1
|
Zhao N, Liu C, Li N, Zhou S, Guo Y, Yang S, Liu H. Role of Interleukin-22 in ulcerative colitis. Biomed Pharmacother 2023; 159:114273. [PMID: 36696801 DOI: 10.1016/j.biopha.2023.114273] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 01/16/2023] [Accepted: 01/17/2023] [Indexed: 01/25/2023] Open
Abstract
Ulcerative Colitis (UC) is a chronic disease, in the progression of which an immune overreaction may play an important role. IL-22 is a member of the IL-10 superfamily of cytokines and is pleiotropic in immune regulation and inflammatory responses. IL-22 can produce protective effects, promote wound healing and tissue regeneration, while it can also induce inflammatory reactions when it is chronically overexpressed. Extensive literatures reported that IL-22 played an essential role in the pathogenic development of UC. IL-22 participates in the whole disease process of UC involving signaling pathways, gene expression regulation, and intestinal flora imbalance, making IL-22 a possible candidate for the treatment of UC. In this paper, the latest knowledge to further elucidate the role of IL-22 in UC was summarized and analyzed.
Collapse
Affiliation(s)
- Nan Zhao
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China.
| | - Chuanguo Liu
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China.
| | - Ning Li
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China.
| | - Shuang Zhou
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China.
| | - Yuting Guo
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China.
| | - Shihua Yang
- Department of Oncology, The Fifth People's Hospital of Jinan, Jinan 250022, PR China.
| | - Huimin Liu
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China.
| |
Collapse
|
2
|
Steverink JG, Piluso S, Malda J, Verlaan JJ. Comparison of in vitro and in vivo Toxicity of Bupivacaine in Musculoskeletal Applications. FRONTIERS IN PAIN RESEARCH 2022; 2:723883. [PMID: 35295435 PMCID: PMC8915669 DOI: 10.3389/fpain.2021.723883] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 07/30/2021] [Indexed: 12/12/2022] Open
Abstract
The recent societal debate on opioid use in treating postoperative pain has sparked the development of long-acting, opioid-free analgesic alternatives, often using the amino-amide local anesthetic bupivacaine as active pharmaceutical ingredient. A potential application is musculoskeletal surgeries, as these interventions rank amongst the most painful overall. Current literature showed that bupivacaine induced dose-dependent myo-, chondro-, and neurotoxicity, as well as delayed osteogenesis and disturbed wound healing in vitro. These observations did not translate to animal and clinical research, where toxic phenomena were seldom reported. An exception was bupivacaine-induced chondrotoxicity, which can mainly occur during continuous joint infusion. To decrease opioid consumption and provide sustained pain relief following musculoskeletal surgery, new strategies incorporating high concentrations of bupivacaine in drug delivery carriers are currently being developed. Local toxicity of these high concentrations is an area of further research. This review appraises relevant in vitro, animal and clinical studies on musculoskeletal local toxicity of bupivacaine.
Collapse
Affiliation(s)
- Jasper G Steverink
- Department of Orthopedics, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands.,Regenerative Medicine Utrecht, Utrecht University, Utrecht, Netherlands
| | - Susanna Piluso
- Department of Orthopedics, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands.,Regenerative Medicine Utrecht, Utrecht University, Utrecht, Netherlands.,Department of Developmental BioEngineering, Technical Medical Centre, University of Twente, Enschede, Netherlands
| | - Jos Malda
- Department of Orthopedics, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands.,Regenerative Medicine Utrecht, Utrecht University, Utrecht, Netherlands.,Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Jorrit-Jan Verlaan
- Department of Orthopedics, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands.,Regenerative Medicine Utrecht, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
3
|
