1
|
Rasouli M, Khakshournia S, Vakili O, Dastghaib S, Seghatoleslam A, Shafiee SM. The crosstalk between ubiquitin-conjugating enzyme E2Q1 and p53 in colorectal cancer: An in vitro analysis. Med Oncol 2023; 40:199. [PMID: 37294480 DOI: 10.1007/s12032-023-02039-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 04/25/2023] [Indexed: 06/10/2023]
Abstract
Colorectal cancer (CRC) is a prevalent gastrointestinal neoplasm that ranks fourth in terms of cancer-related deaths worldwide. In the process of CRC progression, multiple ubiquitin-conjugating enzymes (E2s) are involved; UBE2Q1 is one of those newly identified E2s that is markedly expressed in human colorectal tumors. Since p53 is a well-known tumor suppressor and defined as a key factor to be targeted by the ubiquitin-proteasome system, we hypothesized that UBE2Q1 might contribute to CRC progression through the modulation of p53. Using the lipofection method, the cultured SW480 and LS180 cells were transfected with the UBE2Q1 ORF-containing pCMV6-AN-GFP vector. Then, quantitative RT-PCR was used to assay the mRNA expression levels of p53's target genes, i.e., Mdm2, Bcl2, and Cyclin E. Moreover, Western blot analysis was performed to confirm the cellular overexpression of UBE2Q1 and assess the protein levels of p53, pre- and post-transfection. The expression of p53's target genes were cell line-dependent except for Mdm2 that was consistent with the findings of p53. The results of Western blotting demonstrated that the protein levels of p53 were greatly lower in UBE2Q1-transfected SW480 cells compared to the control SW480 cells. However, the reduced levels of p53 protein were not remarkable in the transfected LS180 cells compared to the control cells. The suppression of p53 is believed to be the result of UBE2Q1-dependent ubiquitination and its subsequent proteasomal degradation. Furthermore, the ubiquitination of p53 can act as a signal for degradation-independent functions, such as nuclear export and suppressing the p53's transcriptional activities. In this context, the decreased Mdm2 levels can moderate the proteasome-independent mono-ubiquitination of p53. The ubiquitinated p53 modulates the transcriptional levels of target genes. Therefore, the up-modulation of UBE2Q1 may influence the transcriptional activities depending on p53, and thereby contributes to CRC progression through regulating the p53.
Collapse
Affiliation(s)
- Maryam Rasouli
- Department of Clinical Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sara Khakshournia
- Department of Clinical Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
- Autophagy Research Center, Department of Clinical Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Zand Street, Shiraz, 71348-14336, Iran
| | - Omid Vakili
- Autophagy Research Center, Department of Clinical Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Zand Street, Shiraz, 71348-14336, Iran
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Sanaz Dastghaib
- Endocrinology and Metabolism Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Atefeh Seghatoleslam
- Department of Clinical Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sayed Mohammad Shafiee
- Autophagy Research Center, Department of Clinical Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Zand Street, Shiraz, 71348-14336, Iran.
| |
Collapse
|
2
|
Zhang B, Deng C, Wang L, Zhou F, Zhang S, Kang W, Zhan P, Chen J, Shen S, Guo H, Zhang M, Wang Y, Zhang F, Zhang W, Xiao J, Kong B, Friess H, Zhuge Y, Yan H, Zou X. Upregulation of UBE2Q1 via gene copy number gain in hepatocellular carcinoma promotes cancer progression through β-catenin-EGFR-PI3K-Akt-mTOR signaling pathway. Mol Carcinog 2017; 57:201-215. [PMID: 29027712 DOI: 10.1002/mc.22747] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 08/22/2017] [Accepted: 09/29/2017] [Indexed: 01/20/2023]
Abstract
Hepatocellular carcinoma (HCC) is the most common type of liver cancer and represents a highly malignant tumor with a poor prognosis. Therapeutic modalities for HCC are limited and generally ineffective. UBE2Q1 is a putative E2 ubiquitin conjugating enzyme, and has been shown to be overexpressed in various types of cancers including HCC. How UBE2Q1 contributes to hepatocarcinogenesis remains unknown. Here, we show that UBE2Q1 is up-regulated in HCC cell lines and in a subset of human HCC tissues. Up-regulation of UBE2Q1 in primary HCC tumors was significantly correlated with shorter overall survival and disease-free survival. Mechanistically, we showed that the frequent up-regulation of UBE2Q1 in HCCs was attributed to the recurrent UBE2Q1 gene copy gain at chromosome 1q21. Functionally, we showed that knockdown of UBE2Q1 reduced HCC cell proliferation, promoted apoptosis via induction of GADD45α, and suppressed orthotopic tumorigenicity both in vitro and in vivo. Inactivation of UBE2Q1 also impeded HCC cell migration and invasion in vitro through regulating EMT process, and suppressed HCC metastasis in vivo. Interestingly, our data revealed a role of UBE2Q1 in the regulation of β-catenin-EGFR-PI3K-Akt-mTOR signaling pathway. Our findings indicate that UBE2Q1 is a candidate oncogene involved in HCC development and progression and therefore a potential therapeutic target in applicable HCC patients.
