1
|
Jagiełło A, Castillo U, Botvinick E. Cell mediated remodeling of stiffness matched collagen and fibrin scaffolds. Sci Rep 2022; 12:11736. [PMID: 35817812 PMCID: PMC9273755 DOI: 10.1038/s41598-022-14953-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 06/15/2022] [Indexed: 02/07/2023] Open
Abstract
Cells are known to continuously remodel their local extracellular matrix (ECM) and in a reciprocal way, they can also respond to mechanical and biochemical properties of their fibrous environment. In this study, we measured how stiffness around dermal fibroblasts (DFs) and human fibrosarcoma HT1080 cells differs with concentration of rat tail type 1 collagen (T1C) and type of ECM. Peri-cellular stiffness was probed in four directions using multi-axes optical tweezers active microrheology (AMR). First, we found that neither cell type significantly altered local stiffness landscape at different concentrations of T1C. Next, rat tail T1C, bovine skin T1C and fibrin cell-free hydrogels were polymerized at concentrations formulated to match median stiffness value. Each of these hydrogels exhibited distinct fiber architecture. Stiffness landscape and fibronectin secretion, but not nuclear/cytoplasmic YAP ratio differed with ECM type. Further, cell response to Y27632 or BB94 treatments, inhibiting cell contractility and activity of matrix metalloproteinases, respectively, was also dependent on ECM type. Given differential effect of tested ECMs on peri-cellular stiffness landscape, treatment effect and cell properties, this study underscores the need for peri-cellular and not bulk stiffness measurements in studies on cellular mechanotransduction.
Collapse
Affiliation(s)
- Alicja Jagiełło
- Department of Biomedical Engineering, University of California, Irvine, CA, 92697-2715, USA
| | - Ulysses Castillo
- Department of Biomedical Engineering, University of California, Irvine, CA, 92697-2715, USA
| | - Elliot Botvinick
- Department of Biomedical Engineering, University of California, Irvine, CA, 92697-2715, USA.
- Beckman Laser Institute and Medical Clinic, University of California, Irvine, CA, 92612, USA.
- Department of Surgery, University of California Irvine, 333 City Boulevard, Suite 700, Orange, CA, 92868, USA.
- The Edwards Lifesciences Foundation Cardiovascular Innovation and Research Center, University of California, Irvine, CA, 92697-2730, USA.
| |
Collapse
|
2
|
Gill MR, Jarman PJ, Hearnden V, Fairbanks SD, Bassetto M, Maib H, Palmer J, Ayscough KR, Thomas JA, Smythe C. A Ruthenium(II) Polypyridyl Complex Disrupts Actin Cytoskeleton Assembly and Blocks Cytokinesis. Angew Chem Int Ed Engl 2022; 61:e202117449. [PMID: 35416386 PMCID: PMC9323417 DOI: 10.1002/anie.202117449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Indexed: 11/05/2022]
Abstract
The dinuclear RuII complex [(Ru(phen)2)2(tpphz)]4+ (phen=1,10‐phenanthroline, tpphz=tetrapyridophenazine) “RuRuPhen” blocks the transformation of G‐actin monomers to F‐actin filaments with no disassembly of pre‐formed F‐actin. Molecular docking studies indicate multiple RuRuPhen molecules bind to the surface of G‐actin but not the binding pockets of established actin polymerisation inhibitors. In cells, addition of RuRuPhen causes rapid disruption to actin stress fibre organisation, compromising actomyosin contractility and cell motility; due to this effect RuRuPhen interferes with late‐stage cytokinesis. Immunofluorescent microscopy reveals that RuRuPhen causes cytokinetic abscission failure by interfering with endosomal sorting complexes required for transport (ESCRT) complex recruitment.
Collapse
Affiliation(s)
- Martin R. Gill
- Department of Chemistry Faculty of Science and Engineering Swansea University UK
| | - Paul J. Jarman
- Department of Biomedical Science University of Sheffield UK
| | - Vanessa Hearnden
- Department of Materials Science and Engineering University of Sheffield UK
| | | | - Marcella Bassetto
- Department of Chemistry Faculty of Science and Engineering Swansea University UK
| | - Hannes Maib
- Department of Biomedical Science University of Sheffield UK
| | - John Palmer
- Department of Biomedical Science University of Sheffield UK
| | | | | | - Carl Smythe
- Department of Biomedical Science University of Sheffield UK
| |
Collapse
|
3
|
Gill MR, Jarman PJ, Hearnden V, Fairbanks SD, Bassetto M, Maib H, Palmer J, Ayscough KR, Thomas JA, Smythe C. A Ruthenium(II) Polypyridyl Complex Disrupts Actin Cytoskeleton Assembly and Blocks Cytokinesis. ANGEWANDTE CHEMIE (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 134:e202117449. [PMID: 38505667 PMCID: PMC10947085 DOI: 10.1002/ange.202117449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Indexed: 11/10/2022]
Abstract
The dinuclear RuII complex [(Ru(phen)2)2(tpphz)]4+ (phen=1,10-phenanthroline, tpphz=tetrapyridophenazine) "RuRuPhen" blocks the transformation of G-actin monomers to F-actin filaments with no disassembly of pre-formed F-actin. Molecular docking studies indicate multiple RuRuPhen molecules bind to the surface of G-actin but not the binding pockets of established actin polymerisation inhibitors. In cells, addition of RuRuPhen causes rapid disruption to actin stress fibre organisation, compromising actomyosin contractility and cell motility; due to this effect RuRuPhen interferes with late-stage cytokinesis. Immunofluorescent microscopy reveals that RuRuPhen causes cytokinetic abscission failure by interfering with endosomal sorting complexes required for transport (ESCRT) complex recruitment.
Collapse
Affiliation(s)
- Martin R. Gill
- Department of ChemistryFaculty of Science and EngineeringSwansea UniversityUK
| | - Paul J. Jarman
- Department of Biomedical ScienceUniversity of SheffieldUK
| | - Vanessa Hearnden
- Department of Materials Science and EngineeringUniversity of SheffieldUK
| | | | - Marcella Bassetto
- Department of ChemistryFaculty of Science and EngineeringSwansea UniversityUK
| | - Hannes Maib
- Department of Biomedical ScienceUniversity of SheffieldUK
| | - John Palmer
- Department of Biomedical ScienceUniversity of SheffieldUK
| | | | | | - Carl Smythe
- Department of Biomedical ScienceUniversity of SheffieldUK
| |
Collapse
|
4
|
Sundararajan V, Gengenbacher N, Stemmler MP, Kleemann JA, Brabletz T, Brabletz S. The ZEB1/miR-200c feedback loop regulates invasion via actin interacting proteins MYLK and TKS5. Oncotarget 2016; 6:27083-96. [PMID: 26334100 PMCID: PMC4694975 DOI: 10.18632/oncotarget.4807] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Accepted: 08/07/2015] [Indexed: 02/06/2023] Open
Abstract
Epithelial to mesenchymal transition (EMT) is a developmental process which is aberrantly activated during cancer invasion and metastasis. Elevated expression of EMT-inducers like ZEB1 enables tumor cells to detach from the primary tumor and invade into the surrounding tissue. The main antagonist of ZEB1 in controlling EMT is the microRNA-200 family that is reciprocally linked to ZEB1 in a double negative feedback loop. Here, we further elucidate how the ZEB1/miR-200 feedback loop controls invasion of tumor cells. The process of EMT is attended by major changes in the actin cytoskeleton. Via in silico screening of genes encoding for actin interacting proteins, we identified two novel targets of miR-200c - TKS5 and MYLK (MLCK). Co-expression of both genes with ZEB1 was observed in several cancer cell lines as well as in breast cancer patients and correlated with low miR-200c levels. Depletion of TKS5 or MYLK in breast cancer cells reduced their invasive potential and their ability to form invadopodia. Whereas TKS5 is known to be a major component, we could identify MYLK as a novel player in invadopodia formation. In summary, TKS5 and MYLK represent two mediators of invasive behavior of cancer cells that are regulated by the ZEB1/miR-200 feedback loop.
