1
|
Liu DJ, Zhong XQ, Ru YX, Zhao SL, Liu CC, Tang YB, Wu X, Zhang YS, Zhang HH, She JY, Wan MY, Li YW, Zheng HP, Deng L. Disulfide-stabilized trimeric hemagglutinin ectodomains provide enhanced heterologous influenza protection. Emerg Microbes Infect 2024; 13:2389095. [PMID: 39101691 PMCID: PMC11334750 DOI: 10.1080/22221751.2024.2389095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 07/05/2024] [Accepted: 08/01/2024] [Indexed: 08/06/2024]
Abstract
Influenza virus infection poses a continual menace to public health. Here, we developed soluble trimeric HA ectodomain vaccines by establishing interprotomer disulfide bonds in the stem region, which effectively preserve the native antigenicity of stem epitopes. The stable trimeric H1 ectodomain proteins exhibited higher thermal stabilities in comparison with unmodified HAs and showed strong binding activities towards a panel of anti-stem cross-reactive antibodies that recognize either interprotomer or intraprotomer epitopes. Negative stain transmission electron microscopy (TEM) analysis revealed the stable trimer architecture of the interprotomer disulfide-stapled WA11#5, NC99#2, and FLD#1 proteins as well as the irregular aggregation of unmodified HA molecules. Immunizations of mice with those trimeric HA ectodomain vaccines formulated with incomplete Freund's adjuvant elicited significantly more potent cross-neutralizing antibody responses and offered broader immuno-protection against lethal infections with heterologous influenza strains compared to unmodified HA proteins. Additionally, the findings of our study indicate that elevated levels of HA stem-specific antibody responses correlate with strengthened cross-protections. Our design strategy has proven effective in trimerizing HA ectodomains derived from both influenza A and B viruses, thereby providing a valuable reference for designing future influenza HA immunogens.
Collapse
Affiliation(s)
- De-Jian Liu
- Hunan Provincial Key Laboratory of Medical Virology, Institute of Pathogen Biology and Immunology, College of Biology, Hunan University, Changsha, People’s Republic of China
| | - Xiu-Qin Zhong
- Hunan Provincial Key Laboratory of Medical Virology, Institute of Pathogen Biology and Immunology, College of Biology, Hunan University, Changsha, People’s Republic of China
| | - Yan-Xia Ru
- School of Life Sciences, Southern University of Science and Technology, Shenzhen, People’s Republic of China
| | - Shi-Long Zhao
- Hunan Provincial Key Laboratory of Medical Virology, Institute of Pathogen Biology and Immunology, College of Biology, Hunan University, Changsha, People’s Republic of China
| | - Cui-Cui Liu
- Hunan Provincial Key Laboratory of Medical Virology, Institute of Pathogen Biology and Immunology, College of Biology, Hunan University, Changsha, People’s Republic of China
| | - Yi-Bo Tang
- Hunan Provincial Key Laboratory of Medical Virology, Institute of Pathogen Biology and Immunology, College of Biology, Hunan University, Changsha, People’s Republic of China
| | - Xuan Wu
- Hunan Provincial Key Laboratory of Medical Virology, Institute of Pathogen Biology and Immunology, College of Biology, Hunan University, Changsha, People’s Republic of China
| | - Yi-Shuai Zhang
- Bioinformatics Center, College of Biology, Hunan University, Changsha, People’s Republic of China
| | - Hui-Hui Zhang
- Bioinformatics Center, College of Biology, Hunan University, Changsha, People’s Republic of China
| | - Jia-Yue She
- Hunan Provincial Key Laboratory of Medical Virology, Institute of Pathogen Biology and Immunology, College of Biology, Hunan University, Changsha, People’s Republic of China
| | - Mu-Yang Wan
- Hunan Provincial Key Laboratory of Medical Virology, Institute of Pathogen Biology and Immunology, College of Biology, Hunan University, Changsha, People’s Republic of China
| | - Yao-Wang Li
- School of Life Sciences, Southern University of Science and Technology, Shenzhen, People’s Republic of China
| | - He-Ping Zheng
- Bioinformatics Center, College of Biology, Hunan University, Changsha, People’s Republic of China
| | - Lei Deng
- Hunan Provincial Key Laboratory of Medical Virology, Institute of Pathogen Biology and Immunology, College of Biology, Hunan University, Changsha, People’s Republic of China
- Beijing Weimiao Biotechnology Co., Ltd., Beijing, People’s Republic of China
| |
Collapse
|
2
|
Wang C, Karlsson A, Oguin TH, Macintyre AN, Sempowski GD, McCarthy KR, Wang Y, Moody MA, Yuan F. Transient inhibition of lysosomal functions potentiates nucleic acid vaccines. Proc Natl Acad Sci U S A 2023; 120:e2306465120. [PMID: 37871214 PMCID: PMC10622924 DOI: 10.1073/pnas.2306465120] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 09/01/2023] [Indexed: 10/25/2023] Open
Abstract
Nucleic acid vaccines have shown promising results in the clinic against infectious diseases and cancers. To robustly improve the vaccine efficacy and safety, we developed an approach to increase the intracellular stability of nucleic acids by transiently inhibiting lysosomal function in targeted tissues using sucrose. To achieve efficient and localized delivery of sucrose in animals, we designed a biomimetic lipid nanoparticle (LNP) to target the delivery of sucrose into mouse muscle cells. Using this approach, viral antigen expression in mouse muscle after DNA vaccination was substantially increased and prolonged without inducing local or systemic inflammation or toxicity. The same change in antigen expression would be achieved if the vaccine dose could be increased by 3,000 folds, which is experimentally and clinically impractical due to material restrictions and severe toxicity that will be induced by such a high dose of nucleic acids. The increase in antigen expression augmented the infiltration and activation of antigen-presenting cells, significantly improved vaccine-elicited humoral and T cell responses, and fully protected mice against the viral challenge at a low dose of vaccine. Based on these observations, we conclude that transient inhibition of lysosome function in target tissue by sucrose LNPs is a safe and potent approach to substantially improve nucleic acid-based vaccines.
Collapse
Affiliation(s)
- Chunxi Wang
- Department of Biomedical Engineering, Duke University, Durham, NC27708
| | - Amelia Karlsson
- Duke Human Vaccine Institute, Duke University, Durham, NC27708
| | - Thomas H. Oguin
- Duke Human Vaccine Institute, Duke University, Durham, NC27708
| | - Andrew N. Macintyre
- Duke Human Vaccine Institute, Duke University, Durham, NC27708
- Department of Medicine, Duke University School of Medicine, Durham, NC27708
| | - Gregory D. Sempowski
- Duke Human Vaccine Institute, Duke University, Durham, NC27708
- Department of Medicine, Duke University School of Medicine, Durham, NC27708
| | - Kevin R. McCarthy
- Center for vaccine research, University of Pittsburgh School of Medicine, Pittsburgh, PA15261
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA15261
| | - Yifei Wang
- Department of Biomedical Engineering, Duke University, Durham, NC27708
| | - M. Anthony Moody
- Duke Human Vaccine Institute, Duke University, Durham, NC27708
- Department of Pediatrics, Duke University School of Medicine, Durham, NC27708
| | - Fan Yuan
- Department of Biomedical Engineering, Duke University, Durham, NC27708
| |
Collapse
|
3
|
Xiong FF, Liu XY, Gao FX, Luo J, Duan P, Tan WS, Chen Z. Protective efficacy of anti-neuraminidase monoclonal antibodies against H7N9 influenza virus infection. Emerg Microbes Infect 2020; 9:78-87. [PMID: 31894728 PMCID: PMC6968527 DOI: 10.1080/22221751.2019.1708214] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 12/12/2019] [Accepted: 12/17/2019] [Indexed: 11/24/2022]
Abstract
The H7N9 influenza virus has been circulating in China for more than six years. The neuraminidase (NA) has gained great concern for the development of antiviral drugs, therapeutic antibodies, and new vaccines. In this study, we screened seven mouse monoclonal antibodies (mAbs) and compared their protective effects against H7N9 influenza virus. The epitope mapping from escape mutants showed that all the seven mAbs could bind to the head region of the N9 NA close to the enzyme activity sites, and four key sites of N9 NA were reported for the first time. The mAbs D3 and 7H2 could simultaneously inhibit the cleavage of the sialic acid of fetuin protein with large molecular weight and NA-XTD with small molecule weight in the NA inhibition experiment, prevent the formation of virus plaque at a low concentration, and effectively protect the mice from the challenge of the lethal dose of H7N9 virus.
Collapse
Affiliation(s)
- Fei-Fei Xiong
- Shanghai Institute of Biological Products, Shanghai, People’s Republic of China
| | - Xue-Ying Liu
- Shanghai Institute of Biological Products, Shanghai, People’s Republic of China
| | - Fei-Xia Gao
- Shanghai Institute of Biological Products, Shanghai, People’s Republic of China
- East China University of Science and Technology, Shanghai, People’s Republic of China
| | - Jian Luo
- Shanghai Institute of Biological Products, Shanghai, People’s Republic of China
| | - Peng Duan
- Shanghai Institute of Biological Products, Shanghai, People’s Republic of China
| | - Wen-Song Tan
- East China University of Science and Technology, Shanghai, People’s Republic of China
| | - Ze Chen
- Shanghai Institute of Biological Products, Shanghai, People’s Republic of China
| |
Collapse
|
4
|
Kim KH, Lee YT, Park S, Jung YJ, Lee Y, Ko EJ, Kim YJ, Li X, Kang SM. Neuraminidase expressing virus-like particle vaccine provides effective cross protection against influenza virus. Virology 2019; 535:179-188. [PMID: 31310875 DOI: 10.1016/j.virol.2019.07.008] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 07/01/2019] [Accepted: 07/06/2019] [Indexed: 12/15/2022]
Abstract
Neuraminidase is the second major surface antigen on influenza virus. We investigated the immunogenicity and cross protective efficacy of virus-like particle containing neuraminidase derived from 2009 pandemic H1N1 influenza virus (N1 VLP) in comparison with inactivated split influenza vaccine. Immunization of mice with N1 VLP induced antibody responses specific for virus and cross-reactive neuraminidase inhibition activity whereas an inactivated split vaccine induced strain-specific hemagglutination inhibition activity. N1 VLP-immunized mice developed cross protective immunity against antigenically different influenza viruses, as determined by body weight changes, lung viral titers, infiltrating innate immune cells, and cytokines, and antibody secreting cells, and germinal center B cells. Also, N1 VLP-immune sera provided cross-protection in naïve mice. Immunity by N1 VLP vaccination was not compromised in Fc receptor γ-chain deficient mice. These results suggest that neuraminidase-presenting VLP can be developed as an effective cross-protective vaccine candidate along with current influenza vaccination.