Collapse
Affiliation(s)
- Bin Zhang
- Department of Gastroenterology, the Affiliated Drum Tower Hospital of Nanjing University, Medical School, Nanjing, Jiangsu, China
| | - Chao Deng
- Department of Gastroenterology, the Affiliated Drum Tower Hospital of Nanjing University, Medical School, Nanjing, Jiangsu, China
| | - Lei Wang
- Department of Gastroenterology, the Affiliated Drum Tower Hospital of Nanjing University, Medical School, Nanjing, Jiangsu, China
| | - Fan Zhou
- Department of Gastroenterology, the Affiliated Drum Tower Hospital of Nanjing University, Medical School, Nanjing, Jiangsu, China
| | - Shu Zhang
- Department of Gastroenterology, the Affiliated Drum Tower Hospital of Nanjing University, Medical School, Nanjing, Jiangsu, China
| | - Wei Kang
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Oncology in South China, Institute of Digestive Disease, Partner State Key Laboratory of Digestive Disease, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Ping Zhan
- Department of Respiratory Medicine, Jinling Hospital, Nanjing University, Medical School, Nanjing, Jiangsu, China
| | - Juan Chen
- The Key Laboratory of Molecular Biology on Infectious Diseases, Ministry of Education, The Second Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing, China
| | - Shanshan Shen
- Department of Gastroenterology, the Affiliated Drum Tower Hospital of Nanjing University, Medical School, Nanjing, Jiangsu, China
| | - Huimin Guo
- Department of Gastroenterology, the Affiliated Drum Tower Hospital of Nanjing University, Medical School, Nanjing, Jiangsu, China
| | - Ming Zhang
- Department of Gastroenterology, the Affiliated Drum Tower Hospital of Nanjing University, Medical School, Nanjing, Jiangsu, China
| | - Yi Wang
- Department of Gastroenterology, the Affiliated Drum Tower Hospital of Nanjing University, Medical School, Nanjing, Jiangsu, China
| | - Feng Zhang
- Department of Gastroenterology, the Affiliated Drum Tower Hospital of Nanjing University, Medical School, Nanjing, Jiangsu, China
| | - Wei Zhang
- Department of Gastroenterology, the Affiliated Drum Tower Hospital of Nanjing University, Medical School, Nanjing, Jiangsu, China
| | - Jiangqiang Xiao
- Department of Gastroenterology, the Affiliated Drum Tower Hospital of Nanjing University, Medical School, Nanjing, Jiangsu, China
| | - Bo Kong
- Department of Gastroenterology, the Affiliated Drum Tower Hospital of Nanjing University, Medical School, Nanjing, Jiangsu, China.,Department of Surgery, Technical University of Munich, Munich, Germany
| | - Helmut Friess
- Department of Surgery, Technical University of Munich, Munich, Germany
| | - Yuzheng Zhuge
- Department of Gastroenterology, the Affiliated Drum Tower Hospital of Nanjing University, Medical School, Nanjing, Jiangsu, China
| | - Hongli Yan
- Department of Laboratory Medicine, Changhai Hospital, the Second Military Medical University, Shanghai, China
| | - Xiaoping Zou
- Department of Gastroenterology, the Affiliated Drum Tower Hospital of Nanjing University, Medical School, Nanjing, Jiangsu, China
| |
Collapse
|
3
|
Fahmidehkar MA, Shafiee SM, Eftekhar E, Mahbudi L, Seghatoleslam A. Induction of cell proliferation, clonogenicity and cell accumulation in S phase as a consequence of human UBE2Q1 overexpression. Oncol Lett 2016; 12:2169-2174. [PMID: 27602158 DOI: 10.3892/ol.2016.4860] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 06/17/2016] [Indexed: 02/07/2023] Open
Abstract