Collapse
Affiliation(s)
- Vignesh Sundararajan
- Department of Visceral Surgery, University Medical Center Freiburg, Freiburg, Germany.,Spemann Graduate School of Biology and Medicine (SGBM), Albert-Ludwigs-University Freiburg, Freiburg, Germany.,Faculty of Biology, Albert-Ludwigs-University Freiburg, Freiburg, Germany
| | - Nicolas Gengenbacher
- Division of Vascular Oncology and Metastasis, German Cancer Research Center (DKFZ-ZMBH Alliance), Heidelberg, Germany
| | - Marc P Stemmler
- Department of Experimental Medicine I, Nikolaus-Fiebiger-Center for Molecular Medicine, University Erlangen-Nürnberg, Erlangen, Germany
| | - Julia A Kleemann
- Department of Experimental Medicine I, Nikolaus-Fiebiger-Center for Molecular Medicine, University Erlangen-Nürnberg, Erlangen, Germany
| | - Thomas Brabletz
- Department of Experimental Medicine I, Nikolaus-Fiebiger-Center for Molecular Medicine, University Erlangen-Nürnberg, Erlangen, Germany
| | - Simone Brabletz
- Department of Experimental Medicine I, Nikolaus-Fiebiger-Center for Molecular Medicine, University Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
5
|
Uzel SG, Amadi OC, Pearl TM, Lee RT, So PT, Kamm RD. Simultaneous or Sequential Orthogonal Gradient Formation in a 3D Cell Culture Microfluidic Platform. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2016; 12:612-22. [PMID: 26619365 PMCID: PMC4752442 DOI: 10.1002/smll.201501905] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 09/04/2015] [Indexed: 05/09/2023]
Abstract
Biochemical gradients are ubiquitous in biology. At the tissue level, they dictate differentiation patterning or cell migration. Recapitulating in vitro the complexity of such concentration profiles with great spatial and dynamic control is crucial in order to understand the underlying mechanisms of biological phenomena. Here, a microfluidic design capable of generating diffusion-driven, simultaneous or sequential, orthogonal linear concentration gradients in a 3D cell-embedded scaffold is described. Formation and stability of the orthogonal gradients are demonstrated by computational and fluorescent dextran-based characterizations. Then, system utility is explored in two biological systems. First, stem cells are subjected to orthogonal gradients of morphogens in order to mimic the localized differentiation of motor neurons in the neural tube. Similarly to in vivo, motor neurons preferentially differentiate in regions of high concentration of retinoic acid and smoothened agonist (acting as sonic hedgehog), in a concentration-dependent fashion. Then, a rotating gradient is applied to HT1080 cancer cells and the change in migration direction is investigated as the cells adapt to a new chemical environment. The response time of ≈4 h is reported. These two examples demonstrate the versatility of this new design that can also prove useful in many applications including tissue engineering and drug screening.
Collapse
Affiliation(s)
- Sebastien G.M. Uzel
- Department of Mechanical Engineering, Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts 02139
| | - Ovid C. Amadi
- Harvard-MIT Health Sciences and Technology, Cambridge, Massachusetts 02139
- Department of Stem Cell and Regenerative Biology, Harvard University, and Brigham and Women's Hospital, Cambridge, Massachusetts 02138
| | - Taylor M. Pearl
- Department of Biological Engineering, Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts 02139
| | - Richard T. Lee
- Department of Stem Cell and Regenerative Biology, Harvard University, and Brigham and Women's Hospital, Cambridge, Massachusetts 02138
| | - Peter T.C. So
- Department of Mechanical Engineering, Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts 02139
- Department of Biological Engineering, Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts 02139
| | - Roger D. Kamm
- Department of Mechanical Engineering, Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts 02139
- Department of Biological Engineering, Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts 02139
| |
Collapse
|
6
|
Sari-Hassoun M, Clement MJ, Hamdi I, Bollot G, Bauvais C, Joshi V, Toma F, Burgo A, Cailleret M, Rosales-Hernández MC, Macias Pérez ME, Chabane-Sari D, Curmi PA. Cucurbitacin I elicits the formation of actin/phospho-myosin II co-aggregates by stimulation of the RhoA/ROCK pathway and inhibition of LIM-kinase. Biochem Pharmacol 2015; 102:45-63. [PMID: 26707799 DOI: 10.1016/j.bcp.2015.12.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 12/15/2015] [Indexed: 12/11/2022]
Abstract
Cucurbitacins are cytotoxic triterpenoid sterols isolated from plants. One of their earliest cellular effect is the aggregation of actin associated with blockage of cell migration and division that eventually lead to apoptosis. We unravel here that cucurbitacin I actually induces the co-aggregation of actin with phospho-myosin II. This co-aggregation most probably results from the stimulation of the Rho/ROCK pathway and the direct inhibition of the LIMKinase. We further provide data that suggest that the formation of these co-aggregates is independent of a putative pro-oxidant status of cucurbitacin I. The results help to understand the impact of cucurbitacins on signal transduction and actin dynamics and open novel perspectives to use it as drug candidates for cancer research.
Collapse
Affiliation(s)
- Meryem Sari-Hassoun
- Institut National de la Santé et de la Recherche Médicale, UMR1204, Laboratoire Structure-Activité des Biomolécules Normales et Pathologiques, Université d'Evry-Val d'Essonne, Evry 91025, France; Laboratoire des Produits Naturels, LAPRONA, Université Abou Bekr Belkaid, Tlemcen 13000, Algeria
| | - Marie-Jeanne Clement
- Institut National de la Santé et de la Recherche Médicale, UMR1204, Laboratoire Structure-Activité des Biomolécules Normales et Pathologiques, Université d'Evry-Val d'Essonne, Evry 91025, France
| | - Imane Hamdi
- Institut National de la Santé et de la Recherche Médicale, UMR1204, Laboratoire Structure-Activité des Biomolécules Normales et Pathologiques, Université d'Evry-Val d'Essonne, Evry 91025, France
| | | | | | - Vandana Joshi
- Institut National de la Santé et de la Recherche Médicale, UMR1204, Laboratoire Structure-Activité des Biomolécules Normales et Pathologiques, Université d'Evry-Val d'Essonne, Evry 91025, France
| | - Flavio Toma
- Institut National de la Santé et de la Recherche Médicale, UMR1204, Laboratoire Structure-Activité des Biomolécules Normales et Pathologiques, Université d'Evry-Val d'Essonne, Evry 91025, France
| | - Andrea Burgo
- Institut National de la Santé et de la Recherche Médicale, UMR1204, Laboratoire Structure-Activité des Biomolécules Normales et Pathologiques, Université d'Evry-Val d'Essonne, Evry 91025, France
| | - Michel Cailleret
- Institut National de la Santé et de la Recherche Médicale, UMR1204, Laboratoire Structure-Activité des Biomolécules Normales et Pathologiques, Université d'Evry-Val d'Essonne, Evry 91025, France
| | - Martha Cecilia Rosales-Hernández
- Laboratorio de Biofísica y Biocatalisis, Sección de Estudios de Posgrado e Investigación de la Escuela Superior de Medicina del Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, Casco de Santo Tomás, México D.F. 11340, México
| | - Martha Edith Macias Pérez
- Laboratorio de Biofísica y Biocatalisis, Sección de Estudios de Posgrado e Investigación de la Escuela Superior de Medicina del Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, Casco de Santo Tomás, México D.F. 11340, México
| | - Daoudi Chabane-Sari
- Laboratoire des Produits Naturels, LAPRONA, Université Abou Bekr Belkaid, Tlemcen 13000, Algeria
| | - Patrick A Curmi
- Institut National de la Santé et de la Recherche Médicale, UMR1204, Laboratoire Structure-Activité des Biomolécules Normales et Pathologiques, Université d'Evry-Val d'Essonne, Evry 91025, France.
| |
Collapse
|
7
|
Jean L, Yang L, Majumdar D, Gao Y, Shi M, Brewer BM, Li D, Webb DJ. The Rho family GEF Asef2 regulates cell migration in three dimensional (3D) collagen matrices through myosin II. Cell Adh Migr 2015; 8:460-7. [PMID: 25517435 DOI: 10.4161/19336918.2014.983778] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Cell migration is fundamental to a variety of physiological processes, including tissue development, homeostasis, and regeneration. Migration has been extensively studied with cells on 2-dimensional (2D) substrates, but much less is known about cell migration in 3D environments. Tissues and organs are 3D, which is the native environment of cells in vivo, pointing to a need to understand migration and the mechanisms that regulate it in 3D environments. To investigate cell migration in 3D environments, we developed microfluidic devices that afford a controlled, reproducible platform for generating 3D matrices. Using these devices, we show that the Rho family guanine nucleotide exchange factor (GEF) Asef2 inhibits cell migration in 3D type I collagen (collagen I) matrices. Treatment of cells with the myosin II (MyoII) inhibitor blebbistatin abolished the decrease in migration by Asef2. Moreover, Asef2 enhanced MyoII activity as shown by increased phosphorylation of serine 19 (S19). Furthermore, Asef2 increased activation of Rac, which is a Rho family small GTPase, in 3D collagen I matrices. Inhibition of Rac activity by treatment with the Rac-specific inhibitor NSC23766 abrogated the Asef2-promoted increase in S19 MyoII phosphorylation. Thus, our results indicate that Asef2 regulates cell migration in 3D collagen I matrices through a Rac-MyoII-dependent mechanism.
