomed.2018.05.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 05/24/2018] [Accepted: 05/24/2018] [Indexed: 01/22/2023]
Abstract
The Hippo signaling pathway (HSP) has been identified as an essential and complex signaling pathway for tumor suppression that coordinates proliferation, differentiation, cell death, cell growth and stemness. In the present study, we conducted a genome-scale co-expression analysis to reconstruct the HSP in colorectal cancer (CRC). Five key modules were detected through network clustering, and a detailed discussion of two modules containing respectively 18 and 13 over and down-regulated members of HSP was provided. Our results suggest new potential regulatory factors in the HSP. The detected modules also suggest novel genes contributing to CRC. Moreover, differential expression analysis confirmed the differential expression pattern of HSP members and new suggested regulatory factors between tumor and normal samples. These findings can further reveal the importance of HSP in CRC.
Collapse
Affiliation(s)
- Fariba Dehghanian
- Division of Genetics, Department of Biology, Faculty of Sciences, University of Isfahan, P.O. Box 81746-73441, Isfahan, Iran
| | - Zohreh Hojati
- Division of Genetics, Department of Biology, Faculty of Sciences, University of Isfahan, P.O. Box 81746-73441, Isfahan, Iran.
| | - Nazanin Hosseinkhan
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Laboratory of Systems Biology and Bioinformatics (LBB), Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Zaynab Mousavian
- Department of Computer Science, School of Mathematics, Statistics, and Computer Science, University of Tehran, Tehran, Iran; Laboratory of Systems Biology and Bioinformatics (LBB), Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Ali Masoudi-Nejad
- Laboratory of Systems Biology and Bioinformatics (LBB), Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran.
| |
Collapse
|
21
|
Boudjadi S, Chatterjee B, Sun W, Vemu P, Barr FG. The expression and function of PAX3 in development and disease. Gene 2018; 666:145-157. [PMID: 29730428 DOI: 10.1016/j.gene.2018.04.087] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 04/26/2018] [Accepted: 04/27/2018] [Indexed: 12/27/2022]
Abstract
The PAX3 gene encodes a member of the PAX family of transcription factors that is characterized by a highly conserved paired box motif. The PAX3 protein is a transcription factor consisting of an N-terminal DNA binding domain (containing a paired box and homeodomain) and a C-terminal transcriptional activation domain. This protein is expressed during development of skeletal muscle, central nervous system and neural crest derivatives, and regulates expression of target genes that impact on proliferation, survival, differentiation and motility in these lineages. Germline mutations of the murine Pax3 and human PAX3 genes cause deficiencies in these developmental lineages and result in the Splotch phenotype and Waardenburg syndrome, respectively. Somatic genetic rearrangements that juxtapose the PAX3 DNA binding domain to the transcriptional activation domain of other transcription factors deregulate PAX3 function and contribute to the pathogenesis of the soft tissue cancers alveolar rhabdomyosarcoma and biphenotypic sinonasal sarcoma. The wild-type PAX3 protein is also expressed in other cancers related to developmental lineages that normally express this protein and exerts phenotypic effects related to its normal developmental role.
Collapse
Affiliation(s)
- Salah Boudjadi
- Laboratory of Pathology, National Cancer Institute, Bethesda, MD, USA
| | | | - Wenyue Sun
- Laboratory of Pathology, National Cancer Institute, Bethesda, MD, USA
| | - Prasantha Vemu
- Laboratory of Pathology, National Cancer Institute, Bethesda, MD, USA
| | - Frederic G Barr
- Laboratory of Pathology, National Cancer Institute, Bethesda, MD, USA.
| |
Collapse
|
22
|
Deel MD, Slemmons KK, Hinson AR, Genadry KC, Burgess BA, Crose LES, Kuprasertkul N, Oristian KM, Bentley RC, Linardic CM. The Transcriptional Coactivator TAZ Is a Potent Mediator of Alveolar Rhabdomyosarcoma Tumorigenesis. Clin Cancer Res 2018. [PMID: 29514840 DOI: 10.1158/1078-0432.ccr-17-1207] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Purpose: Alveolar rhabdomyosarcoma (aRMS) is a childhood soft tissue sarcoma driven by the signature PAX3-FOXO1 (P3F) fusion gene. Five-year survival for aRMS is <50%, with no improvement in over 4 decades. Although the transcriptional coactivator TAZ is oncogenic in carcinomas, the role of TAZ in sarcomas is poorly understood. The aim of this study was to investigate the role of TAZ in P3F-aRMS tumorigenesis.Experimental Design: After determining from publicly available datasets that TAZ is upregulated in human aRMS transcriptomes, we evaluated whether TAZ is also upregulated in our myoblast-based model of P3F-initiated tumorigenesis, and performed IHC staining of 63 human aRMS samples from tissue microarrays. Using constitutive and inducible RNAi, we examined the impact of TAZ loss of function on aRMS oncogenic phenotypes in vitro and tumorigenesis in vivo Finally, we performed pharmacologic studies in aRMS cell lines using porphyrin compounds, which interfere with TAZ-TEAD transcriptional activity.Results: TAZ is upregulated in our P3F-initiated aRMS model, and aRMS cells and tumors have high nuclear TAZ expression. In vitro, TAZ suppression inhibits aRMS cell proliferation, induces apoptosis, supports myogenic differentiation, and reduces aRMS cell stemness. TAZ-deficient aRMS cells are enriched in G2-M phase of the cell cycle. In vivo, TAZ suppression attenuates aRMS xenograft tumor growth. Preclinical studies show decreased aRMS xenograft tumor growth with porphyrin compounds alone and in combination with vincristine.Conclusions: TAZ is oncogenic in aRMS sarcomagenesis. While P3F is currently not therapeutically tractable, targeting TAZ could be a promising novel approach in aRMS. Clin Cancer Res; 24(11); 2616-30. ©2018 AACR.