Yan J, Yu J, Liu K, Liu Y, Mao C, Gao W. The Pathogenic Roles of IL-22 in Colitis: Its Transcription Regulation by Musculin in T Helper Subsets and Innate Lymphoid Cells. Front Immunol 2021; 12:758730. [PMID: 34992594 PMCID: PMC8724035 DOI: 10.3389/fimmu.2021.758730] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 12/06/2021] [Indexed: 12/12/2022] Open
Abstract
IL-22 plays a crucial role in promoting inflammation, antimicrobial immunity and tissue repair at barrier surfaces. The role of IL-22 in colitis is still controversial: while IL-22 has a protective effect on gut epithelium in acute injuries, it also enhances colitis in a context-dependent manner. Here, we summarize the Yin and Yang of IL-22 in colitis. Particularly, we emphasize the role of innate lymphoid cells (ILCs) in IL-22 production and regulation. A previously underappreciated transcription factor, Musculin (MSC), has been recently identified to be expressed in not only Th17 cells, but also RORγt+/Id2+ IL-22-producing group 3 ILCs in the gut of naïve mice. We hypothesize that the co-expression and interaction of MSC with the key transcription repressor Id2 in developing lymphoid cells (e.g., in LTi cells) and ILC precursors might fine tune the developmental programs or regulate the plasticity of adaptive Th subset and innate ILCs. The much-elevated expression of IL-22 in MSC-/- ILC3s suggests that MSC may function as: 1) a transcription suppressor for cytokines, particularly for IL-22, and/or 2) a gatekeeper for specific lineages of Th cells and innate ILCs as well. Amelioration of colitis symptoms in MSC-/- mice by IL-22-blocking agent IL-22BP-Fc suggests a counterintuitive pathogenic role of IL-22 in the absence of MSC as a checkpoint. The theory that exuberant production of IL-22 under pathological conditions (e.g., in human inflammatory bowel disease, IBD) may cause epithelial inflammation due to endoplasmic reticulum (ER) stress response is worth further investigation. Rheostatic regulation of IL-22 may be of therapeutic value to restore homeostatic balance and promote intestinal health in human colitis.
Collapse
Affiliation(s)
- Jun Yan
- State Key Laboratory of Trauma, Burns and Combined Injury, Department of Special War Wound, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Jing Yu
- State Key Laboratory of Trauma, Burns and Combined Injury, Department of Special War Wound, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Ke Liu
- State Key Laboratory of Trauma, Burns and Combined Injury, Department of Special War Wound, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, China
| | - Yijia Liu
- State Key Laboratory of Trauma, Burns and Combined Injury, Department of Special War Wound, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, China
| | | | - Wenda Gao
- Antagen Pharmaceuticals, Boston, MA, United States
| |
Collapse
|
4
|
Defective chromatin architectures in embryonic stem cells derived from somatic cell nuclear transfer impair their differentiation potentials. Cell Death Dis 2021; 12:1085. [PMID: 34785659 PMCID: PMC8595669 DOI: 10.1038/s41419-021-04384-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 10/26/2021] [Accepted: 10/29/2021] [Indexed: 11/08/2022]
Abstract
Nuclear transfer embryonic stem cells (ntESCs) hold enormous promise for individual-specific regenerative medicine. However, the chromatin states of ntESCs remain poorly characterized. In this study, we employed ATAC-seq and Hi-C techniques to explore the chromatin accessibility and three-dimensional (3D) genome organization of ntESCs. The results show that the chromatin accessibility and genome structures of somatic cells are re-arranged to ESC-like states overall in ntESCs, including compartments, topologically associating domains (TADs) and chromatin loops. However, compared to fertilized ESCs (fESCs), ntESCs show some abnormal openness and structures that have not been reprogrammed completely, which impair the differentiation potential of ntESCs. The histone modification H3K9me3 may be involved in abnormal structures in ntESCs, including incorrect compartment switches and incomplete TAD rebuilding. Moreover, ntESCs and iPSCs show high similarity in 3D genome structures, while a few differences are detected due to different somatic cell origins and reprogramming mechanisms. Through systematic analyses, our study provides a global view of chromatin accessibility and 3D genome organization in ntESCs, which can further facilitate the understanding of the similarities and differences between ntESCs and fESCs.