Collapse
Affiliation(s)
- Ki-Hye Kim
- Center for Inflammation, Immunity and Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, USA
| | - Young-Tae Lee
- Center for Inflammation, Immunity and Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, USA
| | - Soojin Park
- Center for Inflammation, Immunity and Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, USA
| | - Yu-Jin Jung
- Center for Inflammation, Immunity and Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, USA
| | - Youri Lee
- Center for Inflammation, Immunity and Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, USA
| | - Eun-Ju Ko
- Center for Inflammation, Immunity and Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, USA
| | - Yu-Jin Kim
- Center for Inflammation, Immunity and Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, USA
| | - Xuguang Li
- Center for Vaccine Evaluation, Biologics and Genetic Therapies Directorate, HPFP, Health Canada, Ottawa, ON, Canada
| | - Sang-Moo Kang
- Center for Inflammation, Immunity and Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, USA.
| |
Collapse
|
5
|
Yao Y, Wang H, Chen J, Shao Z, He B, Chen J, Lan J, Chen Q, Chen Z. Protection against homo and hetero-subtypic influenza A virus by optimized M2e DNA vaccine. Emerg Microbes Infect 2019; 8:45-54. [PMID: 30866759 PMCID: PMC6455129 DOI: 10.1080/22221751.2018.1558962] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 10/26/2018] [Accepted: 12/03/2018] [Indexed: 01/27/2023]
Abstract
Current influenza vaccines provide hemagglutinin strain-specific protection, but rarely provide cross-protection against divergent strains. It is, therefore, particularly important to develop a universal vaccine against conserved proteins or conserved regions of the virus. In this study, we used N-terminal extracellular region of the influenza virus M2 protein (M2e) as the target antigen and constructed two optimized M2e DNA vaccines (p-tPA-p3M2e and p-p3M2e) with increased antigenic epitope density and enhanced antigen secretion. Both vaccines induced high M2e-specific humoral and cellular immune responses in the vaccinated mice. These two vaccines also conferred protection against a lethal infection of homo-subtypic H1N1 virus, with p-tPA-p3M2e being the most effective. In addition, p-tPA-p3M2e also showed cross-protection against different subtypes of the influenza virus (H9N2, H6N6, and H10N8) at varying rates (80%, 40%, and 20%, respectively). After passive immunization, M2e DNA vaccine-induced antibodies in the sera provided complete protection against homologous virus challenge. An analysis of the mechanism underlying this immunization-mediated protection indicates that M2e-specific IgG and T-cell immune responses may play critical roles in the prevention of infection and viral clearance. Taken together, our results indicate that this optimized M2e DNA vaccine is a promising candidate for the development of a universal, broad-spectrum influenza virus vaccine.
Collapse
Affiliation(s)
- Yanfeng Yao
- National Biosafety Laboratory, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, People’s Republic of China
- Institute of Animal Husbandry and Veterinary Science, Wuhan Academy of Agricultural Science and Technology, Wuhan, People’s Republic of China
| | - Huadong Wang
- Center for Brain Science, Key Laboratory of Magnetic Resonance in Biological Systems and State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, People’s Republic of China
| | - Jianjun Chen
- CAS Key Laboratory of Special Pathogens and Biosafety, Chinese Academy of Sciences, Hubei, People’s Republic of China
| | - Zhiyong Shao
- Institute of Animal Husbandry and Veterinary Science, Wuhan Academy of Agricultural Science and Technology, Wuhan, People’s Republic of China
| | - Bin He
- Institute of Animal Husbandry and Veterinary Science, Wuhan Academy of Agricultural Science and Technology, Wuhan, People’s Republic of China
| | - Jie Chen
- Institute of Animal Husbandry and Veterinary Science, Wuhan Academy of Agricultural Science and Technology, Wuhan, People’s Republic of China
| | - Jiaming Lan
- Department of Pathogenic Biology, Hebei Medical University, Shijiazhuang, People’s Republic of China
| | - Quanjiao Chen
- CAS Key Laboratory of Special Pathogens and Biosafety, Chinese Academy of Sciences, Hubei, People’s Republic of China
| | - Ze Chen
- College of Life Science, Hunan Normal University, Changsha, People’s Republic of China
- Shanghai Institute of Biological Products, Shanghai, People’s Republic of China
| |
Collapse
|
6
|
Chang H, Duan J, Zhou P, Su L, Zheng D, Zhang F, Fang F, Li X, Chen Z. Single immunization with MF59-adjuvanted inactivated whole-virion H7N9 influenza vaccine provides early protection against H7N9 virus challenge in mice. Microbes Infect 2017; 19:616-625. [DOI: 10.1016/j.micinf.2017.08.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 08/21/2017] [Accepted: 08/30/2017] [Indexed: 11/24/2022]
|
7
|
Choi WS, Lloren KKS, Baek YH, Song MS. The significance of avian influenza virus mouse-adaptation and its application in characterizing the efficacy of new vaccines and therapeutic agents. Clin Exp Vaccine Res 2017; 6:83-94. [PMID: 28775972 PMCID: PMC5540968 DOI: 10.7774/cevr.2017.6.2.83] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 05/03/2017] [Accepted: 05/12/2017] [Indexed: 11/26/2022] Open
Abstract
Due to the increased frequency of interspecies transmission of avian influenza viruses, studies designed to identify the molecular determinants that could lead to an expansion of the host range have been increased. A variety of mouse-based mammalian-adaptation studies of avian influenza viruses have provided insight into the genetic alterations of various avian influenza subtypes that may contribute to the generation of a pandemic virus. To date, the studies have focused on avian influenza subtypes H5, H6, H7, H9, and H10 which have recently caused human infection. Although mice cannot fully reflect the course of human infection with avian influenza, these mouse studies can be a useful method for investigating potential mammalian adaptive markers against newly emerging avian influenza viruses. In addition, due to the lack of appropriate vaccines against the diverse emerging influenza viruses, the generation of mouse-adapted lethal variants could contribute to the development of effective vaccines or therapeutic agents. Within this review, we will summarize studies that have demonstrated adaptations of avian influenza viruses that result in an altered pathogenicity in mice which may suggest the potential application of mouse-lethal strains in the development of influenza vaccines and/or therapeutics in preclinical studies.
Collapse
Affiliation(s)
- Won-Suk Choi
- Department of Microbiology, College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju, Korea
| | - Khristine Kaith S Lloren
- Department of Microbiology, College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju, Korea
| | - Yun Hee Baek
- Department of Microbiology, College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju, Korea
| | - Min-Suk Song
- Department of Microbiology, College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju, Korea
| |
Collapse
|
8
|
Wang F, Chen Q, Li S, Zhang C, Li S, Liu M, Mei K, Li C, Ma L, Yu X. Linear DNA vaccine prepared by large-scale PCR provides protective immunity against H1N1 influenza virus infection in mice. Vet Microbiol 2017. [PMID: 28622854 DOI: 10.1016/j.vetmic.2017.05.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Linear DNA vaccines provide effective vaccination. However, their application is limited by high cost and small scale of the conventional polymerase chain reaction (PCR) generally used to obtain sufficient amounts of DNA effective against epidemic diseases. In this study, a two-step, large-scale PCR was established using a low-cost DNA polymerase, RKOD, expressed in Pichia pastoris. Two linear DNA vaccines encoding influenza H1N1 hemagglutinin (HA) 1, LEC-HA, and PTO-LEC-HA (with phosphorothioate-modified primers), were produced by the two-step PCR. Protective effects of the vaccines were evaluated in a mouse model. BALB/c mice were immunized three times with the vaccines or a control DNA fragment. All immunized animals were challenged by intranasal administration of a lethal dose of influenza H1N1 virus 2 weeks after the last immunization. Sera of the immunized animals were tested for the presence of HA-specific antibodies, and the total IFN-γ responses induced by linear DNA vaccines were measured. The results showed that the DNA vaccines but not the control DNA induced strong antibody and IFN-γ responses. Additionally, the PTO-LEC-HA vaccine effectively protected the mice against the lethal homologous mouse-adapted virus, with a survival rate of 100% versus 70% in the LEC-HA-vaccinated group, showing that the PTO-LEC-HA vaccine was more effective than LEC-HA. In conclusion, the results indicated that the linear H1N1 HA-coding DNA vaccines induced significant immune responses and protected mice against a lethal virus challenge. Thus, the low-cost, two-step, large-scale PCR can be considered a potential tool for rapid manufacturing of linear DNA vaccines against emerging infectious diseases.
Collapse
Affiliation(s)
- Fei Wang
- Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, College of Life Sciences, Hubei University, Wuhan 430062, China.
| | - Quanjiao Chen
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China.
| | - Shuntang Li
- Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, College of Life Sciences, Hubei University, Wuhan 430062, China.
| | - Chenyao Zhang
- Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, College of Life Sciences, Hubei University, Wuhan 430062, China.
| | - Shanshan Li
- Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, College of Life Sciences, Hubei University, Wuhan 430062, China.
| | - Min Liu
- Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, College of Life Sciences, Hubei University, Wuhan 430062, China.
| | - Kun Mei
- Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, College of Life Sciences, Hubei University, Wuhan 430062, China.
| | - Chunhua Li
- Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, College of Life Sciences, Hubei University, Wuhan 430062, China.
| | - Lixin Ma
- Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, College of Life Sciences, Hubei University, Wuhan 430062, China.
| | - Xiaolan Yu
- Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, College of Life Sciences, Hubei University, Wuhan 430062, China.
| |
Collapse
|
9
|
Kostina LV, Zaberezhnyy AD, Grebennikova TV, Antipova NV, Aliper TI, Nepoklonov EA. Vaccines against avian influenza in poultry. Vopr Virusol 2017; 62:53-60. [PMID: 36494928 DOI: 10.18821/0507-4088-2017-62-2-53-60] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Indexed: 12/13/2022]
Abstract
The review presents the latest data about the types of vaccines against avian influenza that are used in current medical practice or are under development. Inactivated whole virion vaccines, live vector vaccines, as well as experimental vaccines developed using genetic engineering techniques (e.g. subunit vaccines, VLP vaccines, DNA vaccines) were considered. The efficiency of influenza reverse genetic technology for the development of prototype vaccine strains was noted.