Collapse
Key Words
- 2D, 2-dimensional
- 3D, 3-dimensional
- Collagen I, type I collagen
- DMEM, Dulbecco's Modified Eagle Medium
- ECM, extracellular matrix
- GEF, guanine nucleotide exchange factor
- MyoII, non-muscle myosin II
- PAK, p21-activated kinase
- PBD, p21-binding domain
- PBS, phosphate buffer saline
- PDMS, polydimethylsiloxane
- Rac
- Rho family GTPases
- UV, ultra-violet
- guanine nucleotide exchange factor
- microfluidics
- myosin II
- type I collagen
Collapse
Affiliation(s)
- Léolène Jean
- a Department of Biological Sciences and Vanderbilt Kennedy Center for Research on Human Development ; Vanderbilt University ; Nashville , TN USA
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Chen C, Tao T, Wen C, He WQ, Qiao YN, Gao YQ, Chen X, Wang P, Chen CP, Zhao W, Chen HQ, Ye AP, Peng YJ, Zhu MS. Myosin light chain kinase (MLCK) regulates cell migration in a myosin regulatory light chain phosphorylation-independent mechanism. J Biol Chem 2014; 289:28478-88. [PMID: 25122766 DOI: 10.1074/jbc.m114.567446] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Myosin light chain kinase (MLCK) has long been implicated in the myosin phosphorylation and force generation required for cell migration. Here, we surprisingly found that the deletion of MLCK resulted in fast cell migration, enhanced protrusion formation, and no alteration of myosin light chain phosphorylation. The mutant cells showed reduced membrane tether force and fewer membrane F-actin filaments. This phenotype was rescued by either kinase-dead MLCK or five-DFRXXL motif, a MLCK fragment with potent F-actin-binding activity. Pull-down and co-immunoprecipitation assays showed that the absence of MLCK led to attenuated formation of transmembrane complexes, including myosin II, integrins and fibronectin. We suggest that MLCK is not required for myosin phosphorylation in a migrating cell. A critical role of MLCK in cell migration involves regulating the cell membrane tension and protrusion necessary for migration, thereby stabilizing the membrane skeleton through F-actin-binding activity. This finding sheds light on a novel regulatory mechanism of protrusion during cell migration.
Collapse
Affiliation(s)
- Chen Chen
- From the Model Animal Research Center, Key Laboratory of Model Animal for Disease Study of Ministry of Education, Nanjing University, Nanjing 210061, P.R. China
| | - Tao Tao
- From the Model Animal Research Center, Key Laboratory of Model Animal for Disease Study of Ministry of Education, Nanjing University, Nanjing 210061, P.R. China
| | - Cheng Wen
- School of Electronics Engineering and Computer Science, Key Laboratory for the Physics & Chemistry of Nanodevices of Ministry of Education, Peking University, Beijing 100871, P.R. China, and
| | - Wei-Qi He
- From the Model Animal Research Center, Key Laboratory of Model Animal for Disease Study of Ministry of Education, Nanjing University, Nanjing 210061, P.R. China
| | - Yan-Ning Qiao
- From the Model Animal Research Center, Key Laboratory of Model Animal for Disease Study of Ministry of Education, Nanjing University, Nanjing 210061, P.R. China
| | - Yun-Qian Gao
- From the Model Animal Research Center, Key Laboratory of Model Animal for Disease Study of Ministry of Education, Nanjing University, Nanjing 210061, P.R. China
| | - Xin Chen
- From the Model Animal Research Center, Key Laboratory of Model Animal for Disease Study of Ministry of Education, Nanjing University, Nanjing 210061, P.R. China
| | - Pei Wang
- From the Model Animal Research Center, Key Laboratory of Model Animal for Disease Study of Ministry of Education, Nanjing University, Nanjing 210061, P.R. China
| | - Cai-Ping Chen
- From the Model Animal Research Center, Key Laboratory of Model Animal for Disease Study of Ministry of Education, Nanjing University, Nanjing 210061, P.R. China
| | - Wei Zhao
- From the Model Animal Research Center, Key Laboratory of Model Animal for Disease Study of Ministry of Education, Nanjing University, Nanjing 210061, P.R. China
| | - Hua-Qun Chen
- School of Life Science, Nanjing Normal University, Nanjing 210009, P.R. China
| | - An-Pei Ye
- School of Electronics Engineering and Computer Science, Key Laboratory for the Physics & Chemistry of Nanodevices of Ministry of Education, Peking University, Beijing 100871, P.R. China, and
| | - Ya-Jing Peng
- From the Model Animal Research Center, Key Laboratory of Model Animal for Disease Study of Ministry of Education, Nanjing University, Nanjing 210061, P.R. China,
| | - Min-Sheng Zhu
- From the Model Animal Research Center, Key Laboratory of Model Animal for Disease Study of Ministry of Education, Nanjing University, Nanjing 210061, P.R. China, School of Life Science, Nanjing Normal University, Nanjing 210009, P.R. China
| |
Collapse
|
9
|
Singh SP, Schwartz MP, Lee JY, Fairbanks BD, Anseth KS. A peptide functionalized poly(ethylene glycol) (PEG) hydrogel for investigating the influence of biochemical and biophysical matrix properties on tumor cell migration. Biomater Sci 2014; 2:1024-1034. [PMID: 25105013 PMCID: PMC4120072 DOI: 10.1039/c4bm00022f] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
To address the challenges associated with defined control over matrix properties in 3D cell culture systems, we employed a peptide functionalized poly(ethylene glycol) (PEG) hydrogel matrix in which mechanical modulus and adhesive properties were tuned. An HT-1080 human fibrosarcoma cell line was chosen as a model for probing matrix influences on tumor cell migration using the PEG hydrogel platform. HT-1080 speed varied with a complex dependence on both matrix modulus and Cys-Arg-Gly-Asp-Ser (CRGDS) adhesion ligand concentration, with regimes in which motility increased, decreased, or was minimally altered being observed. We further investigated cell motility by forming matrix interfaces that mimic aspects of tissue boundaries that might be encountered during invasion by taking advantage of the spatial control of the thiol-ene photochemistry to form patterned regions of low and high cross-linking densities. HT-1080s in 100 Pa regions of patterned PEG hydrogels tended to reverse direction or aggregate at the interface when they encountered a 360 Pa boundary. In contrast, HT-1080s were apparently unimpeded when migrating from the stiff to the soft regions of PEG peptide hydrogels, which may indicate that cells are capable of "reverse durotaxis" within at least some matrix regimes. Taken together, our results identified matrix regimes in which HT-1080 motility was both positively and negatively influenced by cell adhesion or matrix modulus.