Collapse
Affiliation(s)
- Michael D Deel
- Division of Hematology-Oncology, Department of Pediatrics, School of Medicine, Duke University, Durham, North Carolina
| | - Katherine K Slemmons
- Department of Pharmacology & Cancer Biology, School of Medicine, Duke University, Durham, North Carolina
| | - Ashley R Hinson
- Division of Hematology-Oncology, Department of Pediatrics, School of Medicine, Duke University, Durham, North Carolina
| | - Katia C Genadry
- Division of Hematology-Oncology, Department of Pediatrics, School of Medicine, Duke University, Durham, North Carolina
| | - Breanne A Burgess
- Division of Hematology-Oncology, Department of Pediatrics, School of Medicine, Duke University, Durham, North Carolina
| | - Lisa E S Crose
- Division of Hematology-Oncology, Department of Pediatrics, School of Medicine, Duke University, Durham, North Carolina
| | | | - Kristianne M Oristian
- Division of Hematology-Oncology, Department of Pediatrics, School of Medicine, Duke University, Durham, North Carolina
| | - Rex C Bentley
- Department of Pathology, School of Medicine, Duke University, Durham, North Carolina
| | - Corinne M Linardic
- Division of Hematology-Oncology, Department of Pediatrics, School of Medicine, Duke University, Durham, North Carolina. .,Department of Pharmacology & Cancer Biology, School of Medicine, Duke University, Durham, North Carolina
| |
Collapse
|
23
|
Byun MR, Hwang JH, Kim AR, Kim KM, Park JI, Oh HT, Hwang ES, Hong JH. SRC activates TAZ for intestinal tumorigenesis and regeneration. Cancer Lett 2017; 410:32-40. [DOI: 10.1016/j.canlet.2017.09.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 09/01/2017] [Accepted: 09/10/2017] [Indexed: 01/08/2023]
|
24
|
Loforese G, Malinka T, Keogh A, Baier F, Simillion C, Montani M, Halazonetis TD, Candinas D, Stroka D. Impaired liver regeneration in aged mice can be rescued by silencing Hippo core kinases MST1 and MST2. EMBO Mol Med 2017; 9:46-60. [PMID: 27940445 PMCID: PMC5210079 DOI: 10.15252/emmm.201506089] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The liver has an intrinsic capacity to regenerate in response to injury or surgical resection. Nevertheless, circumstances in which hepatocytes are unresponsive to proliferative signals result in impaired regeneration and hepatic failure. As the Hippo pathway has a canonical role in the maintenance of liver size, we investigated whether it could serve as a therapeutic target to support regeneration. Using a standard two‐thirds partial hepatectomy (PH) model in young and aged mice, we demonstrate that the Hippo pathway is modulated across the phases of liver regeneration. The activity of the core kinases MST1 and LATS1 increased during the early hypertrophic phase and returned to steady state levels in the proliferative phase, coinciding with activation of YAP1 target genes and hepatocyte proliferation. Moreover, following PH in aged mice, we demonstrate that Hippo signaling is anomalous in non‐regenerating livers. We provide pre‐clinical evidence that silencing the Hippo core kinases MST1 and MST2 with siRNA provokes hepatocyte proliferation in quiescent livers and rescues liver regeneration in aged mice following PH. Our data suggest that targeting the Hippo core kinases MST1/2 has therapeutic potential to improve regeneration in non‐regenerative disorders.
Collapse
Affiliation(s)
- Giulio Loforese
- Department of Clinical Research, Visceral Surgery and Medicine, University of Bern, Bern, Switzerland
| | - Thomas Malinka
- Department of Clinical Research, Visceral Surgery and Medicine, University of Bern, Bern, Switzerland
| | - Adrian Keogh
- Department of Clinical Research, Visceral Surgery and Medicine, University of Bern, Bern, Switzerland
| | - Felix Baier
- Department of Clinical Research, Visceral Surgery and Medicine, University of Bern, Bern, Switzerland
| | - Cedric Simillion
- Interfaculty Bioinformatics Unit and Swiss Institute of Bioinformatics, University of Bern, Bern, Switzerland
| | - Matteo Montani
- Institute of Pathology, University of Bern, Bern, Switzerland
| | | | - Daniel Candinas
- Department of Clinical Research, Visceral Surgery and Medicine, University of Bern, Bern, Switzerland
| | - Deborah Stroka
- Department of Clinical Research, Visceral Surgery and Medicine, University of Bern, Bern, Switzerland
| |
Collapse
|
25
|
Tian S, Tian X, Liu Y, Dong F, Wang J, Liu X, Zhang Z, Chen H. Effects of TAZ on human dental pulp stem cell proliferation and migration. Mol Med Rep 2017; 15:4326-4332. [PMID: 28487958 DOI: 10.3892/mmr.2017.6550] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2016] [Accepted: 03/01/2017] [Indexed: 11/06/2022] Open
Abstract
Transcriptional coactivator with PDZ‑binding motif (TAZ) acts as the key downstream regulatory target in the Hippo signaling pathway. TAZ overexpression has been reported to promote cellular proliferation and induce epithelial‑mesenchymal transition in human mammary epithelial cells. However, the effects of TAZ in the regulation of human dental pulp stem cell (hDPSC) proliferation and migration, as well as the molecular mechanisms underlying its actions, remain to be elucidated. The present study demonstrated that TAZ was expressed in hDPSCs. TAZ silencing, following hDPSC transfection with TAZ‑specific small interfering (si)RNA (siTAZ), inhibited cellular proliferation and migration in vitro. These effects appeared to be associated with the downregulation of connecting tissue growth factor (CTGF) and cysteine‑rich angiogenic inducer (Cyr) 61 expression. Further investigation of the mechanisms underlying the actions of TAZ in hDPSCs revealed that TAZ silencing suppressed CTGF and Cyr61 expression by interfering with transforming growth factor (TGF)‑β signaling pathways. The present results suggested that TAZ may be implicated in the proliferation and migration of hDPSCs, through the modulation of CTGF and Cyr61 expression via a TGF‑β‑dependent signaling pathway.
Collapse
Affiliation(s)
- Songbo Tian
- Department of Oral Medicine, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| | - Xiaochao Tian
- Department of Cardiology, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| | - Yanping Liu
- Physical Examination Center, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| | - Fusheng Dong
- Department of Oral and Maxillofacial Surgery, College of Stomatology, Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| | - Jie Wang
- Department of Oral Pathology, College of Stomatology, Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| | - Xuqian Liu
- Department of Oral Pathology, College of Stomatology, Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| | - Zhiyong Zhang
- Department of Oral Medicine, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| | - Huizhen Chen
- Department of Oral Medicine, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| |
Collapse
|
26
|
Ahmed AA, Mohamed AD, Gener M, Li W, Taboada E. YAP and the Hippo pathway in pediatric cancer. Mol Cell Oncol 2017; 4:e1295127. [PMID: 28616573 DOI: 10.1080/23723556.2017.1295127] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 02/01/2017] [Accepted: 02/10/2017] [Indexed: 12/17/2022]
Abstract
The Hippo pathway is an important signaling pathway that controls cell proliferation and apoptosis. It is evolutionarily conserved in mammals and is stimulated by cell-cell contact, inhibiting cell proliferation in response to increased cell density. During early embryonic development, the Hippo signaling pathway regulates organ development and size, and its functions result in the coordinated balance between proliferation, apoptosis, and differentiation. Its principal effectors, YAP and TAZ, regulate signaling by the embryonic stem cells and determine cell fate and histogenesis. Dysfunction of this pathway contributes to cancer development in adults and children. Emerging studies have shed light on the upregulation of Hippo pathway members in several pediatric cancers and may offer prognostic information on rhabdomyosarcoma, osteosarcoma, Wilms tumor, neuroblastoma, medulloblastoma, and other brain gliomas. We review the results of such published studies and highlight the potential clinical application of this pathway in pediatric oncologic and pathologic studies. These studies support targeting this pathway as a novel treatment strategy.