Ubiquitination is an important cellular mechanism with a pivotal role in the degradation of abnormal or short-lived proteins and the regulation of cell cycle and cell growth. The ubiquitin-proteasome pathway is altered in multiple types of human malignancies, including colorectal cancer (CRC). The alteration in the expression of the novel human gene ubiquitin-conjugating enzyme E2 Q1 (UBE2Q1), as a putative member of the E2 ubiquitin-conjugating enzyme family, has been reported in several malignancies, including carcinoma of the breast, hepatocellular and colorectal cancer, and pediatric acute lymphoblastic leukemia. In the present study, the effect of UBE2Q1 overexpression on cell growth, clonogenicity, motility and cell cycle was investigated in a CRC cell line. The UBE2Q1 gene was cloned in the pCMV6-AN-GFP expression vector. A series of stable transfectants of SW1116 cells overexpressing UBE2Q1 protein were established and confirmed by fluorescence microscopy and western blotting. Using these cells, MTT assay was performed to evaluate cell growth and proliferation, while crystal violet staining was used for clonogenicity assay. Cell cycle analysis was also performed to survey the ratio of cells accumulated in different phases of the cell cycle upon transfection. The motility of these cells was also studied using wound healing assay. UBE2Q1 transfectants exhibited a faster growth in cell culture, increased colony formation capacity and enhanced motility compared with control non-transfected cells and cells transfected with empty vector (mock-transfected cells). UBE2Q1 overexpression also resulted in a significant decrease in the number of cells accumulated in the G0/G1 phase of the cell cycle. The present findings suggest that UBE2Q1 may function as an oncogene that induces proliferation of cancer cells, and could be a novel diagnostic tool and a potential therapeutic target for CRC.
Collapse
Affiliation(s)
- Mohammad Ali Fahmidehkar
- Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz 71348-45794, Iran
| | - Sayed Mohammad Shafiee
- Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz 71348-45794, Iran
| | - Ebrahim Eftekhar
- Food and Cosmetic Health Research Center, Hormozgan University of Medical Sciences, Bandar Abbas 79158-73665, Iran
| | - Laleh Mahbudi
- Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz 71348-45794, Iran
| | - Atefeh Seghatoleslam
- Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz 71348-45794, Iran; Histomorphometry and Stereology Research Center, Shiraz University of Medical Sciences, Shiraz 71439-14693, Iran
| |
Collapse
|
4
|
Shafiee SM, Rasti M, Seghatoleslam A, Azimi T, Owji AA. UBE2Q1 in a Human Breast Carcinoma Cell Line: Overexpression and Interaction with p53. Asian Pac J Cancer Prev 2016; 16:3723-7. [PMID: 25987028 DOI: 10.7314/apjcp.2015.16.9.3723] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
The p53 tumor suppressor protein is a principal mediator of growth arrest, senescence, and apoptosis in response to a broad array of cellular damage. p53 is a substrate for the ubiquitin-proteasome system, however, the ubiquitin-conjugating enzymes (E2s) involved in p53 ubiquitination have not been well studied. UBE2Q1 is a novel E2 ubiquitin conjugating enzyme gene. Here, we investigated the effect of UBE2Q1 overexpression on the level of p53 in the MDA-MB-468 breast cancer cell line as well as the interaction between UBE2Q1 and p53. By using a lipofection method, the p53 mutated breast cancer cell line, MDA-MB-468, was transfected with the vector pCMV6-AN-GFP, containing UBE2Q1 ORF. Western blot analysis was employed to verify the overexpression of UBE2Q1 in MDA-MB-468 cells and to evaluate the expression level of p53 before and after cell transfection. Immunoprecipitation and GST pull-down protocols were used to investigate the binding of UBE2Q1 to p53. We established MDA-MB-468 cells that transiently expressed a GFP fusion proteins containing UBE2Q1 (GFP-UBE2Q1). Western blot analysis revealed that levels of p53 were markedly lower in UBE2Q1 transfected MDA-MB-468 cells as compared with control MDA-MB-468 cells. Both in vivo and in vitro data showed that UBE2Q1 co-precipitated with p53 protein. Our data for the first time showed that overexpression of UBE2Q1can lead to the repression of p53 in MDA-MB-468 cells. This repression of p53 may be due to its UBE2Q1 mediated ubiquitination and subsequent proteasome degradation, a process that may involve direct interaction of UBE2Q1with p53.