Collapse
Affiliation(s)
- Samir P. Singh
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, CO, USA
| | - Michael P. Schwartz
- Department of Orthopedics and Rehabilitation, University of Wisconsin-Madison, Madison, WI, USA
| | - Justin Y. Lee
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, CO, USA
| | - Benjamin D. Fairbanks
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, CO, USA
| | - Kristi S. Anseth
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, CO, USA
| |
Collapse
|
10
|
Pelekanos RA, Ting MJ, Sardesai VS, Ryan JM, Lim YC, Chan JKY, Fisk NM. Intracellular trafficking and endocytosis of CXCR4 in fetal mesenchymal stem/stromal cells. BMC Cell Biol 2014; 15:15. [PMID: 24885150 PMCID: PMC4065074 DOI: 10.1186/1471-2121-15-15] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Accepted: 05/02/2014] [Indexed: 12/13/2022] Open
Abstract
Background Fetal mesenchymal stem/stromal cells (MSC) represent a developmentally-advantageous cell type with translational potential. To enhance adult MSC migration, studies have focussed on the role of the chemokine receptor CXCR4 and its ligand SDF-1 (CXCL12), but more recent work implicates an intricate system of CXCR4 receptor dimerization, intracellular localization, multiple ligands, splice variants and nuclear accumulation. We investigated the intracellular localization of CXCR4 in fetal bone marrow-derived MSC and role of intracellular trafficking in CXCR4 surface expression and function. Results We found that up to 4% of human fetal MSC have detectable surface-localized CXCR4. In the majority of cells, CXCR4 is located not at the cell surface, as would be required for ‘sensing’ migratory cues, but intracellularly. CXCR4 was identified in early endosomes, recycling endosomes, and lysosomes, indicating only a small percentage of CXCR4 travelling to the plasma membrane. Notably CXCR4 was also found in and around the nucleus, as detected with an anti-CXCR4 antibody directed specifically against CXCR4 isoform 2 differing only in N-terminal sequence. After demonstrating that endocytosis of CXCR4 is largely independent of endogenously-produced SDF-1, we next applied the cytoskeletal inhibitors blebbistatin and dynasore to inhibit endocytotic recycling. These increased the number of cells expressing surface CXCR4 by 10 and 5 fold respectively, and enhanced the number of cells migrating to SDF1 in vitro (up to 2.6 fold). These molecules had a transient effect on cell morphology and adhesion, which abated after the removal of the inhibitors, and did not alter functional stem cell properties. Conclusions We conclude that constitutive endocytosis is implicated in the regulation of CXCR4 membrane expression, and suggest a novel pharmacological strategy to enhance migration of systemically-transplanted cells.
Collapse
Affiliation(s)
- Rebecca A Pelekanos
- UQ Centre for Clinical Research, The University of Queensland, Herston QLD 4029, Australia.
| | | | | | | | | | | | | |
Collapse
|
11
|
Hansen TD, Koepsel JT, Le NN, Nguyen EH, Zorn S, Parlato M, Loveland SG, Schwartz MP, Murphy WL. Biomaterial arrays with defined adhesion ligand densities and matrix stiffness identify distinct phenotypes for tumorigenic and nontumorigenic human mesenchymal cell types. Biomater Sci 2014; 2:745-756. [PMID: 25386339 PMCID: PMC4224020 DOI: 10.1039/c3bm60278h] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Here, we aimed to investigate migration of a model tumor cell line (HT-1080 fibrosarcoma cells, HT-1080s) using synthetic biomaterials to systematically vary peptide ligand density and substrate stiffness. A range of substrate elastic moduli were investigated by using poly(ethylene glycol) (PEG) hydrogel arrays (0.34 - 17 kPa) and self-assembled monolayer (SAM) arrays (~0.1-1 GPa), while cell adhesion was tuned by varying the presentation of Arg-Gly-Asp (RGD)-containing peptides. HT-1080 motility was insensitive to cell adhesion ligand density on RGD-SAMs, as they migrated with similar speed and directionality for a wide range of RGD densities (0.2-5% mol fraction RGD). Similarly, HT-1080 migration speed was weakly dependent on adhesion on 0.34 kPa PEG surfaces. On 13 kPa surfaces, a sharp initial increase in cell speed was observed at low RGD concentration, with no further changes observed as RGD concentration was increased further. An increase in cell speed ~ two-fold for the 13 kPa relative to the 0.34 kPa PEG surface suggested an important role for substrate stiffness in mediating motility, which was confirmed for HT-1080s migrating on variable modulus PEG hydrogels with constant RGD concentration. Notably, despite ~ two-fold changes in cell speed over a wide range of moduli, HT-1080s adopted rounded morphologies on all surfaces investigated, which contrasted with well spread primary human mesenchymal stem cells (hMSCs). Taken together, our results demonstrate that HT-1080s are morphologically distinct from primary mesenchymal cells (hMSCs) and migrate with minimal dependence on cell adhesion for surfaces within a wide range of moduli, whereas motility is strongly influenced by matrix mechanical properties.
Collapse
Affiliation(s)
- Tyler D. Hansen
- Department of Biomedical Engineering, University of Wisconsin-Madison, WI, USA
| | - Justin T. Koepsel
- Department of Biomedical Engineering, University of Wisconsin-Madison, WI, USA
| | - Ngoc Nhi Le
- Materials Science Program, University of Wisconsin-Madison, WI, USA
| | - Eric H. Nguyen
- Department of Biomedical Engineering, University of Wisconsin-Madison, WI, USA
| | - Stefan Zorn
- Department of Biomedical Engineering, University of Wisconsin-Madison, WI, USA
| | - Matthew Parlato
- Department of Biomedical Engineering, University of Wisconsin-Madison, WI, USA
| | - Samuel G. Loveland
- Department of Biomedical Engineering, University of Wisconsin-Madison, WI, USA
| | - Michael P. Schwartz
- Department of Biomedical Engineering, University of Wisconsin-Madison, WI, USA
| | - William L. Murphy
- Department of Biomedical Engineering, University of Wisconsin-Madison, WI, USA
- Department of Orthopedics and Rehabilitation, University of Wisconsin-Madison, WI, USA
- Materials Science Program, University of Wisconsin-Madison, WI, USA
| |
Collapse
|
12
|
Morin TR, Ghassem-Zadeh SA, Lee J. Traction force microscopy in rapidly moving cells reveals separate roles for ROCK and MLCK in the mechanics of retraction. Exp Cell Res 2014; 326:280-94. [PMID: 24786318 DOI: 10.1016/j.yexcr.2014.04.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Revised: 04/15/2014] [Accepted: 04/18/2014] [Indexed: 01/13/2023]
Abstract
Retraction is a major rate-limiting step in cell motility, particularly in slow moving cell types that form large stable adhesions. Myosin II dependent contractile forces are thought to facilitate detachment by physically pulling up the rear edge. However, retraction can occur in the absence of myosin II activity in cell types that form small labile adhesions. To investigate the role of contractile force generation in retraction, we performed traction force microscopy during the movement of fish epithelial keratocytes. By correlating changes in local traction stress at the rear with the area retracted, we identified four distinct modes of retraction. "Recoil" retractions are preceded by a rise in local traction stress, while rear edge is temporarily stuck, followed by a sharp drop in traction stress upon detachment. This retraction type was most common in cells generating high average traction stress. In "pull" type retractions local traction stress and area retracted increase concomitantly. This was the predominant type of retraction in keratocytes and was observed mostly in cells generating low average traction stress. "Continuous" type retractions occur without any detectable change in traction stress, and are seen in cells generating low average traction stress. In contrast, to many other cell types, "release" type retractions occur in keratocytes following a decrease in local traction stress. Our identification of distinct modes of retraction suggests that contractile forces may play different roles in detachment that are related to rear adhesion strength. To determine how the regulation of contractility via MLCK or Rho kinase contributes to the mechanics of detachment, inhibitors were used to block or augment these pathways. Modulation of MLCK activity led to the most rapid change in local traction stress suggesting its importance in regulating attachment strength. Surprisingly, Rho kinase was not required for detachment, but was essential for localizing retraction to the rear. We suggest that in keratocytes MLCK and Rho kinase play distinct, complementary roles in the respective temporal and spatial control of rear detachment that is essential for maintaining rapid motility.
Collapse
Affiliation(s)
- Timothy R Morin
- Department of Molecular and Cell Biology, University of Connecticut, 91 North Eagleville Road, Storrs, CT 06269, USA
| | - Sean A Ghassem-Zadeh
- Department of Molecular and Cell Biology, University of Connecticut, 91 North Eagleville Road, Storrs, CT 06269, USA
| | - Juliet Lee
- Department of Molecular and Cell Biology, University of Connecticut, 91 North Eagleville Road, Storrs, CT 06269, USA.
| |
Collapse
|
13
|
Spans L, Helsen C, Clinckemalie L, Van den Broeck T, Prekovic S, Joniau S, Lerut E, Claessens F. Comparative genomic and transcriptomic analyses of LNCaP and C4-2B prostate cancer cell lines. PLoS One 2014; 9:e90002. [PMID: 24587179 PMCID: PMC3938550 DOI: 10.1371/journal.pone.0090002] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Accepted: 01/24/2014] [Indexed: 01/16/2023] Open
Abstract
The LNCaP and C4-2B cell lines form an excellent preclinical model to study the development of metastatic castration-resistant prostate cancer, since C4-2B cells were derived from a bone metastasis that grew in nude mice after inoculation with the LNCaP-derived, castration-resistant C4-2 cells. Exome sequencing detected 2188 and 3840 mutations in LNCaP and C4-2B cells, respectively, of which 1784 were found in both cell lines. Surprisingly, the parental LNCaP cells have over 400 mutations that were not found in the C4-2B genome. More than half of the mutations found in the exomes were confirmed by analyzing the RNA-seq data, and we observed that the expressed genes are more prone to mutations than non-expressed genes. The transcriptomes also revealed that 457 genes show increased expression and 246 genes show decreased expression in C4-2B compared to LNCaP cells. By combining the list of C4-2B-specific mutations with the list of differentially expressed genes, we detected important changes in the focal adhesion and ECM-receptor interaction pathways. Integration of these pathways converges on the myosin light chain kinase gene (MLCK) which might contribute to the metastatic potential of C4-2B cells. In conclusion, we provide extensive databases for mutated genes and differentially expressed genes in the LNCaP and C4-2B prostate cancer cell lines. These can be useful for other researchers using these cell models.