Collapse
|
5
|
Musculin Deficiency Aggravates Colonic Injury and Inflammation in Mice with Inflammatory Bowel Disease. Inflammation 2021; 43:1455-1463. [PMID: 32239394 DOI: 10.1007/s10753-020-01223-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Intestinal inflammatory reactions and resulting tissue injuries are two major aspects of inflammatory bowel disease (IBD). The regulatory factors involved in the pathogenesis of IBD remain unclear. Recent studies showed that musculin (MSC) as a transcription suppressor participates in the regulation of certain immune functions. The purpose of this study was to determine the impact of MSC deficiency on colonic injury and inflammatory reaction under IBD, where wild-type (WT, +/+) and MSC-knockout (MSCKO, MSC-/-) mice were induced for disease by dextran sulfate sodium (DSS) in drinking water. Immunohistochemistry hematoxylin-eosin (H&E) staining, enzyme-linked immunosorbent assay (ELISA), and quantitative real-time polymerase chain reaction (qRT-PCR) were used to analyze the matching samples from groups of different genotypes. The colonic epithelial injury in the MSC-/- IBD group was much severer than that in the +/+ IBD group, concurrent with higher IL-22 levels from the supernatant of ex vivo cultured colon tissues in the MSC-/- IBD group than those in the +/+ IBD group. The mRNA levels of IL-22 in mesenteric lymph nodes (MLN) also manifested similar tendency. MSC deficiency may enhance the inflammatory reactions in the gut via excessive secretion of IL-22, leading to aggravated colonic epithelial injury under IBD.
Collapse
|
6
|
Corbett RJ, Te Pas MFW, van den Brand H, Groenen MAM, Crooijmans RPMA, Ernst CW, Madsen O. Genome-Wide Assessment of DNA Methylation in Chicken Cardiac Tissue Exposed to Different Incubation Temperatures and CO 2 Levels. Front Genet 2020; 11:558189. [PMID: 33193638 PMCID: PMC7655987 DOI: 10.3389/fgene.2020.558189] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 09/30/2020] [Indexed: 12/26/2022] Open
Abstract
Temperature and CO2 concentration during incubation have profound effects on broiler chick development, and numerous studies have identified significant effects on hatch heart weight (HW) as a result of differences in these parameters. Early life environment has also been shown to affect broiler performance later in life; it has thus been suggested that epigenetic mechanisms may mediate long-term physiological changes induced by environmental stimuli. DNA methylation is an epigenetic modification that can confer heritable changes in gene expression. Using reduced-representation bisulfite sequencing (RRBS), we assessed DNA methylation patterns in cardiac tissue of 84 broiler hatchlings incubated at two egg shell temperatures (EST; 37.8°C and 38.9°C) and three CO2 concentrations (0.1%, 0.4%, and 0.8%) from day 8 of incubation onward. We assessed differential methylation between EST treatments and identified 2,175 differentially methylated (DM) CpGs (1,121 hypermethylated, 1,054 hypomethylated at 38.9° vs. 37.8°) in 269 gene promoters and 949 intragenic regions. DM genes (DMGs) were associated with heart developmental processes, including cardiomyocyte proliferation and differentiation. We identified enriched binding motifs among DM loci, including those for transcription factors associated with cell proliferation and heart development among hypomethylated CpGs that suggest increased binding ability at higher EST. We identified 9,823 DM CpGs between at least two CO2 treatments, with the greatest difference observed between 0.8 and 0.1% CO2 that disproportionately impacted genes involved in cardiac muscle development and response to low oxygen levels. Using HW measurements from the same chicks, we performed an epigenome-wide association study (EWAS) for HW, and identified 23 significantly associated CpGs, nine of which were also DM between ESTs. We found corresponding differences in transcript abundance between ESTs in three DMGs (ABLIM2, PITX2, and THRSP). Hypomethylation of an exonic CpG in PITX2 at 38.9°C was associated with increased expression, and suggests increased cell proliferation in broiler hatchlings incubated at higher temperatures. Overall, these results identified numerous epigenetic associations between chick incubation factors and heart development that may manifest in long-term differences in animal performance.