Collapse
Affiliation(s)
- Sayed Mohammad Shafiee
- Departments of Biochemistry- Recombinant Protein Laboratory, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran E-mail :
| | | | | | | | | |
Collapse
|
5
|
Roy SH, Tobin DV, Memar N, Beltz E, Holmen J, Clayton JE, Chiu DJ, Young LD, Green TH, Lubin I, Liu Y, Conradt B, Saito RM. A complex regulatory network coordinating cell cycles during C. elegans development is revealed by a genome-wide RNAi screen. G3 (BETHESDA, MD.) 2014; 4:795-804. [PMID: 24584095 PMCID: PMC4025478 DOI: 10.1534/g3.114.010546] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Accepted: 02/25/2014] [Indexed: 12/11/2022]
Abstract
The development and homeostasis of multicellular animals requires precise coordination of cell division and differentiation. We performed a genome-wide RNA interference screen in Caenorhabditis elegans to reveal the components of a regulatory network that promotes developmentally programmed cell-cycle quiescence. The 107 identified genes are predicted to constitute regulatory networks that are conserved among higher animals because almost half of the genes are represented by clear human orthologs. Using a series of mutant backgrounds to assess their genetic activities, the RNA interference clones displaying similar properties were clustered to establish potential regulatory relationships within the network. This approach uncovered four distinct genetic pathways controlling cell-cycle entry during intestinal organogenesis. The enhanced phenotypes observed for animals carrying compound mutations attest to the collaboration between distinct mechanisms to ensure strict developmental regulation of cell cycles. Moreover, we characterized ubc-25, a gene encoding an E2 ubiquitin-conjugating enzyme whose human ortholog, UBE2Q2, is deregulated in several cancers. Our genetic analyses suggested that ubc-25 acts in a linear pathway with cul-1/Cul1, in parallel to pathways employing cki-1/p27 and lin-35/pRb to promote cell-cycle quiescence. Further investigation of the potential regulatory mechanism demonstrated that ubc-25 activity negatively regulates CYE-1/cyclin E protein abundance in vivo. Together, our results show that the ubc-25-mediated pathway acts within a complex network that integrates the actions of multiple molecular mechanisms to control cell cycles during development.
Collapse
Affiliation(s)
- Sarah H Roy
- Department of Genetics, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire 03755
| | - David V Tobin
- Department of Genetics, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire 03755
| | - Nadin Memar
- Center for Integrated Protein Science Munich (CiPSM), Biocenter, LMU Munich, 82152 Planegg-Martinsried, Germany
| | - Eleanor Beltz
- Department of Genetics, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire 03755
| | - Jenna Holmen
- Department of Genetics, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire 03755
| | - Joseph E Clayton
- Department of Genetics, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire 03755
| | - Daniel J Chiu
- Department of Genetics, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire 03755
| | - Laura D Young
- Department of Genetics, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire 03755
| | - Travis H Green
- Department of Genetics, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire 03755
| | - Isabella Lubin
- Department of Genetics, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire 03755
| | - Yuying Liu
- Department of Genetics, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire 03755
| | - Barbara Conradt
- Center for Integrated Protein Science Munich (CiPSM), Biocenter, LMU Munich, 82152 Planegg-Martinsried, Germany
| | - R Mako Saito
- Department of Genetics, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire 03755 Norris Cotton Cancer Center, Lebanon, New Hampshire 03756
| |
Collapse
|
6
|
UBE2Q1 expression in human colorectal tumors and cell lines. Mol Biol Rep 2013; 40:7045-51. [PMID: 24197692 DOI: 10.1007/s11033-013-2824-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Accepted: 10/25/2013] [Indexed: 12/31/2022]
Abstract
Colorectal cancer is the third most common cancer in the world. Ubiquitin-proteasome system has shown to be activated in colorectal and other malignancies. UBE2Q1 is a novel human gene that encodes a putative E2 ubiquitin conjugating enzyme. Here, we investigated the expression pattern of UBE2Q1 gene in cell lines and tissues from human colorectal tumors. Quantitative (q) RT-PCR were employed to evaluate the expression levels of the mRNA for UBE2Q1 in colorectal cancer cell lines (HT29/219, LS180, SW742, Caco2, HTC116, SW48, SW480 and SW1116). Expression of UBE2Q1 at the protein levels were assessed by Western blotting in cell lines as well as in 43 human colorectal tumor tissues. All cell lines tested expressed UBE2Q1 gene at the level of both mRNA and protein, with the SW1116 line representing the lowest level of expression. The cell lines HT29/219 and SW742 showed the highest levels of UBE2Q1 protein and mRNA respectively. When compared to corresponding normal tissues, malignant parts of colorectal tumors showed increased levels of UBE2Q1 immunoreactivity in 32 (74.42 %) of cases. These data suggest that UBE2Q1 is differentially expressed in colorectal cell lines and shows overexpression in colorectal tumors.