Collapse
Affiliation(s)
- Lien Spans
- Laboratory of Molecular Endocrinology, Department of Cellular and Molecular Medicine, University of Leuven, Campus Gasthuisberg, Leuven, Belgium
| | - Christine Helsen
- Laboratory of Molecular Endocrinology, Department of Cellular and Molecular Medicine, University of Leuven, Campus Gasthuisberg, Leuven, Belgium
| | - Liesbeth Clinckemalie
- Laboratory of Molecular Endocrinology, Department of Cellular and Molecular Medicine, University of Leuven, Campus Gasthuisberg, Leuven, Belgium
| | - Thomas Van den Broeck
- Laboratory of Molecular Endocrinology, Department of Cellular and Molecular Medicine, University of Leuven, Campus Gasthuisberg, Leuven, Belgium
| | - Stefan Prekovic
- Laboratory of Molecular Endocrinology, Department of Cellular and Molecular Medicine, University of Leuven, Campus Gasthuisberg, Leuven, Belgium
| | - Steven Joniau
- Urology, Department of Development and Regeneration, University Hospitals Leuven, Campus Gasthuisberg, Leuven, Belgium
| | - Evelyne Lerut
- Translational Cell & Tissue Research, Department of Imaging and Pathology, University Hospitals Leuven, Leuven, Belgium
| | - Frank Claessens
- Laboratory of Molecular Endocrinology, Department of Cellular and Molecular Medicine, University of Leuven, Campus Gasthuisberg, Leuven, Belgium
- * E-mail:
| |
Collapse
|
14
|
Jean L, Majumdar D, Shi M, Hinkle LE, Diggins NL, Ao M, Broussard JA, Evans JC, Choma DP, Webb DJ. Activation of Rac by Asef2 promotes myosin II-dependent contractility to inhibit cell migration on type I collagen. J Cell Sci 2013; 126:5585-97. [PMID: 24144700 DOI: 10.1242/jcs.131060] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Non-muscle myosin II (MyoII) contractility is central to the regulation of numerous cellular processes, including migration. Rho is a well-characterized modulator of actomyosin contractility, but the function of other GTPases, such as Rac, in regulating contractility is currently not well understood. Here, we show that activation of Rac by the guanine nucleotide exchange factor Asef2 (also known as SPATA13) impairs migration on type I collagen through a MyoII-dependent mechanism that enhances contractility. Knockdown of endogenous Rac or treatment of cells with a Rac-specific inhibitor decreases the amount of active MyoII, as determined by serine 19 (S19) phosphorylation, and negates the Asef2-promoted increase in contractility. Moreover, treatment of cells with blebbistatin, which inhibits MyoII activity, abolishes the Asef2-mediated effect on migration. In addition, Asef2 slows the turnover of adhesions in protrusive regions of cells by promoting large mature adhesions, which has been linked to actomyosin contractility, with increased amounts of active β1 integrin. Hence, our data reveal a new role for Rac activation, promoted by Asef2, in modulating actomyosin contractility, which is important for regulating cell migration and adhesion dynamics.
Collapse
Affiliation(s)
- Léolène Jean
- Department of Biological Sciences and Vanderbilt Kennedy Center for Research on Human Development, Nashville, TN 37203, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Zhao S, Zhao H, Zhang X, Li Y, Du Y. Off-the-shelf microsponge arrays for facile and efficient construction of miniaturized 3D cellular microenvironments for versatile cell-based assays. LAB ON A CHIP 2013; 13:2350-2358. [PMID: 23640113 DOI: 10.1039/c3lc50183c] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The integration of microfabrication and biomaterials enables construction of miniaturized 3D microenvironments with biomimetic micro-architectural and functional features to advance cell-based assays for mechanism investigation of physio/pathology and for prediction of drug responses. However, current biomaterials-assisted constructions of miniaturized 3D cellular microenvironments usually involve cells in the microfabrication process, limiting their wide application in most biomedical labs, where expertise and facilities are not readily available. Here we tackle this challenge by developing off-the-shelf microsponge arrays as pre-formed micro-patterned templates which can separate the microfabrication steps from the cell-handling steps and miniaturize the cell-based assays. The microsponge arrays with tailored microarchitectures (e.g. micropillar/well arrays or bifurcated vascular network) could be stored and delivered to distant locations as ready-to-use chips. The highly porous and microscale sponges enabled automatic and uniform loading of cellular niche components (cells, matrices and soluble factors) by simply pipetting, making it accessible to any lab with basic cell culture setups. Meanwhile, the chips containing miniaturized 3D cellular microenvironments with versatile micro-architectural designs could be integrated (i.e. by autoloading and sandwiching) to enable novel 3D cell-based assays (e.g. discrete gradient-based cytotoxicity test and horizontal 3D invasion assay) in an efficient and parallel manner. The off-the-shelf platform based on microsponge array is expected to be widely applicable across multiple disciplines in cell biology, cell/tissue engineering and pharmacological science.
Collapse
Affiliation(s)
- Shan Zhao
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, China
| | | | | | | | | |
Collapse
|
16
|
Kunida K, Matsuda M, Aoki K. FRET imaging and statistical signal processing reveal positive and negative feedback loops regulating the morphology of randomly migrating HT-1080 cells. J Cell Sci 2012; 125:2381-92. [PMID: 22344265 DOI: 10.1242/jcs.096859] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cell migration plays an important role in many physiological processes. Rho GTPases (Rac1, Cdc42, RhoA) and phosphatidylinositols have been extensively studied in directional cell migration. However, it remains unclear how Rho GTPases and phosphatidylinositols regulate random cell migration in space and time. We have attempted to address this issue using fluorescence resonance energy transfer (FRET) imaging and statistical signal processing. First, we acquired time-lapse images of random migration of HT-1080 fibrosarcoma cells expressing FRET biosensors of Rho GTPases and phosphatidyl inositols. We developed an image-processing algorithm to extract FRET values and velocities at the leading edge of migrating cells. Auto- and cross-correlation analysis suggested the involvement of feedback regulations among Rac1, phosphatidyl inositols and membrane protrusions. To verify the feedback regulations, we employed an acute inhibition of the signaling pathway with pharmaceutical inhibitors. The inhibition of actin polymerization decreased Rac1 activity, indicating the presence of positive feedback from actin polymerization to Rac1. Furthermore, treatment with PI3-kinase inhibitor induced an adaptation of Rac1 activity, i.e. a transient reduction of Rac1 activity followed by recovery to the basal level. In silico modeling that reproduced the adaptation predicted the existence of a negative feedback loop from Rac1 to actin polymerization. Finally, we identified MLCK as the probable controlling factor in the negative feedback. These findings quantitatively demonstrate positive and negative feedback loops that involve actin, Rac1 and MLCK, and account for the ordered patterns of membrane dynamics observed in randomly migrating cells.
Collapse
Affiliation(s)
- Katsuyuki Kunida
- Department of Pathology and Biology of Diseases, Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto, Japan
| | | | | |
Collapse
|
17
|
Rho kinase inhibitors stimulate the migration of human cultured osteoblastic cells by regulating actomyosin activity. Cell Mol Biol Lett 2011; 16:279-95. [PMID: 21394446 PMCID: PMC6275969 DOI: 10.2478/s11658-011-0006-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2010] [Accepted: 03/02/2011] [Indexed: 11/20/2022] Open
Abstract
We investigated the effects of Rho-associated kinase (ROCK) on migration and cytoskeletal organization in primary human osteoblasts and Saos-2 human osteosarcoma cells. Both cell types were exposed to two different ROCK inhibitors, Y-27632 and HA-1077. In the improved motility assay used in the present study, Y-27632 and HA-1077 significantly increased the migration of both osteoblasts and osteosarcoma cells on plastic in a dose-dependent and reversible manner. Fluorescent images showed that cells of both types cultured with Y-27632 or HA-1077 exhibited a stellate appearance, with poor assembly of stress fibers and focal contacts. Western blotting showed that ROCK inhibitors reduced myosin light chain (MLC) phosphorylation within 5 min without affecting overall myosin light-chain protein levels. Inhibition of ROCK activity is thought to enhance the migration of human osteoblasts through reorganization of the actin cytoskeleton and regulation of myosin activity. ROCK inhibitors may be potentially useful as anabolic agents to enhance the biocompatibility of bone and joint prostheses.