Collapse
Affiliation(s)
- Ryan J Corbett
- Genetics and Genome Sciences Graduate Program, Michigan State University, East Lansing, MI, United States
| | - Marinus F W Te Pas
- Animal Breeding and Genomics, Wageningen University & Research, Wageningen, Netherlands
| | - Henry van den Brand
- Adaptation Physiology Group, Wageningen University & Research, Wageningen, Netherlands
| | - Martien A M Groenen
- Animal Breeding and Genomics, Wageningen University & Research, Wageningen, Netherlands
| | | | - Catherine W Ernst
- Department of Animal Science, Michigan State University, East Lansing, MI, United States
| | - Ole Madsen
- Animal Breeding and Genomics, Wageningen University & Research, Wageningen, Netherlands
| |
Collapse
|
7
|
Cho DS, Doles JD. Skeletal Muscle Progenitor Cell Heterogeneity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1169:179-193. [PMID: 31487024 DOI: 10.1007/978-3-030-24108-7_9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Tissue-specific stem cells contribute to adult tissue maintenance, repair, and regeneration. In skeletal muscle, many different mononuclear cell types are capable of giving rise to differentiated muscle. Of these tissue stem-like cells, satellite cells (SCs) are the most studied muscle stem cell population and are widely considered the main cellular source driving muscle repair and regeneration in adult tissue. Within the satellite cell pool, many distinct subpopulations exist, each exhibiting differential abilities to exit quiescence, expand, differentiate, and self-renew. In this chapter, we discuss the different stem cell types that can give rise to skeletal muscle tissue and then focus on satellite cell heterogeneity during the process of myogenesis/muscle regeneration. Finally, we highlight emerging opportunities to better characterize muscle stem cell heterogeneity, which will ultimately deepen our appreciation of stem cells in muscle development, repair/regeneration, aging, and disease.
Collapse
Affiliation(s)
- Dong Seong Cho
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Jason D Doles
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
8
|
Hussain N, McCartney C, Neal J, Chippor J, Banfield L, Abdallah F. Local anaesthetic-induced myotoxicity in regional anaesthesia: a systematic review and empirical analysis. Br J Anaesth 2018; 121:822-841. [DOI: 10.1016/j.bja.2018.05.076] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 05/16/2018] [Accepted: 07/09/2018] [Indexed: 12/19/2022] Open
|
9
|
Santarlasci V, Mazzoni A, Capone M, Rossi MC, Maggi L, Montaini G, Rossettini B, Cimaz R, Ramazzotti M, Barra G, De Palma R, Maggi E, Liotta F, Cosmi L, Romagnani S, Annunziato F. Musculin inhibits human T-helper 17 cell response to interleukin 2 by controlling STAT5B activity. Eur J Immunol 2017; 47:1427-1442. [PMID: 28612433 DOI: 10.1002/eji.201746996] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 05/22/2017] [Accepted: 06/09/2017] [Indexed: 01/01/2023]
Abstract
We recently demonstrated that human T-helper (Th) 17 cells, unlike Th1 cells, do not proliferate in response to T-cell receptor stimulation, mainly because of their reduced capacity to produce and respond to IL-2. In this study, we show that their lower responsiveness to IL-2 is due to the selective expression of Musculin (MSC), a member of the basic helix-loop-helix transcription factors. We show that MSC expression in human Th17 cells is retinoic acid orphan receptor (ROR)γt-dependent, and allows the upregulation of PPP2R2B, a regulatory member of the protein phosphatase 2A (PP2A) enzyme. High PPP2R2B levels in human Th17 cells were responsible for the reduced STAT5B Ser-193 phosphorylation upon IL-2 signalling and, therefore, impaired STAT5B DNA binding and transcriptional activity on IL-2 target genes. PP2A, observed in Th17 cells, controls also STAT3, dephosphorylating Ser727, thus increasing its activity that plays a crucial role in Th17 development and/or maintenance. Thus, our findings identify an additional mechanism responsible for the limited expansion of human Th17 cells, and could provide a further explanation for the rarity of these cells in inflamed tissues.