Collapse
|
7
|
Abstract
Breast cancer is the most common malignancy in women and a significant cause of morbidity and mortality. Sub-types of breast cancer defined by the expression of steroid hormones and Her2/Neu oncogene have distinct prognosis and undergo different therapies. Besides differing in their phenotype, sub-types of breast cancer display various molecular lesions that participate in their pathogenesis. BRCA1 is one of the common hereditary cancer predisposition genes and encodes for an ubiquitin ligase. Ubiquitin ligases or E3 enzymes participate together with ubiquitin activating enzyme and ubiquitin conjugating enzymes in the attachment of ubiquitin (ubiquitination) in target proteins. Ubiquitination is a post-translational modification regulating multiple cell functions. It also plays important roles in carcinogenesis in general and in breast carcinogenesis in particular. Ubiquitin conjugating enzymes are a central component of the ubiquitination machinery and are often perturbed in breast cancer. This paper will discuss ubiquitin and ubiquitin-like proteins conjugating enzymes participating in breast cancer pathogenesis, their relationships with other proteins of the ubiquitination machinery and their role in phenotype of breast cancer sub-types.
Collapse
Affiliation(s)
- Ioannis A Voutsadakis
- Centre Pluridisciplinaire d'Oncologie, BH06, University Hospital of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
8
|
Seghatoleslam A, Nikseresht M, Shafiee SM, Monabati A, Namavari MM, Talei A, Safaei A, Owji AA. Expression of the novel human gene, UBE2Q1, in breast tumors. Mol Biol Rep 2011; 39:5135-41. [PMID: 22167327 DOI: 10.1007/s11033-011-1309-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2011] [Accepted: 11/30/2011] [Indexed: 12/21/2022]
Abstract
The novel human gene, designated ubiquitin-conjugating enzyme E2Q family member 1 (UBE2Q1) maps to chromosome 1q21.3. The gene has an open reading frame corresponding to 422 amino acids and contains a RWD domain and an E2 ubiquitin conjugating enzyme domain. Here, we investigated the expression levels of both mRNA and protein of UBE2Q1 gene in cancerous versus normal parts of breast specimens from 26 patients. Real-time PCR data showed that the relative expression level of UBE2Q1 mRNA was significantly greater in cancers than in non-cancerous tissues of breast specimens (Mean ± SEM, 0.064 ± 0.015 for cancers and 0.026 ± 0.01 for noncancerous tissues, P < 0.05 Mann-Whitney test). A rabbit polyclonal antibody was generated against an amino acid sequence predicted from the DNA sequence of UBE2Q1 gene. This antibody was used to perform Western blotting on 21 cases in our cohort of breast specimens. Thus, 13 (61.904%) of the cases showed an increase in the UBE2Q1 immunoreactivity in their cancerous tissues as compared with the corresponding normal tissues. This result along with the real-time PCR data shows that the novel human gene, UBE2Q1, is expressed in human breast and may have implications for pathogenesis of breast cancer.