Collapse
Affiliation(s)
- L V Kostina
- Federal Research Centre of Epidemiology and Microbiology named after the honorary academician N.F. Gamaleya
| | - A D Zaberezhnyy
- Federal Research Centre of Epidemiology and Microbiology named after the honorary academician N.F. Gamaleya.,Y.R. Kovalenko All-Russian Scientific Research Institute of Experimental Veterinary
| | - T V Grebennikova
- Federal Research Centre of Epidemiology and Microbiology named after the honorary academician N.F. Gamaleya
| | | | - T I Aliper
- Federal Research Centre of Epidemiology and Microbiology named after the honorary academician N.F. Gamaleya.,Y.R. Kovalenko All-Russian Scientific Research Institute of Experimental Veterinary
| | - E A Nepoklonov
- Federal Service for Veterinary and Phytosanitary Surveillance (Rosselkhoznadzor)
| |
Collapse
|
10
|
Soleimani S, Shahsavandi S, Maddadgar O. Improvement influenza HA2 DNA vaccine cellular and humoral immune responses with Mx bio adjuvant. Biologicals 2016; 46:6-10. [PMID: 28027847 DOI: 10.1016/j.biologicals.2016.11.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 11/29/2016] [Accepted: 11/29/2016] [Indexed: 11/19/2022] Open
Abstract
Immunization with DNA vaccines as a novel alternative to conventional vaccination strategy requires adjuvant for improving vaccine efficacy. The conserved immunogenic HA2 subunit, which harbors neutralizing epitopes is a promising vaccine candidate against influenza viruses. In this study, for the first time we explore the idea of using host interferon inducible Mx protein to increase the immunogenicity of HA2 H9N2 influenza DNA vaccine. The potency and safety of the Mx adjuvanted-HA2 vaccine was evaluated in BALB/c mice by different prime-boost strategies. To assess the effect of the vaccination on the virus clearance rate, mice were challenged with homologous influenza virus. Administration of the adjuvanted vaccine and boosting with the same regimen could effectively enhance both humoral and cellular immune responses in treated mice. These data demonstrated that Mx as host defense peptide can be potentiated for improving influenza vaccine efficacy.
Collapse
MESH Headings
- Animals
- Antibodies, Viral/blood
- Antibodies, Viral/immunology
- Chemotherapy, Adjuvant/methods
- Enzyme-Linked Immunosorbent Assay
- Female
- Immunity, Cellular/drug effects
- Immunity, Cellular/immunology
- Immunity, Humoral/drug effects
- Immunity, Humoral/immunology
- Immunization, Secondary/methods
- Influenza A Virus, H9N2 Subtype/immunology
- Influenza Vaccines/administration & dosage
- Influenza Vaccines/immunology
- Mice, Inbred BALB C
- Myxovirus Resistance Proteins/administration & dosage
- Myxovirus Resistance Proteins/immunology
- Orthomyxoviridae Infections/immunology
- Orthomyxoviridae Infections/prevention & control
- Orthomyxoviridae Infections/virology
- Treatment Outcome
- Vaccination/methods
- Vaccines, DNA/administration & dosage
- Vaccines, DNA/immunology
Collapse
Affiliation(s)
- Sina Soleimani
- Faculty of Veterinary Medicine, Tehran University, P.O. Box 14155-6453, Tehran, Iran; Razi Vaccine & Serum Research Institute, Agricultural Research Education and Extension Organization, P.O. Box 31975-148, Karaj, Iran
| | - Shahla Shahsavandi
- Razi Vaccine & Serum Research Institute, Agricultural Research Education and Extension Organization, P.O. Box 31975-148, Karaj, Iran.
| | - Omid Maddadgar
- Faculty of Veterinary Medicine, Tehran University, P.O. Box 14155-6453, Tehran, Iran
| |
Collapse
|
11
|
Zheng M, Qu D, Wang H, Sun Z, Liu X, Chen J, Li C, Li X, Chen Z. Intranasal Administration of Chitosan Against Influenza A (H7N9) Virus Infection in a Mouse Model. Sci Rep 2016; 6:28729. [PMID: 27353250 PMCID: PMC4926116 DOI: 10.1038/srep28729] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 06/08/2016] [Indexed: 12/13/2022] Open
Abstract
Influenza virus evolves constantly in an unpredictable fashion, making it necessary to vaccinate people annually for effective prevention and control of influenza. In general, however, during the first wave of an influenza outbreak caused by a newly emerging virus strain, influenza morbidity and mortality have been observed to rise sharply due to the lack of a matching vaccine. This necessitates the exploration of novel intervention approaches, particularly those prophylactic or therapeutic agents that have a broad range of antiviral activities and are also proven to be non-toxic. Here, we reported that stimulation of the innate immune system by intranasal administration of chitosan as a single agent was sufficient to completely protect BALB/c mice from lethal infection by H7N9 virus, a newly emerged viral strain that is highly pathogenic to humans. Remarkably, animals could still be protected against lethal challenge by H7N9 (10×LD50), even ten days after the intranasal chitosan administration. The significantly enhanced infiltration of leukocytes in the bronchoalveolar lavage and elevated levels of proinflammatory cytokines in the bronchia/lung tissues revealed the potent activation of mucosal immune responses by intranasally delivered chitosan. We also observed that chitosan can protect mice from three other virus strains. The marked breadth and magnitude of protection against diverse viral strains makes chitosan an attractive candidate as a universal anti-influenza agent.
Collapse
Affiliation(s)
- Mei Zheng
- Shanghai Institute of Biological Products, Shanghai 200052, China
| | - Di Qu
- Biosafety Level-3 Laboratory, Key Laboratory of Medical Molecular Virology MOE &MOH, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Haiming Wang
- Shanghai Institute of Biological Products, Shanghai 200052, China
| | - Zhiping Sun
- Biosafety Level-3 Laboratory, Key Laboratory of Medical Molecular Virology MOE &MOH, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Xueying Liu
- Shanghai Institute of Biological Products, Shanghai 200052, China
| | - Jianjun Chen
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, Hubei, China
| | - Changgui Li
- National Institutes for Food and Drug Control and WHO Collaborating Center for Standardization and Evaluation of Biologicals, Beijing, China
| | - Xuguang Li
- Centre for Vaccine Evaluation, Biologics and Genetic Therapies Directorate, HPFB, Health Canada, Ottawa, ON, Canada
| | - Ze Chen
- Shanghai Institute of Biological Products, Shanghai 200052, China.,College of Life Sciences, Hunan Normal University, Changsha 410081, Hunan, China
| |
Collapse
|
12
|
Abstract
Robust and sustainable development of poultry industry requires prevention of deadly infectious diseases. Vigorous vaccination of the birds is a routine practice; however, the live and inactivated vaccines that are used have inherent disadvantages. New-generation vaccines such as DNA vaccines offer several advantages over conventional vaccines. DNA vaccines, which encode an antigen of interest or multiple antigens in the target host, are stable, easy to produce and administer, do not require cold chain maintenance, and are not affected by the maternal antibodies. In addition, DNA vaccines can also be administered in ovo, and thus, mass vaccination and early induction of immune response can effectively be achieved. In this chapter, we focus on the development of DNA vaccines against important infectious viral as well as parasitic diseases of poultry.
Collapse
Affiliation(s)
- Shishir Kumar Gupta
- Division of Veterinary Biotechnology, Indian Veterinary Research Institute, Izatnagar, Bareilly, 243122, India.
| | - Sohini Dey
- Division of Veterinary Biotechnology, Indian Veterinary Research Institute, Izatnagar, Bareilly, 243122, India
| | - Madhan Mohan Chellappa
- Division of Veterinary Biotechnology, Indian Veterinary Research Institute, Izatnagar, Bareilly, 243122, India
| |
Collapse
|
13
|
Zheng M, Liu F, Shen Y, Wang S, Xu W, Fang F, Sun B, Xie Z, Chen Z. Cross-protection against influenza virus infection by intranasal administration of nucleoprotein-based vaccine with compound 48/80 adjuvant. Hum Vaccin Immunother 2015; 11:397-406. [PMID: 25607884 DOI: 10.4161/21645515.2014.995056] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The nucleoprotein (NP) of influenza viruses is highly conserved and therefore has become one of the major targets of current universal influenza vaccine (UIV) studies. In this study, the recombinant nucleoprotein (NP) of the A/PR/8/34 (H1N1) influenza virus strain was expressed using an Escherichia coli (E. coli) expression system and then purified as a candidate UIV. The NP protein was administered intranasally or intraperitoneally twice at 3-week intervals to female BALB/c mice in combination with C48/80 adjuvant. Then, the mice were challenged with homologous or heterologous influenza viruses at a lethal dose 3 weeks after the last immunization. The results showed that the serum IgG titers of all of the mice immunized with NP reached a higher level and the protection provided by NP vaccine against the homologous virus depended on the administered dosage and adjuvant. In addition, immunization with 100 μg NP in combination with C48/80 adjuvant could provide good cross-protection against heterologous H9N2 avian influenza viruses. This study indicated that NP as a candidate antigen of UIV immunized intranasally could effectively induce mucosal and cell-mediated immunity, with the potential to control epidemics caused by the appearance of new emerging influenza viruses.
Collapse
Affiliation(s)
- Mei Zheng
- a Shanghai Institute of Biological Products ; Shanghai , China
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Kingstad-Bakke B, Kamlangdee A, Osorio JE. Mucosal administration of raccoonpox virus expressing highly pathogenic avian H5N1 influenza neuraminidase is highly protective against H5N1 and seasonal influenza virus challenge. Vaccine 2015; 33:5155-62. [PMID: 26271828 DOI: 10.1016/j.vaccine.2015.08.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Revised: 06/29/2015] [Accepted: 08/01/2015] [Indexed: 10/23/2022]
Abstract
We previously generated recombinant poxviruses expressing influenza antigens and studied their efficacy as potential highly pathogenic avian influenza (HPAI) vaccines in mice. While both modified vaccinia Ankara (MVA) and raccoon poxvirus (RCN) expressing hemagglutinin (HA) provided strong protection when administered by parenteral routes, only RCN-neuraminidase (NA) showed promise as a mucosal vaccine. In the present study we evaluated the efficacy of RCN-NA constructs by both intradermal (ID) and intranasal (IN) routes. Surprisingly, while RCN-NA completely protected mice when administered by the IN route, it failed to protect mice when administered by the ID route. After challenge, significantly less virus induced pathology was observed in the lungs of mice vaccinated with RCN-NA by the IN route as compared to the ID route. Furthermore, IN administration of RCN-NA elicited neutralizing antibodies detected in bronchoalveolar lavage (BAL) samples. We also determined the role of cellular immune responses in protection elicited by RCN-NA by depleting CD4 and CD8 T cells prior to challenge. Finally, we demonstrated for the first time that antibodies against NA can block viral entry in addition to viral spread in vitro. These studies demonstrate the importance of mucosal administration of RCN viral vectors for eliciting protective immune responses against the NA antigen.