Collapse
Affiliation(s)
- Atif A Ahmed
- Department of Pathology, Children's Mercy Hospital, Kansas City, MO, USA
| | | | - Melissa Gener
- Department of Pathology, Children's Mercy Hospital, Kansas City, MO, USA
| | - Weijie Li
- Department of Pathology, Children's Mercy Hospital, Kansas City, MO, USA
| | - Eugenio Taboada
- Department of Pathology, Children's Mercy Hospital, Kansas City, MO, USA
| |
Collapse
|
27
|
Ma R, Morshed SA, Latif R, Davies TF. TAZ Induction Directs Differentiation of Thyroid Follicular Cells from Human Embryonic Stem Cells. Thyroid 2017; 27:292-299. [PMID: 27829313 PMCID: PMC5912722 DOI: 10.1089/thy.2016.0264] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
OBJECTIVE The differentiation program for human thyroid follicular cells (TFCs) relies on the interplay between sequence-specific transcription factors and transcriptional co-regulators. Transcriptional co-activator with PDZ-binding motif (TAZ) is a co-activator that regulates several transcription factors, including PAX8 and NKX2-1, which play a central role in thyroid-specific gene transcription. TAZ and PAX8/NKX2-1 are co-expressed in the nuclei of thyroid cells, and TAZ interacts directly with both PAX8 and NKX2-1, leading to their enhanced transcriptional activity on the thyroglobulin (TG) promoter and additional genes. METHODS The use of a small molecule, ethacridine, recently identified as a TAZ activator, in the differentiation of thyroid cells from human embryonic stem (hES) cells was studied. First, endodermal cells were derived from hES cells using Activin A, followed by induction of differentiation into thyroid cells directed by ethacridine and thyrotropin (TSH). RESULTS The expression of TAZ was increased in the Activin A-derived endodermal cells by ethacridine in a dose-dependent manner and followed by increases in PAX8 and NKX2-1 when assessed by both quantitative polymerase chain reaction and immunostaining. Following further differentiation with the combination of ethacridine and TSH, the thyroid-specific genes TG, TPO, TSHR, and NIS were all induced in the differentiated hES cells. When these cells were cultured with extracellular matrix-coated dishes, thyroid follicle formation and abundant TG protein expression were observed. Furthermore, such hES cell-derived thyroid follicles showed a marked TSH-induced and dose-dependent increase in radioiodine uptake and protein-bound iodine accumulation. CONCLUSION These data show that fully functional human thyroid cells can be derived from hES cells using ethacridine, a TAZ activator, which induces thyroid-specific gene expression and promotes thyroid cell differentiation from the hES cells. These studies again demonstrate the importance of transcriptional regulation in thyroid cell development. This approach also yields functional human thyrocytes, without any gene transfection or complex culture conditions, by directly manipulating the transcriptional machinery without interfering with intermediate signaling events.
Collapse
Affiliation(s)
- Risheng Ma
- Thyroid Research Unit, Department of Medicine, The Icahn School of Medicine at Mount Sinai, Mount Sinai Beth Israel Medical Center and the James J. Peters VA Medical Center , New York, New York
| | - Syed A Morshed
- Thyroid Research Unit, Department of Medicine, The Icahn School of Medicine at Mount Sinai, Mount Sinai Beth Israel Medical Center and the James J. Peters VA Medical Center , New York, New York
| | - Rauf Latif
- Thyroid Research Unit, Department of Medicine, The Icahn School of Medicine at Mount Sinai, Mount Sinai Beth Israel Medical Center and the James J. Peters VA Medical Center , New York, New York
| | - Terry F Davies
- Thyroid Research Unit, Department of Medicine, The Icahn School of Medicine at Mount Sinai, Mount Sinai Beth Israel Medical Center and the James J. Peters VA Medical Center , New York, New York
| |
Collapse
|
28
|
Abstract
TAZ, a transcriptional coactivator with PDZ-binding motif, is encoded by WWTR1 gene (WW domain containing transcription regulator 1). TAZ is tightly regulated in the hippo pathway-dependent and -independent manner in response to a wide range of extracellular and intrinsic signals, including cell density, cell polarity, F-actin related mechanical stress, ligands of G protein-coupled receptors (GPCRs), cellular energy status, hypoxia and osmotic stress. Besides its role in normal tissue development, TAZ plays critical roles in cell proliferation, differentiation, apoptosis, migration, invasion, epithelial-mesenchymal transition (EMT), and stemness in multiple human cancers. We discuss here the regulators and regulation of TAZ. We also highlight the tumorigenic roles of TAZ and its potential therapeutic impact in human cancers.
Collapse
Affiliation(s)
- Xin Zhou
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, and Department of Biochemistry and Molecular Biology and Institutes of Biomedical Sciences, Fudan University Shanghai Medical College, Shanghai, 200032, China.
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
| | - Qun-Ying Lei
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, and Department of Biochemistry and Molecular Biology and Institutes of Biomedical Sciences, Fudan University Shanghai Medical College, Shanghai, 200032, China.
| |
Collapse
|
29
|
Guo Y, Pan Q, Zhang J, Xu X, Liu X, Wang Q, Yi R, Xie X, Yao L, Liu W, Shen L. Functional and clinical evidence that TAZ is a candidate oncogene in hepatocellular carcinoma. J Cell Biochem 2016; 116:2465-75. [PMID: 25650113 DOI: 10.1002/jcb.25117] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Accepted: 01/23/2015] [Indexed: 01/02/2023]
Abstract
Transcriptional co-activator with PDZ-binding motif (TAZ) has been reported to be associated with carcinogenesis. However, the cellular function of TAZ in human hepatocellular carcinoma (HCC) remains elusive. In this study, an immunohistochemistry analysis revealed that the expression of TAZ in cancer tissue samples from 180 HCC patients was significantly higher than that in adjacent normal tissues. In addition, TAZ overexpression was significantly correlated with aggressive tumor characteristics such as tumor size, TNM stage, lymph node or distant metastasis, histological differentiation, and recurrent HCC (P < 0.05). The Kaplan-Meier test showed that TAZ-positive expression was related to a poor prognosis compared to TAZ-negative expression (P < 0.05). Furthermore, the expression level of TAZ was generally correlated with the invasiveness of cancer cells. The overexpression of TAZ in the Huh7 cell line, which endogenously expresses TAZ at low levels, significantly promoted cell proliferation, migration and invasion and inhibited apoptosis, whereas RNA interference-mediated knockdown of TAZ in the highly invasive cell line MHCC-97H significantly suppressed cell proliferation, migration and invasion in vitro and tumor formation in vivo.