Collapse
Affiliation(s)
- Veronica Santarlasci
- Department of Experimental and Clinical Medicine and DENOTHE Center, University of Florence, Firenze, Italy
| | - Alessio Mazzoni
- Department of Experimental and Clinical Medicine and DENOTHE Center, University of Florence, Firenze, Italy
| | - Manuela Capone
- Department of Experimental and Clinical Medicine and DENOTHE Center, University of Florence, Firenze, Italy
| | - Maria Caterina Rossi
- Department of Experimental and Clinical Medicine and DENOTHE Center, University of Florence, Firenze, Italy
| | - Laura Maggi
- Department of Experimental and Clinical Medicine and DENOTHE Center, University of Florence, Firenze, Italy
| | - Gianni Montaini
- Department of Experimental and Clinical Medicine and DENOTHE Center, University of Florence, Firenze, Italy
| | - Beatrice Rossettini
- Department of Experimental and Clinical Medicine and DENOTHE Center, University of Florence, Firenze, Italy
| | - Rolando Cimaz
- Anna Meyer Children's Hospital and University of Florence, Italy
| | - Matteo Ramazzotti
- Department of Biomedical Experimental and Clinical Sciences "Mario Serio" University of Florence, Firenze, Italy
| | - Giusi Barra
- Department of Clinical and Experimental Medicine, Università della Campania "L. Vanvitelli,", Napoli, Italy
| | - Raffaele De Palma
- Department of Clinical and Experimental Medicine, Università della Campania "L. Vanvitelli,", Napoli, Italy.,Institute of Protein Biochemistry, CNR, Napoli
| | - Enrico Maggi
- Department of Experimental and Clinical Medicine and DENOTHE Center, University of Florence, Firenze, Italy
| | - Francesco Liotta
- Department of Experimental and Clinical Medicine and DENOTHE Center, University of Florence, Firenze, Italy
| | - Lorenzo Cosmi
- Department of Experimental and Clinical Medicine and DENOTHE Center, University of Florence, Firenze, Italy
| | - Sergio Romagnani
- Department of Experimental and Clinical Medicine and DENOTHE Center, University of Florence, Firenze, Italy
| | - Francesco Annunziato
- Department of Experimental and Clinical Medicine and DENOTHE Center, University of Florence, Firenze, Italy.,Regenerative Medicine Unit and Immunology and Cellular Therapy Unit of Azienda Ospedaliera Careggi, Florence, Italy
| |
Collapse
|
10
|
Genome-wide DNA methylation profiles reveal novel candidate genes associated with meat quality at different age stages in hens. Sci Rep 2017; 7:45564. [PMID: 28378745 PMCID: PMC5381223 DOI: 10.1038/srep45564] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 02/27/2017] [Indexed: 01/18/2023] Open
Abstract
Poultry meat quality is associated with breed, age, tissue and other factors. Many previous studies have focused on distinct breeds; however, little is known regarding the epigenetic regulatory mechanisms in different age stages, such as DNA methylation. Here, we compared the global DNA methylation profiles between juvenile (20 weeks old) and later laying-period (55 weeks old) hens and identified candidate genes related to the development and meat quality of breast muscle using whole-genome bisulfite sequencing. The results showed that the later laying-period hens, which had a higher intramuscular fat (IMF) deposition capacity and water holding capacity (WHC) and less tenderness, exhibited higher global DNA methylation levels than the juvenile hens. A total of 2,714 differentially methylated regions were identified in the present study, which corresponded to 378 differentially methylated genes, mainly affecting muscle development, lipid metabolism, and the ageing process. Hypermethylation of the promoters of the genes ABCA1, COL6A1 and GSTT1L and the resulting transcriptional down-regulation in the later laying-period hens may be the reason for the significant difference in the meat quality between the juvenile and later laying-period hens. These findings contribute to a better understanding of epigenetic regulation in the skeletal muscle development and meat quality of chicken.
Collapse
|
11
|
Mathes AL, Lafyatis R. Role for toll-like receptor 3 in muscle regeneration after cardiotoxin injury. Muscle Nerve 2011; 43:733-40. [DOI: 10.1002/mus.21959] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/25/2010] [Indexed: 12/31/2022]
|
12
|
Lessons from GNE-deficient embryonic stem cells: sialic acid biosynthesis is involved in proliferation and gene expression. Glycobiology 2009; 20:107-17. [DOI: 10.1093/glycob/cwp153] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
|
13
|
Yang Z, MacQuarrie KL, Analau E, Tyler AE, Dilworth FJ, Cao Y, Diede SJ, Tapscott SJ. MyoD and E-protein heterodimers switch rhabdomyosarcoma cells from an arrested myoblast phase to a differentiated state. Genes Dev 2009; 23:694-707. [PMID: 19299559 DOI: 10.1101/gad.1765109] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Rhabdomyosarcomas are characterized by expression of myogenic specification genes, such as MyoD and/or Myf5, and some muscle structural genes in a population of cells that continues to replicate. Because MyoD is sufficient to induce terminal differentiation in a variety of cell types, we have sought to determine the molecular mechanisms that prevent MyoD activity in human embryonal rhabdomyosarcoma cells. In this study, we show that a combination of inhibitory Musculin:E-protein complexes and a novel splice form of E2A compete with MyoD for the generation of active full-length E-protein:MyoD heterodimers. A forced heterodimer between MyoD and the full-length E12 robustly restores differentiation in rhabdomyosarcoma cells and broadly suppresses multiple inhibitory pathways. Our studies indicate that rhabdomyosarcomas represent an arrested progress through a normal transitional state that is regulated by the relative abundance of heterodimers between MyoD and the full-length E2A proteins. The demonstration that multiple inhibitory mechanisms can be suppressed and myogenic differentiation can be induced in the RD rhabdomyosarcomas by increasing the abundance of MyoD:E-protein heterodimers suggests a central integrating function that can be targeted to force differentiation in muscle cancer cells.