Collapse
Affiliation(s)
- Brock Kingstad-Bakke
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI 53706, USA
| | - Attapon Kamlangdee
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI 53706, USA
| | - Jorge E Osorio
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI 53706, USA.
| |
Collapse
|
15
|
Shahsavandi S, Ebrahimi MM, Sadeghi K, Mahravani H. Design of a heterosubtypic epitope-based peptide vaccine fused with hemokinin-1 against influenza viruses. Virol Sin 2015; 30:200-7. [PMID: 25894902 DOI: 10.1007/s12250-014-3504-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2014] [Accepted: 03/31/2015] [Indexed: 02/07/2023] Open
Abstract
Influenza viruses continue to emerge and re-emerge, posing new threats for public health. Control and treatment of influenza depends mainly on vaccination and chemoprophylaxis with approved antiviral drugs. Identification of specific epitopes derived from influenza viruses has significantly advanced the development of epitope-based vaccines. Here, we explore the idea of using HLA binding data to design an epitope-based vaccine that can elicit heterosubtypic T-cell responses against circulating H7N9, H5N1, and H9N2 subtypes. The hemokinin-1 (HK-1) peptide sequence was used to induce immune responses against the influenza viruses. Five conserved high score cytotoxic T lymphocyte (CTL) epitopes restricted to HLA-A*0201-binding peptides within the hemagglutinin (HA) protein of the viruses were chosen, and two HA CTL/HK-1 chimera protein models designed. Using in silico analysis, which involves interferon epitope scanning, protein structure prediction, antigenic epitope determination, and model quality evaluation, chimeric proteins were designed. The applicability of one of these proteins as a heterosubtypic epitopebased vaccine candidate was analyzed.
Collapse
|
16
|
Abstract
Electroporation has been used extensively to transfer DNA to bacteria, yeast, and mammalian cells in culture for the past 30 years. Over this time, numerous advances have been made, from using fields to facilitate cell fusion, delivery of chemotherapeutic drugs to cells and tissues, and most importantly, gene and drug delivery in living tissues from rodents to man. Electroporation uses electrical fields to transiently destabilize the membrane allowing the entry of normally impermeable macromolecules into the cytoplasm. Surprisingly, at the appropriate field strengths, the application of these fields to tissues results in little, if any, damage or trauma. Indeed, electroporation has even been used successfully in human trials for gene delivery for the treatment of tumors and for vaccine development. Electroporation can lead to between 100 and 1000-fold increases in gene delivery and expression and can also increase both the distribution of cells taking up and expressing the DNA as well as the absolute amount of gene product per cell (likely due to increased delivery of plasmids into each cell). Effective electroporation depends on electric field parameters, electrode design, the tissues and cells being targeted, and the plasmids that are being transferred themselves. Most importantly, there is no single combination of these variables that leads to greatest efficacy in every situation; optimization is required in every new setting. Electroporation-mediated in vivo gene delivery has proven highly effective in vaccine production, transgene expression, enzyme replacement, and control of a variety of cancers. Almost any tissue can be targeted with electroporation, including muscle, skin, heart, liver, lung, and vasculature. This chapter will provide an overview of the theory of electroporation for the delivery of DNA both in individual cells and in tissues and its application for in vivo gene delivery in a number of animal models.
Collapse
Affiliation(s)
- Jennifer L Young
- Department of Pediatrics, University of Rochester, Rochester, NY, USA
| | - David A Dean
- Departments of Pediatrics and Biomedical Engineering, University of Rochester, Rochester, NY, USA
| |
Collapse
|
17
|
The nucleoprotein of newly emerged H7N9 influenza A virus harbors a unique motif conferring resistance to antiviral human MxA. J Virol 2014; 89:2241-52. [PMID: 25505067 DOI: 10.1128/jvi.02406-14] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
UNLABELLED Interferon-induced Mx proteins show strong antiviral activity against influenza A viruses (IAVs). We recently demonstrated that the viral nucleoprotein (NP) determines resistance of seasonal and pandemic human influenza viruses to Mx, while avian isolates retain Mx sensitivity. We identified a surface-exposed cluster of amino acids in NP of pandemic A/BM/1/1918 (H1N1), comprising isoleucine-100, proline-283, and tyrosine-313, that is essential for reduced Mx sensitivity in cell culture and in vivo. This cluster has been maintained in all descendant seasonal strains, including A/PR/8/34 (PR/8). Accordingly, two substitutions in the NP of PR/8 [PR/8(mut)] to the Mx-sensitive amino acids (P283L and Y313F) led to attenuation in Mx1-positive mice. Serial lung passages of PR/8(mut) in Mx1 mice resulted in a single exchange of tyrosine to asparagine at position 52 in NP (in close proximity to the amino acid cluster at positions 100, 283, and 313), which partially compensates loss of Mx resistance in PR/8(mut). Intriguingly, the NP of the newly emerged avian-origin H7N9 virus also contains an asparagine at position 52 and shows reduced Mx sensitivity. N52Y substitution in NP results in increased sensitivity of the H7N9 virus to human Mx, indicating that this residue is a determinant of Mx resistance in mammals. Our data strengthen the hypothesis that the human Mx protein represents a potent barrier against zoonotic transmission of avian influenza viruses. However, the H7N9 viruses overcome this restriction by harboring an NP that is less sensitive to Mx-mediated host defense. This might contribute to zoonotic transmission of H7N9 and to the severe to fatal outcome of H7N9 infections in humans. IMPORTANCE The natural host of influenza A viruses (IAVs) are aquatic birds. Occasionally, these viruses cross the species barrier, as in early 2013 when an avian H7N9 virus infected humans in China. Since then, multiple transmissions of H7N9 viruses to humans have occurred, leaving experts puzzled about molecular causes for such efficient crossing of the species barrier compared to other avian influenza viruses. Mx proteins are known restriction factors preventing influenza virus replication. Unfortunately, some viruses (e.g., human IAV) have developed some resistance, which is associated with specific amino acids in their nucleoproteins, the target of Mx function. Here, we demonstrate that the novel H7N9 bird IAV already carries a nucleoprotein that overcomes the inhibition of viral replication by human MxA. This is the first example of an avian IAV that is naturally less sensitive to Mx-mediated inhibition and might explain why H7N9 viruses transmitted efficiently to humans.
Collapse
|
18
|
Biological and protective properties of immune sera directed to the influenza virus neuraminidase. J Virol 2014; 89:1550-63. [PMID: 25392225 DOI: 10.1128/jvi.02949-14] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED The envelope of influenza A viruses contains two large antigens, hemagglutinin (HA) and neuraminidase (NA). Conventional influenza virus vaccines induce neutralizing antibodies that are predominantly directed to the HA globular head, a domain that is subject to extensive antigenic drift. Antibodies directed to NA are induced at much lower levels, probably as a consequence of the immunodominance of the HA antigen. Although antibodies to NA may affect virus release by inhibiting the sialidase function of the glycoprotein, the antigen has been largely neglected in past vaccine design. In this study, we characterized the protective properties of monospecific immune sera that were generated by vaccination with recombinant RNA replicon particles encoding NA. These immune sera inhibited hemagglutination in an NA subtype-specific and HA subtype-independent manner and interfered with infection of MDCK cells. In addition, they inhibited the sialidase activities of various influenza viruses of the same and even different NA subtypes. With this, the anti-NA immune sera inhibited the spread of H5N1 highly pathogenic avian influenza virus and HA/NA-pseudotyped viruses in MDCK cells in a concentration-dependent manner. When chickens were immunized with NA recombinant replicon particles and subsequently infected with low-pathogenic avian influenza virus, inflammatory serum markers were significantly reduced and virus shedding was limited or eliminated. These findings suggest that NA antibodies can inhibit virus dissemination by interfering with both virus attachment and egress. Our results underline the potential of high-quality NA antibodies for controlling influenza virus replication and place emphasis on NA as a vaccine antigen. IMPORTANCE The neuraminidase of influenza A viruses is a sialidase that acts as a receptor-destroying enzyme facilitating the release of progeny virus from infected cells. Here, we demonstrate that monospecific anti-NA immune sera inhibited not only sialidase activity, but also influenza virus hemagglutination and infection of MDCK cells, suggesting that NA antibodies can interfere with virus attachment. Inhibition of both processes, virus release and virus binding, may explain why NA antibodies efficiently blocked virus dissemination in vitro and in vivo. Anti-NA immune sera showed broader reactivity than anti-HA sera in hemagglutination inhibition tests and demonstrated cross-subtype activity in sialidase inhibition tests. These remarkable features of NA antibodies highlight the importance of the NA antigen for the development of next-generation influenza virus vaccines.