Collapse
Affiliation(s)
- Atefeh Seghatoleslam
- Department of Biochemistry, Shiraz University of Medical Sciences, P.O. Box 1167, Shiraz, Iran
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Nikseresht M, Seghatoleslam A, Monabati A, Talei A, Ghalati FB, Owji AA. Overexpression of the novel human gene, UBE2Q2, in breast cancer. ACTA ACUST UNITED AC 2010; 197:101-6. [PMID: 20193842 DOI: 10.1016/j.cancergencyto.2009.11.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2009] [Revised: 11/01/2009] [Accepted: 11/25/2009] [Indexed: 12/17/2022]
Abstract
The ubiquitin-proteasome pathway facilitates the degradation of damaged proteins and regulates growth and stress response. This pathway is activated in various cancers, including breast cancer. We have previously reported that the novel human gene, UBE2Q2, is a putative ubiquitin-conjugating enzyme that is located on chromosome 15 and is overexpressed in tumor mass and invasive epithelium in head and neck squamous-cell carcinoma. Here, real-time polymerase chain reaction was used to investigate the expression levels of UBE2Q2 gene in a collection of 21 breast cancer tissues matched with normal adjacent counterparts. Immunohistochemistry and Western blot testing were also performed on formalin-fixed, paraffin-embedded tissue sections by using a rabbit polyclonal antibody that we generated against an amino acid sequence predicted from the DNA sequence of UBE2Q2 gene. In the 21 cases investigated, a high increase in the expression of UBE2Q2 mRNA was found in 8 breast cancers (38.1%), a moderately increased UBE2Q2 expression was observed in 7 cases (33.3%), and no significant changes were detected in 6 cases (28.6%) of tumor samples when compared with corresponding normal tissues. Consistently, a higher level of immunoreactivity for UBE2Q2 protein was detected in invasive epithelium of cancerous tissues when compared with that in the normal epithelium. Our data suggest that the novel human gene UBE2Q2 may have implications for pathogenesis of breast cancer and could be used in molecular diagnosis purposes in the future.
Collapse
Affiliation(s)
- Mohsen Nikseresht
- Department of Biochemistry, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | | | | | | | | |
Collapse
|
10
|
Maeda H, Miyajima N, Kano S, Tsukiyama T, Okumura F, Fukuda S, Hatakeyama S. Ubiquitin-conjugating enzyme UBE2Q2 suppresses cell proliferation and is down-regulated in recurrent head and neck cancer. Mol Cancer Res 2009; 7:1553-62. [PMID: 19723876 DOI: 10.1158/1541-7786.mcr-08-0543] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The ubiquitin-proteasome system has a crucial role in maintaining and regulating cellular homeostasis including carcinogenesis. UBE2Q2, also designated Ubci, is one of the ubiquitin-conjugating enzymes (E2), and it has been reported that mRNA of UBE2Q2 is highly expressed in human head and neck squamous cell carcinoma, particularly hypopharyngeal carcinoma. However, the involvement of UBE2Q2 in carcinogenesis has not been fully elucidated. Most cases of head and neck carcinoma are treated with cis-diamminedichloroplatinum (II; CDDP) or docetaxel, which are the most effective chemotherapeutic agents against squamous cell carcinomas. Nevertheless, some head and neck cancers develop resistance to these drugs, although the causes and mechanisms remain unknown. In this study, we found high expression levels of UBE2Q2 in human head and neck carcinoma cell lines and cancer tissues by using an anti-UBE2Q2 antibody at the protein level. We also found that the expression level of UBE2Q2 is decreased in cell lines and cancer tissues that have resistance to CDDP or docetaxel and in cancer tissues treated with CDDP or docetaxel. Furthermore, we found that overexpression of UBE2Q2 affects cell proliferation and anchorage-independent cell growth. These findings suggest that UBE2Q2 is a novel oncosuppressor that inhibits tumor growth and is related to the resistance to anticarcinoma agents and that UBE2Q2 likely functions as a novel diagnostic tool and a potentially therapeutic target for head and neck squamous cell carcinoma.