Collapse
Affiliation(s)
- Yan Guo
- The State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, China.,Department of Oncology, State Key Discipline of Cell Biology, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Qiao Pan
- Department of Cardiology, Xijing Hospital, the Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Jing Zhang
- Experiment Teaching Center, School of Basic Medicine, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Xinyuan Xu
- The State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Xiping Liu
- The State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Qinhao Wang
- The State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Ru Yi
- The State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Xiaobo Xie
- Department of Disease Surveillance And Control, Centers for Diseases Control and Prevention of Guangzhou Military District, Guangzhou, 510507, China
| | - Libo Yao
- Department of Oncology, State Key Discipline of Cell Biology, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Wenchao Liu
- Department of Oncology, State Key Discipline of Cell Biology, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Lan Shen
- The State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| |
Collapse
|
30
|
Wang M, Liu Y, Zou J, Yang R, Xuan F, Wang Y, Gao N, Cui H. Transcriptional co-activator TAZ sustains proliferation and tumorigenicity of neuroblastoma by targeting CTGF and PDGF-β. Oncotarget 2016; 6:9517-30. [PMID: 25940705 PMCID: PMC4496235 DOI: 10.18632/oncotarget.3367] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/1969] [Accepted: 02/11/2015] [Indexed: 01/22/2023] Open
Abstract
Neuroblastoma is a common childhood malignant tumor originated from the neural crest-derived sympathetic nervous system. A crucial event in the pathogenesis of neuroblastoma is to promote proliferation of neuroblasts, which is closely related to poor survival. However, mechanisms for regulation of cell proliferation and tumorigenicity in neuroblastoma are not well understood. Here, we report that overexpression of TAZ in neuroblastoma BE(2)-C cells causes increases in cell proliferation, self renewal and colony formation, which was restored back to its original levels by knockdown of TAZ in TAZ-overexpression cells. Inhibition of endogenous TAZ attenuated cell proliferation, colony formation and tumor development in neuroblastoma SK-N-AS cell, which could be rescued by re-introduction of TAZ into TAZ-knockdown cells. In addition, we found that overexpressing TAZ-mediated induction of CTGF and PDGF-β expression, cell proliferation and colony formation were inhibited by knocking down CTGF and PDGF-β with siRNA in TAZ-overexpressing cell. Overall, our findings suggested that TAZ plays an essential role in regulating cell proliferation and tumorigenesis in neuroblastoma cells. Thus, TAZ seems to be a novel and promising target for the treatment of neuroblastoma.
Collapse
Affiliation(s)
- Mei Wang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Yang Liu
- Department of Respiration, the Third Hospital of Hebei Medical University, Shijiazhuang, China.,Cardiovascular Department, Second Affiliated Hospital of University of South China, Hengyang, China
| | - Jiahua Zou
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Rui Yang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Fan Xuan
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Yi Wang
- Cardiovascular Department, Second Affiliated Hospital of University of South China, Hengyang, China
| | - Ning Gao
- Department of Pharmacognosy, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Hongjuan Cui
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| |
Collapse
|
31
|
Affiliation(s)
- Shohei Ikeda
- Department of Cell Biology and Molecular Medicine, Rutgers – New Jersey Medical School
| | - Junichi Sadoshima
- Department of Cell Biology and Molecular Medicine, Rutgers – New Jersey Medical School
| |
Collapse
|
32
|
Zhang K, Qi HX, Hu ZM, Chang YN, Shi ZM, Han XH, Han YW, Zhang RX, Zhang Z, Chen T, Hong W. YAP and TAZ Take Center Stage in Cancer. Biochemistry 2015; 54:6555-66. [PMID: 26465056 DOI: 10.1021/acs.biochem.5b01014] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The Hippo pathway was originally identified and named through screening for mutations in Drosophila, and the core components of the Hippo pathway are highly conserved in mammals. In the Hippo pathway, MST1/2 and LATS1/2 regulate downstream transcription coactivators YAP and TAZ, which mainly interact with TEAD family transcription factors to promote tissue proliferation, self-renewal of normal and cancer stem cells, migration, and carcinogenesis. The Hippo pathway was initially thought to be quite straightforward; however, recent studies have revealed that YAP/TAZ is an integral part and a nexus of a network composed of multiple signaling pathways. Therefore, in this review, we will summarize the latest findings on events upstream and downstream of YAP/TAZ and the ways of regulation of YAP/TAZ. In addition, we also focus on the crosstalk between the Hippo pathway and other tumor-related pathways and discuss their potential as therapeutic targets.
Collapse
Affiliation(s)
- Kun Zhang
- Department of Histology and Embryology, School of Basic Medical Sciences, Tianjin Medical University , 300070 Tianjin, China
| | - Hai-Xia Qi
- Department of Emergency Medicine, Tianjin Medical University General Hospital , 300052 Tianjin, China
| | - Zhi-Mei Hu
- Department of Histology and Embryology, School of Basic Medical Sciences, Tianjin Medical University , 300070 Tianjin, China
| | - Ya-Nan Chang
- Department of Histology and Embryology, School of Basic Medical Sciences, Tianjin Medical University , 300070 Tianjin, China
| | - Zhe-Min Shi
- Department of Histology and Embryology, School of Basic Medical Sciences, Tianjin Medical University , 300070 Tianjin, China
| | - Xiao-Hui Han
- Department of Histology and Embryology, School of Basic Medical Sciences, Tianjin Medical University , 300070 Tianjin, China
| | - Ya-Wei Han
- Department of Histology and Embryology, School of Basic Medical Sciences, Tianjin Medical University , 300070 Tianjin, China
| | - Rui-Xue Zhang
- Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College , 300020 Tianjin, China
| | - Zhen Zhang
- Department of Histology and Embryology, School of Basic Medical Sciences, Tianjin Medical University , 300070 Tianjin, China
| | - Ting Chen
- Department of Histology and Embryology, School of Basic Medical Sciences, Tianjin Medical University , 300070 Tianjin, China
| | - Wei Hong
- Department of Histology and Embryology, School of Basic Medical Sciences, Tianjin Medical University , 300070 Tianjin, China
| |
Collapse
|
33
|
Buckingham M, Relaix F. PAX3 and PAX7 as upstream regulators of myogenesis. Semin Cell Dev Biol 2015; 44:115-25. [PMID: 26424495 DOI: 10.1016/j.semcdb.2015.09.017] [Citation(s) in RCA: 149] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 09/23/2015] [Indexed: 10/23/2022]
Abstract
Like other subclasses within the PAX transcription factor family, PAX3 and PAX7 play important roles in the emergence of a number of different tissues during development. PAX3 regulates neural crest and, together with its orthologue PAX7, is also expressed in parts of the central nervous system. In this chapter we will focus on their role in skeletal muscle. Both factors are key regulators of myogenesis where Pax3 plays a major role during early skeletal muscle formation in the embryo while Pax7 predominates during post-natal growth and muscle regeneration in the adult. We review the expression and functions of these factors in the myogenic context. We also discuss mechanistic aspects of PAX3/7 function and modulation of their activity by interaction with other proteins, as well as the post-transcriptional and transcriptional regulation of their expression.