Collapse
|
19
|
Dabaghian M, Latify AM, Tebianian M, Nili H, Ranjbar ART, Mirjalili A, Mohammadi M, Banihashemi R, Ebrahimi SM. Vaccination with recombinant 4 × M2e.HSP70c fusion protein as a universal vaccine candidate enhances both humoral and cell-mediated immune responses and decreases viral shedding against experimental challenge of H9N2 influenza in chickens. Vet Microbiol 2014; 174:116-26. [PMID: 25293397 DOI: 10.1016/j.vetmic.2014.09.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Revised: 09/04/2014] [Accepted: 09/05/2014] [Indexed: 01/26/2023]
Abstract
As cellular immunity is essential for virus clearance, it is commonly accepted that no adequate cellular immunity is achieved by all available inactivated HA-based influenza vaccines. Thus, an improved influenza vaccine to induce both humoral and cell-mediated immune responses is urgently required to control LPAI H9N2 outbreaks in poultry farms. M2e-based vaccines have been suggested and developed as a new generation of universal vaccine candidate against influenza A infection. Our previous study have shown that a prime-boost administration of recombinant 4×M2e.HSP70c (r4M2e/H70c) fusion protein compared to conventional HA-based influenza vaccines provided full protection against lethal dose of influenza A viruses in mice. In the present study, the immunogenicity and protective efficacy of (r4M2e/H70c) was examined in chickens. The data reported herein show that protection against H9N2 viral challenge was significantly increased in chickens by injection of r4M2e/H70c compared with injection of conventional HA-based influenza vaccine adjuvanted with MF59 or recombinant 4×M2e (r4M2e) without HSP70c. Oropharyngeal and cloacal shedding of the virus was detected in all of the r4M2e/H70c vaccinated birds at 2 days after challenge, but the titer was low and decreased rapidly to reach undetectable levels at 7 days after challenge. Moreover, comparison of protective efficacy against LPAI H9N2 in birds intramuscularly immunized with r4M2e/H70c likely represented the ability of the M2e-based vaccine in providing cross-protection against heterosubtypic H9N2 challenge and also allowed the host immune system to induce HA-homosubtype neutralizing antibody against H9N2 challenge. This protective immunity might be attributed to enhanced cell-mediated immunity, which is interpreted as increased lymphocytes proliferation, increased levels of Th1-type (IFN-γ) and Th2-type (IL-4) cytokines production and increased CD4(+) to CD8(+) ratios, resulting from the injection of four tandem repeats of the ectodomain of the conserved influenza matrix protein M2 (4×M2e) genetically fused to C-terminus of Mycobacterium tuberculosis HSP70 (mHSP70c).
Collapse
Affiliation(s)
- Mehran Dabaghian
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, PO Box 14155-3651, Tehran, Iran; Department of Pathobiology, University of Tehran, Faculty of Veterinary Medicine, PO Box 14155-6453, Tehran, Iran
| | - Ali Mohammad Latify
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, PO Box 14155-3651, Tehran, Iran
| | - Majid Tebianian
- Department of Biotechnology, Razi Vaccine and Serum Research Institute (RVSRI), PO Box 31975/148, Karaj, Tehran, Iran
| | - Hassan Nili
- Department of Avian Research, School of Veterinary Medicine, Shiraz University, PO Box 1731, Shiraz, Iran
| | | | - Ali Mirjalili
- Department of Biotechnology, Razi Vaccine and Serum Research Institute (RVSRI), PO Box 31975/148, Karaj, Tehran, Iran
| | - Mashallah Mohammadi
- Department of Biotechnology, Razi Vaccine and Serum Research Institute (RVSRI), PO Box 31975/148, Karaj, Tehran, Iran
| | - Reza Banihashemi
- Department of Medical Immunology, Tarbiyat Modares University, Tehran, Iran
| | - Seyyed Mahmoud Ebrahimi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, PO Box 14155-3651, Tehran, Iran.
| |
Collapse
|
20
|
He B, Chang H, Liu Z, Huang C, Liu X, Zheng D, Fang F, Sun B, Chen Z. Infection of influenza virus neuraminidase-vaccinated mice with homologous influenza virus leads to strong protection against heterologous influenza viruses. J Gen Virol 2014; 95:2627-2637. [PMID: 25170051 DOI: 10.1099/vir.0.067736-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Vaccination is the best measure to prevent influenza pandemics. Here, we studied the protective effect against heterologous influenza viruses, including A/reassortant/NYMC X-179A (pH1N1), A/Chicken/Henan/12/2004 (H5N1), A/Chicken/Jiangsu/7/2002 (H9N2) and A/Guizhou/54/89×A/PR/8/34 (A/Guizhou-X) (H3N2), in mice first vaccinated with a DNA vaccine of haemagglutinin (HA) or neuraminidase (NA) of A/PR/8/34 (PR8) and then infected with the homologous virus. We showed that PR8 HA or NA vaccination both protected mice against a lethal dose of the homologous virus; PR8 HA or NA DNA vaccination and then PR8 infection in mice offered poor or excellent protection, respectively, against a second, heterologous influenza virus challenge. In addition, before the second heterologous influenza infection, the highest antibody level against nucleoprotein (NP) and matrix (M1 and M2) proteins was found in the PR8 NA-vaccinated and PR8-infected group. The level of induced cellular immunity against NP and M1 showed a trend consistent with that seen in antibody levels. However, PR8 HA+NA vaccination and then PR8 infection resulted in limited protection against heterologous influenza virus challenge. Results of the present study demonstrated that infection of the homologous influenza virus in mice already immunized with a NA vaccine could provide excellent protection against subsequent infection of a heterologous influenza virus. These findings suggested that NA, a major antigen of influenza virus, could be an important candidate antigen for universal influenza vaccines.
Collapse
Affiliation(s)
- Biao He
- College of Life Sciences, Hunan Normal University, Changsha 410081, Hunan, PR China
| | - Haiyan Chang
- College of Life Sciences, Hunan Normal University, Changsha 410081, Hunan, PR China
| | - Zhihua Liu
- College of Life Sciences, Hunan Normal University, Changsha 410081, Hunan, PR China
| | - Chaoyang Huang
- College of Life Sciences, Hunan Normal University, Changsha 410081, Hunan, PR China
| | - Xueying Liu
- Shanghai Institute of Biological Products, Shanghai 200052, PR China
| | - Dan Zheng
- Shanghai Institute of Biological Products, Shanghai 200052, PR China
| | - Fang Fang
- College of Life Sciences, Hunan Normal University, Changsha 410081, Hunan, PR China
| | - Bing Sun
- Institute Pasteur of Shanghai, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200025, PR China
| | - Ze Chen
- Shanghai Institute of Biological Products, Shanghai 200052, PR China.,College of Life Sciences, Hunan Normal University, Changsha 410081, Hunan, PR China
| |
Collapse
|
21
|
Chowdhury MYE, Seo SK, Moon HJ, Talactac MR, Kim JH, Park ME, Son HY, Lee JS, Kim CJ. Heterosubtypic protective immunity against widely divergent influenza subtypes induced by fusion protein 4sM2 in BALB/c mice. Virol J 2014; 11:21. [PMID: 24502341 PMCID: PMC3923897 DOI: 10.1186/1743-422x-11-21] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Accepted: 01/29/2014] [Indexed: 01/18/2023] Open
Abstract
Background Regular reformulation of currently available vaccines is necessary due to the unpredictable variability of influenza viruses. Therefore, vaccine based on a highly conserved antigen with capability of induction of effective immune responses could be a potential solution. Influenza matrix protein-2 (M2) is highly conserved across influenza subtypes and a promising candidate for a broadly protective influenza vaccine. For the enhancement of broad protection, four tandem copies of consensus M2 gene containing extracellular (ED) and cytoplasmic (CD) without the trans-membrane domain (TM) reconstituted from H1N1, H5N1 and H9N2 influenza viruses were linked and named as 4sM2. The construct was effectively expressed in Escherichia coli, purified and proteins were used to immunize BALB/c mice. Humoral and cell-mediated immune responses were investigated following administration. Results Mice were intramuscularly immunized with 4sM2 protein 2 times at 2 weeks interval. Two weeks after the last immunization, first humoral and cell mediated immune response specific to sM2 protein were evaluated and the mice were challenged with a lethal dose (10MLD50) of divergent subtypes A/EM/Korea/W149/06(H5N1), A/PR/8/34(H1N1), A/Aquatic bird/Korea/W81/2005(H5N2), A/Aquatic bird/Korea/W44/2005(H7N3), and A/Chicken/Korea/116/2004(H9N2) viruses. The efficacy of 4sM2 was evaluated by determining survival rates, body weights and residual lung viral titers. Our studies demonstrate that the survival of mice immunized with 4sM2 was significantly higher (80–100% survival) than that of unimmunized mice (0% survival). We also examined the long lasting protection against heterosubtype H5N2 virus and found that mice vaccinated with 4sM2 displayed 80% of protection even after 6 months of final vaccination. Conclusion Taken together, these results suggest that prokaryotic expressed multimeric sM2 protein achieved cross protection against lethal infection of divergent influenza subtypes which are lasting for the long time.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Jong-Soo Lee
- College of Veterinary Medicine (BK21 Plus Program), Chungnam National University, Daejeon 305-764, Republic of Korea.
| | | |
Collapse
|
22
|
Chen J, Liu Q, Chen Q, Xiong C, Yao Y, Wang H, Wang H, Chen Z. Comparative analysis of antibody induction and protection against influenza virus infection by DNA immunization with HA, HAe, and HA1 in mice. Arch Virol 2013; 159:689-700. [PMID: 24132721 DOI: 10.1007/s00705-013-1878-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Accepted: 09/30/2013] [Indexed: 11/28/2022]
Abstract
Plasmid DNA vaccines are considered alternatives to inactivated influenza virus vaccines to control influenza. Vaccination with a hemagglutinin (HA)-, HA ectodomain (HAe)-, or HA subunit 1 (HA1)-based vaccine can stimulate protective immunity in animals. The aim of this study was to compare their capacity to induce an antibody response and protection against influenza virus infection in mice after DNA vaccination. We constructed three expression vectors encoding full-length HA, HAe, or HA1 of the A/California/07/2009 influenza A virus and designed three animal experiments: (i) BALB/c mice were immunized twice with 30 μg of the HA, HAe, or HA1 DNA vaccine with high-voltage electroporation (100 V), and 3 weeks after boosting, they were challenged with a lethal dose of virus. (ii) Immunization and challenge were as in experiment i, but with low-voltage electroporation (10 V). (iii) Mice were immunized once with 50 μg of DNA and challenged 1 week later. The immunogenic effects of the three DNA vaccines were evaluated in terms of antibody titer, survival rate, bodyweight change, and lung viral titer. In all three experiments, both HA and HAe induced higher antibody and neutralization titers than HA1. Following challenge with a lethal mouse-adapted homologous virus, both HA and HAe reduced the viral titers in lung washes or offered better protection from weight loss than HA1 in experiments ii and iii. Thus, HA1 induces a lower immune response than HA or HAe when used as a DNA vaccination. Our data should be valuable in choosing the optimal candidate vaccine when faced with the threat of pandemic influenza.
