1
|
Yang TH, Kang EYC, Lin PH, Yu BBC, Wang JHH, Chen V, Wang NK. Mitochondria in Retinal Ganglion Cells: Unraveling the Metabolic Nexus and Oxidative Stress. Int J Mol Sci 2024; 25:8626. [PMID: 39201313 PMCID: PMC11354650 DOI: 10.3390/ijms25168626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/29/2024] [Accepted: 07/29/2024] [Indexed: 09/02/2024] Open
Abstract
This review explored the role of mitochondria in retinal ganglion cells (RGCs), which are essential for visual processing. Mitochondrial dysfunction is a key factor in the pathogenesis of various vision-related disorders, including glaucoma, hereditary optic neuropathy, and age-related macular degeneration. This review highlighted the critical role of mitochondria in RGCs, which provide metabolic support, regulate cellular health, and respond to cellular stress while also producing reactive oxygen species (ROS) that can damage cellular components. Maintaining mitochondrial function is essential for meeting RGCs' high metabolic demands and ensuring redox homeostasis, which is crucial for their proper function and visual health. Oxidative stress, exacerbated by factors like elevated intraocular pressure and environmental factors, contributes to diseases such as glaucoma and age-related vision loss by triggering cellular damage pathways. Strategies targeting mitochondrial function or bolstering antioxidant defenses include mitochondrial-based therapies, gene therapies, and mitochondrial transplantation. These advances can offer potential strategies for addressing mitochondrial dysfunction in the retina, with implications that extend beyond ocular diseases.
Collapse
Affiliation(s)
- Tsai-Hsuan Yang
- Department of Education, Chang Gung Memorial Hospital, Linkou Medical Center, Taoyuan 33305, Taiwan;
- College of Medicine, National Yang Ming Chiao Tung University, Taipei 11217, Taiwan
| | - Eugene Yu-Chuan Kang
- Department of Ophthalmology, Chang Gung Memorial Hospital, Linkou Medical Center, Taoyuan 33305, Taiwan;
- College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Department of Ophthalmology, Edward S. Harkness Eye Institute, Columbia University Irving Medical Center, Columbia University, New York, NY 10032, USA; (P.-H.L.); (J.H.-H.W.); (V.C.)
| | - Pei-Hsuan Lin
- Department of Ophthalmology, Edward S. Harkness Eye Institute, Columbia University Irving Medical Center, Columbia University, New York, NY 10032, USA; (P.-H.L.); (J.H.-H.W.); (V.C.)
- National Taiwan University Hospital, Yunlin 640203, Taiwan
| | - Benjamin Ben-Chi Yu
- Fu Foundation School of Engineering & Applied Science, Columbia University, New York, NY 10027, USA;
| | - Jason Hung-Hsuan Wang
- Department of Ophthalmology, Edward S. Harkness Eye Institute, Columbia University Irving Medical Center, Columbia University, New York, NY 10032, USA; (P.-H.L.); (J.H.-H.W.); (V.C.)
- Columbian College of Arts and Sciences, George Washington University, Washington, DC 20052, USA
| | - Vincent Chen
- Department of Ophthalmology, Edward S. Harkness Eye Institute, Columbia University Irving Medical Center, Columbia University, New York, NY 10032, USA; (P.-H.L.); (J.H.-H.W.); (V.C.)
- Faculty of Health Sciences, Queen’s University, Kingston, ON K7L 3N9, Canada
| | - Nan-Kai Wang
- Department of Ophthalmology, Chang Gung Memorial Hospital, Linkou Medical Center, Taoyuan 33305, Taiwan;
- College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Department of Ophthalmology, Edward S. Harkness Eye Institute, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, Columbia University, New York, NY 10032, USA
| |
Collapse
|
2
|
Eraslan M, Çerman E, Bozkurt S, Genç D, Virlan AT, Demir CS, Akkoç T, Karaöz E, Akkoç T. Mesenchymal stem cells differentiate to retinal ganglion-like cells in rat glaucoma model induced by polystyrene microspheres. Tissue Cell 2023; 84:102199. [PMID: 37633122 DOI: 10.1016/j.tice.2023.102199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 08/17/2023] [Accepted: 08/17/2023] [Indexed: 08/28/2023]
Abstract
AIM The study aimed to evaluate the differentiation ability of intravitreally injected rat bone marrow-derived mesenchymal stem cells (rBM-MSCs) to retinal ganglion-like cells in a polystyrene microsphere induced rat glaucoma model. MATERIALS AND METHODS The glaucoma rat model was generated via intracameral injection of 7 microliter polystyrene microspheres. Green fluorescence protein-labeled (GFP) rBM-MSCs were transplanted intravitreally at or after induction of ocular hypertension (OHT), depending on the groups. By the end of the fourth week, flat-mount retinal dissection was performed, and labeled against Brn3a, CD90, GFAP, CD11b, Vimentin, and localization of GFP positive rBM-MSCs was used for evaluation through immunofluorescence staining and to count differentiated retinal cells by flow cytometry. From 34 male Wistar albino rats, 56 eyes were investigated. RESULTS Flow cytometry revealed significantly increased CD90 and Brn3a positive cells in glaucoma induced and with rBM-MSC injected groups compared to control(P = 0.006 and P = 0.003 respectively), sham-operated (P = 0.007 and P < 0.001 respectively), and only rBM-MSCs injected groups (P = 0.002 and P = 0.009 respectively). Immunofluorescence microscopy revealed differentiation of GFP labeled stem cells to various retinal cells, including ganglion-like cells. rBM-MSCs were observable in ganglion cells, inner and outer nuclear retinal layers in rBM-MSCs injected eyes. CONCLUSION Intravitreally transplanted rBM-MSCs differentiated into retinal cells, including ganglion-like cells, which successfully created a glaucoma model damaged with polystyrene microspheres. Promisingly, MSCs may have a role in neuro-protection and neuro-regeneration treatment of glaucoma in the future.
Collapse
Affiliation(s)
- Muhsin Eraslan
- Department of Ophthalmology, Marmara University Faculty of Medicine, Istanbul, Turkey.
| | - Eren Çerman
- Department of Ophthalmology, Marmara University Faculty of Medicine, Istanbul, Turkey
| | - Süheyla Bozkurt
- Department of Pathology, Marmara University Faculty of Medicine, Istanbul, Turkey
| | - Deniz Genç
- Department of Pediatric Diseases, Faculty of Health Sciences, Muğla Sıtkı Koçman University, Muğla, Turkey
| | - Aysın Tulunay Virlan
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, Scotland, UK
| | - Cansu Subaşı Demir
- Center for Regenerative Medicine and Stem Cell Research & Manufacturing (LivMedCell), Istanbul, Turkey
| | - Tolga Akkoç
- Genetic Engineering and Biotechnology Institute, Tubitak Marmara Research Center, Kocaeli, Turkey
| | - Erdal Karaöz
- Department of Histology & Embryology, Istinye University Faculty of Medicine, Istanbul, Turkey; Center for Stem Cell and Tissue Engineering Research & Practice, Istinye University, Istanbul, Turkey
| | - Tunç Akkoç
- Department of Pediatric Allergy and Immunology, Marmara University Faculty of Medicine, Istanbul, Turkey; Department of Immunology, Marmara University Faculty of Medicine, Istanbul, Turkey; Marstem Cell Technologies, Marmara University Technopark, İstanbul, Turkey
| |
Collapse
|
3
|
Kuang G, Halimitabrizi M, Edziah AA, Salowe R, O’Brien JM. The potential for mitochondrial therapeutics in the treatment of primary open-angle glaucoma: a review. Front Physiol 2023; 14:1184060. [PMID: 37601627 PMCID: PMC10433652 DOI: 10.3389/fphys.2023.1184060] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 07/21/2023] [Indexed: 08/22/2023] Open
Abstract
Glaucoma, an age-related neurodegenerative disease, is characterized by the death of retinal ganglion cells (RGCs) and the corresponding loss of visual fields. This disease is the leading cause of irreversible blindness worldwide, making early diagnosis and effective treatment paramount. The pathophysiology of primary open-angle glaucoma (POAG), the most common form of the disease, remains poorly understood. Current available treatments, which target elevated intraocular pressure (IOP), are not effective at slowing disease progression in approximately 30% of patients. There is a great need to identify and study treatment options that target other disease mechanisms and aid in neuroprotection for POAG. Increasingly, the role of mitochondrial injury in the development of POAG has become an emphasized area of research interest. Disruption in the function of mitochondria has been linked to problems with neurodevelopment and systemic diseases. Recent studies have shown an association between RGC death and damage to the cells' mitochondria. In particular, oxidative stress and disrupted oxidative phosphorylation dynamics have been linked to increased susceptibility of RGC mitochondria to secondary mechanical injury. Several mitochondria-targeted treatments for POAG have been suggested, including physical exercise, diet and nutrition, antioxidant supplementation, stem cell therapy, hypoxia exposure, gene therapy, mitochondrial transplantation, and light therapy. Studies have shown that mitochondrial therapeutics may have the potential to slow the progression of POAG by protecting against mitochondrial decline associated with age, genetic susceptibility, and other pathology. Further, these therapeutics may potentially target already present neuronal damage and symptom manifestations. In this review, the authors outline potential mitochondria-targeted treatment strategies and discuss their utility for use in POAG.
Collapse
Affiliation(s)
- Grace Kuang
- Perelman School of Medicine, Scheie Eye Institute, University of Pennsylvania, Philadelphia, PA, United States
- Penn Medicine Center for Genetics in Complex Diseases, University of Pennsylvania, Philadelphia, PA, United States
| | - Mina Halimitabrizi
- Perelman School of Medicine, Scheie Eye Institute, University of Pennsylvania, Philadelphia, PA, United States
- Penn Medicine Center for Genetics in Complex Diseases, University of Pennsylvania, Philadelphia, PA, United States
| | - Amy-Ann Edziah
- Perelman School of Medicine, Scheie Eye Institute, University of Pennsylvania, Philadelphia, PA, United States
- Penn Medicine Center for Genetics in Complex Diseases, University of Pennsylvania, Philadelphia, PA, United States
| | - Rebecca Salowe
- Perelman School of Medicine, Scheie Eye Institute, University of Pennsylvania, Philadelphia, PA, United States
- Penn Medicine Center for Genetics in Complex Diseases, University of Pennsylvania, Philadelphia, PA, United States
| | - Joan M. O’Brien
- Perelman School of Medicine, Scheie Eye Institute, University of Pennsylvania, Philadelphia, PA, United States
- Penn Medicine Center for Genetics in Complex Diseases, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
4
|
Erythropoietin in Glaucoma: From Mechanism to Therapy. Int J Mol Sci 2023; 24:ijms24032985. [PMID: 36769310 PMCID: PMC9917746 DOI: 10.3390/ijms24032985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 01/26/2023] [Accepted: 01/27/2023] [Indexed: 02/05/2023] Open
Abstract
Glaucoma can cause irreversible vision loss and is the second leading cause of blindness worldwide. The disease mechanism is complex and various factors have been implicated in its pathogenesis, including ischemia, excessive oxidative stress, neurotropic factor deprivation, and neuron excitotoxicity. Erythropoietin (EPO) is a hormone that induces erythropoiesis in response to hypoxia. However, studies have shown that EPO also has neuroprotective effects and may be useful for rescuing apoptotic retinal ganglion cells in glaucoma. This article explores the relationship between EPO and glaucoma and summarizes preclinical experiments that have used EPO to treat glaucoma, with an aim to provide a different perspective from the current view that glaucoma is incurable.
Collapse
|
5
|
Tao Y, Zhang Q, Meng M, Huang J. A bibliometric analysis of the application of stem cells in glaucoma research from 1999 to 2022. Front Cell Dev Biol 2023; 11:1081898. [PMID: 36743419 PMCID: PMC9889543 DOI: 10.3389/fcell.2023.1081898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 01/02/2023] [Indexed: 01/20/2023] Open
Abstract
Background: Glaucoma, a neurodegenerative disease of the retina, is the leading cause of irreversible blindness. Stem cells have therapeutic potential for glaucoma. However, few bibliometric studies have been published in this field. Concerning a visual map, this article aims to characterize the research context, cooperation relationship, hotspots, and trends concerning the application of stem cells in glaucoma research. Methods: Publications focusing on stem cell research and glaucoma were retrieved from the Web of Science Core Collection. VOSviewer, CiteSpace, Microsoft Excel, and Scimago Graphica were used to map the contributions of countries or regions, authors, organizations, and journals. Journal Impact Factor data were obtained from the Web of Science Core Collection. We analyzed the tendencies, hotspots, and knowledge networks using VOSviewer, and CiteSpace. Results: We analyzed 518 articles published from 1999 through 2022. In the first decade, the number of articles in this field increased slowly, and there was a marked acceleration in publication frequency after 2010. The United States, China, and England were the main contributors. Yiqin Du was the most prolific author, and among the top 10 prolific writers, Keith R. Martin's work was cited most frequently. Investigative Ophthalmology and Visual Science, Experimental Eye Research, and Cornea published the most articles in this domain. The three most commonly co-cited journals were Investigative Ophthalmology and Visual Science, Experimental Eye Research, and Proceedings of the National Academy of Sciences of the United States of America. The Central South University, the University of Pittsburgh, and the National Institutes of Health National Eye Institute were highly prolific institutions in this research area. Our keywords analysis with VOSviewer suggested directions of future research and yielded the following recent key themes, extracellular vesicles, exosomes, mitochondria, growth factors, oxidative stress, and ocular diseases. Four co-cited references had a citation burst duration until 2022. Conclusion: With improvements in overall quality of life and demographic transitions toward population aging, research and clinical focus on eye care has increased, with glaucoma as a key area of emphasis. This study added to our understanding of the global landscape and Frontier hotspots in this field.