Collapse
Affiliation(s)
- Margaret Buckingham
- Department of Developmental and Stem Cell Biology, CNRS URA 2578, Institut Pasteur, 28 rue du Dr Roux, 75015 Paris, France.
| | - Frédéric Relaix
- INSERM U955 IMRB, Team 10, 94000 Creteil, France; UPEC Paris Est-Creteil University, Faculty of Medicine, F-94000 Creteil, France; Etablissement Français du Sang, 94017 Creteil, France; Université Paris Est, Ecole Nationale Veterinaire d'Alfort, 94700 Maison Alfort, France.
| |
Collapse
|
34
|
Valencia-Sama I, Zhao Y, Lai D, Janse van Rensburg HJ, Hao Y, Yang X. Hippo Component TAZ Functions as a Co-repressor and Negatively Regulates ΔNp63 Transcription through TEA Domain (TEAD) Transcription Factor. J Biol Chem 2015; 290:16906-17. [PMID: 25995450 DOI: 10.1074/jbc.m115.642363] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Indexed: 12/12/2022] Open
Abstract
Transcriptional co-activator with a PDZ binding domain (TAZ) is a WW domain-containing transcriptional co-activator and a core component of an emerging Hippo signaling pathway that regulates organ size, tumorigenesis, metastasis, and drug resistance. TAZ regulates these biological functions by up-regulating downstream cellular genes through transactivation of transcription factors such as TEAD and TTF1. To understand the molecular mechanisms underlying TAZ-induced tumorigenesis, we have recently performed a gene expression profile analysis by overexpressing TAZ in mammary cells. In addition to the TAZ-up-regulated genes that were confirmed in our previous studies, we identified a large number of cellular genes that were down-regulated by TAZ. In this study, we have confirmed these down-regulated genes (including cytokines, chemokines, and p53 gene family members) as bona fide downstream transcriptional targets of TAZ. By using human breast and lung epithelial cells, we have further characterized ΔNp63, a p53 gene family member, and shown that TAZ suppresses ΔNp63 mRNA, protein expression, and promoter activity through interaction with the transcription factor TEAD. We also show that TEAD can inhibit ΔNp63 promoter activity and that TAZ can directly interact with ΔNp63 promoter-containing TEAD binding sites. Finally, we provide functional evidence that down-regulation of ΔNp63 by TAZ may play a role in regulating cell migration. Altogether, this study provides novel evidence that the Hippo component TAZ can function as a co-repressor and regulate biological functions by negatively regulating downstream cellular genes.
Collapse
Affiliation(s)
- Ivette Valencia-Sama
- From the Department of Pathology and Molecular Medicine, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Yulei Zhao
- From the Department of Pathology and Molecular Medicine, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Dulcie Lai
- From the Department of Pathology and Molecular Medicine, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Helena J Janse van Rensburg
- From the Department of Pathology and Molecular Medicine, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Yawei Hao
- From the Department of Pathology and Molecular Medicine, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Xiaolong Yang
- From the Department of Pathology and Molecular Medicine, Queen's University, Kingston, Ontario K7L 3N6, Canada
| |
Collapse
|
35
|
Kawano S, Maruyama J, Nagashima S, Inami K, Qiu W, Iwasa H, Nakagawa K, Ishigami-Yuasa M, Kagechika H, Nishina H, Hata Y. A cell-based screening for TAZ activators identifies ethacridine, a widely used antiseptic and abortifacient, as a compound that promotes dephosphorylation of TAZ and inhibits adipogenesis in C3H10T1/2 cells. J Biochem 2015; 158:413-23. [PMID: 25979969 DOI: 10.1093/jb/mvv051] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2015] [Accepted: 04/27/2015] [Indexed: 12/17/2022] Open
Abstract
Transcriptional co-activator with PSD-95/Dlg-A/ZO-1 (PDZ)-binding motif (TAZ) regulates in cell proliferation and differentiation. In mesenchymal stem cells it promotes osteogenesis and myogenesis, and suppresses adipogenesis. TAZ activators are expected to prevent osteoporosis, obesity and muscle atrophy. TAZ activation induces epithelial-mesenchymal transition, confers stemness to cancer cells and leads to poor clinical prognosis in cancer patients. In this point of view, TAZ inhibitors should contribute to cancer therapy. Thus, TAZ attracts attention as a two-faced drug target. We screened for TAZ modulators by using human lung cancer A549 cells expressing the fluorescent reporter. Through this assay, we obtained TAZ activator candidates. We unexpectedly found that ethacridine, a widely used antiseptic and abortifacient, enhances the interaction of TAZ and protein phosphatases and increases unphosphorylated and nuclear TAZ. Ethacridine inhibits adipogenesis in mesenchymal C3H10T1/2 cells through the activation of TAZ. This finding suggests that ethacridine is a bona fide TAZ activator and supports that our assay is useful to discover TAZ activators.
Collapse
Affiliation(s)
- Shodai Kawano
- Department of Medical Biochemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8519, Japan
| | - Junichi Maruyama
- Department of Medical Biochemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8519, Japan
| | - Shunta Nagashima
- Department of Medical Biochemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8519, Japan
| | - Kazutoshi Inami
- Department of Medical Biochemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8519, Japan
| | - Wenzhe Qiu
- Department of Medical Biochemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8519, Japan
| | - Hiroaki Iwasa
- Department of Medical Biochemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8519, Japan
| | - Kentaro Nakagawa
- Department of Medical Biochemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8519, Japan
| | | | - Hiroyuki Kagechika
- Chemical Biology Screening Center, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Tokyo 101-0062, Japan
| | - Hiroshi Nishina
- Department of Developmental and Regenerative Biology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo 113-8510, Japan; and
| | - Yutaka Hata
- Department of Medical Biochemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8519, Japan; Center for Brain Integration Research, Tokyo Medical and Dental University, Tokyo, 113-8519, Japan
| |
Collapse
|
36
|
Brancaccio A, Palacios D. Chromatin signaling in muscle stem cells: interpreting the regenerative microenvironment. Front Aging Neurosci 2015; 7:36. [PMID: 25904863 PMCID: PMC4387924 DOI: 10.3389/fnagi.2015.00036] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 03/04/2015] [Indexed: 12/12/2022] Open
Abstract
Muscle regeneration in the adult occurs in response to damage at expenses of a population of adult stem cells, the satellite cells. Upon injury, either physical or genetic, signals released within the satellite cell niche lead to the commitment, expansion and differentiation of the pool of muscle progenitors to repair damaged muscle. To achieve this goal satellite cells undergo a dramatic transcriptional reprogramming to coordinately activate and repress specific subset of genes. Although the epigenetics of muscle regeneration has been extensively discussed, less emphasis has been put on how extra-cellular cues are translated into the specific chromatin reorganization necessary for progression through the myogenic program. In this review we will focus on how satellite cells sense the regenerative microenvironment in physiological and pathological circumstances, paying particular attention to the mechanism through which the external stimuli are transduced to the nucleus to modulate chromatin structure and gene expression. We will discuss the pathways involved and how alterations in this chromatin signaling may contribute to satellite cells dysfunction during aging and disease.