Collapse
Affiliation(s)
- Hiroyuki Maeda
- Department of Biochemistry, Hokkaido University Graduate School of Medicine, Sapporo, Hokkaido 060-8638, Japan
| | | | | | | | | | | | | |
Collapse
|
11
|
Ganguli-Indra G, Wasylyk C, Liang X, Millon R, Leid M, Wasylyk B, Abecassis J, Indra A. CTIP2 expression in human head and neck squamous cell carcinoma is linked to poorly differentiated tumor status. PLoS One 2009; 4:e5367. [PMID: 19399189 PMCID: PMC2671404 DOI: 10.1371/journal.pone.0005367] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2008] [Accepted: 03/31/2009] [Indexed: 02/07/2023] Open
Abstract
Background We have demonstrated earlier that CTIP2 is highly expressed in mouse skin during embryogenesis and in adulthood. CTIP2 mutant mice die at birth with epidermal differentiation defects and a compromised epidermal permeability barrier suggesting its role in skin development and/or homeostasis. CTIP2 has also been suggested to function as tumor suppressor in cells, and several reports have described a link between chromosomal rearrangements of CTIP2 and human T cell acute lymphoblast leukemia (T-ALL). The aim of the present study was to look into the pattern of CTIP2 expression in Head and Neck Squamous Cell Carcinoma (HNSCC). Methodology/Principal Findings In the present study, we analyzed CTIP2 expression in human HNSCC cell lines by western blotting, in paraffin embedded archival specimens by immunohistochemistry (IHC), and in cDNA samples of human HNSCC by qRT-PCR. Elevated levels of CTIP2 protein was detected in several HNSCC cell lines. CTIP2 staining was mainly detected in the basal layer of the head and neck normal epithelium. CTIP2 expression was found to be significantly elevated in HNSCC (p<0.01), and increase in CTIP2 expression was associated with poorly differentiated tumor status. Nuclear co-localization of CTIP2 protein and cancer stem cell (CSC) marker BMI1 was observed in most, if not all of the cells expressing BMI1 in moderately and poorly differentiated tumors. Conclusions/Significance We report for the first time expression of transcriptional regulator CTIP2 in normal human head and neck epithelia. A statistically significant increase in the expression of CTIP2 was detected in the poorly differentiated samples of the human head and neck tumors. Actual CTIP2, rather than the long form of CTIP2 (CTIP2L) was found to be more relevant to the differentiation state of the tumors. Results demonstrated existence of distinct subsets of cancer cells, which express CTIP2 and underscores the use of CTIP2 and BMI1 co-labeling to distinguish tumor initiating cells or cancer stem cells (CSCs) from surrounding cancer cells.
Collapse
MESH Headings
- Base Sequence
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Carcinoma, Squamous Cell/genetics
- Carcinoma, Squamous Cell/metabolism
- Carcinoma, Squamous Cell/pathology
- Cell Differentiation
- Cell Line, Tumor
- DNA Primers/genetics
- DNA, Neoplasm/genetics
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- Gene Expression
- Head and Neck Neoplasms/genetics
- Head and Neck Neoplasms/metabolism
- Head and Neck Neoplasms/pathology
- Humans
- Nuclear Proteins/genetics
- Nuclear Proteins/metabolism
- Polycomb Repressive Complex 1
- Proto-Oncogene Proteins/genetics
- Proto-Oncogene Proteins/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Neoplasm/genetics
- RNA, Neoplasm/metabolism
- Repressor Proteins/genetics
- Repressor Proteins/metabolism
- Tumor Suppressor Proteins/genetics
- Tumor Suppressor Proteins/metabolism
Collapse
Affiliation(s)
- Gitali Ganguli-Indra
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, Oregon, United States of America
- * E-mail: (GGI); (AI)
| | - Christine Wasylyk
- IGBMC, Inserm U596 and CNRS UMR 7104, Illkirch, France
- Université Louis Pasteur, Strasbourg, France
| | - Xiaobo Liang
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, Oregon, United States of America
| | | | - Mark Leid
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, Oregon, United States of America
- Environmental Health Sciences Center, Oregon State University, Corvallis, Oregon, United States of America
| | - Bohdan Wasylyk
- IGBMC, Inserm U596 and CNRS UMR 7104, Illkirch, France
- Université Louis Pasteur, Strasbourg, France
| | | | - Arup Indra
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, Oregon, United States of America