Collapse
Affiliation(s)
- Yuanyuan Tao
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Qian Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Ming Meng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Jufang Huang
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, China
| |
Collapse
|
6
|
Sanie-Jahromi F, Mahmoudi A, Khalili MR, Nowroozzadeh MH. A Review on the Application of Stem Cell Secretome in the Protection and Regeneration of Retinal Ganglion Cells; a Clinical Prospect in the Treatment of Optic Neuropathies. Curr Eye Res 2022; 47:1463-1471. [PMID: 35876610 DOI: 10.1080/02713683.2022.2103153] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
PURPOSE Retinal ganglion cells (RGCs) are one the most specialized neural tissues in the body. They transmit (and further process) chemoelectrical information originating in outer retinal layers to the central nervous system. In fact, the optic nerve is composed of RGC axons. Like other neural cells, RGCs will not completely heal after the injury, leading to irreversible vision loss from disorders such as glaucoma that primarily affect these cells. Several methods have been developed to protect or regenerate RGCs during or after the insult has occurred. This study aims to review the most recent clinical, animal and laboratory experiments designed for the regeneration of RGC that apply the stem cell-derived secretome. METHODS We extracted the studies from Web of Science (ISI), Medline (PubMed), Scopus, Embase, and Google scholar from the first record to the last report registered in 2022, using the following keywords; "secretome" OR "conditioned medium" OR "exosome" OR "extracellular vesicle" AND "stem cell" AND "RGC" OR "optic neuropathy". Any registered clinical trials related to the subject were also extracted from clinicaltrial.gov. All published original studies that express the effect of stem cell secretome on RGC cells in optic neuropathy, whether in vitro, in animal studies, or in clinical trials were included in this survey. RESULTS In this review, we provided an update on the existing reports, and a brief description of the details applied in the procedure. Compared to cell transplant, applying stem cell-derived secretome has the advantage of minimized immunogenicity yet preserving efficacy via its rich content of growth factors. CONCLUSIONS Different sources of stem cell secretomes have distinct implications in the management of RGC injury, which is the main subject of the present article.
Collapse
Affiliation(s)
- Fatemeh Sanie-Jahromi
- Poostchi Ophthalmology Research Center, Department of Ophthalmology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ahmad Mahmoudi
- Poostchi Ophthalmology Research Center, Department of Ophthalmology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Reza Khalili
- Poostchi Ophthalmology Research Center, Department of Ophthalmology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - M Hossein Nowroozzadeh
- Poostchi Ophthalmology Research Center, Department of Ophthalmology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
7
|
Tan S, Yao Y, Yang Q, Yuan XL, Cen LP, Ng TK. Diversified Treatment Options of Adult Stem Cells for Optic Neuropathies. Cell Transplant 2022; 31. [PMID: 36165292 PMCID: PMC9523835 DOI: 10.1177/09636897221123512] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 07/28/2022] [Accepted: 08/16/2022] [Indexed: 02/05/2023] Open
Abstract
Optic neuropathies refer to a group of ocular disorders with abnormalities or dysfunction of the optic nerve, sharing a common pathophysiology of retinal ganglion cell (RGC) death and axonal loss. RGCs, as the retinal neurons in the central nervous system, show limited capacity in regeneration or recovery upon diseases or after injuries. Critically, there is still no effective clinical treatment to cure most types of optic neuropathies. Recently, stem cell therapy was proposed as a potential treatment strategy for optic neuropathies. Adult stem cells, including mesenchymal stem cells and hematopoietic stem cells, have been applied in clinical trials based on their neuroprotective properties. In this article, the applications of adult stem cells on different types of optic neuropathies and the related mechanisms will be reviewed. Research updates on the strategies to enhance the neuroprotective effects of human adult stem cells will be summarized. This review article aims to enlighten the research scientists on the diversified functions of adult stem cells and consideration of adult stem cells as a potential treatment for optic neuropathies in future clinical practices.
Collapse
Affiliation(s)
- Shaoying Tan
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou, China
- School of Optometry, The Hong Kong Polytechnic University, Kowloon, Hong Kong
- Research Centre for SHARP Vision, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Yao Yao
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou, China
- Shantou University Medical College, Shantou, China
| | - Qichen Yang
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Kowloon, Hong Kong
| | - Xiang-Ling Yuan
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou, China
- Shantou University Medical College, Shantou, China
| | - Ling-Ping Cen
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou, China
| | - Tsz Kin Ng
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou, China
- Shantou University Medical College, Shantou, China
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Kowloon, Hong Kong
| |
Collapse
|
8
|
Shalaby WS, Ahmed OM, Waisbourd M, Katz LJ. A Review of Potential Novel Glaucoma Therapeutic Options Independent of Intraocular Pressure. Surv Ophthalmol 2021; 67:1062-1080. [PMID: 34890600 DOI: 10.1016/j.survophthal.2021.12.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 12/01/2021] [Accepted: 12/06/2021] [Indexed: 02/06/2023]
Abstract
Glaucoma, a progressive optic neuropathy characterized by retinal ganglion cell degeneration and visual field loss, is the leading cause of irreversible blindness worldwide. Intraocular pressure (IOP) is presently the only modifiable risk factor demonstrated to slow or halt disease progression; however, glaucomatous damage persists in almost 50% of patients despite significant IOP reduction. Many studies have investigated the non-IOP-related risk factors that contribute to glaucoma progression as well as interventions that can prevent or delay glaucomatous neurodegeneration and preserve vision throughout life, independently of IOP. A vast number of experimental studies have reported effective neuroprotection in glaucoma, and clinical studies are ongoing attempting to provide strong evidence of effectiveness of these interventions. In this review, we look into the current understanding of the pathophysiology of glaucoma and explore the recent advances in non-IOP related strategies for neuroprotection and neuroregeneration in glaucoma.
Collapse
Key Words
- AMD, Age-related macular degeneration
- BDNF, Brain derived neurotrophic factor
- CNTF, Ciliary neurotrophic factor
- GDNF, Glial‐derived neurotrophic factor
- Glaucoma
- IOP, Intraocular pressure
- LoGTS, Low-Pressure Glaucoma Treatment Study
- MRI, Magnetic resonance imaging
- MSCs, Mesenchymal stem cells
- NGF, Nerve growth factor
- NTG, Normal tension glaucoma
- OCTA, Optical coherence tomography angiography
- PBM, hotobiomodulation
- PDGF, Platelet derived growth factor
- POAG, Primary open angle glaucoma
- RGCs, Retinal ganglion cells
- TNF-α, Tumor necrosis factor- α
- bFGF, Basic fibroblast growth factor
- gene therapy
- intracranial pressure
- intraocular pressure
- neuroprotection
- ocular blood flow
- oxidative stress
- retinal ganglion cells
- stem cell therapy
Collapse
Affiliation(s)
- Wesam Shamseldin Shalaby
- Glaucoma Research Center, Wills Eye Hospital, Philadelphia, PA, USA; Department of Ophthalmology, Tanta Medical School, Tanta University, Tanta, Gharbia, Egypt
| | - Osama M Ahmed
- Glaucoma Research Center, Wills Eye Hospital, Philadelphia, PA, USA; Yale University School of Medicine, New Haven, CT, USA
| | - Michael Waisbourd
- Glaucoma Research Center, Wills Eye Hospital, Philadelphia, PA, USA; Department of Ophthalmology, Tel Aviv Medical Center, Sackler Faculty of Medicine, Tel Aviv University, Israel
| | - L Jay Katz
- Glaucoma Research Center, Wills Eye Hospital, Philadelphia, PA, USA.
| |
Collapse
|
9
|
Aneesh A, Liu A, Moss HE, Feinstein D, Ravindran S, Mathew B, Roth S. Emerging concepts in the treatment of optic neuritis: mesenchymal stem cell-derived extracellular vesicles. Stem Cell Res Ther 2021; 12:594. [PMID: 34863294 PMCID: PMC8642862 DOI: 10.1186/s13287-021-02645-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 10/31/2021] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Optic neuritis (ON) is frequently encountered in multiple sclerosis, neuromyelitis optica spectrum disorder, anti-myelin oligodendrocyte glycoprotein associated disease, and other systemic autoimmune disorders. The hallmarks are an abnormal optic nerve and inflammatory demyelination; episodes of optic neuritis tend to be recurrent, and particularly for neuromyelitis optica spectrum disorder, may result in permanent vision loss. MAIN BODY Mesenchymal stem cell (MSC) therapy is a promising approach that results in remyelination, neuroprotection of axons, and has demonstrated success in clinical studies in other neuro-degenerative diseases and in animal models of ON. However, cell transplantation has significant disadvantages and complications. Cell-free approaches utilizing extracellular vesicles (EVs) produced by MSCs exhibit anti-inflammatory and neuroprotective effects in multiple animal models of neuro-degenerative diseases and in rodent models of multiple sclerosis (MS). EVs have potential to be an effective cell-free therapy in optic neuritis because of their anti-inflammatory and remyelination stimulating properties, ability to cross the blood brain barrier, and ability to be safely administered without immunosuppression. CONCLUSION We review the potential application of MSC EVs as an emerging treatment strategy for optic neuritis by reviewing studies in multiple sclerosis and related disorders, and in neurodegeneration, and discuss the challenges and potential rewards of clinical translation of EVs including cell targeting, carrying of therapeutic microRNAs, and prolonging delivery for treatment of optic neuritis.
Collapse
Affiliation(s)
- Anagha Aneesh
- Department of Anesthesiology, College of Medicine, University of Illinois, 835 South Wolcott Avenue, Room E714, Chicago, IL, 60612, USA
| | - Alice Liu
- Department of Anesthesiology, College of Medicine, University of Illinois, 835 South Wolcott Avenue, Room E714, Chicago, IL, 60612, USA
| | - Heather E Moss
- Departments of Ophthalmology and Neurology & Neurological Sciences, Stanford University, Palo Alto, CA, USA
| | - Douglas Feinstein
- Department of Anesthesiology, College of Medicine, University of Illinois, 835 South Wolcott Avenue, Room E714, Chicago, IL, 60612, USA
| | - Sriram Ravindran
- Department of Oral Biology, College of Dentistry, University of Illinois at Chicago, Chicago, IL, USA
| | - Biji Mathew
- Department of Anesthesiology, College of Medicine, University of Illinois, 835 South Wolcott Avenue, Room E714, Chicago, IL, 60612, USA.
| | - Steven Roth
- Department of Anesthesiology, College of Medicine, University of Illinois, 835 South Wolcott Avenue, Room E714, Chicago, IL, 60612, USA.
| |
Collapse
|
10
|
Human Pluripotent Stem Cell-Derived Neural Progenitor Cells Promote Retinal Ganglion Cell Survival and Axon Recovery in an Optic Nerve Compression Animal Model. Int J Mol Sci 2021; 22:ijms222212529. [PMID: 34830410 PMCID: PMC8622638 DOI: 10.3390/ijms222212529] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/14/2021] [Accepted: 11/17/2021] [Indexed: 11/24/2022] Open
Abstract
Human pluripotent stem cell-derived neural progenitor cells (NPCs) have the potential to recover from nerve injury. We previously reported that human placenta-derived mesenchymal stem cells (PSCs) have neuroprotective effects. To evaluate the potential benefit of NPCs, we compared them to PSCs using R28 cells under hypoxic conditions and a rat model of optic nerve injury. NPCs and PSCs (2 × 106 cells) were injected into the subtenon space. After 1, 2, and 4 weeks, we examined changes in target proteins in the retina and optic nerve. NPCs significantly induced vascular endothelial growth factor (Vegf) compared to age-matched shams and PSC groups at 2 weeks; they also induced neurofilaments in the retina compared to the sham group at 4 weeks. In addition, the expression of brain-derived neurotrophic factor (Bdnf) was high in the retina in the NPC group at 2 weeks, while expression in the optic nerve was high in both the NPC and PSC groups. The low expression of ionized calcium-binding adapter molecule 1 (Iba1) in the retina had recovered at 2 weeks after NPC injection and at 4 weeks after PSC injection. The expression of the inflammatory protein NLR family, pyrin domain containing 3 (Nlrp3) was significantly reduced at 1 week, and that of tumor necrosis factor-α (Tnf-α) in the optic nerves of the NPC group was lower at 2 weeks. Regarding retinal ganglion cells, the expressions of Brn3a and Tuj1 in the retina were enhanced in the NPC group compared to sham controls at 4 weeks. NPC injections increased Gap43 expression from 2 weeks and reduced Iba1 expression in the optic nerves during the recovery period. In addition, R28 cells exposed to hypoxic conditions showed increased cell survival when cocultured with NPCs compared to PSCs. Both Wnt/β-catenin signaling and increased Nf-ĸb could contribute to the rescue of damaged retinal ganglion cells via upregulation of neuroprotective factors, microglial engagement, and anti-inflammatory regulation by NPCs. This study suggests that NPCs could be useful for the cellular treatment of various optic neuropathies, together with cell therapy using mesenchymal stem cells.