Collapse
|
18
|
Shieh AC, Rozansky HA, Hinz B, Swartz MA. Tumor cell invasion is promoted by interstitial flow-induced matrix priming by stromal fibroblasts. Cancer Res 2011; 71:790-800. [PMID: 21245098 DOI: 10.1158/0008-5472.can-10-1513] [Citation(s) in RCA: 133] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Interstitial flow emanates from tumors into the microenvironment where it promotes tumor cell invasion. Fibroblasts are key constituents of the tumor stroma that modulate the mechanical environment by matrix remodeling and contraction. Here, we explore how interstitial fluid flow affects fibroblast-tumor cell interactions. Using a 3-dimensional invasion assay and MDA-MB-435S cells cocultured with dermal fibroblasts in a collagen matrix, we showed a synergistic enhancement of tumor cell invasion by fibroblasts in the presence of interstitial flow. Interstitial flow also drove transforming growth factor (TGF)-β1 and collagenase-dependent fibroblast migration, consistent with previously described mechanisms in which flow promotes invasion through autologous chemotaxis and increased motility. Concurrently, migrating fibroblasts enhanced tumor cell invasion by matrix priming via Rho-mediated contraction. We propose a model in which interstitial flow promotes fibroblast migration through increased TGF-β1 activation and collagen degradation, positioning fibroblasts to locally reorganize collagen fibers via Rho-dependent contractility, in turn enhancing tumor cell invasion via mechanotactic cues. This represents a novel mechanism in which interstitial flow causes fibroblast-mediated stromal remodeling that facilitates tumor invasion.
Collapse
Affiliation(s)
- Adrian C Shieh
- Institute of Bioengineering and Swiss Institute for Experimental Cancer Research, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | | | | | | |
Collapse
|
19
|
Liu Z, Van Rossen E, Timmermans JP, Geerts A, van Grunsven LA, Reynaert H. Distinct roles for non-muscle myosin II isoforms in mouse hepatic stellate cells. J Hepatol 2011; 54:132-41. [PMID: 20932596 DOI: 10.1016/j.jhep.2010.06.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2010] [Revised: 06/02/2010] [Accepted: 06/10/2010] [Indexed: 12/25/2022]
Abstract
BACKGROUND & AIMS Upon liver injury, hepatic stellate cells (HSCs) undergo dramatic morphological and functional changes including migration and contraction. In the present study, we investigated the role of myosin II isoforms in the development of the contractile phenotype of mouse HSCs, which are considered therapeutic targets to decrease portal hypertension and fibrosis. METHODS We characterized the expression of myosin IIA and IIB in primary mouse HSCs and addressed their function by gene knock-down using isoform-specific siRNAs. RESULTS We found that myosin IIA and IIB are differentially expressed and localized and have clearly different functions in HSCs. Myosin IIA is mainly located in the subcortical area of quiescent HSCs and at α-SMA-containing stress fibres after activation, while myosin IIB is located in the cytoplasm and at the edge of protrusions of quiescent HSCs, at stress fibres of activated cells, and at the leading edge of lamellipodia. Knock-down of myosin IIA in HSCs influences cell size and shape, results in the disruption of stress fibres and in a decrease of focal adhesions, and inhibits contractility and intra-cellular Ca(2+) release but increases cell migration. Myosin IIB contributes to the extension of lamellipodia and cell spreading but has no direct role in stress fibres and focal adhesion formation, contraction, or intra-cellular Ca(2+) signalling. CONCLUSIONS In mouse HSCs, myosin IIA and IIB clearly fulfil distinct roles. Our results provide an insight into the contractile machinery of HSCs, that could be important in the search for new molecules to treat portal hypertension.
Collapse
Affiliation(s)
- Zhenan Liu
- Liver Cell Biology Lab, Vrije Universiteit Brussel (V.U.B.), Belgium
| | | | | | | | | | | |
Collapse
|
20
|
Sen S, Dong M, Kumar S. Isoform-specific contributions of alpha-actinin to glioma cell mechanobiology. PLoS One 2009; 4:e8427. [PMID: 20037648 PMCID: PMC2793025 DOI: 10.1371/journal.pone.0008427] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2009] [Accepted: 12/01/2009] [Indexed: 01/12/2023] Open
Abstract
Glioblastoma Multiforme (GBM) is a malignant astrocytic tumor associated with low survival rates because of aggressive infiltration of tumor cells into the brain parenchyma. Expression of the actin binding protein alpha-actinin has been strongly correlated with the invasive phenotype of GBM in vivo. To probe the cellular basis of this correlation, we have suppressed expression of the nonmuscle isoforms alpha-actinin-1 and alpha-actinin-4 and examined the contribution of each isoform to the structure, mechanics, and motility of human glioma tumor cells in culture. While subcellular localization of each isoform is distinct, suppression of either isoform yields a phenotype that includes dramatically reduced motility, compensatory upregulation and redistribution of vinculin, reduced cortical elasticity, and reduced ability to adapt to changes in the elasticity of the extracellular matrix (ECM). Mechanistic studies reveal a relationship between alpha-actinin and non-muscle myosin II in which depletion of either alpha-actinin isoform reduces myosin expression and maximal cell-ECM tractional forces. Our results demonstrate that both alpha-actinin-1 and alpha-actinin-4 make critical and distinct contributions to cytoskeletal organization, rigidity-sensing, and motility of glioma cells, thereby yielding mechanistic insight into the observed correlation between alpha-actinin expression and GBM invasiveness in vivo.
Collapse
Affiliation(s)
- Shamik Sen
- Department of Bioengineering, University of California, Berkeley, California, United States of America
| | - Meimei Dong
- Department of Bioengineering, University of California, Berkeley, California, United States of America
- Institute of Molecular and Cell Biology, Mannheim University of Applied Sciences, Mannheim, Germany
| | - Sanjay Kumar
- Department of Bioengineering, University of California, Berkeley, California, United States of America
- * E-mail:
| |
Collapse
|
21
|
Sarkar S, Egelhoff T, Baskaran H. INSIGHTS INTO THE ROLES OF NON-MUSCLE MYOSIN IIA IN HUMAN KERATINOCYTE MIGRATION. Cell Mol Bioeng 2009; 2:486-494. [PMID: 20548965 DOI: 10.1007/s12195-009-0094-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Epidermal cell migration is a key factor in wound healing responses, regulated by the F-actin-myosin II systems. Previous reports have established the importance of non-muscle myosin II (NMII) in regulating cell migration. However, the role of NMII in primary human keratinocytes has not been investigated. In this study we used a microfabrication-based two-dimensional migration assay to examine the role of NMII in keratinocyte migration. We developed confluent cell islands of various sizes (0.025 - 0.25 mm(2)) and quantified migration as Fold Increase in island area over time. We report here that NMII was expressed and activated in migrating keratinocytes. Inhibition of NMIIA motor activity with blebbistatin increased migration significantly in all cell island sizes in six hours compared to control. Inhibition of Rho-kinase by Y-27632 did not alter migration while inhibition of myosin light chain kinase by ML-7 suppressed migration significantly in six hours. Both blebbistatin and Y-27632 induced formation of large membrane ruffles and elongated tails. In contrast, ML-7 blocked cell spreading, resulting in a rounded morphology. Taken together, these data suggest that NMIIA decreases migration in keratinocytes, but the mechanism may be differentially regulated by upstream kinases.