- Environmental Health Sciences Center, Oregon State University, Corvallis, Oregon, United States of America
- * E-mail: (GGI); (AI)
| |
Collapse
|
12
|
Banerjee S, Brooks WS, Crawford DF. Inactivation of the ubiquitin conjugating enzyme UBE2Q2 causes a prophase arrest and enhanced apoptosis in response to microtubule inhibiting agents. Oncogene 2007; 26:6509-17. [PMID: 17471241 DOI: 10.1038/sj.onc.1210471] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
A putative ubiquitin conjugating enzyme known as UBE2Q2 was previously identified in a microarray screen for mitotic regulatory proteins. UBE2Q2 is very similar to another human protein, UBE2Q1 and orthologs from other higher eukaryotic species. In these studies, we demonstrate that UBE2Q2 can covalently bind ubiquitin on the active site cysteine in vitro and show that inhibition of this protein in vivo causes an early mitotic arrest and increased cytotoxicity when cells are treated with microtubule inhibiting agents (MIAs). Changes in cell cycle progression and viability are not observed in the absence of MIA treatment, indicating that UBE2Q2 is involved in the response to MIAs rather than performing a more general function in mitosis. Inhibition of the UBE2Q2 protein causes cells to undergo a prolonged prophase arrest suggesting that UBE2Q2 normally functions to antagonize an early mitotic checkpoint. Furthermore, UBE2Q2 inhibition sensitizes cells to the cytotoxic effects of MIAs through caspase-mediated apoptosis that is correlated with PARP-1 cleavage. These data provide insights into the cellular response to MIAs and demonstrate that inhibition of UBE2Q2 protein function may be useful in the treatment of malignancies.
Collapse
Affiliation(s)
- S Banerjee
- Department of Pediatrics, University of Alabama, Birmingham 35233, USA
| | | | | |
Collapse
|
13
|
Melner MH, Haas AL, Klein JM, Brash AR, Boeglin WE, Nagdas SK, Winfrey VP, Olson GE. Demonstration of ubiquitin thiolester formation of UBE2Q2 (UBCi), a novel ubiquitin-conjugating enzyme with implantation site-specific expression. Biol Reprod 2006; 75:395-406. [PMID: 16760379 DOI: 10.1095/biolreprod.106.051458] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
We recently identified a differentially expressed gene in implantation stage rabbit endometrium encoding a new member of the ubiquitin-conjugating enzyme family designated UBE2Q2 (also known as UBCi). Its unusually high molecular mass, novel N-terminus extension, and highly selective pattern of mRNA expression suggest a specific function in implantation. This study analyzes its relationship to the E2 ubiquitin-conjugating enzyme superfamily, investigates its enzymatic activity, and examines its localization in implantation site endometrium. Construction of a dendrogram indicated that UBE2Q2 is homologous to the UBC2 family of enzymes, and isoforms are present in a broad range of species. In vitro enzymatic assays of ubiquitin thiolester formation demonstrated that UBE2Q2 is a functional ubiquitin-conjugating enzyme. The Km for transfer of ubiquitin thiolester from E1 to UBE2Q2 is 817 nM compared to 100 nM for other E2 paralogs; this suggests that the unique amino terminal domain of UBE2Q2 confers specific functional differences. Affinity-purified antibodies prepared with purified recombinant UBE2Q2 showed that the protein was undetectable by immunoblot analysis in endometrial lysates from estrous and Day 6(3/4) pregnant (blastocyst attachment stage) rabbits but was expressed in both mesometrial and antimesometrial implantation site endometrium of Day 8 pregnant animals. No expression was detected in adjacent interimplantion sites. Immunohistochemistry demonstrated UBE2Q2 expression exclusively in mesometrial and antimesometrial endometrial luminal epithelial cells of the Day 8 implantation chamber. Immunohistochemical localization of ubiquitin mirrored UBE2Q2 expression, with low-to-undetectable levels in implantation sites of Day 6(3/4) pregnant endometrium but high levels in luminal epithelial cells of Day 8 pregnant endometrium. This implantation site-specific expression of UBE2Q2 in luminal epithelial cells could play major roles in orchestrating differentiation events through the modification of specific protein substrates.
Collapse
Affiliation(s)
- Michael H Melner
- Department of Obstetrics and Gynecology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA.
| | | | | | | | | | | | | | | |
Collapse
|