Collapse
|
11
|
Cell-Based Neuroprotection of Retinal Ganglion Cells in Animal Models of Optic Neuropathies. BIOLOGY 2021; 10:biology10111181. [PMID: 34827174 PMCID: PMC8615038 DOI: 10.3390/biology10111181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/10/2021] [Accepted: 11/11/2021] [Indexed: 11/16/2022]
Abstract
Retinal ganglion cells (RGCs) comprise a heterogenous group of projection neurons that transmit visual information from the retina to the brain. Progressive degeneration of these cells, as it occurs in inflammatory, ischemic, traumatic or glaucomatous optic neuropathies, results in visual deterioration and is among the leading causes of irreversible blindness. Treatment options for these diseases are limited. Neuroprotective approaches aim to slow down and eventually halt the loss of ganglion cells in these disorders. In this review, we have summarized preclinical studies that have evaluated the efficacy of cell-based neuroprotective treatment strategies to rescue retinal ganglion cells from cell death. Intraocular transplantations of diverse genetically nonmodified cell types or cells engineered to overexpress neurotrophic factors have been demonstrated to result in significant attenuation of ganglion cell loss in animal models of different optic neuropathies. Cell-based combinatorial neuroprotective approaches represent a potential strategy to further increase the survival rates of retinal ganglion cells. However, data about the long-term impact of the different cell-based treatment strategies on retinal ganglion cell survival and detailed analyses of potential adverse effects of a sustained intraocular delivery of neurotrophic factors on retina structure and function are limited, making it difficult to assess their therapeutic potential.
Collapse
|
12
|
Human Umbilical Cord-Mesenchymal Stem Cells Survive and Migrate within the Vitreous Cavity and Ameliorate Retinal Damage in a Novel Rat Model of Chronic Glaucoma. Stem Cells Int 2021; 2021:8852517. [PMID: 34733333 PMCID: PMC8560304 DOI: 10.1155/2021/8852517] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 09/03/2021] [Accepted: 10/07/2021] [Indexed: 12/26/2022] Open
Abstract
Glaucoma is the leading cause of irreversible blindness worldwide, and pathologically elevated intraocular pressure (IOP) is the major risk factor. Neuroprotection is one of the potential therapies for glaucomatous retinal damage. Intravitreal mesenchymal stem cell (MSC) transplantation provides a viable therapeutic option, and human umbilical cord- (hUC-) MSCs are attractive candidates for cell-based neuroprotection. Here, we investigated the ability of transplanted hUC-MSCs to survive and migrate within the vitreous cavity and their neuroprotective effects on chronic glaucomatous retina. For this, we developed a chronic ocular hypertension (COH) rat model through the intracameral injection of allogeneic Tenon's fibroblasts. Green fluorescent protein-transduced hUC-MSCs were then injected into the vitreous cavity one week after COH induction. Results showed that a moderate IOP elevation lasted for two months. Transplanted hUC-MSCs migrated toward the area of damaged retina, but did not penetrate into the retina. The hUC-MSCs survived for at least eight weeks in the vitreous cavity. Moreover, the hUC-MSCs were efficient at decreasing the loss of retinal ganglion cells; retinal damage was attenuated through the inhibition of apoptosis. In this study, we have developed a novel COH rat model and demonstrated the prolonged neuroprotective potential of intravitreal hUC-MSCs in chronic glaucoma.
Collapse
|
13
|
Martinez Velazquez LA, Ballios BG. The Next Generation of Molecular and Cellular Therapeutics for Inherited Retinal Disease. Int J Mol Sci 2021; 22:ijms222111542. [PMID: 34768969 PMCID: PMC8583900 DOI: 10.3390/ijms222111542] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/13/2021] [Accepted: 10/14/2021] [Indexed: 12/26/2022] Open
Abstract
Inherited retinal degenerations (IRDs) are a diverse group of conditions that are often characterized by the loss of photoreceptors and blindness. Recent innovations in molecular biology and genomics have allowed us to identify the causative defects behind these dystrophies and to design therapeutics that target specific mechanisms of retinal disease. Recently, the FDA approved the first in vivo gene therapy for one of these hereditary blinding conditions. Current clinical trials are exploring new therapies that could provide treatment for a growing number of retinal dystrophies. While the field has had early success with gene augmentation strategies for treating retinal disease based on loss-of-function mutations, many novel approaches hold the promise of offering therapies that span the full spectrum of causative mutations and mechanisms. Here, we provide a comprehensive review of the approaches currently in development including a discussion of retinal neuroprotection, gene therapies (gene augmentation, gene editing, RNA modification, optogenetics), and regenerative stem or precursor cell-based therapies. Our review focuses on technologies that are being developed for clinical translation or are in active clinical trials and discusses the advantages and limitations for each approach.
Collapse
Affiliation(s)
| | - Brian G. Ballios
- Department of Ophthalmology and Vision Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5T 3A9, Canada
- Correspondence:
| |
Collapse
|
14
|
Zhang J, Wu S, Jin ZB, Wang N. Stem Cell-Based Regeneration and Restoration for Retinal Ganglion Cell: Recent Advancements and Current Challenges. Biomolecules 2021; 11:biom11070987. [PMID: 34356611 PMCID: PMC8301853 DOI: 10.3390/biom11070987] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/29/2021] [Accepted: 07/01/2021] [Indexed: 12/25/2022] Open
Abstract
Glaucoma is a group of irreversible blinding eye diseases characterized by the progressive loss of retinal ganglion cells (RGCs) and their axons. Currently, there is no effective method to fundamentally resolve the issue of RGC degeneration. Recent advances have revealed that visual function recovery could be achieved with stem cell-based therapy by replacing damaged RGCs with cell transplantation, providing nutritional factors for damaged RGCs, and supplying healthy mitochondria and other cellular components to exert neuroprotective effects and mediate transdifferentiation of autologous retinal stem cells to accomplish endogenous regeneration of RGC. This article reviews the recent research progress in the above-mentioned fields, including the breakthroughs in the fields of in vivo transdifferentiation of retinal endogenous stem cells and reversal of the RGC aging phenotype, and discusses the obstacles in the clinical translation of the stem cell therapy.
Collapse
Affiliation(s)
- Jingxue Zhang
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology & Visual Sciences Key Laboratory, Beijing 100730, China; (J.Z.); (S.W.)
- Beijing Institute of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing 100069, China
| | - Shen Wu
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology & Visual Sciences Key Laboratory, Beijing 100730, China; (J.Z.); (S.W.)
- Beijing Institute of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing 100069, China
| | - Zi-Bing Jin
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology & Visual Sciences Key Laboratory, Beijing 100730, China; (J.Z.); (S.W.)
- Beijing Institute of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing 100069, China
- Correspondence: (Z.-B.J.); (N.W.)
| | - Ningli Wang
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology & Visual Sciences Key Laboratory, Beijing 100730, China; (J.Z.); (S.W.)
- Beijing Institute of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing 100069, China
- Correspondence: (Z.-B.J.); (N.W.)
| |
Collapse
|
15
|
Kompella UB, Hartman RR, Patil MA. Extraocular, periocular, and intraocular routes for sustained drug delivery for glaucoma. Prog Retin Eye Res 2021; 82:100901. [PMID: 32891866 PMCID: PMC8317199 DOI: 10.1016/j.preteyeres.2020.100901] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 08/22/2020] [Accepted: 08/30/2020] [Indexed: 02/07/2023]
Abstract
Although once daily anti-glaucoma drug therapy is a current clinical reality, most therapies require multiple dosing and there is an unmet need to develop convenient, safe, and effective sustained release drug delivery systems for long-term treatment to improve patient adherence and outcomes. One of the first sustained release drug delivery systems was approved for the reduction of intraocular pressure in glaucoma patients. It is a polymeric reservoir-type insert delivery system, Ocusert™, placed under the eyelid and on the ocular surface for zero-order drug release over one week. The insert, marketed in two strengths, released pilocarpine on the eye surface. While many clinicians appreciated this drug product, it was eventually discontinued. No similar sustained release non-invasive drug delivery system has made it to the market to date for treating glaucoma. Drug delivery systems under development include punctal plugs, ring-type systems, contact lenses, implants, microspheres, nanospheres, gels, and other depot systems placed in the extraocular, periocular, or intraocular regions including intracameral, supraciliary, and intravitreal spaces. This article discusses the advantages and disadvantages of the various routes of administration and delivery systems for sustained glaucoma therapy. It also provides the reader with some examples and discussion of drug delivery systems that could potentially be applied for glaucoma treatment. Interestingly, one intracamerally injected implant, Durysta™, was approved recently for sustained intraocular pressure reduction. However, long-term acceptance of such devices has yet to be established. The ultimate success of the delivery system will depend on efficacy relative to eye drop dosing, safety, reimbursement options, and patient acceptance. Cautious development efforts are warranted considering prior failed approaches for sustained glaucoma drug delivery. Neuroprotective approaches for glaucoma therapy including cell, gene, protein, and drug-combination therapies, mostly administered intravitreally, are also rapidly progressing towards assessment in humans.
Collapse
Affiliation(s)
- Uday B Kompella
- Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Department of Ophthalmology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Department of Bioengineering, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Colorado Center for Nanomedicine and Nanosafety, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| | - Rachel R Hartman
- Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Madhoosudan A Patil
- Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
16
|
What Is New in Glaucoma: From Treatment to Biological Perspectives. J Ophthalmol 2021; 2021:5013529. [PMID: 33936807 PMCID: PMC8060111 DOI: 10.1155/2021/5013529] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 02/24/2021] [Accepted: 03/24/2021] [Indexed: 11/30/2022] Open
Abstract
Glaucoma is a chronic silent disease and an irreversible cause of blindness worldwide. Research has made many efforts to improve disease control and especially to anticipate both early diagnosis and treatment of advanced stages of glaucoma. In terms of prevention, networking between professionals and nonprofessionals is an important goal to disseminate information and help diagnose the disease early. On the other hand, the most recent approaches to treat glaucoma outcomes in its advanced stages include electrical stimulation, stem cells, exosomes, extracellular vesicles, and growth factors. Finally, neuronal plasticity-based rehabilitation methods are being studied to reeducate patients in order to stimulate their residual visual capacity. This review provides an overview of new approaches to future possible glaucoma treatment modalities and gives insight into the perspectives available nowadays in this field.
Collapse
|
17
|
Liu R, Shi Q, Yang H, Sha XY, Yu GC, Liu L, Zhong JX. Protective effects of human umbilical cord mesenchymal stem cells on retinal ganglion cells in mice with acute ocular hypertension. Int J Ophthalmol 2021; 14:194-199. [PMID: 33614446 DOI: 10.18240/ijo.2021.02.03] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 09/03/2020] [Indexed: 01/01/2023] Open
Abstract
AIM To observe the protective effect of human umbilical cord mesenchymal stem cells (hucMSCs) on retinal ganglion cells (RGCs) injury in mice with acute ocular hypertension (AOH). METHODS Fifty-six adult male C57BL/6 mice were randomly divided into four groups: normal group, AOH group, hucMSCs group, normal saline (NS) group. Left eye of mice was induced by 90 mm Hg intraocular pressure for 1h to establish AOH model. hucMSCs 1×105/µL, 1 µL or NS 1 µL was injected into the vitreous body the next day. CM-Dil fluorescent dye was used to label the 3rd generation of hucMSCs, for tracing the cells in the vitreous cavity of mice. Seven days after the model established, hematoxylin-eosin (HE) staining was used to observe the thickness of the inner retina layer in four groups. Numbers and loss rate of RGCs were evaluated by counting Brn-3a positive cells stained by immunofluorescencein. RESULTS On the 7th day after AOH established, labeled hucMSCs were found in the vitreous cavity. HE staining showed that the thickness of retinal inner layer in AOH group was significantly lower than that in normal group and hucMSCs group (P<0.05), same as that in NS group (P>0.05). Compared with AOH group, the RGCs in normal group was significantly higher; RGCs number increased in hucMSCs group and the loss rate was lower (P<0.05). Injection of NS had no protective effect on RGCs. CONCLUSION In AOH mouse model, vitreous injection of hucMSCs have shown a protection for RGCs.