Collapse
Affiliation(s)
- Arianna Brancaccio
- Laboratory of Epigenetics and Signaling, IRCCS Fondazione Santa Lucia Rome, Italy
| | - Daniela Palacios
- Laboratory of Epigenetics and Signaling, IRCCS Fondazione Santa Lucia Rome, Italy
| |
Collapse
|
37
|
Santucci M, Vignudelli T, Ferrari S, Mor M, Scalvini L, Bolognesi ML, Uliassi E, Costi MP. The Hippo Pathway and YAP/TAZ-TEAD Protein-Protein Interaction as Targets for Regenerative Medicine and Cancer Treatment. J Med Chem 2015; 58:4857-73. [PMID: 25719868 DOI: 10.1021/jm501615v] [Citation(s) in RCA: 119] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The Hippo pathway is an important organ size control signaling network and the major regulatory mechanism of cell-contact inhibition. Yes associated protein (YAP) and transcriptional co-activator with PDZ-binding motif (TAZ) are its targets and terminal effectors: inhibition of the pathway promotes YAP/TAZ translocation to the nucleus, where they interact with transcriptional enhancer associate domain (TEAD) transcription factors and coactivate the expression of target genes, promoting cell proliferation. Defects in the pathway can result in overgrowth phenotypes due to deregulation of stem-cell proliferation and apoptosis; members of the pathway are directly involved in cancer development. The pharmacological regulation of the pathway might be useful in cancer prevention, treatment, and regenerative medicine applications; currently, a few compounds can selectively modulate the pathway. In this review, we present an overview of the Hippo pathway, the sequence and structural analysis of YAP/TAZ, the known pharmacological modulators of the pathway, especially those targeting YAP/TAZ-TEAD interaction.
Collapse
Affiliation(s)
- Matteo Santucci
- †Department of Life Sciences, University of Modena and Reggio Emilia, Via Giuseppe Campi 183, Modena 41125, Italy
| | - Tatiana Vignudelli
- †Department of Life Sciences, University of Modena and Reggio Emilia, Via Giuseppe Campi 183, Modena 41125, Italy
| | - Stefania Ferrari
- †Department of Life Sciences, University of Modena and Reggio Emilia, Via Giuseppe Campi 183, Modena 41125, Italy
| | - Marco Mor
- ‡Department of Pharmacy, University of Parma, Parco Area delle Scienze 27/A, Parma 43124, Italy
| | - Laura Scalvini
- ‡Department of Pharmacy, University of Parma, Parco Area delle Scienze 27/A, Parma 43124, Italy
| | - Maria Laura Bolognesi
- §Department of Pharmacy and Biotechnology, University of Bologna, Via Belmeloro 6, Bologna 40126, Italy
| | - Elisa Uliassi
- §Department of Pharmacy and Biotechnology, University of Bologna, Via Belmeloro 6, Bologna 40126, Italy
| | - Maria Paola Costi
- †Department of Life Sciences, University of Modena and Reggio Emilia, Via Giuseppe Campi 183, Modena 41125, Italy
| |
Collapse
|
38
|
YAP/TAZ enhance mammalian embryonic neural stem cell characteristics in a Tead-dependent manner. Biochem Biophys Res Commun 2015; 458:110-6. [DOI: 10.1016/j.bbrc.2015.01.077] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Accepted: 01/17/2015] [Indexed: 11/17/2022]
|
39
|
Kodaka M, Hata Y. The mammalian Hippo pathway: regulation and function of YAP1 and TAZ. Cell Mol Life Sci 2015; 72:285-306. [PMID: 25266986 PMCID: PMC11113917 DOI: 10.1007/s00018-014-1742-9] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Revised: 09/08/2014] [Accepted: 09/25/2014] [Indexed: 02/07/2023]
Abstract
The Hippo pathway was originally identified as the signaling that controls organ size in Drosophila, with the core architecture conserved in mammals. In the mammalian Hippo pathway, mammalian Ste20-like kinases (MST1/2) and large tumor suppressor kinases (LATS1/2) regulate transcriptional co-activators, Yes-associated protein (YAP1) and Transcriptional co-activator with a PDZ-binding motif (TAZ). The Hippo pathway was initially thought to be quite straightforward; however, the identification of additional components has revealed its inherent complexity. Regulation of YAP1 and TAZ is not always dependent on MST1/2 and LATS1/2. MST1/2 and LATS1/2 play various YAP1/TAZ-independent roles, while YAP1 and TAZ cross-talk with other signaling pathways. In this review we focus on YAP1 and TAZ and discuss their regulation, function, and the consequences of their dysregulation.
Collapse
Affiliation(s)
- Manami Kodaka
- Department of Medical Biochemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, 113-8519 Japan
| | - Yutaka Hata
- Department of Medical Biochemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, 113-8519 Japan
- Center for Brain Integration Research, Tokyo Medical and Dental University, Tokyo, 113-8519 Japan
| |
Collapse
|
40
|
Zhu C, Li L, Zhao B. The regulation and function of YAP transcription co-activator. Acta Biochim Biophys Sin (Shanghai) 2015; 47:16-28. [PMID: 25487920 DOI: 10.1093/abbs/gmu110] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The Hippo pathway was initially identified in Drosophila by genetic mosaic screens for tumor suppressor genes. Researches indicated that the Hippo pathway is a key regulator of organ size and is conserved during evolution. Furthermore, studies of mouse models and clinical samples demonstrated the importance of Hippo pathway dysregulation in human cancer development. In addition, the Hippo pathway contributes to progenitor cell and stem cell self-renewal and is thus involved in tissue regeneration. In the Hippo pathway, MST1/2 kinases together with the adaptor protein SAV phosphorylate LATS1/2 kinases. Interaction with an adaptor protein MOB is also important for LATS1/2 activation. Activated LATS1/2 in turn phosphorylate and inhibit Yes-associated protein (YAP). YAP is a key downstream effector of the Hippo pathway, and is a transcriptional co-activator that mainly interacts with TEAD family transcription factors to promote gene expression. Alteration of gene expression by YAP leads to cell proliferation, apoptosis evasion, and also stem cell amplification. In this review, we mainly focus on YAP, discussing its regulation and mechanisms of action in the context of organ size control, tissue regeneration and tumorigenesis.
Collapse
Affiliation(s)
- Chu Zhu
- Life Sciences Institute and Innovation Center for Cell Biology, Zhejiang University, Hangzhou 310058, China
| | - Li Li
- Institute of Aging Research, Hangzhou Normal University, Hangzhou 311121, China
| | - Bin Zhao
- Life Sciences Institute and Innovation Center for Cell Biology, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
41
|
Manderfield LJ, Engleka KA, Aghajanian H, Gupta M, Yang S, Li L, Baggs JE, Hogenesch JB, Olson EN, Epstein JA. Pax3 and hippo signaling coordinate melanocyte gene expression in neural crest. Cell Rep 2014; 9:1885-1895. [PMID: 25466249 PMCID: PMC4267159 DOI: 10.1016/j.celrep.2014.10.061] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Revised: 10/13/2014] [Accepted: 10/24/2014] [Indexed: 11/25/2022] Open
Abstract
Loss of Pax3, a developmentally regulated transcription factor expressed in premigratory neural crest, results in severe developmental defects and embryonic lethality. Although Pax3 mutations produce profound phenotypes, the intrinsic transcriptional activation exhibited by Pax3 is surprisingly modest. We postulated the existence of transcriptional coactivators that function with Pax3 to mediate developmental functions. A high-throughput screen identified the Hippo effector proteins Taz and Yap65 as Pax3 coactivators. Synergistic coactivation of target genes by Pax3-Taz/Yap65 requires DNA binding by Pax3, is Tead independent, and is regulated by Hippo kinases Mst1 and Lats2. In vivo, Pax3 and Yap65 colocalize in the nucleus of neural crest progenitors in the dorsal neural tube. Neural crest deletion of Taz and Yap65 results in embryo-lethal neural crest defects and decreased expression of the Pax3 target gene, Mitf. These results suggest that Pax3 activity is regulated by the Hippo pathway and that Pax factors are Hippo effectors.