Collapse
Affiliation(s)
- Jianjun Chen
- Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China,
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Universal anti-neuraminidase antibody inhibiting all influenza A subtypes. Antiviral Res 2013; 100:567-74. [PMID: 24091204 DOI: 10.1016/j.antiviral.2013.09.018] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Revised: 09/02/2013] [Accepted: 09/23/2013] [Indexed: 11/22/2022]
Abstract
The only universally conserved sequence amongst all influenza A viral neuraminidase (NA) is located between amino acids 222-230 and plays crucial roles in viral replication. However, it remained unclear as to whether this universal epitope is exposed during the course of infection to allow binding and inhibition by antibodies. Using a monoclonal antibody (MAb) targeting this specific epitope, we demonstrated that all nine subtypes of NA were inhibited in vitro by the MAb. Moreover, the antibody also provided heterosubtypic protection in mice challenged with lethal doses of mouse-adapted H1N1 and H3N2, which represent group I and II viruses, respectively. Furthermore, we report amino acid residues I222 and E227, located in close proximity to the active site, are indispensable for inhibition by this antibody. This unique, highly-conserved linear sequence in viral NA could be an attractive immunological target for protection against diverse strains of influenza viruses.
Collapse
|
24
|
Kang SM, Kim MC, Compans RW. Virus-like particles as universal influenza vaccines. Expert Rev Vaccines 2013; 11:995-1007. [PMID: 23002980 DOI: 10.1586/erv.12.70] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Current influenza vaccines are primarily targeted to induce immunity to the influenza virus strain-specific hemagglutinin antigen and are not effective in controlling outbreaks of new pandemic viruses. An approach for developing universal vaccines is to present highly conserved antigenic epitopes in an immunogenic conformation such as virus-like particles (VLPs) together with an adjuvant to enhance the vaccine immunogenicity. In this review, the authors focus on conserved antigenic targets and molecular adjuvants that were presented in VLPs. Conserved antigenic targets that include the hemagglutinin stalk domain, the external domain of influenza M2 and neuraminidase are discussed in addition to molecular adjuvants that are engineered to be incorporated into VLPs in a membrane-anchored form.
Collapse
Affiliation(s)
- Sang-Moo Kang
- Center for Inflammation, Immunity & Infection, and Department of Biology, Georgia State University, Atlanta, GA 30303, USA.
| | | | | |
Collapse
|
25
|
NA proteins of influenza A viruses H1N1/2009, H5N1, and H9N2 show differential effects on infection initiation, virus release, and cell-cell fusion. PLoS One 2013; 8:e54334. [PMID: 23349854 PMCID: PMC3551949 DOI: 10.1371/journal.pone.0054334] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2012] [Accepted: 12/11/2012] [Indexed: 11/19/2022] Open
Abstract
Two surface glycoproteins of influenza virus, haemagglutinin (HA) and neuraminidase (NA), play opposite roles in terms of their interaction with host sialic acid receptors. HA attaches to sialic acid on host cell surface receptors to initiate virus infection while NA removes these sialic acids to facilitate release of progeny virions. This functional opposition requires a balance. To explore what might happen when NA of an influenza virus was replaced by one from another isolate or subtype, in this study, we generated three recombinant influenza A viruses in the background of A/PR/8/34 (PR8) (H1N1) and with NA genes obtained respectively from the 2009 pandemic H1N1 virus, a highly pathogenic avian H5N1 virus, and a lowly pathogenic avian H9N2 virus. These recombinant viruses, rPR8-H1N1NA, rPR8-H5N1NA, and rPR8-H9N2NA, were shown to have similar growth kinetics in cells and pathogenicity in mice. However, much more rPR8-H5N1NA and PR8-wt virions were released from chicken erythrocytes than virions of rPR8-H1N1NA and rPR8-H9N2NA after 1 h. In addition, in MDCK cells, rPR8-H5N1NA and rPR8-H9N2NA infected a higher percentage of cells, and induced cell-cell fusion faster and more extensively than PR8-wt and rPR8-H1N1NA did in the early phase of infection. In conclusion, NA replacement in this study did not affect virus replication kinetics but had different effects on infection initiation, virus release and fusion of infected cells. These phenomena might be partially due to NA proteins’ different specificity to α2-3/2-6-sialylated carbohydrate chains, but the exact mechanism remains to be explored.
Collapse
|
26
|
Luo J, Zheng D, Zhang W, Fang F, Wang H, Sun Y, Ding Y, Xu C, Chen Q, Zhang H, Huang D, Sun B, Chen Z. Induction of cross-protection against influenza A virus by DNA prime-intranasal protein boost strategy based on nucleoprotein. Virol J 2012; 9:286. [PMID: 23173785 PMCID: PMC3511278 DOI: 10.1186/1743-422x-9-286] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Accepted: 11/19/2012] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND The highly conserved nucleoprotein (NP) is an internal protein of influenza virus and is capable of inducing cross-protective immunity against different influenza A viruses, making it a main target of universal influenza vaccine. In current study, we characterized the immune response induced by DNA prime-intranasal protein boost strategy based on NP (A/PR/8/34, H1N1) in mouse model, and evaluated its protection ability against a lethal dose challenge of influenza virus. RESULTS The intranasal boost with recombinant NP (rNP) protein could effectively enhance the pre-immune response induced by the NP DNA vaccine in mice. Compared to the vaccination with NP DNA or rNP protein alone, the prime-boost strategy increased the level of NP specific serum antibody, enhanced the T cell immune response, and relatively induced more mucosal IgA antibody. The overall immune response induced by this heterologous prime-boost regimen was Th-1-biased. Furthermore, the immune response in mice induced by this strategy provided not only protection against the homologous virus but also cross-protection against a heterosubtypic H9N2 strain. CONCLUSIONS The NP DNA prime-intranasal protein boost strategy may provide an effective strategy for universal influenza vaccine development.
Collapse
Affiliation(s)
- Jian Luo
- Shanghai Institute of Biological Products, Shanghai 200052, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Marcelin G, Sandbulte MR, Webby RJ. Contribution of antibody production against neuraminidase to the protection afforded by influenza vaccines. Rev Med Virol 2012; 22:267-79. [PMID: 22438243 PMCID: PMC3389592 DOI: 10.1002/rmv.1713] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2011] [Revised: 01/23/2012] [Accepted: 02/08/2012] [Indexed: 11/08/2022]
Abstract
Vaccines are instrumental in controlling the burden of influenza virus infection in humans and animals. Antibodies raised against both major viral surface glycoproteins, hemagglutinin (HA) and neuraminidase (NA), can contribute to protective immunity. Vaccine-induced HA antibodies have been characterized extensively, and they generally confer protection by blocking the attachment and fusion of a homologous virus onto host cells. Although not as well characterized, some functions of NA antibodies in influenza vaccine-mediated immunity have been recognized for many years. In this review, we summarize the case for NA antibodies in influenza vaccine-mediated immunity. In the absence of well-matched HA antibodies, NA antibodies can provide varying degrees of protection against disease. NA proteins of seasonal influenza vaccines have been shown in some instances to elicit serum antibodies with cross-reactivity to avian-origin and swine-origin influenza strains, in addition to HA drift variants. NA-mediated immunity has been linked to (i) conserved NA epitopes amongst otherwise antigenically distinct strains, partly attributable to the segmented influenza viral genome; (ii) inhibition of NA enzymatic activity; and (iii) the NA content in vaccine formulations. There is a potential to enhance the effectiveness of existing and future influenza vaccines by focusing greater attention on the antigenic characteristics and potency of the NA protein.
Collapse
Affiliation(s)
- Glendie Marcelin
- Department of Infectious Diseases, Division Virology, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Matthew R. Sandbulte
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, 2120 Veterinary Medicine, Ames, IA 50011, USA
| | - Richard J. Webby
- Department of Infectious Diseases, Division Virology, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| |
Collapse
|
28
|
Quan FS, Kim MC, Lee BJ, Song JM, Compans RW, Kang SM. Influenza M1 VLPs containing neuraminidase induce heterosubtypic cross-protection. Virology 2012; 430:127-35. [PMID: 22658901 DOI: 10.1016/j.virol.2012.05.006] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Revised: 04/30/2012] [Accepted: 05/11/2012] [Indexed: 10/28/2022]
Abstract
Influenza virus like particles (VLPs) containing hemagglutinin were previously demonstrated to induce protection against the homologous strains. However, little information is available on the protective role of neuraminidase (NA), the second major glycoprotein. In this study, we developed VLPs (NA VLPs) containing NA and M1 derived from A/PR/8/34 (H1N1) influenza virus, and investigated their ability to induce protective immunity. Intranasal immunization with NA VLPs induced serum antibody responses to H1N1 and H3N2 influenza A viruses as well as significant neuraminidase inhibition activity. Importantly, mice immunized with NA VLPs were 100% protected against lethal infection by the homologous A/PR/8/34 (H1N1) as well as heterosubtypic A/Philippines/82 (H3N2) virus, although body weight loss was observed after lethal challenge with heterosubtypic H3N2 virus. The present study therefore provides evidence that influenza VLPs containing M1 and NA are capable of inducing immunity to homologous as well as antigenically distinct influenza A virus strains.
Collapse
Affiliation(s)
- Fu-Shi Quan
- Department of Medical Zoology, Kyung Hee University School of Medicine, Seoul 130-701, Korea
| | | | | | | | | | | |
Collapse
|
29
|
Intranasal immunization with live attenuated influenza vaccine plus chitosan as an adjuvant protects mice against homologous and heterologous virus challenge. Arch Virol 2012; 157:1451-61. [DOI: 10.1007/s00705-012-1318-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Accepted: 03/19/2012] [Indexed: 10/28/2022]
|
30
|
Wiesener N, Schütze T, Lapp S, Lehmann M, Jarasch-Althof N, Wutzler P, Henke A. Analysis of different DNA vaccines for protection of experimental influenza A virus infection. Viral Immunol 2011; 24:321-30. [PMID: 21830903 DOI: 10.1089/vim.2011.0001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Influenza viruses cause acute respiratory infections in humans that result in significant excessive morbidity and mortality rates every year. Current vaccines are limited in several aspects, including laborious manufacturing technology, non-sufficient efficacy, and time-consuming adjustments to new emerging virus variants. An alternative vaccine approach utilizes plasmid DNA encoding influenza virus antigens. Previous experiments have evaluated the protective efficacy of DNA vaccines expressing variable as well as conserved antigens. In this present study, several different combinations of influenza A virus (IAV) HA, NA, M1, M2, NS1, NS2, and NP sequences were cloned into the plasmid pVIVO, which allows the independent expression of two genes separately. These DNA vaccines were administered to induce protection against a lethal IAV infection, and to reduce immunopathology in lung tissue of surviving animals. The highest efficacy was provided by vaccines expressing HA and NA, as well as a mixture of plasmids encoding HA, NA, M1, M2, NS1, NS2, and NP (Mix). Three days post-infection, more than a 99.99% reduction of viral load and no inflammation was achieved in lung tissue of pVIVO/HA-NA-vaccinated mice. Animals vaccinated with pVIVO/HA-NA, pVIVO/HA-M2, or vaccine Mix, survived a lethal challenge with minor or no obvious pathologic abnormities in the lungs. All other surviving mice revealed extensive changes in the lung tissue, indicating possibly an ongoing bronchiolitis obliterans. In addition, pVIVO/HA-NA and the vaccine Mix were also protective against a heterologous IAV infection. Taken together, next to all combinations of different DNA vaccines, the intramuscular application of pVIVO/HA-NA was the most efficient procedure to decrease virus replication and to prevent immunopathology in lung tissue of IAV-infected mice.