Collapse
Affiliation(s)
- Rui Liu
- Department of Ophthalmology, the First Affiliated Hospital of Jinan University, Guangzhou 510630, Guangdong Province, China.,Department of Ophthalmology, Shenzhen Hospital, Southern Medical University, Shenzhen 518100, Guangdong Province, China
| | - Qi Shi
- Department of Ophthalmology, the First Affiliated Hospital of Jinan University, Guangzhou 510630, Guangdong Province, China
| | - Hong Yang
- Department of Ophthalmology, the First Affiliated Hospital of Jinan University, Guangzhou 510630, Guangdong Province, China
| | - Xiao-Yuan Sha
- Department of Ophthalmology, the First Affiliated Hospital of Jinan University, Guangzhou 510630, Guangdong Province, China
| | - Guo-Cheng Yu
- Department of Ophthalmology, the First Affiliated Hospital of Jinan University, Guangzhou 510630, Guangdong Province, China
| | - Lian Liu
- Department of Ophthalmology, the First Affiliated Hospital of Jinan University, Guangzhou 510630, Guangdong Province, China
| | - Jing-Xiang Zhong
- Department of Ophthalmology, the First Affiliated Hospital of Jinan University, Guangzhou 510630, Guangdong Province, China
| |
Collapse
|
18
|
Amore G, Romagnoli M, Carbonelli M, Barboni P, Carelli V, La Morgia C. Therapeutic Options in Hereditary Optic Neuropathies. Drugs 2021; 81:57-86. [PMID: 33159657 PMCID: PMC7843467 DOI: 10.1007/s40265-020-01428-3] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Options for the effective treatment of hereditary optic neuropathies have been a long time coming. The successful launch of the antioxidant idebenone for Leber's Hereditary Optic Neuropathy (LHON), followed by its introduction into clinical practice across Europe, was an important step forward. Nevertheless, other options, especially for a variety of mitochondrial optic neuropathies such as dominant optic atrophy (DOA), are needed, and a number of pharmaceutical agents, acting on different molecular pathways, are currently under development. These include gene therapy, which has reached Phase III development for LHON, but is expected to be developed also for DOA, whilst most of the other agents (other antioxidants, anti-apoptotic drugs, activators of mitobiogenesis, etc.) are almost all at Phase II or at preclinical stage of research. Here, we review proposed target mechanisms, preclinical evidence, available clinical trials with primary endpoints and results, of a wide range of tested molecules, to give an overview of the field, also providing the landscape of future scenarios, including gene therapy, gene editing, and reproductive options to prevent transmission of mitochondrial DNA mutations.
Collapse
Affiliation(s)
- Giulia Amore
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy
| | - Martina Romagnoli
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Clinica Neurologica, Bologna, Via Altura 3, 40139, Bologna, Italy
| | - Michele Carbonelli
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Clinica Neurologica, Bologna, Via Altura 3, 40139, Bologna, Italy
| | | | - Valerio Carelli
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Clinica Neurologica, Bologna, Via Altura 3, 40139, Bologna, Italy
| | - Chiara La Morgia
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Clinica Neurologica, Bologna, Via Altura 3, 40139, Bologna, Italy.
| |
Collapse
|
19
|
Kahraman NS, Öner A. Umbilical cord-derived mesenchymal stem cell implantation in patients with optic atrophy. Eur J Ophthalmol 2020; 31:3463-3470. [PMID: 33307808 DOI: 10.1177/1120672120977824] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND Optic nerve cells can be irreversibly damaged by common various causes. Unfortunately optic nerve and retinal ganglion cells have no regenerative capacity and undergo apoptosis in case of damage. In this study, our aim is to investigate the safety and efficacy of suprachoroidal umbilical cord-derived MSCs (UC-MSCs) implantation in patients with optic atrophy. METHODS This study enrolled 29 eyes of 23 patients with optic atrophy who were followed in the ophthalmology department of our hospital. BCVA, anterior segment, fundus examination, color photography, and optical coherence tomography (OCT) were carried out at each visit. Fundus fluorescein angiography and visual field examination were performed at the end of the first, third, sixth months, and 1 year follow-up. RESULTS After suprachoroidal UC-MSCs implantation there were statistically significant improvements in BCVA and VF results during 12 months follow-up (p < 0.05). When we evaluate the results of VF tests, the mean deviation (MD) value at baseline was -26.11 ± 8.36 (range -14.18 to -34.41). At the end of the first year it improved to -25.01 ± 8.73 (range -12.56 to -34.41) which was statistically significant (p < 0.05). When we evaluate the mean RNFL thickness measurements at baseline and at 12 month follow-up the results were 81.8 ± 24.9 μm and 76.6 ± 22.6 μm, respectively. There was not a significant difference between the mean values (p > 0.05). CONCLUSION Stem cell treatment with suprachoroidal implantation of UCMSCs seems to be safe and effective in the treatment for optic nerve diseases that currently have no curative treatment options.
Collapse
Affiliation(s)
| | - Ayşe Öner
- Department of Ophthalmology, Acibadem Hospital, Kayseri, Turkey
| |
Collapse
|
20
|
Pesaresi M, Bonilla-Pons SA, Sebastian-Perez R, Di Vicino U, Alcoverro-Bertran M, Michael R, Cosma MP. The Chemokine Receptors Ccr5 and Cxcr6 Enhance Migration of Mesenchymal Stem Cells into the Degenerating Retina. Mol Ther 2020; 29:804-821. [PMID: 33264643 DOI: 10.1016/j.ymthe.2020.10.026] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 10/02/2020] [Accepted: 10/23/2020] [Indexed: 02/07/2023] Open
Abstract
Cell therapy approaches hold great potential for treating retinopathies, which are currently incurable. This study addresses the problem of inadequate migration and integration of transplanted cells into the host retina. To this end, we have identified the chemokines that were most upregulated during retinal degeneration and that could chemoattract mesenchymal stem cells (MSCs). The results were observed using a pharmacological model of ganglion/amacrine cell degeneration and a genetic model of retinitis pigmentosa, from both mice and human retinae. Remarkably, MSCs overexpressing Ccr5 and Cxcr6, which are receptors bound by a subset of the identified chemokines, displayed improved migration after transplantation in the degenerating retina. They also led to enhanced rescue of cell death and to preservation of electrophysiological function. Overall, we show that chemokines released from the degenerating retinae can drive migration of transplanted stem cells, and that overexpression of chemokine receptors can improve cell therapy-based regenerative approaches.
Collapse
Affiliation(s)
- Martina Pesaresi
- Center for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain
| | - Sergi A Bonilla-Pons
- Center for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain; Universitat de Barcelona (UB), Barcelona 08028, Spain
| | - Ruben Sebastian-Perez
- Center for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain
| | - Umberto Di Vicino
- Center for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain
| | - Marc Alcoverro-Bertran
- Center for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain
| | - Ralph Michael
- Institut Universitari Barraquer, Universitat Autónoma de Barcelona, Barcelona 08021, Spain; Centro de Oftalmología Barraquer, Barcelona 08021, Spain
| | - Maria Pia Cosma
- Center for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain; Universitat Pompeu Fabra (UPF), Barcelona 08003, Spain; ICREA, Passeig de Lluis Companys 23, Barcelona 08010, Spain; Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou 510005, China.
| |
Collapse
|
21
|
The Immunomodulatory Potential of Mesenchymal Stem Cells in a Retinal Inflammatory Environment. Stem Cell Rev Rep 2020; 15:880-891. [PMID: 31863334 DOI: 10.1007/s12015-019-09908-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Retinal degenerative disorders are characterized by a local upregulation of inflammatory factors, infiltration with cells of the immune system, a vascular dysfunction and by the damage of retinal cells. There is still a lack of treatment protocols for these diseases. Mesenchymal stem cell (MSC)-based therapy using immunoregulatory, regenerative and differentiating properties of MSCs offers a promising treatment option. In this study, we analyzed the immunomodulatory properties of mouse bone marrow-derived MSCs after their intravitreal delivery to the inflammatory environment in the eye, caused by the application of pro-inflammatory cytokines IL-1β, TNF-α and IFN-γ. The intravitreal administration of these cytokines induces an increased expression of pro-inflammatory molecules such as IL-1α, IL-6, inducible nitric oxide synthase, TNF-α and vascular endothelial growth factor in the retina. However, a significant decrease in the expression of genes for all these pro-inflammatory molecules was observed after the intravitreal injection of MSCs. We further showed that an increased infiltration of the retina with immune cells, mainly with macrophages, which was observed after pro-inflammatory cytokine application, was significantly reduced after the intravitreal application of MSCs. The similar immunosuppressive effects of MSCs were also demonstrated in vitro in cultures of cytokine-stimulated retinal explants and MSCs. Overall, the results show that intravitreal application of MSCs inhibits the early retinal inflammation caused by pro-inflammatory cytokines, and propose MSCs as a promising candidate for stem cell-based therapy of retinal degenerative diseases.
Collapse
|
22
|
Effects of Varying Intranasal Treatment Regimens in ST266-Mediated Retinal Ganglion Cell Neuroprotection. J Neuroophthalmol 2020; 39:191-199. [PMID: 30829880 DOI: 10.1097/wno.0000000000000760] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
INTRODUCTION Previous studies have shown that intranasally administered ST266, a novel biological secretome of amnion-derived multipotent progenitor cells containing multiple growth factors and anti-inflammatory cytokines, attenuated visual dysfunction and prevented retinal ganglion cell (RGC) loss in experimental optic neuritis. Long-term effects and dose escalation studies examined here have not been reported previously. METHODS Optic neuritis was induced in the multiple sclerosis model experimental autoimmune encephalomyelitis (EAE). EAE and control mice were treated once or twice daily with intranasal placebo/vehicle or ST266 beginning after onset of optic neuritis for either 15 days or continuously until sacrifice. Visual function was assessed by optokinetic responses (OKRs). RGC survival and optic nerve inflammation and demyelination were measured. RESULTS Both once and twice daily continuous intranasal ST266 treatment from disease onset to 56 days after EAE induction significantly increased OKR scores, decreased RGC loss, and reduced optic nerve inflammation and demyelination compared with placebo (saline, nonspecific protein solution, or cell culture media)-treated EAE mice. ST266 treatment given for just 15 days after disease onset, then discontinued, only delayed OKR decreases, and had limited effects on RGC survival and optic nerve inflammation 56 days after disease induction. CONCLUSIONS ST266 is a potential neuroprotective therapy to prevent RGC damage, and intranasal delivery warrants further study as a novel mechanism to deliver protein therapies for optic neuropathies. Results suggest that once daily ST266 treatment is sufficient to sustain maximal benefits and demonstrate that neuroprotective effects promoted by ST266 are specific to the combination of factors present in this complex biologic therapy.
Collapse
|
23
|
Kwon H, Park M, Nepali S, Lew H. Hypoxia-Preconditioned Placenta-Derived Mesenchymal Stem Cells Rescue Optic Nerve Axons Via Differential Roles of Vascular Endothelial Growth Factor in an Optic Nerve Compression Animal Model. Mol Neurobiol 2020; 57:3362-3375. [PMID: 32524519 DOI: 10.1007/s12035-020-01965-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 05/28/2020] [Indexed: 12/15/2022]
Abstract
Human placenta-derived stem cells (hPSCs) with the therapeutic potential to recover from optic nerve injury have been reported. We have recently demonstrated that hPSCs have protective abilities against hypoxic damage. To improve the capacity of hPSCs, we established a hypoxia-preconditioned strain (HPPCs) using a hypoxic chamber. The hPSCs were exposed to short-term hypoxic conditions of 2.2% O2 and 5.5% CO2. We also performed in vivo experiments to demonstrate the recovery effects of HPPCs using an optic nerve injury rat model. Naïve hPSCs (and HPPCs) were injected into the optic nerve. After 1, 2, or 4 weeks, we analyzed changes in target proteins in the optic nerve tissues. In the retina, GAP43 expression was higher in both groups of naïve hPSCs and HPPCs versus sham controls. Two weeks after injection, all hPSC-injected groups showed recovery of tuj1 expression in damaged retinas. We also determined GFAP expression in retinas using the same model. In optic nerve tissues, HIF-1α levels were significantly lower in the HPPC-injected group 1 week after injury, and Thy-1 levels were higher in the hPSC-injected group at 4 weeks. There was also an enhanced recovery of Thy-1 expression after HPPC injection. In addition, R28 cells exposed to hypoxic conditions showed improved viability through enhanced recovery of HPPCs than naïve hPSCs. VEGF protein was a mediator in the recovery pathway via upregulation of target proteins regulated by HPPCs. Our results suggest that HPPCs may be candidates for cell therapy for the treatment of traumatic optic nerve injury.