Collapse
Affiliation(s)
- Zhihong Yang
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Abstract
Notch signaling is critical for skeletal muscle development and regeneration, permitting the expansion of progenitor cells by preventing premature differentiation. We have interrogated the pathways through which ligand-mediated signaling inhibits myogenesis by identifying Notch target genes and assessing their impact on differentiation in vitro. Notch activation led to the robust induction of the transcriptional repressors Hey1 and HeyL in myoblasts, but only constitutive expression of Hey1 blocked myogenesis. siRNA-mediated knockdown of Hey1 had no effect on Notch's ability to inhibit differentiation, suggesting the existence of additional, possibly redundant pathways. We identified 82 genes whose expression was activated when C2C12 myoblasts were cultured in the presence of the Notch ligand Dll4. One of these, MyoR, is a novel Notch-responsive gene, whose protein product is known to repress myogenesis in vitro. siRNA-mediated knockdown of MyoR alone, or in combination with Hey1, was also ineffective at rescuing differentiation in the presence of Dll4. Our data support a model in which Notch signaling inhibits myogenesis through multiple pathways, two of which are defined by the Notch target genes Hey1 and MyoR.
Collapse
Affiliation(s)
- Matthew F. Buas
- Department of Genetics, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6145
| | | | - Tom Kadesch
- Department of Genetics, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6145
| |
Collapse
|
15
|
Fukada SI, Uezumi A, Ikemoto M, Masuda S, Segawa M, Tanimura N, Yamamoto H, Miyagoe-Suzuki Y, Takeda S. Molecular signature of quiescent satellite cells in adult skeletal muscle. Stem Cells 2007; 25:2448-59. [PMID: 17600112 DOI: 10.1634/stemcells.2007-0019] [Citation(s) in RCA: 342] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Skeletal muscle satellite cells play key roles in postnatal muscle growth and regeneration. To study molecular regulation of satellite cells, we directly prepared satellite cells from 8- to 12-week-old C57BL/6 mice and performed genome-wide gene expression analysis. Compared with activated/cycling satellite cells, 507 genes were highly upregulated in quiescent satellite cells. These included negative regulators of cell cycle and myogenic inhibitors. Gene set enrichment analysis revealed that quiescent satellite cells preferentially express the genes involved in cell-cell adhesion, regulation of cell growth, formation of extracellular matrix, copper and iron homeostasis, and lipid transportation. Furthermore, reverse transcription-polymerase chain reaction on differentially expressed genes confirmed that calcitonin receptor (CTR) was exclusively expressed in dormant satellite cells but not in activated satellite cells. In addition, CTR mRNA is hardly detected in nonmyogenic cells. Therefore, we next examined the expression of CTR in vivo. CTR was specifically expressed on quiescent satellite cells, but the expression was not found on activated/proliferating satellite cells during muscle regeneration. CTR-positive cells reappeared at the rim of regenerating myofibers in later stages of muscle regeneration. Calcitonin stimulation delayed the activation of quiescent satellite cells. Our data provide roles of CTR in quiescent satellite cells and a solid scaffold to further dissect molecular regulation of satellite cells. Disclosure of potential conflicts of interest is found at the end of this article.
Collapse
Affiliation(s)
- So-ichiro Fukada
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1 Ogawa-higashi, Kodaira, Tokyo 187-8502, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|