Collapse
Affiliation(s)
- Nadine Wiesener
- Department of Virology and Antiviral Therapy, University Hospital Jena, Friedrich Schiller University, Hans-Knöll-Strasse 2, Jena, Germany
| | | | | | | | | | | | | |
Collapse
|
31
|
Zhang Z, Hu S, Li Z, Wang X, Liu M, Guo Z, Li S, Xiao Y, Bi D, Jin H. Multiple amino acid substitutions involved in enhanced pathogenicity of LPAI H9N2 in mice. INFECTION GENETICS AND EVOLUTION 2011; 11:1790-7. [PMID: 21896338 DOI: 10.1016/j.meegid.2011.07.025] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Revised: 07/21/2011] [Accepted: 07/24/2011] [Indexed: 12/09/2022]
Abstract
Human infection of avian influenza H9N2 virus highlighted the need to better understand the mechanism of interspecies transmission. In this study, we generated mouse-adapted influenza virus (ma01) through serial lung-to-lung passages of a wild-type H9N2 (A/chicken/Hubei/01/1999). Ma01 caused highly lethal infection in mice with severe lung pathology and extended tissue tropism. Nine amino acid substitutions of ma01 were observed in five viral genes (those for PB2, PA, NA, M1, and NS1). Of these mutations, substitutes of PB2(627), PA(349), PA(605), NA(88), and NA(356) were absent in influenza H9N2. Furthermore, the targets of wild-type virus responding to mouse microRNA mmu-mir-1940 and mmu-mir-1904 were eliminated in ma01. The mutation PB2(627) of ma01 confirmed as a key virulence determinant of influenza H5N1 was responsible for the altered recognition of mmu-mir-1904. In addition, induction of IL-1β, IL-6, TNF-α, and IFN-β was found in significantly higher levels in ma01 infected mouse peripheral blood than parental strain. These results demonstrate that multiple amino acid substitutions and avoidance of microRNA recognitions may be essential for lethal infection and high speed of virus growth can outcompete the antiviral response of infected host.
Collapse
Affiliation(s)
- Zongde Zhang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Efficacy of seasonal pandemic influenza hemagglutinin DNA vaccines delivered by electroporation against aseasonal H1N1 virus challenge in mice. SCIENCE CHINA-LIFE SCIENCES 2011; 54:293-9. [DOI: 10.1007/s11427-011-4150-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2010] [Accepted: 01/19/2011] [Indexed: 10/18/2022]
|
33
|
Abstract
Influenza is responsible for the infection of approximately 20% of the population every season and for an annual death toll of approximately half a million people. The most effective means for controlling infection and thereby reducing morbidity and mortality is vaccination by injection with an inactivated vaccine, or by intranasal administration of a live-attenuated vaccine. Protection is not always optimal and there is a need for the development of new vaccines with improved efficacy and for the expansion of enrollment into vaccination programs. An overview of old and new vaccines is presented. Methods of monitoring immune responses such as hemagglutination-inhibition, ELISA and neutralization tests are evaluated for their accuracy in the assessment of current and new-generation vaccines.
Collapse
Affiliation(s)
- Zichria Zakay-Rones
- Chanock Center of Virology, The Department of Biochemistry and Molecular Biology, The Institute for Medical Research Israel Canada (IMRIC), Hebrew University Hadassah Medical School, Jerusalem, Israel.
| |
Collapse
|
34
|
Zhang H, Xu B, Chen Q, Chen J, Chen Z. Characterization of an H10N8 influenza virus isolated from Dongting lake wetland. Virol J 2011; 8:42. [PMID: 21272297 PMCID: PMC3038951 DOI: 10.1186/1743-422x-8-42] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2010] [Accepted: 01/27/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Wild birds, especially those in wetlands and aquatic environments, are considered to be natural reservoirs of avian influenza viruses. It is accepted that water is an important component in the transmission cycle of avian influenza virus. Monitoring the water at aggregation and breeding sites of migratory waterfowl, mainly wetland, is very important for early detection of avian influenza virus. The epidemiology investigation of avian influenza virus was performed in Dongting lake wetland which is an international important wetland. RESULTS An H10N8 influenza virus was isolated from Dongting Lake wetland in 2007. Phylogenetic analysis indicated that the virus was generated by multiple gene segment reassortment. The isolate was lowly pathogenic for chickens. However, it replicated efficiently in the mouse lung without prior adaptation, and the virulence to mice increased rapidly during adaptation in mouse lung. Sequence analysis of the genome of viruses from different passages showed that multiple amino acid changes were involved in the adaptation of the isolates to mice. CONCLUSIONS The water might be an important component in the transmission cycle of avian influenza virus, and other subtypes of avian influenza viruses (other than H5, H7 and H9) might evolve to pose a potential threat to mammals and even humans.
Collapse
Affiliation(s)
- Hongbo Zhang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, PR China
| | | | | | | | | |
Collapse
|
35
|
Electroporation-Mediated DNA Vaccination. CLINICAL ASPECTS OF ELECTROPORATION 2011. [PMCID: PMC7122510 DOI: 10.1007/978-1-4419-8363-3_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
36
|
Superior protection provided by a single dose of MF59-adjuvanted whole inactivated H5N1 influenza vaccine in type 1 diabetic mice. Arch Virol 2010; 156:387-95. [DOI: 10.1007/s00705-010-0860-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2010] [Accepted: 11/03/2010] [Indexed: 01/30/2023]
|
37
|
Wang W, Castelán-Vega JA, Jiménez-Alberto A, Vassell R, Ye Z, Weiss CD. A mutation in the receptor binding site enhances infectivity of 2009 H1N1 influenza hemagglutinin pseudotypes without changing antigenicity. Virology 2010; 407:374-80. [DOI: 10.1016/j.virol.2010.08.027] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2010] [Revised: 07/20/2010] [Accepted: 08/23/2010] [Indexed: 10/19/2022]
|
38
|
Sui Z, Chen Q, Fang F, Zheng M, Chen Z. Cross-protection against influenza virus infection by intranasal administration of M1-based vaccine with chitosan as an adjuvant. Vaccine 2010; 28:7690-8. [DOI: 10.1016/j.vaccine.2010.09.019] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2010] [Revised: 09/08/2010] [Accepted: 09/09/2010] [Indexed: 01/01/2023]
|
39
|
Chang H, Huang C, Wu J, Fang F, Zhang W, Wang F, Chen Z. A single dose of DNA vaccine based on conserved H5N1 subtype proteins provides protection against lethal H5N1 challenge in mice pre-exposed to H1N1 influenza virus. Virol J 2010; 7:197. [PMID: 20727202 PMCID: PMC2933593 DOI: 10.1186/1743-422x-7-197] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2010] [Accepted: 08/21/2010] [Indexed: 11/13/2022] Open
Abstract
Background Highly pathogenic avian influenza virus subtype H5N1 infects humans with a high fatality rate and has pandemic potential. Vaccination is the preferred approach for prevention of H5N1 infection. Seasonal influenza virus infection has been reported to provide heterosubtypic immunity against influenza A virus infection to some extend. In this study, we used a mouse model pre-exposed to an H1N1 influenza virus and evaluated the protective ability provided by a single dose of DNA vaccines encoding conserved H5N1 proteins. Results SPF BALB/c mice were intranasally infected with A/PR8 (H1N1) virus beforehand. Six weeks later, the mice were immunized with plasmid DNA expressing H5N1 virus NP or M1, or with combination of the two plasmids. Both serum specific Ab titers and IFN-γ secretion by spleen cells in vitro were determined. Six weeks after the vaccination, the mice were challenged with a lethal dose of H5N1 influenza virus. The protective efficacy was judged by survival rate, body weight loss and residue virus titer in lungs after the challenge. The results showed that pre-exposure to H1N1 virus could offer mice partial protection against lethal H5N1 challenge and that single-dose injection with NP DNA or NP + M1 DNAs provided significantly improved protection against lethal H5N1 challenge in mice pre-exposed to H1N1 virus, as compared with those in unexposed mice. Conclusions Pre-existing immunity against seasonal influenza viruses is useful in offering protection against H5N1 infection. DNA vaccination may be a quick and effective strategy for persons innaive to influenza A virus during H5N1 pandemic.
Collapse
Affiliation(s)
- Haiyan Chang
- College of Life Sciences, Hunan Normal University, Changsha 410081, Hunan, China
| | | | | | | | | | | | | |
Collapse
|
40
|
Guo L, Zheng M, Ding Y, Li D, Yang Z, Wang H, Chen Q, Sui Z, Fang F, Chen Z. Protection against multiple influenza A virus subtypes by intranasal administration of recombinant nucleoprotein. Arch Virol 2010; 155:1765-75. [PMID: 20652335 DOI: 10.1007/s00705-010-0756-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2010] [Accepted: 07/10/2010] [Indexed: 10/19/2022]
Abstract
Vaccination is a cost-effective way to control the influenza epidemic. Vaccines based on highly conserved antigens can provide protection against different influenza A strains and subtypes. In this study, the recombinant nucleoprotein (rNP) of the A/PR/8/34 (H1N1) influenza virus strain was effectively expressed using a prokaryotic expression system and then purified with a nickel-charged Sepharose affinity column as a candidate component for an influenza vaccine. The rNP was administered intranasally three times at 3-week intervals to female BALB/c mice in combination with an adjuvant (cholera toxin B subunit containing 0.2% of the whole toxin). Twenty-one days after the last immunization, the mice were challenged with homologous or heterologous influenza viruses at a lethal dose. The results showed that intranasal immunization of 10 μg rNP with adjuvant completely protected the immunized mice against the homologous influenza virus, and immunization with 100 μg rNP in combination with adjuvant provided good cross-protection against heterologous H5N1 and H9N2 avian influenza viruses. The results indicate that such a vaccine administered intranasally can induce mucosal and cell-mediated immunity, thus having the potential to control epidemics caused by new emerging influenza viruses.