Collapse
Affiliation(s)
- Heejung Kwon
- Department of Ophthalmology, CHA Bundang Medical Center, CHA University, Seongnam, Republic of Korea
| | - Mira Park
- Department of Ophthalmology, CHA Bundang Medical Center, CHA University, Seongnam, Republic of Korea
| | - Sarmila Nepali
- Department of Ophthalmology, University of Miami, Coral Gables, FL, USA
| | - Helen Lew
- Department of Ophthalmology, CHA Bundang Medical Center, CHA University, Seongnam, Republic of Korea.
| |
Collapse
|
24
|
Seyedrazizadeh SZ, Poosti S, Nazari A, Alikhani M, Shekari F, Pakdel F, Shahpasand K, Satarian L, Baharvand H. Extracellular vesicles derived from human ES-MSCs protect retinal ganglion cells and preserve retinal function in a rodent model of optic nerve injury. Stem Cell Res Ther 2020; 11:203. [PMID: 32460894 PMCID: PMC7251703 DOI: 10.1186/s13287-020-01702-x] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 04/10/2020] [Accepted: 05/03/2020] [Indexed: 12/12/2022] Open
Abstract
Background Retinal and/or optic nerve injury is one of the leading causes of blindness due to retinal ganglion cell (RGC) degeneration. There have been extensive efforts to suppress this neurodegeneration. Various somatic tissue-derived mesenchymal stem cells (MSCs) demonstrated significant neuroprotective and axogenic effects on RGCs. An alternative source of MSCs could be human embryonic stem cells (ES-MSCs), which proliferate faster, express lower levels of inflammatory cytokines, and are capable of immune modulation. It has been demonstrated that MSCs secrete factors or extracellular vesicles that may heal the injury. However, possible therapeutic effects and underlying mechanism of human ES-MSC extracellular vesicles (EVs) on optic nerve injury have not been assessed. Methods EVs were isolated from human ES-MSCs. Then, ES-MSC EV was applied to an optic nerve crush (ONC) mouse model. Immunohistofluorescence, retro- and anterograde tracing of RGCs, Western blot, tauopathy in RGCs, and function assessments were performed during 2-month post-treatment to evaluate ONC improvement and underlying mechanism of human ES-MSC EV in in vivo. Results We found that the ES-MSC EV significantly improved Brn3a+ RGCs survival and retro- and anterograde tracing of RGCs, while preventing retinal nerve fiber layer (RNFL) degenerative thinning compared to the vehicle group. The EVs also significantly promoted GAP43+ axon counts in the optic nerve and improved cognitive visual behavior. Furthermore, cis p-tau, a central mediator of neurodegeneration in the injured RGCs, is detectable after the ONC at the early stages demonstrated tauopathy in RGCs. Notably, after EV treatment cis p-tau was downregulated. Conclusions Our findings propose that human ES-MSC EVs, as an off-the-shelf and cell-free product, may have profound clinical implications in treating injured RGCs and degenerative ocular disease. Moreover, the possible mechanisms of human ES-MSC EV are related to the rescue of tauopathy process of RGC degeneration.
Collapse
Affiliation(s)
- Seyedeh-Zahra Seyedrazizadeh
- Department of Brain and Cognitive Sciences, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Sara Poosti
- Department of Brain and Cognitive Sciences, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Abdoreza Nazari
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Mehdi Alikhani
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Faezeh Shekari
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Farzad Pakdel
- Ophthalmology Department, Eye Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Koorosh Shahpasand
- Department of Brain and Cognitive Sciences, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Leila Satarian
- Department of Brain and Cognitive Sciences, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran. .,Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
| | - Hossein Baharvand
- Department of Brain and Cognitive Sciences, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran. .,Department of Developmental Biology, University of Science and Culture, Tehran, Iran.
| |
Collapse
|
25
|
Human Umbilical Cord Mesenchymal Stem Cells Attenuate Ocular Hypertension-Induced Retinal Neuroinflammation via Toll-Like Receptor 4 Pathway. Stem Cells Int 2019; 2019:9274585. [PMID: 31737079 PMCID: PMC6815608 DOI: 10.1155/2019/9274585] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 07/30/2019] [Accepted: 08/07/2019] [Indexed: 12/26/2022] Open
Abstract
Glaucoma is characterized by progressive, irreversible damage to the retinal ganglion cells (RGCs) and their axons. Our previous study has shown that the intravitreal transplantation of human umbilical cord mesenchymal stem cells (hUC-MSCs) reveals a neuroprotective role in microsphere injection-induced ocular hypertension (OHT) rat models. The protection is related to the modulation of glial cells, but the mechanisms are still unknown. The purpose of the present study is to clarify the potential neuroinflammatory mechanisms involved in the neuroprotective role of hUC-MSCs. OHT models were established with SD rats through intracameral injection of polystyrene microbeads. The animals were randomly divided into three groups: the normal group, the OHT+phosphate-buffered saline (PBS) group, and the OHT+hUC-MSC group. Retinal morphology was evaluated by measuring the inner retinal thickness via optical coherence tomography (OCT). Retinal cell apoptosis was examined by TUNEL staining and Bax expression 14 days following hUC-MSC transplantation. The expression levels of glial fibrillary acidic protein (GFAP), ionized calcium binding adapter molecule 1 (iba-1), and toll-like receptor 4 (TLR4) were assessed via immunohistochemistry, real-time quantitative PCR, and Western blot. RNA and proteins were extracted 14 days following transplantation, and the expression levels of the TLR4 signaling pathways and proinflammatory cytokines—myeloid differentiation factor 88 (MyD88), IL-1β, IL-6, and TNF-α—were determined. OCT showed that the intravitreal transplantation of hUC-MSCs significantly increased the inner thickness of the retina. A TUNEL assay and the expression of Bax suggested that the apoptosis of retinal cells was decreased by hUC-MSCs 14 days following transplantation. Intravitreal hUC-MSC transplantation resulted in a decreased expression of GFAP, iba-1, TLR4, MyD88, IL-1β, IL-6, and TNF-α 14 days following transplantation. In addition, via in vitro experiments, we found that the increased expression of the TLR4 signaling pathway induced by lipopolysaccharide (LPS) was markedly decreased after hUC-MSCs were cocultured with rMC-1 and BV2 cells. These findings indicate that hUC-MSC transplantation attenuates OHT-induced retinal neuroinflammation via the TLR4 pathway.
Collapse
|
26
|
Khatib TZ, Martin KR. Neuroprotection in Glaucoma: Towards Clinical Trials and Precision Medicine. Curr Eye Res 2019; 45:327-338. [PMID: 31475591 DOI: 10.1080/02713683.2019.1663385] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Purpose: The eye is currently at the forefront of translational medicine and therapeutics. However, despite advances in technology, primary open-angle glaucoma remains the leading cause of irreversible blindness worldwide. Traditional intraocular pressure (IOP)-lowering therapies are often not sufficient to prevent progression to blindness, even in patients with access to high-quality healthcare. Neuroprotection strategies, which aim to boost the ability of target cells to withstand a pathological insult, have shown significant promise in animal models but none have shown clinically relevant efficacy in human clinical trials to date. We sought to evaluate the current status of neuroprotection clinical trials for glaucoma and identify limitations which have prevented translation of new glaucoma therapies to date.Methods: Literature searches identified English language references. Sources included MEDLINE, EMBASE, the Cochrane Library and Web of Science databases; reference lists of retrieved studies; and internet pages of relevant organisations, meetings and conference proceedings, and clinical trial registries.Results: We discuss six key neuroprotective strategies for glaucoma that have reached the clinical trial stage. Delivery of neurotrophic factors through gene therapy is also progressing towards glaucoma clinical trials. Refinements in trial design and the use of new modalities to define structural and functional endpoints may improve our assessment of disease activity and treatment efficacy. Advances in our understanding of compartmentalised glaucomatous degeneration and continued progress in the molecular profiling of glaucoma patients will enable us to predict individual risk and tailor treatment.Conclusion: New approaches to future glaucoma neuroprotection trials could improve the prospects for new glaucoma therapies. Glaucoma treatment tailored according to an individual's unique risk profile may become increasingly common in the future.
Collapse
Affiliation(s)
- Tasneem Z Khatib
- John Van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK.,Eye Department, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK.,Medical Sciences Division, University of Oxford, Oxford, UK
| | - Keith R Martin
- John Van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK.,Eye Department, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK.,Cambridge NIHR Biomedical Research Centre, Cambridge, UK.,Wellcome Trust - 5 MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK.,Ophthalmology, Department of Surgery, University of Melbourne, Melbourne, Australia.,Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Melbourne, Australia
| |
Collapse
|
27
|
Mesentier-Louro LA, Teixeira-Pinheiro LC, Gubert F, Vasques JF, Silva-Junior AJ, Chimeli-Ormonde L, Nascimento-Dos-Santos G, Mendez-Otero R, Santiago MF. Long-term neuronal survival, regeneration, and transient target reconnection after optic nerve crush and mesenchymal stem cell transplantation. Stem Cell Res Ther 2019; 10:121. [PMID: 30995945 PMCID: PMC6472105 DOI: 10.1186/s13287-019-1226-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 03/18/2019] [Accepted: 03/28/2019] [Indexed: 02/06/2023] Open
Abstract
Background Retina and/or optic nerve injury may cause irreversible blindness, due to degeneration of retinal ganglion cells. We and others have previously shown that the intravitreal injection of mesenchymal stem cells (MSCs) protects injured retinal ganglion cells and stimulates their regeneration after optic nerve injury, but the long-term effects of this therapy are still unknown. Methods We injected rat MSC (rMSC) intravitreally in adult (3–5 months) Lister Hooded rats of either sex after optic nerve crush. Retinal ganglion cell survival, axonal regeneration, and reconnection were analyzed 60 and 240 days after crush by immunohistochemistry for Tuj1, anterograde labeling with cholera-toxin B and by immunohistochemistry for nerve growth factor-induced gene A (NGFI-A, driven by light stimulation) in the superior colliculus after a cycle of light deprivation-stimulation. Visual behaviors (optokinetic reflex, looming response, and preference for dark) were analyzed 70 days after crush. Results rMSC treatment doubled the number of surviving retinal ganglion cells, preferentially of a larger subtype, and of axons regenerating up to 0.5 mm. Some axons regenerated to the lateral geniculate nucleus and superior colliculus. NGFI-A+ cells were doubled in rMSC-treated animals 60 days after crush, but equivalent to vehicle-injected animals 240 days after crush, suggesting that newly formed synapses degenerated. Animals did not recover visual behaviors. Conclusions We conclude that rMSC-induced neuroprotection is sustained at longer time points. Although rMSCs promoted long-term neuroprotection and long-distance axon regeneration, the reconnection of retinal ganglion cells with their targets was transitory, indicating that they need additional stimuli to make stable reconnections. Electronic supplementary material The online version of this article (10.1186/s13287-019-1226-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Louise A Mesentier-Louro
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-902, Brazil.
| | - Leandro C Teixeira-Pinheiro
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-902, Brazil
| | - Fernanda Gubert
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-902, Brazil
| | - Juliana F Vasques
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-902, Brazil.,National Institute of Science and Technology for Regenerative Medicine-REGENERE, Rio de Janeiro, Brazil
| | - Almir J Silva-Junior
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-902, Brazil.,National Institute of Science and Technology for Regenerative Medicine-REGENERE, Rio de Janeiro, Brazil
| | - Luiza Chimeli-Ormonde
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-902, Brazil.,National Institute of Science and Technology for Regenerative Medicine-REGENERE, Rio de Janeiro, Brazil
| | - Gabriel Nascimento-Dos-Santos
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-902, Brazil
| | - Rosalia Mendez-Otero
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-902, Brazil.,National Institute of Science and Technology for Regenerative Medicine-REGENERE, Rio de Janeiro, Brazil
| | - Marcelo F Santiago
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-902, Brazil
| |
Collapse
|
28
|
Rabesandratana O, Goureau O, Orieux G. Pluripotent Stem Cell-Based Approaches to Explore and Treat Optic Neuropathies. Front Neurosci 2018; 12:651. [PMID: 30294255 PMCID: PMC6158340 DOI: 10.3389/fnins.2018.00651] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 08/30/2018] [Indexed: 12/15/2022] Open
Abstract
Sight is a major sense for human and visual impairment profoundly affects quality of life, especially retinal degenerative diseases which are the leading cause of irreversible blindness worldwide. As for other neurodegenerative disorders, almost all retinal dystrophies are characterized by the specific loss of one or two cell types, such as retinal ganglion cells, photoreceptor cells, or retinal pigmented epithelial cells. This feature is a critical point when dealing with cell replacement strategies considering that the preservation of other cell types and retinal circuitry is a prerequisite. Retinal ganglion cells are particularly vulnerable to degenerative process and glaucoma, the most common optic neuropathy, is a frequent retinal dystrophy. Cell replacement has been proposed as a potential approach to take on the challenge of visual restoration, but its application to optic neuropathies is particularly challenging. Many obstacles need to be overcome before any clinical application. Beyond their survival and differentiation, engrafted cells have to reconnect with both upstream synaptic retinal cell partners and specific targets in the brain. To date, reconnection of retinal ganglion cells with distal central targets appears unrealistic since central nervous system is refractory to regenerative processes. Significant progress on the understanding of molecular mechanisms that prevent central nervous system regeneration offer hope to overcome this obstacle in the future. At the same time, emergence of reprogramming of human somatic cells into pluripotent stem cells has facilitated both the generation of new source of cells with therapeutic potential and the development of innovative methods for the generation of transplantable cells. In this review, we discuss the feasibility of stem cell-based strategies applied to retinal ganglion cells and optic nerve impairment. We present the different strategies for the generation, characterization and the delivery of transplantable retinal ganglion cells derived from pluripotent stem cells. The relevance of pluripotent stem cell-derived retinal organoid and retinal ganglion cells for disease modeling or drug screening will be also introduced in the context of optic neuropathies.