Collapse
Affiliation(s)
- Saheli Sarkar
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio 44106
| | | | | |
Collapse
|
22
|
Schwartz MP, Fairbanks BD, Rogers RE, Rangarajan R, Zaman MH, Anseth KS. A synthetic strategy for mimicking the extracellular matrix provides new insight about tumor cell migration. Integr Biol (Camb) 2009; 2:32-40. [PMID: 20473410 DOI: 10.1039/b912438a] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Understanding the role of the tumor microenvironment during cancer progression and metastasis is complicated by interactions between cells, the extracellular matrix (ECM), and a variety of biomolecules. Using a synthetic strategy, we investigated proteolytic modes of migration for HT-1080 fibrosarcoma cells in an environment that limited confounding extracellular influences. A large percentage of HT-1080s migrated through a Rho kinase (ROCK)-dependent rounded morphology with a leading edge protrusion that defined the direction of migration, and migration was only weakly dependent on the adhesive peptide RGDS. HT-1080s migrating in thiol-ene hydrogels are more rounded and exhibit much more invasive behavior than dermal fibroblasts. Our results indicate that HT-1080s have the capacity to migrate through a mechanism that is distinct from mesenchymal cells, with significant amoeboid character even when utilizing a proteolytic migration strategy. The migration mode observed here provides insight into the invasiveness of metastatic cells in vivo and demonstrates the potential of a synthetic strategy for investigating complex biological problems.
Collapse
Affiliation(s)
- Michael P Schwartz
- Department of Chemical and Biological Engineering, Howard Hughes Medical Institute, University of Colorado at Boulder, ECCH111, CB424, Boulder, CO 80309, USA.
| | | | | | | | | | | |
Collapse
|
23
|
Niggli V, Schlicht D, Affentranger S. Specific roles of Rac1 and Rac2 in motile functions of HT1080 fibrosarcoma cells. Biochem Biophys Res Commun 2009; 386:688-92. [PMID: 19555660 DOI: 10.1016/j.bbrc.2009.06.098] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2009] [Accepted: 06/17/2009] [Indexed: 11/16/2022]
Abstract
Rho family proteins are constitutively activated in the highly invasive human fibrosarcoma HT1080 cells. We now investigated the specific roles of Rac1 and Rac2 in regulating morphology, F-actin organization, adhesion, migration, and chemotaxis of HT1080 cells. Downregulation of Rac1 using specific siRNA probes resulted in cell rounding, markedly decreased spreading, adhesion, and chemotaxis of HT1080 cells. 2D migration on laminin-coated surfaces in contrast was not markedly affected. Selective Rac2 depletion did not affect cell morphology, cell adhesion, and 2D migration, but significantly reduced chemotaxis. Downregulation of both Rac1 and Rac2 resulted in an even more marked reduction, but not complete abolishment, of chemotaxis indicating distinct as well as overlapping roles of both proteins in chemotaxis. Rac1 thus is selectively required for HT1080 cell spreading and adhesion whereas Rac1 and Rac2 are both required for efficient chemotaxis.
Collapse
Affiliation(s)
- Verena Niggli
- Department of Pathology, University of Bern, Murtenstr. 31, CH-3010 Bern, Switzerland.
| | | | | |
Collapse
|
24
|
Ren K, Jin H, Bian C, He H, Liu X, Zhang S, Wang Y, Shao RG. MR-1 Modulates Proliferation and Migration of Human Hepatoma HepG2 Cells through Myosin Light Chains-2 (MLC2)/Focal Adhesion Kinase (FAK)/Akt Signaling Pathway. J Biol Chem 2008; 283:35598-605. [DOI: 10.1074/jbc.m802253200] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
|
25
|
Luu O, Nagel M, Wacker S, Lemaire P, Winklbauer R. Control of gastrula cell motility by the Goosecoid/Mix.1/ Siamois network: basic patterns and paradoxical effects. Dev Dyn 2008; 237:1307-20. [PMID: 18407556 DOI: 10.1002/dvdy.21522] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
In the vegetal half of the Xenopus gastrula, cell populations differ with respect to migration on fibronectin substratum. We show that the paired-class homeodomain transcription factors Goosecoid (Gsc), Mix.1, and Siamois (Sia) are involved in the modulation of migration velocity and cell polarity. Mix.1 is expressed in the whole vegetal half and serves as a competence factor that is necessary, but not sufficient, for rapid cell migration and polarization. In the head mesoderm, Gsc and Sia are coexpressed with Mix.1, promoting rapid cell migration and polarization. Ectopic expression of Gsc and Sia in both vegetal and ventral regions often generates paradoxical effects; if a factor activates a certain motility trait in one region, it inhibits it in the other. Migration velocity and cell polarity are regulated independently. Fast and efficiently migrating multipolar cells and slow-moving polarized cells can be obtained by ectopic expression of these transcription factors in different combinations.
Collapse
Affiliation(s)
- Olivia Luu
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | | | | | | | | |
Collapse
|
26
|
Muessel MJ, Scott KS, Friedl P, Bradding P, Wardlaw AJ. CCL11 and GM-CSF differentially use the Rho GTPase pathway to regulate motility of human eosinophils in a three-dimensional microenvironment. THE JOURNAL OF IMMUNOLOGY 2008; 180:8354-60. [PMID: 18523302 DOI: 10.4049/jimmunol.180.12.8354] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Asthma is a common disease that causes considerable morbidity. Increased numbers of airway eosinophils are a hallmark of asthma. Mechanisms controlling the entry of eosinophils into asthmatic lung have been intensively investigated, but factors regulating migration within the tissue microenvironment are less well understood. We modeled this by studying chemoattractant and growth factor-mediated human eosinophil migration within a three-dimensional collagen matrix. Stimulation with GM-CSF induced dose-dependent, random migration with a maximum of 77 +/- 4.7% of cells migrating. In contrast, CCL11 and C5a caused a more modest although significant degree of migration (19 +/- 1.8% and 20 +/- 2.6%, respectively). Migration to GM-CSF was partially dependent on Ca(2+) and alpha(M)beta(2) integrins. The Rho family of small GTPases regulates intracellular signaling of cell migration. GM-CSF-induced migration was only partially dependent on Rho kinase/Rho-associated kinase (ROCK) and was independent of RhoA activation. In contrast, CCL11-induced migration was fully dependent on both RhoA and ROCK. Activation of RhoA was therefore neither necessary nor sufficient to cause eosinophil migration in a three-dimensional collagen environment. This study suggests that eosinophil growth factors are likely to be required for eosinophil migration within the bronchial mucosa, and this involves signal transduction pathways distinct from those used by G protein-associated chemoattractants.
Collapse
Affiliation(s)
- Michelle J Muessel
- Institute for Lung Health, Department of Infection, Immunity and Inflammation, University of Leicester, Leicester, UK
| | | | | | | | | |
Collapse
|
27
|
The actin cytoskeleton in cancer cell motility. Clin Exp Metastasis 2008; 26:273-87. [PMID: 18498004 DOI: 10.1007/s10585-008-9174-2] [Citation(s) in RCA: 413] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2008] [Accepted: 04/25/2008] [Indexed: 01/01/2023]
Abstract
Cancer cell metastasis is a multi-stage process involving invasion into surrounding tissue, intravasation, transit in the blood or lymph, extravasation, and growth at a new site. Many of these steps require cell motility, which is driven by cycles of actin polymerization, cell adhesion and acto-myosin contraction. These processes have been studied in cancer cells in vitro for many years, often with seemingly contradictory results. The challenge now is to understand how the multitude of in vitro observations relates to the movement of cancer cells in living tumour tissue. In this review we will concentrate on actin protrusion and acto-myosin contraction. We will begin by presenting some general principles summarizing the widely-accepted mechanisms for the co-ordinated regulation of actin polymerization and contraction. We will then discuss more recent studies that investigate how experimental manipulation of actin dynamics affects cancer cell invasion in complex environments and in vivo.
Collapse
|
28
|
Sinpitaksakul SN, Pimkhaokham A, Sanchavanakit N, Pavasant P. TGF-beta1 induced MMP-9 expression in HNSCC cell lines via Smad/MLCK pathway. Biochem Biophys Res Commun 2008; 371:713-8. [PMID: 18457660 DOI: 10.1016/j.bbrc.2008.04.128] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2008] [Accepted: 04/25/2008] [Indexed: 10/22/2022]
Abstract
Matrix metalloproteinase-9 (MMP-9) plays roles in cancer progression by degrading the extracellular matrix and basement membrane. Many growth factors including Transforming growth factor-beta1 (TGF-beta1) could induce MMP-9 expression. We demonstrated that TGF-beta1 induced MMP-9 mRNA and protein in human head and neck squamous cell carcinoma cell lines. Application of TGF-beta receptor type I inhibitor (SB505124) reduced the MMP-9 expression markedly. Whilst, inhibitor of Myosin light chain kinase (MLCK) could reduce the level of secreted MMP-9 in both the supernatants and cell lysate but not the level of MMP-9 mRNA. These suggested that MLCK might regulate MMP-9 expression post-transcriptionally. Application of SB505124 and siRNA Smad2/3 reduced the phosphorylation of myosin light chain (MLC) suggested that MLC is downstream to TbetaRI/Smad2/3 signaling pathway. In conclusion, these results describe a novel mechanism for the potentiation of TGF-beta1 signaling to induce MMP-9 expression via Smad and MLCK.