Collapse
Affiliation(s)
- Lina Guo
- Shanghai Institute of Biological Products, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Transmission of avian H9N2 influenza viruses in a murine model. Vet Microbiol 2010; 142:211-6. [DOI: 10.1016/j.vetmic.2009.09.068] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2009] [Revised: 09/19/2009] [Accepted: 09/23/2009] [Indexed: 11/18/2022]
|
42
|
Sui Z, Chen Q, Wu R, Zhang H, Zheng M, Wang H, Chen Z. Cross-protection against influenza virus infection by intranasal administration of M2-based vaccine with chitosan as an adjuvant. Arch Virol 2010; 155:535-44. [DOI: 10.1007/s00705-010-0621-4] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2009] [Accepted: 01/01/2010] [Indexed: 10/19/2022]
|
43
|
Wu J, Zhang F, Fang F, Chang H, Wang F, Yang Z, Sun B, Chen Z. Efficacy of inactivated vaccine against H5N1 influenza virus infection in mice with type 1 diabetes. Vaccine 2010; 28:2775-81. [PMID: 20117261 DOI: 10.1016/j.vaccine.2010.01.037] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2009] [Revised: 01/15/2010] [Accepted: 01/15/2010] [Indexed: 01/09/2023]
Abstract
We sought to determine susceptibility to highly pathogenic avian influenza (HPAI) H5N1 virus and to explore immune protection of inactivated H5N1 vaccine in streptozotocin-induced type 1 diabetic mice. Susceptibility of diabetic mice to an H5N1 virus was evaluated by comparing the median lethal dose (LD(50)) and the lung virus titers with those of the healthy after the viral infection. To evaluate the influence of diabetes on vaccination, diabetic and healthy mice were immunized once with an inactivated H5N1 vaccine and then challenged with a lethal dose of H5N1 virus. The antibody responses, survival rates, lung virus titers and body weight changes were tested. Mice with type 1 diabetes had higher lung virus titers and lower survival rates than healthy mice after H5N1 virus infection. Inactivated H5N1 vaccine induced protective antibody in diabetic mice, but the antibody responses were postponed and weakened. In spite of this, diabetic mice could be protected against the lethal virus challenge by a single dose of immunization when the amount of the antigen increased. These results indicated that type 1 diabetic mice were more susceptible to H5N1 influenza virus infection than healthy mice, and can be effectively protected by inactivated H5N1 vaccine with increased antigen.
Collapse
Affiliation(s)
- J Wu
- College of Life Sciences, Hunan Normal University, Changsha 410081, Hunan, China
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Targets for the induction of protective immunity against influenza a viruses. Viruses 2010; 2:166-188. [PMID: 21994606 PMCID: PMC3185556 DOI: 10.3390/v2010166] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2009] [Revised: 01/04/2010] [Accepted: 01/13/2010] [Indexed: 01/09/2023] Open
Abstract
The current pandemic caused by the new influenza A(H1N1) virus of swine origin and the current pandemic threat caused by the highly pathogenic avian influenza A viruses of the H5N1 subtype have renewed the interest in the development of vaccines that can induce broad protective immunity. Preferably, vaccines not only provide protection against the homologous strains, but also against heterologous strains, even of another subtype. Here we describe viral targets and the arms of the immune response involved in protection against influenza virus infections such as antibodies directed against the hemagglutinin, neuraminidase and the M2 protein and cellular immune responses directed against the internal viral proteins.
Collapse
|
45
|
Abstract
Influenza A viruses pose a substantial threat to the human population whether by purposeful manipulation and release or by the natural process of interspecies transmissions from animal reservoirs. The challenge with preparing for these events with vaccination strategies is that the best forms of protective immunity target the most variable of the viral proteins, hemagglutinin. Add to this even just the natural extent of variation in this protein and the challenges to vaccinologists become great. Progress must be made in the area of streamlining the conventional vaccine approaches, but also in further defining and testing more conserved protective antigens. Within the context of biodefense, the issue will be to reach a balance where some of the diversity of influenza viruses can be encompassed within a vaccine while maintaining an acceptable level of efficacy.
Collapse
Affiliation(s)
- A H Ellebedy
- Department of Infectious Diseases, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105-3678, USA.
| | | |
Collapse
|
46
|
Wu R, Guan Y, Yang Z, Chen J, Wang H, Chen Q, Sui Z, Fang F, Chen Z. A live bivalent influenza vaccine based on a H9N2 virus strain. Vaccine 2009; 28:673-80. [PMID: 19892041 DOI: 10.1016/j.vaccine.2009.10.102] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2008] [Revised: 10/11/2009] [Accepted: 10/19/2009] [Indexed: 10/20/2022]
Abstract
The purpose of this study was to construct an H9N2 virus-based bivalent live vaccine expressing the protective antigen of a different subtype of influenza virus. Reverse genetics was used to generate an influenza virus containing nine gene segments derived from the A/Chicken/Jiangsu/11/2002 (H9N2) strain, including independent M1 and M2 matrix gene segments. A recombinant virus expressing the H1N1 HA1 hemagglutinin protein was produced on this framework by substituting the extracellular domain of the H9N2 M2 gene with the H1N1 HA1 fragment from A/PR/8/34 (PR8, H1N1). The resulting hybrid virus H9N2-PR8/HA1 was genetically stable and of low pathogenicity. Intra-nasal immunization of BALB/c mice with H9N2-PR8/HA1 virus induced both anti-H9N2 virus and anti-PR8 HA antibodies and conferred protection to mice against lethal challenge (40x LD(50)) with either H1N1 or H9N2 viruses. This study provides a new influenza H9N2 virus model for the expression and/or delivery of foreign antigens.
Collapse
Affiliation(s)
- Rui Wu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, Hubei, China
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Generation and evaluation of an H9N1 influenza vaccine derived by reverse genetics that allows utilization of a DIVA strategy for control of H9N2 avian influenza. Arch Virol 2009; 154:1203-10. [DOI: 10.1007/s00705-009-0425-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2009] [Accepted: 06/04/2009] [Indexed: 10/20/2022]
|
48
|
Wu R, Zhang H, Yang K, Liang W, Xiong Z, Liu Z, Yang X, Shao H, Zheng X, Chen M, Xu D. Multiple amino acid substitutions are involved in the adaptation of H9N2 avian influenza virus to mice. Vet Microbiol 2009; 138:85-91. [PMID: 19342184 DOI: 10.1016/j.vetmic.2009.03.010] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2008] [Revised: 02/03/2009] [Accepted: 03/02/2009] [Indexed: 10/21/2022]
Abstract
To explore adaptation of avian influenza virus to mice we previously performed serial lung-to-lung passages of the influenza A/Chicken/Jiangsu/7/2002 (H9N2) strain, resulting in the isolation of a variant influenza strain lethal for mice. We now report that virulence correlates with improved growth characteristics on mammalian cells and extended tissue tropism in vivo. Sequencing of the complete genomes of the wild-type and mouse-adapted viruses revealed 25 amino acid substitutions. Some were found to reiterate known substitutions in human and swine H9N2 influenza isolates. Functions affected include nuclear localization signals and sites of protein and RNA interaction, while others are known determinants of pathogenicity and host specificity such as the viral polymerase PB2 E627K substitution. These observations suggest that enhanced growth characteristics and modified cell tropism may contribute to increased virulence in mice. We conclude that multiple amino acid substitutions are likely to be involved in the adaptation of H9N2 avian influenza virus to mice.
Collapse
Affiliation(s)
- Rui Wu
- Institute of Animal Husbandry and Veterinary Science, Hubei Academy of Agricultural Sciences, Wuhan 430064, Hubei, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Zheng L, Wang F, Yang Z, Chen J, Chang H, Chen Z. A single immunization with HA DNA vaccine by electroporation induces early protection against H5N1 avian influenza virus challenge in mice. BMC Infect Dis 2009; 9:17. [PMID: 19216752 PMCID: PMC2652463 DOI: 10.1186/1471-2334-9-17] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2008] [Accepted: 02/12/2009] [Indexed: 11/10/2022] Open
Abstract
Background Developing vaccines for the prevention of human infection by H5N1 influenza viruses is an urgent task. DNA vaccines are a novel alternative to conventional vaccines and should contribute to the prophylaxis of emerging H5N1 virus. In this study, we assessed whether a single immunization with plasmid DNA expressing H5N1 hemagglutinin (HA) could provide early protection against lethal challenge in a mouse model. Methods Mice were immunized once with HA DNA at 3, 5, 7 days before a lethal challenge. The survival rate, virus titer in the lungs and change of body weight were assayed to evaluate the protective abilities of the vaccine. To test the humoral immune response induced by HA DNA, serum samples were collected through the eye canthus of mice on various days after immunization and examined for specific antibodies by ELISA and an HI assay. Splenocytes were isolated after the immunization to determine the antigen-specific T-cell response by the ELISPOT assay. Results Challenge experiments revealed that a single immunization of H5N1 virus HA DNA is effective in early protection against lethal homologous virus. Immunological analysis showed that an antigen-specific antibody and T-cell response could be elicited in mice shortly after the immunization. The protective abilities were correlated with the amount of injected DNA and the length of time after vaccination. Conclusion A single immunization of 100 μg H5 HA DNA vaccine combined with electroporation was able to provide early protection in mice against homologous virus infection.
Collapse
Affiliation(s)
- Liyun Zheng
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, PR China.
| | | | | | | | | | | |
Collapse
|
50
|
Abstract
Influenza is a highly contagious, acute respiratory illness afflicting humans. Although influenza epidemics occur frequently, their severity varies (1). Not until 1933, when the first human influenza virus was isolated, was it possible to define with certainty which pandemics were caused by influenza viruses. In general, influenza A viruses are more pathogenic than are influenza B viruses. Influenza A virus is a zoonotic infection, and more than 100 types of influenza A viruses infect most species of birds, pigs, horses, dogs, and seals. It is believed that the 1918–1919 pandemic originated from a virulent strain of H1N1 from pigs and birds.
Collapse
Affiliation(s)
- Vassil St. Georgiev
- Department of Health & Human Services, National Institutes of Health, 6610 Rockledge Drive, Bethesda, MD 20892 USA
| |
Collapse
|