Collapse
Affiliation(s)
| | - Olivier Goureau
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Gaël Orieux
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| |
Collapse
|
29
|
Flachsbarth K, Jankowiak W, Kruszewski K, Helbing S, Bartsch S, Bartsch U. Pronounced synergistic neuroprotective effect of GDNF and CNTF on axotomized retinal ganglion cells in the adult mouse. Exp Eye Res 2018; 176:258-265. [PMID: 30237104 DOI: 10.1016/j.exer.2018.09.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 09/04/2018] [Accepted: 09/16/2018] [Indexed: 01/09/2023]
Abstract
Neuroprotection is among the potential treatment options for glaucoma and other retinal pathologies characterized by the loss of retinal ganglion cells (RGCs). Here, we examined the impact of a neural stem (NS) cell-based intravitreal co-administration of two neuroprotective factors on the survival of axotomized RGCs. To this aim we used lentiviral vectors to establish clonal NS cell lines ectopically expressing either glial cell line-derived neurotrophic factor (GDNF) or ciliary neurotrophic factor (CNTF). The modified NS cell lines were intravitreally injected either separately or as a 1:1 mixture into adult mice one day after an optic nerve lesion, and the number of surviving RGCs was determined in retinal flat-mounts two, four and eight weeks after the lesion. For the transplantation experiments, we selected a GDNF- and a CNTF-expressing NS cell line that promoted the survival of axotomized RGCs with a similar efficacy. Eight weeks after the lesion, GDNF-treated retinas contained 3.8- and CNTF-treated retinas 3.7-fold more RGCs than control retinas. Of note, the number of surviving RGCs was markedly increased when both factors were administered simultaneously, with 14.3-fold more RGCs than in control retinas eight weeks after the lesion. GDNF and CNTF thus potently and synergistically rescued RGCs from axotomy-induced cell death, indicating that combinatorial neuroprotective approaches represent a promising strategy to effectively promote the survival of RGCs under pathological conditions.
Collapse
Affiliation(s)
- Kai Flachsbarth
- Department of Ophthalmology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Wanda Jankowiak
- Department of Ophthalmology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Katharina Kruszewski
- Department of Ophthalmology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sabine Helbing
- Department of Ophthalmology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Susanne Bartsch
- Department of Ophthalmology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Udo Bartsch
- Department of Ophthalmology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
30
|
Guymer C, Wood JPM, Chidlow G, Casson RJ. Neuroprotection in glaucoma: recent advances and clinical translation. Clin Exp Ophthalmol 2018; 47:88-105. [DOI: 10.1111/ceo.13336] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 05/21/2018] [Accepted: 06/06/2018] [Indexed: 02/06/2023]
Affiliation(s)
- Chelsea Guymer
- Ophthalmic Research Laboratory, South Australian Institute of Ophthalmology; University of Adelaide; Adelaide South Australia Australia
| | - John PM Wood
- Ophthalmic Research Laboratory, South Australian Institute of Ophthalmology; University of Adelaide; Adelaide South Australia Australia
| | - Glyn Chidlow
- Ophthalmic Research Laboratory, South Australian Institute of Ophthalmology; University of Adelaide; Adelaide South Australia Australia
| | - Robert J Casson
- Ophthalmic Research Laboratory, South Australian Institute of Ophthalmology; University of Adelaide; Adelaide South Australia Australia
| |
Collapse
|
31
|
Cislo-Pakuluk A, Marycz K. A Promising Tool in Retina Regeneration: Current Perspectives and Challenges When Using Mesenchymal Progenitor Stem Cells in Veterinary and Human Ophthalmological Applications. Stem Cell Rev Rep 2018. [PMID: 28643176 PMCID: PMC5602072 DOI: 10.1007/s12015-017-9750-4] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Visual impairment is a common ailment of the current world population, with more exposure to CCD screens and fluorescent lighting, approximately 285 billion people suffer from this deficiency and 13% of those are considered clinically blind. More common causes for visual impairment include age-related macular degeneration (AMD), glaucoma and diabetic retinopathy (Zhu et al. Molecular Medicine Reports, 2015; Kolb et al. 2007; Machalińska et al. Current Eye Research, 34(9),748-760, 2009) among a few. As cases of retinal and optic nerve diseases rise, it is vital to find a treatment, which has led to investigation of the therapeutic potential of various stem cells types (Bull et al. Investigative Opthalmology & Visual Science, 50(9), 4244, 2009; Bull et al. Investigative Opthalmology & Visual Science, 49(8), 3449, 2008; Yu et al. Biochemical and Biophysical Research Communications, 344(4), 1071-1079, 2006; Na et al. Graefe's Archive for Clinical and Experimental Ophthalmology, 247(4), 503-514, 2008). In previous studies, some of the stem cell variants used include human Muller SCs and bone marrow derived SCs. Some of the regenerative potential characteristics of mesenchymal progenitor stem cells (MSCs) include their multilineage differentiation potential, their immunomodulatory effects, their high proliferative activity, they can be easily cultured in vitro, and finally their potential to synthesize and secrete membrane derived vesicles rich in growth factors, mRNA and miRNA which possibly aid in regulation of tissue damage regeneration. These facts alone, explain why MSCs are so widely used in clinical trials, 350 up to date (Switonski, Reproductive Biology, 14(1), 44-50, 2014). Animal studies have demonstrated that sub-retinal transplantation of MSCs delays retinal degeneration and preserves retinal function through trophic response (Inoue et al. Experimental Eye Research, 85(2), 234-241, 2007). Umbilical cord derived MSCs (UC/MSCs) have also been shown to contain neuroprotective features of ganglion cells in rat studies (Zwart et al. Experimental Neurology, 216(2), 439-448, 2009). This review aims to present current MSC therapies in practice, as well as their retinal regeneration potential in animal models, and their innovative prospects for treatment of human retinal diseases.
Collapse
Affiliation(s)
- Anna Cislo-Pakuluk
- Veterinary Clinic, Trzebnicka", Kościuszki 18, 55-100, Trzebnica, Poland
| | - Krzysztof Marycz
- Department of Experimental Biology, Wrocław University of Environmental and Life Sciences, C. K. Norwida 25, 50-375, Wrocław, Poland.
| |
Collapse
|
32
|
Ji S, Lin S, Chen J, Huang X, Wei CC, Li Z, Tang S. Neuroprotection of Transplanting Human Umbilical Cord Mesenchymal Stem Cells in a Microbead Induced Ocular Hypertension Rat Model. Curr Eye Res 2018; 43:810-820. [PMID: 29505314 DOI: 10.1080/02713683.2018.1440604] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
PURPOSE The purpose of this study is to investigate the potential therapeutic benefits of intravitreally transplanted human umbilical cord mesenchymal stem cells (UC-MSCs) in an animal model of microbead-injection-induced ocular hypertension (OHT). METHODS UC-MSCs were isolated from human umbilical cords and then cultured. The OHT model was induced via intracameral injection of polystyrene microbeads in Sprague-Dawley adult rat eyes. Fifty-four healthy adult rats were randomly divided into three groups: normal control, OHT model treated with intravitreal transplantation of UC-MSCs, or phosphate-buffered saline (PBS). Two days after OHT was induced, either 5 µl 105 UC-MSCs suspension or PBS was injected into the vitreous cavity of rats. UC-MSCs localization and integration were examined via immunohistochemistry. Neuroprotection was quantified by counting retinal ganglion cells (RGCs) and axons 2 weeks following transplantation. The expression levels of glial-derived neurotrophic factor (GDNF), brain-derived neurotrophic factor (BDNF), and glial fibrillary acidic protein (GFAP) were assessed via immunohistochemistry and Western blot. Functional recovery was assessed 2 weeks after transplantation via scotopic threshold response (STR) electroretinography. RESULTS Elevated IOP levels were sustained at least 3 weeks after intracameral microbead injection and the number of β-III-tubulin+ RGCs significantly declined compared to PBS-injected eyes. UC-MSCs survived for at least 2 weeks after intravitreal transplantation and predominantly located in the vitreous cavity. A fraction of cells migrated into the ganglion cell layer of host retina, but without differentiation. Intravitreal UC-MSC transplantation resulted in increased number of RGCs, axons, and increased expression of GDNF and BDNF but decreased expression of GFAP. Intravitreal delivery of UC-MSCs significantly improved the recovery of the positive STR. CONCLUSIONS Intravitreal transplantation of UC-MSCs revealed the neuroprotection in the microbead-injection induced OHT. The effects could be related to the secretion of tropic factors (BDNF and GDNF) and the modulation of glial cell activation.
Collapse
Affiliation(s)
- Shangli Ji
- a Aier School of Ophthalmology , Central South University , Changsha , Hunan , China
| | - Saiyue Lin
- b Department of Anatomy and Neurobiology, Xiangya School of Medicine , Central South University , Changsha , Hunan , China
| | - Jiansu Chen
- a Aier School of Ophthalmology , Central South University , Changsha , Hunan , China
| | - Xinping Huang
- c Department of Biology , ShenzhenHornetcorn Biotechnology Co., Ltd , Shenzhen , Guangdong , China
| | - Chih-Chang Wei
- c Department of Biology , ShenzhenHornetcorn Biotechnology Co., Ltd , Shenzhen , Guangdong , China
| | - Zhiyuan Li
- b Department of Anatomy and Neurobiology, Xiangya School of Medicine , Central South University , Changsha , Hunan , China
| | - Shibo Tang
- a Aier School of Ophthalmology , Central South University , Changsha , Hunan , China
| |
Collapse
|
33
|
Daliri K, Ljubimov AV, Hekmatimoghaddam S. Glaucoma, Stem Cells, and Gene Therapy: Where Are We Now? Int J Stem Cells 2017; 10:119-128. [PMID: 28844129 PMCID: PMC5741193 DOI: 10.15283/ijsc17029] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/20/2017] [Indexed: 12/17/2022] Open
Abstract
Glaucoma is the second most common cause of blindness, affecting 70∼80 million people around the world. The death of retinal ganglion cells (RGCs) is the main cause of blindness related to this disease. Current therapies do not provide enough protection and regeneration of RGCs. A novel opportunity for treatment of glaucoma is application of technologies related to stem cell and gene therapy. In this perspective we will thus focus on emerging approaches to glaucoma treatment including stem cells and gene therapy.
Collapse
Affiliation(s)
- Karim Daliri
- Neurogenetic Ward, Comprehensive Child Developmental Center, Shiraz University of Medical Sciences, Shiraz, Iran.,Visiting Scientist at Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tübingen, Germany
| | - Alexander V Ljubimov
- Regenerative Medicine Institute, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA.,Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Seyedhossein Hekmatimoghaddam
- Stem Cell Biology Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.,Department of Laboratory Sciences, School of Paramedicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| |
Collapse
|
34
|
Weiss JN, Levy S, Benes SC. Stem Cell Ophthalmology Treatment Study: bone marrow derived stem cells in the treatment of non-arteritic ischemic optic neuropathy (NAION). Stem Cell Investig 2017; 4:94. [PMID: 29270420 DOI: 10.21037/sci.2017.11.05] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 07/13/2017] [Indexed: 12/17/2022]
Abstract
Background Ten patients with bilateral visual loss due to sequential non-arteritic ischemic optic neuropathy (NAION) underwent autologous Bone Marrow Derived Stem Cell (BMSC) therapy within the Stem Cell Ophthalmology Treatment Study (SCOTS). SCOTS is an Institutional Review Board approved clinical study utilizing autologous BMSC in the treatment of optic nerve and retinal diseases that meet inclusion criteria. Methods The average age of the patients treated was 69.8 years. The average duration of visual loss in eyes treated was 9.8 years and ranged from 1 to 35 years. Affected eyes were treated with either retrobulbar, subtenons and intravenous BMSC or, following vitrectomy, intra-optic nerve, subtenons and intravenous BMSC. The primary outcome was visual acuity as measured by Snellen or converted to LogMAR. Results Following therapy in SCOTS, 80% of patients experienced improvement in Snellen binocular vision (P=0.029) with 20% remaining stable; 73.6% of eyes treated gained vision (P=0.019) and 15.9% remained stable in the post-operative period. There was an average of 3.53 Snellen lines of vision improvement per eye with an average 22.74% and maximum 83.3% improvement in LogMAR acuity per eye. The average LogMAR change in treated eyes was a gain of 0.364 (P=0.0089). Improvements typically manifested no later than 6 months post procedure. Conclusions The use of BMSC in the Stem Cell Ophthalmology Treatment Study achieved meaningful visual improvements in a significant percentage of the NAION patients reported. Improvements typically manifested no later than 6 months post-procedure. Duration of visual loss did not appear to affect the ability of the eyes to respond to treatment. Possible mechanisms by which visual improvement occurred may include BMSC paracrine secretion of proteins and hormones, transfer of mitochondria, release of messenger RNA or other compounds via exosomes or microvesicles and neuronal transdifferentiation of the stem cells.