Collapse
|
29
|
Salhia B, Hwang JH, Smith CA, Nakada M, Rutka F, Symons M, Rutka JT. Role of myosin II activity and the regulation of myosin light chain phosphorylation in astrocytomas. ACTA ACUST UNITED AC 2008; 65:12-24. [PMID: 17896341 DOI: 10.1002/cm.20240] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The generation of contractile force mediated by actin-myosin interactions is essential for cell motility. Myosin activity is promoted by phosphorylation of myosin light chain (MLC). MLC phosphorylation in large part is controlled by kinases that are effectors of Rho family GTPases. Accordingly, in this study we examined the effects of ROCK and Rac1 inhibition on MLC phosphorylation in astrocytoma cells. We found that low concentrations of the ROCK inhibitor Y27632 increased the phosphorylation state of the Triton X-100 soluble fraction of MLC, whereas higher concentrations of Y27632 decreased soluble phospho-MLC. These effects of Y27632 were dependent on Rac1. The soluble form of phospho-MLC comprises about 10% of total phospho-MLC in control cells. Interestingly, ROCK inhibition led to a decrease in the phosphorylation state of total MLC, whereas Rac1 inhibition had little effect. Thus, the soluble form of MLC is differentially regulated by ROCK and Rac1 compared with MLC examined in a total cell extract. We also observed that astrocytoma migration is stimulated by low concentrations of the myosin II inhibitor blebbistatin. However, higher concentrations of blebbistatin inhibit migration leading us to believe that migration has a biphasic dependence on myosin II activity. Taken together, our data show that modulation of myosin II activity is important in determining optimal astrocytoma migration. In addition, these findings suggest that there are at least two populations of MLC that are differentially regulated.
Collapse
Affiliation(s)
- Bodour Salhia
- The Arthur and Sonia Labatt Brain Tumor Research Center, The Hospital for Sick Children, The University of Toronto, Toronto, Ontario, Canada
| | | | | | | | | | | | | |
Collapse
|
30
|
Fabian L, Forer A. Possible roles of actin and myosin during anaphase chromosome movements in locust spermatocytes. PROTOPLASMA 2007; 231:201-213. [PMID: 17922265 DOI: 10.1007/s00709-007-0262-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2006] [Accepted: 12/20/2006] [Indexed: 05/25/2023]
Abstract
We tested whether the mechanisms of chromosome movement during anaphase in locust (Locusta migratoria L.) spermatocytes might be similar to those described for crane-fly spermatocytes. Actin and myosin have been implicated in anaphase chromosome movements in crane-fly spermatocytes, as indicated by the effects of inhibitors and by the localisations of actin and myosin in spindles. In this study, we tested whether locust spermatocyte spindles also utilise actin and myosin, and whether actin is involved in microtubule flux. Living locust spermatocytes were treated with inhibitors of actin (latrunculin B and cytochalasin D), myosin (BDM), or myosin phosphorylation (Y-27632 and ML-7). We added drugs (individually) during anaphase. Actin inhibitors alter anaphase: chromosomes either completely stop moving, slow, or sometimes accelerate. The myosin inhibitor, BDM, also alters anaphase: in most cases, the chromosomes drastically slow or stop. ML-7, an inhibitor of MLCK, causes chromosomes to stop, slow, or sometimes accelerate, similar to actin inhibitors. Y-27632, an inhibitor of Rho-kinase, drastically slows or stops anaphase chromosome movements. The effects of the drugs on anaphase movement are reversible: most of the half-bivalents resumed movement at normal speed after these drugs were washed out. Actin and myosin were present in the spindles in locations consistent with their possible involvement in force production. Microtubule flux along kinetochore fibres is an actin-dependent process, since LatB completely removes or drastically reduces the gap in microtubule acetylation at the kinetochore. These results suggest that actin and myosin are involved in anaphase chromosome movements in locust spermatocytes.
Collapse
|
31
|
Fabian L, Troscianczuk J, Forer A. Calyculin A, an enhancer of myosin, speeds up anaphase chromosome movement. CELL & CHROMOSOME 2007; 6:1. [PMID: 17381845 PMCID: PMC1847834 DOI: 10.1186/1475-9268-6-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2007] [Accepted: 03/24/2007] [Indexed: 12/23/2022]
Abstract
Actin and myosin inhibitors often blocked anaphase movements in insect spermatocytes in previous experiments. Here we treat cells with an enhancer of myosin, Calyculin A, which inhibits myosin-light-chain phosphatase from dephosphorylating myosin; myosin thus is hyperactivated. Calyculin A causes anaphase crane-fly spermatocyte chromosomes to accelerate poleward; after they reach the poles they often move back toward the equator. When added during metaphase, chromosomes at anaphase move faster than normal. Calyculin A causes prometaphase chromosomes to move rapidly up and back along the spindle axis, and to rotate. Immunofluorescence staining with an antibody against phosphorylated myosin regulatory light chain (p-squash) indicated increased phosphorylation of cleavage furrow myosin compared to control cells, indicating that calyculin A indeed increased myosin phosphorylation. To test whether the Calyculin A effects are due to myosin phosphatase or to type 2 phosphatases, we treated cells with okadaic acid, which inhibits protein phosphatase 2A at concentrations similar to Calyculin A but requires much higher concentrations to inhibit myosin phosphatase. Okadaic acid had no effect on chromosome movement. Backward movements did not require myosin or actin since they were not affected by 2,3-butanedione monoxime or LatruculinB. Calyculin A affects the distribution and organization of spindle microtubules, spindle actin, cortical actin and putative spindle matrix proteins skeletor and titin, as visualized using immunofluorescence. We discuss how accelerated and backwards movements might arise.
Collapse
Affiliation(s)
- Lacramioara Fabian
- Department of Biology, York University, Toronto, Ontario, M3J 1P3, Canada
| | | | - Arthur Forer
- Department of Biology, York University, Toronto, Ontario, M3J 1P3, Canada
| |
Collapse
|
32
|
Sato MK, Takahashi M, Yazawa M. Two regions of the tail are necessary for the isoform-specific functions of nonmuscle myosin IIB. Mol Biol Cell 2007; 18:1009-17. [PMID: 17202408 PMCID: PMC1805092 DOI: 10.1091/mbc.e06-08-0706] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
To function in the cell, nonmuscle myosin II molecules assemble into filaments through their C-terminal tails. Because myosin II isoforms most likely assemble into homo-filaments in vivo, it seems that some self-recognition mechanisms of individual myosin II isoforms should exist. Exogenous expression of myosin IIB rod fragment is thus expected to prevent the function of myosin IIB specifically. We expected to reveal some self-recognition sites of myosin IIB from the phenotype by expressing appropriate myosin IIB rod fragments. We expressed the C-terminal 305-residue rod fragment of the myosin IIB heavy chain (BRF305) in MRC-5 SV1 TG1 cells. As a result, unstable morphology was observed like MHC-IIB(-/-) fibroblasts. This phenotype was not observed in cells expressing BRF305 mutants: 1) with a defect in assembling, 2) lacking N-terminal 57 residues (N-57), or 3) lacking C-terminal 63 residues (C-63). A myosin IIA rod fragment ARF296 corresponding to BRF305 was not effective. However, the chimeric ARF296, in which the N-57 and C-63 of BRF305 were substituted for the corresponding regions of ARF296, acquired the ability to induce unstable morphology. We propose that the N-57 and C-63 of BRF305 are involved in self-recognition when myosin IIB molecules assemble into homo-filament.
Collapse
Affiliation(s)
- Masaaki K. Sato
- Division of Chemistry, Graduate School of Science, Hokkaido University, Sapporo, 060-0810 Japan
| | - Masayuki Takahashi
- Division of Chemistry, Graduate School of Science, Hokkaido University, Sapporo, 060-0810 Japan
| | - Michio Yazawa
- Division of Chemistry, Graduate School of Science, Hokkaido University, Sapporo, 060-0810 Japan
| |
Collapse
|