Collapse
Affiliation(s)
- Lauren J Manderfield
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kurt A Engleka
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Haig Aghajanian
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Mudit Gupta
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Steven Yang
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Li Li
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Julie E Baggs
- Department of Pharmacology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - John B Hogenesch
- Department of Pharmacology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Eric N Olson
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jonathan A Epstein
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn Cardiovascular Institute, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
42
|
Evaluation of TAZ expression and its effect on tumor invasion and metastasis in human glioma. ASIAN PAC J TROP MED 2014; 7:757-60. [DOI: 10.1016/s1995-7645(14)60131-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Revised: 08/15/2014] [Accepted: 09/15/2014] [Indexed: 11/19/2022] Open
|
43
|
Lee ES, Kim WR, Kim Y, Lee HW, Kim H, Sun W. Polarized and Stage-Dependent Distribution of Immunoreactivity for Novel PDZ-Binding Protein Preso1 in Adult Neurogenic Regions. Endocrinol Metab (Seoul) 2014; 29:349-55. [PMID: 25309794 PMCID: PMC4192811 DOI: 10.3803/enm.2014.29.3.349] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2013] [Revised: 11/03/2013] [Accepted: 01/13/2014] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Adult neural stem cells have the potential for self-renewal and differentiation into multiple cell lineages via symmetric or asymmetric cell division. Preso1 is a recently identified protein involved in the formation of dendritic spines and the promotion of axonal growth in developing neurons. Preso1 can also bind to cell polarity proteins, suggesting a potential role for Preso1 in asymmetric cell division. METHODS To investigate the distribution of Preso1, we performed immunohistochemistry with adult mouse brain slice. Also, polarized distribution of Preso1 was assessed by immunocytochemistry in cultured neural stem cells. RESULTS Immunoreactivity for Preso1 (Preso1-IR) was strong in the rostral migratory stream and subventricular zone, where proliferating transit-amplifying cells and neuroblasts are prevalent. In cultured neural stem cells, Preso1-IR was unequally distributed in the cell cytosol. We also observed the distribution of Preso1 in the subgranular zone of the hippocampal dentate gyrus, another neurogenic region in the adult brain. Interestingly, Preso1-IR was transiently observed in the nuclei of doublecortin-expressing neuroblasts immediately after asymmetric cell division. CONCLUSION Our study demonstrated that Preso1 is asymmetrically distributed in the cytosol and nuclei of neural stem/progenitor cells in the adult brain, and may play a significant role in cell differentiation via association with cell polarity machinery.
Collapse
Affiliation(s)
- Eun Soo Lee
- Department of Anatomy, BK21 Program, Korea University College of Medicine, Seoul, Korea
| | - Woon Ryoung Kim
- Department of Anatomy, BK21 Program, Korea University College of Medicine, Seoul, Korea
| | - Younghwa Kim
- Department of Emergency Medical Technology, Kyungil University College of Nursing and Public Health, Gyeongsan, Korea
| | - Hyun Woo Lee
- Department of Anatomy, BK21 Program, Korea University College of Medicine, Seoul, Korea
| | - Hyun Kim
- Department of Anatomy, BK21 Program, Korea University College of Medicine, Seoul, Korea
| | - Woong Sun
- Department of Anatomy, BK21 Program, Korea University College of Medicine, Seoul, Korea
| |
Collapse
|
44
|
Sun L, Chen F, Shi W, Qi L, Zhao Z, Zhang J. Prognostic impact of TAZ and β-catenin expression in adenocarcinoma of the esophagogastric junction. Diagn Pathol 2014; 9:125. [PMID: 25029906 PMCID: PMC4105109 DOI: 10.1186/1746-1596-9-125] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Accepted: 06/22/2014] [Indexed: 01/03/2023] Open
Abstract
Abstract Virtual Slides The virtual slide(s) for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/2558852841276335
Collapse
Affiliation(s)
| | | | | | | | | | - Jianping Zhang
- Department of Pathology, Shandong University School of Medicine, 44#,Wenhua Xi Road, Jinan, Shandong 250012, People's Republic of China.
| |
Collapse
|
45
|
Abstract
The Hippo signaling pathway, consisting of a highly conserved kinase cascade (MST and Lats) and downstream transcription coactivators (YAP and TAZ), plays a key role in tissue homeostasis and organ size control by regulating tissue-specific stem cells. Moreover, this pathway plays a prominent role in tissue repair and regeneration. Dysregulation of the Hippo pathway is associated with cancer development. Recent studies have revealed a complex network of upstream inputs, including cell density, mechanical sensation, and G-protein-coupled receptor (GPCR) signaling, that modulate Hippo pathway activity. This review focuses on the role of the Hippo pathway in stem cell biology and its potential implications in tissue homeostasis and cancer.
Collapse
Affiliation(s)
- Jung-Soon Mo
- Department of Pharmacology and Moores Cancer Center, University of California, San Diego La Jolla, CA, USA
| | - Hyun Woo Park
- Department of Pharmacology and Moores Cancer Center, University of California, San Diego La Jolla, CA, USA
| | - Kun-Liang Guan
- Department of Pharmacology and Moores Cancer Center, University of California, San Diego La Jolla, CA, USA
| |
Collapse
|
46
|
Shear stress induced by an interstitial level of slow flow increases the osteogenic differentiation of mesenchymal stem cells through TAZ activation. PLoS One 2014; 9:e92427. [PMID: 24658423 PMCID: PMC3962409 DOI: 10.1371/journal.pone.0092427] [Citation(s) in RCA: 142] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Accepted: 02/21/2014] [Indexed: 01/13/2023] Open
Abstract
Shear stress activates cellular signaling involved in cellular proliferation, differentiation, and migration. However, the mechanisms of mesenchymal stem cell (MSC) differentiation under interstitial flow are not fully understood. Here, we show the increased osteogenic differentiation of MSCs under exposure to constant, extremely low shear stress created by osmotic pressure-induced flow in a microfluidic chip. The interstitial level of shear stress in the proposed microfluidic system stimulated nuclear localization of TAZ (transcriptional coactivator with PDZ-binding motif), a transcriptional modulator of MSCs, activated TAZ target genes such as CTGF and Cyr61, and induced osteogenic differentiation. TAZ-depleted cells showed defects in shear stress-induced osteogenic differentiation. In shear stress induced cellular signaling, Rho signaling pathway was important forthe nuclear localization of TAZ. Taken together, these results suggest that TAZ is an important mediator of interstitial flow-driven shear stress signaling in osteoblast differentiation of MSCs.