Collapse
Affiliation(s)
- Jeffrey N Weiss
- The Healing Institute, 1308 North State Road 7, Margate, FL 33063, USA
| | - Steven Levy
- MD Stem Cells, 3 Sylvan Road South, Westport, CT 06880, USA
| | - Susan C Benes
- The Eye Center of Columbus, 9262 Neil Avenue, The Ohio State University, Columbus, OH 43205, USA
| |
Collapse
|
35
|
Osborne A, Sanderson J, Martin KR. Neuroprotective Effects of Human Mesenchymal Stem Cells and Platelet-Derived Growth Factor on Human Retinal Ganglion Cells. Stem Cells 2017; 36:65-78. [PMID: 29044808 PMCID: PMC5765520 DOI: 10.1002/stem.2722] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 09/29/2017] [Accepted: 10/07/2017] [Indexed: 12/17/2022]
Abstract
Optic neuropathies such as glaucoma occur when retinal ganglion cells (RGCs) in the eye are injured. Strong evidence suggests mesenchymal stem cells (MSCs) could be a potential therapy to protect RGCs; however, little is known regarding their effect on the human retina. We, therefore, investigated if human MSCs (hMSCs), or platelet‐derived growth factor (PDGF) as produced by hMSC, could delay RGC death in a human retinal explant model of optic nerve injury. Our results showed hMSCs and the secreted growth factor PDGF‐AB could substantially reduce human RGC loss and apoptosis following axotomy. The neuroprotective pathways AKT, ERK, and STAT3 were activated in the retina shortly after treatments with labeling seen in the RGC layer. A dose dependent protective effect of PDGF‐AB was observed in human retinal explants but protection was not as substantial as that achieved by culturing hMSCs on the retina surface which resulted in RGC cell counts similar to those immediately post dissection. These results demonstrate that hMSCs and PDGF have strong neuroprotective action on human RGCs and may offer a translatable, therapeutic strategy to reduce degenerative visual loss. Stem Cells2018;36:65–78
Collapse
Affiliation(s)
- Andrew Osborne
- John van Geest Centre for Brain Repair, University of Cambridge, Cambridge, United Kingdom
| | - Julie Sanderson
- School of Pharmacy, University of East Anglia, Norwich, United Kingdom
| | - Keith R Martin
- John van Geest Centre for Brain Repair, University of Cambridge, Cambridge, United Kingdom.,Cambridge NIHR Biomedical Research Centre, Cambridge, United Kingdom.,Eye Department, Addenbrooke's Hospital, Cambridge, United Kingdom.,Wellcome Trust-Medical Research Council, Stem Cell Institute, Cambridge, United Kingdom
| |
Collapse
|
36
|
Nuzzi R, Tridico F. Glaucoma: Biological Trabecular and Neuroretinal Pathology with Perspectives of Therapy Innovation and Preventive Diagnosis. Front Neurosci 2017; 11:494. [PMID: 28928631 PMCID: PMC5591842 DOI: 10.3389/fnins.2017.00494] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 08/22/2017] [Indexed: 12/14/2022] Open
Abstract
Glaucoma is a common degenerative disease affecting retinal ganglion cells (RGC) and optic nerve axons, with progressive and chronic course. It is one of the most important reasons of social blindness in industrialized countries. Glaucoma can lead to the development of irreversible visual field loss, if not treated. Diagnosis may be difficult due to lack of symptoms in early stages of disease. In many cases, when patients arrive at clinical evaluation, a severe neuronal damage may have already occurred. In recent years, newer perspective in glaucoma treatment have emerged. The current research is focusing on finding newer drugs and associations or better delivery systems in order to improve the pharmacological treatment and patient compliance. Moreover, the application of various stem cell types with restorative and neuroprotective intent may be found appealing (intravitreal autologous cellular therapy). Advances are made also in terms of parasurgical treatment, characterized by various laser types and techniques. Moreover, recent research has led to the development of central and peripheral retinal rehabilitation (featuring residing cells reactivation and replacement of defective elements), as well as innovations in diagnosis through more specific and refined methods and inexpensive tests.
Collapse
Affiliation(s)
- Raffaele Nuzzi
- Eye Clinic Section, Department of Surgical Sciences, University of Turin, Ophthalmic HospitalTurin, Italy
| | - Federico Tridico
- Eye Clinic Section, Department of Surgical Sciences, University of Turin, Ophthalmic HospitalTurin, Italy
| |
Collapse
|
37
|
Jones MK, Lu B, Girman S, Wang S. Cell-based therapeutic strategies for replacement and preservation in retinal degenerative diseases. Prog Retin Eye Res 2017; 58:1-27. [PMID: 28111323 PMCID: PMC5441967 DOI: 10.1016/j.preteyeres.2017.01.004] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 01/08/2017] [Accepted: 01/17/2017] [Indexed: 12/13/2022]
Abstract
Cell-based therapeutics offer diverse options for treating retinal degenerative diseases, such as age-related macular degeneration (AMD) and retinitis pigmentosa (RP). AMD is characterized by both genetic and environmental risks factors, whereas RP is mainly a monogenic disorder. Though treatments exist for some patients with neovascular AMD, a majority of retinal degenerative patients have no effective therapeutics, thus indicating a need for universal therapies to target diverse patient populations. Two main cell-based mechanistic approaches are being tested in clinical trials. Replacement therapies utilize cell-derived retinal pigment epithelial (RPE) cells to supplant lost or defective host RPE cells. These cells are similar in morphology and function to native RPE cells and can potentially supplant the responsibilities of RPE in vivo. Preservation therapies utilize supportive cells to aid in visual function and photoreceptor preservation partially by neurotrophic mechanisms. The goal of preservation strategies is to halt or slow the progression of disease and maintain remaining visual function. A number of clinical trials are testing the safety of replacement and preservation cell therapies in patients; however, measures of efficacy will need to be further evaluated. In addition, a number of prevailing concerns with regards to the immune-related response, longevity, and functionality of the grafted cells will need to be addressed in future trials. This review will summarize the current status of cell-based preclinical and clinical studies with a focus on replacement and preservation strategies and the obstacles that remain regarding these types of treatments.
Collapse
Affiliation(s)
- Melissa K Jones
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, 8700 Beverly Blvd., Los Angeles, CA 90048, USA; Department of Biomedical Sciences, Cedars-Sinai Medical Center, 8700 Beverly Blvd., Los Angeles, CA 90048, USA
| | - Bin Lu
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, 8700 Beverly Blvd., Los Angeles, CA 90048, USA; Department of Biomedical Sciences, Cedars-Sinai Medical Center, 8700 Beverly Blvd., Los Angeles, CA 90048, USA
| | - Sergey Girman
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, 8700 Beverly Blvd., Los Angeles, CA 90048, USA; Department of Biomedical Sciences, Cedars-Sinai Medical Center, 8700 Beverly Blvd., Los Angeles, CA 90048, USA
| | - Shaomei Wang
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, 8700 Beverly Blvd., Los Angeles, CA 90048, USA; Department of Biomedical Sciences, Cedars-Sinai Medical Center, 8700 Beverly Blvd., Los Angeles, CA 90048, USA; David Geffen School of Medicine, University of California Los Angeles, 10833 Le Conte Ave., Los Angeles, CA 90095, USA.
| |
Collapse
|
38
|
Manthey AL, Liu W, Jiang ZX, Lee MHK, Ji J, So KF, Lai JSM, Lee VWH, Chiu K. Using Electrical Stimulation to Enhance the Efficacy of Cell Transplantation Therapies for Neurodegenerative Retinal Diseases: Concepts, Challenges, and Future Perspectives. Cell Transplant 2017; 26:949-965. [PMID: 28155808 DOI: 10.3727/096368917x694877] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Disease or trauma-induced loss or dysfunction of neurons in any central nervous system (CNS) tissue will have a significant impact on the health of the affected patient. The retina is a multilayered tissue that originates from the neuroectoderm, much like the brain and spinal cord. While sight is not required for life, neurodegeneration-related loss of vision not only affects the quality of life for the patient but also has societal implications in terms of health care expenditure. Thus, it is essential to develop effective strategies to repair the retina and prevent disease symptoms. To address this need, multiple techniques have been investigated for their efficacy in treating retinal degeneration. Recent advances in cell transplantation (CT) techniques in preclinical, animal, and in vitro culture studies, including further evaluation of endogenous retinal stem cells and the differentiation of exogenous adult stem cells into various retinal cell types, suggest that this may be the most appropriate option to replace lost retinal neurons. Unfortunately, the various limitations of CT, such as immune rejection or aberrant cell behavior, have largely prevented this technique from becoming a widely used clinical treatment option. In parallel with the advances in CT methodology, the use of electrical stimulation (ES) to treat retinal degeneration has also been recently evaluated with promising results. In this review, we propose that ES could be used to enhance CT therapy, whereby electrical impulses can be applied to the retina to control both native and transplanted stem cell behavior/survival in order to circumvent the limitations associated with retinal CT. To highlight the benefits of this dual treatment, we have briefly outlined the recent developments and limitations of CT with regard to its use in the ocular environment, followed by a brief description of retinal ES, as well as described their combined use in other CNS tissues.
Collapse
|
39
|
Khan RS, Dine K, Bauman B, Lorentsen M, Lin L, Brown H, Hanson LR, Svitak AL, Wessel H, Brown L, Shindler KS. Intranasal Delivery of A Novel Amnion Cell Secretome Prevents Neuronal Damage and Preserves Function In A Mouse Multiple Sclerosis Model. Sci Rep 2017; 7:41768. [PMID: 28139754 PMCID: PMC5282572 DOI: 10.1038/srep41768] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 12/28/2016] [Indexed: 01/07/2023] Open
Abstract
The ability of a novel intranasally delivered amnion cell derived biologic to suppress inflammation, prevent neuronal damage and preserve neurologic function in the experimental autoimmune encephalomyelitis animal model of multiple sclerosis was assessed. Currently, there are no existing optic nerve treatment methods for disease or trauma that result in permanent vision loss. Demyelinating optic nerve inflammation, termed optic neuritis, induces permanent visual dysfunction due to retinal ganglion cell damage in multiple sclerosis and experimental autoimmune encephalomyelitis. ST266, the biological secretome of Amnion-derived Multipotent Progenitor cells, contains multiple anti-inflammatory cytokines and growth factors. Intranasally administered ST266 accumulated in rodent eyes and optic nerves, attenuated visual dysfunction, and prevented retinal ganglion cell loss in experimental optic neuritis, with reduced inflammation and demyelination. Additionally, ST266 reduced retinal ganglion cell death in vitro. Neuroprotective effects involved oxidative stress reduction, SIRT1-mediated mitochondrial function promotion, and pAKT signaling. Intranasal delivery of neuroprotective ST266 is a potential novel, noninvasive therapeutic modality for the eyes, optic nerves and brain. The unique combination of biologic molecules in ST266 provides an innovative approach with broad implications for suppressing inflammation in autoimmune diseases, and for preventing neuronal damage in acute neuronal injury and chronic neurodegenerative diseases such as multiple sclerosis.
Collapse
Affiliation(s)
- Reas S Khan
- Scheie Eye Institute and FM Kirby Center for Molecular Ophthalmology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Kimberly Dine
- Scheie Eye Institute and FM Kirby Center for Molecular Ophthalmology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Bailey Bauman
- School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Michael Lorentsen
- Drexel University School of Medicine, Philadelphia, Pennsylvania, USA
| | - Lisa Lin
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Helayna Brown
- Drexel University School of Medicine, Philadelphia, Pennsylvania, USA
| | | | | | - Howard Wessel
- Noveome Biotherapeutics, Inc., Pittsburgh, Pennsylvania, USA
| | - Larry Brown
- Noveome Biotherapeutics, Inc., Pittsburgh, Pennsylvania, USA
| | - Kenneth S Shindler
- Scheie Eye Institute and FM Kirby Center for Molecular Ophthalmology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
40
|
Mead B, Tomarev S. Bone Marrow-Derived Mesenchymal Stem Cells-Derived Exosomes Promote Survival of Retinal Ganglion Cells Through miRNA-Dependent Mechanisms. Stem Cells Transl Med 2017; 6:1273-1285. [PMID: 28198592 PMCID: PMC5442835 DOI: 10.1002/sctm.16-0428] [Citation(s) in RCA: 300] [Impact Index Per Article: 42.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 11/29/2016] [Indexed: 12/20/2022] Open
Abstract
The loss of retinal ganglion cells (RGC) and their axons is one of the leading causes of blindness and includes traumatic (optic neuropathy) and degenerative (glaucoma) eye diseases. Although no clinical therapies are in use, mesenchymal stem cells (MSC) have demonstrated significant neuroprotective and axogenic effects on RGC in both of the aforementioned models. Recent evidence has shown that MSC secrete exosomes, membrane enclosed vesicles (30–100 nm) containing proteins, mRNA and miRNA which can be delivered to nearby cells. The present study aimed to isolate exosomes from bone marrow‐derived MSC (BMSC) and test them in a rat optic nerve crush (ONC) model. Treatment of primary retinal cultures with BMSC‐exosomes demonstrated significant neuroprotective and neuritogenic effects. Twenty‐one days after ONC and weekly intravitreal exosome injections; optical coherence tomography, electroretinography, and immunohistochemistry was performed. BMSC‐derived exosomes promoted statistically significant survival of RGC and regeneration of their axons while partially preventing RGC axonal loss and RGC dysfunction. Exosomes successfully delivered their cargo into inner retinal layers and the effects were reliant on miRNA, demonstrated by the diminished therapeutic effects of exosomes derived from BMSC after knockdown of Argonaute‐2, a key miRNA effector molecule. This study supports the use of BMSC‐derived exosomes as a cell‐free therapy for traumatic and degenerative ocular disease. Stem Cells Translational Medicine2017;6:1273–1285
Collapse
Affiliation(s)
- Ben Mead
- Section of Retinal Ganglion Cell Biology, Laboratory of Retinal Cell and Molecular Biology, National Eye Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Stanislav Tomarev
- Section of Retinal Ganglion Cell Biology, Laboratory of Retinal Cell and Molecular Biology, National Eye Institute, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
41
|
Hu ZL, Li N, Wei X, Tang L, Wang TH, Chen XM. Neuroprotective effects of BDNF and GDNF in intravitreally transplanted mesenchymal stem cells after optic nerve crush in mice. Int J Ophthalmol 2017; 10:35-42. [PMID: 28149774 DOI: 10.18240/ijo.2017.01.06] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 09/04/2016] [Indexed: 02/05/2023] Open
Abstract
AIM To assess the neuro-protective effect of bone marrow mesenchymal stem cells (BMSCs) on retinal ganglion cells (RGCs) following optic nerve crush in mice. METHODS C56BL/6J mice were treated with intravitreal injection of PBS, BMSCs, BDNF-interference BMSCs (BIM), and GDNF-interference BMSCs (GIM) following optic nerve crush, respectively. The number of surviving RGCs was determined by whole-mount retinas and frozen sections, while certain mRNA or protein was detected by q-PCR or ELISA, respectively. RESULTS The density (cell number/mm2) of RGCs was 410.77±56.70 in the retina 21d after optic nerve crush without any treatment, compared to 1351.39±195.97 in the normal control (P<0.05). RGCs in BMSCs treated eyes was 625.07±89.64/mm2, significantly higher than that of no or PBS treatment (P<0.05). While RGCs was even less in the retina with intravitreal injection of BIM (354.07+39.77) and GIM (326.67+33.37) than that without treatment (P<0.05). BMSCs injection improved the internal BDNF expression in retinas. CONCLUSION Optic nerve crush caused rust loss of RGCs and intravitreally transplanted BMSCs at some extent protected RGCs from death. The effect of BMSCs and level of BDNF in retinas are both related to BDNF and GDNF expression in BMSCs.