Collapse
|
47
|
Screening with a novel cell-based assay for TAZ activators identifies a compound that enhances myogenesis in C2C12 cells and facilitates muscle repair in a muscle injury model. Mol Cell Biol 2014; 34:1607-21. [PMID: 24550007 DOI: 10.1128/mcb.01346-13] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The transcriptional coactivator with a PDZ-binding motif (TAZ) cooperates with various transcriptional factors and plays various roles. Immortalized human mammalian epithelial MCF10A cells form spheres when TAZ is overexpressed and activated. We developed a cell-based assay using sphere formation by TAZ-expressing MCF10A cells as a readout to screen 18,458 chemical compounds for TAZ activators. Fifty compounds were obtained, and 47 were confirmed to activate the TAZ-dependent TEAD-responsive reporter activity in HEK293 cells. We used the derived subset of compounds as a TAZ activator candidate minilibrary and searched for compounds that promote myogenesis in mouse C2C12 myoblast cells. In this study, we focused on one compound, IBS008738. IBS008738 stabilizes TAZ, increases the unphosphorylated TAZ level, enhances the association of MyoD with the myogenin promoter, upregulates MyoD-dependent gene transcription, and competes with myostatin in C2C12 cells. TAZ knockdown verifies that the effect of IBS008738 depends on endogenous TAZ in C2C12 cells. IBS008738 facilitates muscle repair in cardiotoxin-induced muscle injury and prevents dexamethasone-induced muscle atrophy. Thus, this cell-based assay is useful to identify TAZ activators with a variety of cellular outputs. Our findings also support the idea that TAZ is a potential therapeutic target for muscle atrophy.
Collapse
|
48
|
Byun MR, Sung MK, Kim AR, Lee CH, Jang EJ, Jeong MG, Noh M, Hwang ES, Hong JH. (-)-Epicatechin gallate (ECG) stimulates osteoblast differentiation via Runt-related transcription factor 2 (RUNX2) and transcriptional coactivator with PDZ-binding motif (TAZ)-mediated transcriptional activation. J Biol Chem 2014; 289:9926-35. [PMID: 24515112 DOI: 10.1074/jbc.m113.522870] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Osteoporosis is a degenerative bone disease characterized by low bone mass and is caused by an imbalance between osteoblastic bone formation and osteoclastic bone resorption. It is known that the bioactive compounds present in green tea increase osteogenic activity and decrease the risk of fracture by improving bone mineral density. However, the detailed mechanism underlying these beneficial effects has yet to be elucidated. In this study, we investigated the osteogenic effect of (-)-epicatechin gallate (ECG), a major bioactive compound found in green tea. We found that ECG effectively stimulates osteoblast differentiation, indicated by the increased expression of osteoblastic marker genes. Up-regulation of osteoblast marker genes is mediated by increased expression and interaction of the transcriptional coactivator with PDZ-binding motif (TAZ) and Runt-related transcription factor 2 (RUNX2). ECG facilitates nuclear localization of TAZ through PP1A. PP1A is essential for osteoblast differentiation because inhibition of PP1A activity was shown to suppress ECG-mediated osteogenic differentiation. Taken together, the results showed that ECG stimulates osteoblast differentiation through the activation of TAZ and RUNX2, revealing a novel mechanism for green tea-stimulated osteoblast differentiation.
Collapse
Affiliation(s)
- Mi Ran Byun
- From the Division of Life Sciences, Korea University, Seoul 136-701, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Canonical Wnt signalling activates TAZ through PP1A during osteogenic differentiation. Cell Death Differ 2014; 21:854-63. [PMID: 24510127 DOI: 10.1038/cdd.2014.8] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Revised: 12/13/2013] [Accepted: 01/02/2014] [Indexed: 12/16/2022] Open
Abstract
TAZ, a transcriptional modulator, has a key role in cell proliferation, differentiation and stem cell self-renewal. TAZ activity is regulated by several signalling pathways, including Hippo, GPCR and Wnt signalling, but the regulatory mechanisms of TAZ activation are not yet clearly understood. In this report, we show that TAZ is regulated by canonical Wnt signalling during osteogenic differentiation. Wnt3a increases TAZ expression and an inhibitor of GSK3β, a downstream effector of Wnt signalling, induces TAZ. Wnt3a facilitates the dephosphorylation of TAZ, which stabilises TAZ and prevents it from binding 14-3-3 proteins, thus inducing the nuclear localisation of TAZ. Dephosphorylation of TAZ occurs via PP1A, and depletion of PP1A blocks Wnt3a-induced TAZ stabilisation. Wnt3a-induced TAZ activates osteoblastic differentiation and siRNA-induced TAZ depletion decreases Wnt3a-induced osteoblast differentiation. Taken together, these results show that TAZ mediates Wnt3a-stimulated osteogenic differentiation through PP1A, suggesting that the Wnt signal regulates the Hippo pathway.
Collapse
|
50
|
Adams JS, Sudweeks SN, Stark MR. Pax3 isoforms in sensory neurogenesis: expression and function in the ophthalmic trigeminal placode. Dev Dyn 2014; 243:1249-61. [PMID: 24375872 DOI: 10.1002/dvdy.24108] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Revised: 12/10/2013] [Accepted: 12/12/2013] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND In the trigeminal placode, Pax3 is classified as necessary but not sufficient for sensory neuron differentiation. One hypothesis is that different Pax3 isoforms regulate cellular differentiation uniquely. Pax3 is known to sometimes activate and sometimes repress gene transcription, and its activity can be dependent on the isoforms present. Pax3 isoforms had not previously been characterized in chick sensory neurogenesis. RESULTS Reverse transcriptase-polymerase chain reaction (PCR) analysis revealed three well-expressed Pax3 splice variants: full-length (flPax3), Pax3V1, and Pax3V2. Each was characterized for its effect on neurogenesis by misexpression in placodal ectoderm. The differences observed were more apparent under conditions of enhanced neurogenesis (by means of Notch inhibition), where flPax3 and Pax3V1 caused failed differentiation, while Pax3V2 misexpression resembled the neuronal differentiation seen in controls. Quantitative PCR analysis revealed a progressive increase in Pax3 expression, but no significant change in relative isoform expression. Of interest, Notch inhibition led to a significant increase in Pax3 expression. CONCLUSIONS We can conclude that: (1) flPax3 and Pax3V1 inhibit neuronal differentiation; (2) Pax3V2 is permissive for neuronal differentiation; (3) while absolute levels change over time, relative splice form expression levels are largely maintained in the trigeminal placode domain; and (4) Pax3 expression generally increases in response to Notch inhibition.
Collapse
Affiliation(s)
- Jason S Adams
- Department of Physiology and Developmental Biology, Brigham Young University, Provo, Utah
| | | | | |
Collapse
|