Collapse
Affiliation(s)
- Zong-Li Hu
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Ni Li
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Xin Wei
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Li Tang
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Ting-Hua Wang
- Institute of Neurological Disease, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Xiao-Ming Chen
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| |
Collapse
|
42
|
Protecting retinal ganglion cells. Eye (Lond) 2017; 31:218-224. [PMID: 28085136 DOI: 10.1038/eye.2016.299] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 11/26/2016] [Indexed: 01/08/2023] Open
Abstract
Retinal ganglion cell degeneration underlies several conditions which give rise to significant visual compromise, including glaucoma, hereditary optic neuropathies, ischaemic optic neuropathies, and demyelinating disease. In this review, we discuss the emerging strategies for neuroprotection specifically in the context of glaucoma, including pharmacological neuroprotection, mesenchymal stem cells, and gene therapy approaches. We highlight potential pitfalls that need to be considered when developing these strategies and outline future directions, including the prospects for clinical trials.
Collapse
|
43
|
Mead B, Tomarev S. Bone Marrow-Derived Mesenchymal Stem Cells-Derived Exosomes Promote Survival of Retinal Ganglion Cells Through miRNA-Dependent Mechanisms. Stem Cells Transl Med 2017. [DOI: 10.1002/sctm.12056] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Affiliation(s)
- Ben Mead
- Section of Retinal Ganglion Cell Biology, Laboratory of Retinal Cell and Molecular Biology; National Eye Institute, National Institutes of Health; Bethesda Maryland USA
| | - Stanislav Tomarev
- Section of Retinal Ganglion Cell Biology, Laboratory of Retinal Cell and Molecular Biology; National Eye Institute, National Institutes of Health; Bethesda Maryland USA
| |
Collapse
|
44
|
Overview of retinal differentiation potential of mesenchymal stem cells: A promising approach for retinal cell therapy. Ann Anat 2016; 210:52-63. [PMID: 27986614 DOI: 10.1016/j.aanat.2016.11.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 10/10/2016] [Accepted: 11/11/2016] [Indexed: 12/15/2022]
Abstract
Retinal disease caused by retinal cell apoptosis leads to irreversible vision loss. Stem cell investigation efforts have been made to solve and cure retinal disorders. There are several sources of stem cells which have been used in these experiments. Numerous studies demonstrated that transplanted stem cells can migrate into and integrate in different layers of retina. Among these, mesenchymal stem cells (MSCs) were considered a promising source for cell therapy. Here, we review the literature assessing the potential of MSCs to differentiate into retinal cells in vivo and in vitro as well as their clinical application. However, more investigation is required to define the protocols that optimize stem cell differentiation and their functional integration in the retina.
Collapse
|
45
|
Lopez Sanchez M, Crowston J, Mackey D, Trounce I. Emerging Mitochondrial Therapeutic Targets in Optic Neuropathies. Pharmacol Ther 2016; 165:132-52. [DOI: 10.1016/j.pharmthera.2016.06.004] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Indexed: 12/14/2022]
|
46
|
Wu N, Wang Y, Yang L, Cho KS. Signaling Networks of Retinal Ganglion Cell Formation and the Potential Application of Stem Cell–Based Therapy in Retinal Degenerative Diseases. Hum Gene Ther 2016; 27:609-20. [PMID: 27466076 DOI: 10.1089/hum.2016.083] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Affiliation(s)
- Nan Wu
- 1 Department of Ophthalmology, Southwest Eye Hospital, Southwest Hospital, Third Military Medical University , Chongqing, China
| | - Yi Wang
- 1 Department of Ophthalmology, Southwest Eye Hospital, Southwest Hospital, Third Military Medical University , Chongqing, China
| | - Lanbo Yang
- 2 Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Harvard Medical School , Boston, Massachusetts
| | - Kin-Sang Cho
- 2 Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Harvard Medical School , Boston, Massachusetts
| |
Collapse
|
47
|
Yuan J, Yu JX. Gender difference in the neuroprotective effect of rat bone marrow mesenchymal cells against hypoxia-induced apoptosis of retinal ganglion cells. Neural Regen Res 2016; 11:846-53. [PMID: 27335573 PMCID: PMC4904480 DOI: 10.4103/1673-5374.182764] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Bone marrow mesenchymal stem cells can reduce retinal ganglion cell death and effectively prevent vision loss. Previously, we found that during differentiation, female rhesus monkey bone marrow mesenchymal stem cells acquire a higher neurogenic potential compared with male rhesus monkey bone marrow mesenchymal stem cells. This suggests that female bone marrow mesenchymal stem cells have a stronger neuroprotective effect than male bone marrow mesenchymal stem cells. Here, we first isolated and cultured bone marrow mesenchymal stem cells from female and male rats by density gradient centrifugation. Retinal tissue from newborn rats was prepared by enzymatic digestion to obtain primary retinal ganglion cells. Using the transwell system, retinal ganglion cells were co-cultured with bone marrow mesenchymal stem cells under hypoxia. Cell apoptosis was detected by flow cytometry and caspase-3 activity assay. We found a marked increase in apoptotic rate and caspase-3 activity of retinal ganglion cells after 24 hours of hypoxia compared with normoxia. Moreover, apoptotic rate and caspase-3 activity of retinal ganglion cells significantly decreased with both female and male bone marrow mesenchymal stem cell co-culture under hypoxia compared with culture alone, with more significant effects from female bone marrow mesenchymal stem cells. Our results indicate that bone marrow mesenchymal stem cells exert a neuroprotective effect against hypoxia-induced apoptosis of retinal ganglion cells, and also that female cells have greater neuroprotective ability compared with male cells.
Collapse
Affiliation(s)
- Jing Yuan
- Eye Center, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Jian-Xiong Yu
- Department of Gastrointestinal Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| |
Collapse
|
48
|
Çerman E, Akkoç T, Eraslan M, Şahin Ö, Özkara S, Vardar Aker F, Subaşı C, Karaöz E, Akkoç T. Retinal Electrophysiological Effects of Intravitreal Bone Marrow Derived Mesenchymal Stem Cells in Streptozotocin Induced Diabetic Rats. PLoS One 2016; 11:e0156495. [PMID: 27300133 PMCID: PMC4907488 DOI: 10.1371/journal.pone.0156495] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2016] [Accepted: 05/16/2016] [Indexed: 01/09/2023] Open
Abstract
Diabetic retinopathy is the most common cause of legal blindness in developed countries at middle age adults. In this study diabetes was induced by streptozotocin (STZ) in male Wistar albino rats. After 3 months of diabetes, rights eye were injected intravitreally with green fluorescein protein (GFP) labelled bone marrow derived stem cells (BMSC) and left eyes with balanced salt solution (Sham). Animals were grouped as Baseline (n = 51), Diabetic (n = 45), Diabetic+BMSC (n = 45 eyes), Diabetic+Sham (n = 45 eyes), Healthy+BMSC (n = 6 eyes), Healthy+Sham (n = 6 eyes). Immunohistology analysis showed an increased retinal gliosis in the Diabetic group, compared to Baseline group, which was assessed with GFAP and vimentin expression. In the immunofluorescence analysis BMSC were observed to integrate mostly into the inner retina and expressing GFP. Diabetic group had prominently lower oscillatory potential wave amplitudes than the Baseline group. Three weeks after intravitreal injection Diabetic+BMSC group had significantly better amplitudes than the Diabetic+Sham group. Taken together intravitreal BMSC were thought to improve visual function.
Collapse
Affiliation(s)
- Eren Çerman
- Marmara University School of Medicine, Department of Ophthalmology, Istanbul, Turkey
- * E-mail:
| | - Tolga Akkoç
- Genetic Engineering and Biotechnology Institution, The Scientific and Technological Research Council of Turkey, Kocaeli, Turkey
| | - Muhsin Eraslan
- Marmara University School of Medicine, Department of Ophthalmology, Istanbul, Turkey
| | - Özlem Şahin
- Marmara University School of Medicine, Department of Ophthalmology, Istanbul, Turkey
| | - Selvinaz Özkara
- Haydarpaşa Numune Education and Research Hospital, Department of Pathology, Istanbul, Turkey
| | - Fugen Vardar Aker
- Haydarpaşa Numune Education and Research Hospital, Department of Pathology, Istanbul, Turkey
| | - Cansu Subaşı
- Kocaeli University Center for Stem Cell and Gene Therapies, Kocaeli, Turkey
| | - Erdal Karaöz
- Kocaeli University Center for Stem Cell and Gene Therapies, Kocaeli, Turkey
| | - Tunç Akkoç
- Marmara University School of Medicine, Department of Pediatric Allergy and Immunology, Istanbul, Turkey
| |
Collapse
|
49
|
Ezquer M, Urzua CA, Montecino S, Leal K, Conget P, Ezquer F. Intravitreal administration of multipotent mesenchymal stromal cells triggers a cytoprotective microenvironment in the retina of diabetic mice. Stem Cell Res Ther 2016; 7:42. [PMID: 26983784 PMCID: PMC4793534 DOI: 10.1186/s13287-016-0299-y] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 02/13/2016] [Accepted: 02/24/2016] [Indexed: 02/08/2023] Open
Abstract
Background Diabetic retinopathy is a common complication of diabetes and the leading cause of irreversible vision loss in the Western world. The reduction in color/contrast sensitivity due to the loss of neural cells in the ganglion cell layer of the retina is an early event in the onset of diabetic retinopathy. Multipotent mesenchymal stromal cells (MSCs) are an attractive tool for the treatment of neurodegenerative diseases, since they could differentiate into neuronal cells, produce high levels of neurotrophic factors and reduce oxidative stress. Our aim was to determine whether the intravitreal administration of adipose-derived MSCs was able to prevent the loss of retinal ganglion cells in diabetic mice. Methods Diabetes was induced in C57BL6 mice by the administration of streptozotocin. When retinal pro-damage mechanisms were present, animals received a single intravitreal dose of 2 × 105 adipose-derived MSCs or the vehicle. Four and 12 weeks later we evaluated: (a) retinal ganglion cell number (immunofluorescence); (b) neurotrophic factor levels (real-time quantitative polymerase chain reaction (RT-qPCR) and enzyme-linked immunosorbent assay (ELISA)); (c) retinal apoptotic rate (TUNEL); (d) retinal levels of reactive oxygen species and oxidative damage (ELISA); (e) electrical response of the retina (electroretinography); (f) pro-angiogenic and anti-angiogenic factor levels (RT-qPCR and ELISA); and (g) retinal blood vessels (angiography). Furthermore, 1, 4, 8 and 12 weeks post-MSC administration, the presence of donor cells in the retina and their differentiation into neural and perivascular-like cells were assessed (immunofluorescence and flow cytometry). Results MSC administration completely prevented retinal ganglion cell loss. Donor cells remained in the vitreous cavity and did not differentiate into neural or perivascular-like cells. Nevertheless, they increased the intraocular levels of several potent neurotrophic factors (nerve growth factor, basic fibroblast growth factor and glial cell line-derived neurotrophic factor) and reduced the oxidative damage in the retina. Additionally, MSC administration has a neutral effect on the electrical response of the retina and did not result in a pathological neovascularization. Conclusions Intravitreal administration of adipose-derived MSCs triggers an effective cytoprotective microenvironment in the retina of diabetic mice. Thus, MSCs represent an interesting tool in order to prevent diabetic retinopathy. Electronic supplementary material The online version of this article (doi:10.1186/s13287-016-0299-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Marcelo Ezquer
- Centro de Medicina Regenerativa, Facultad de Medicina Clínica Alemana-Universidad del Desarrollo, Av. Las Condes 12438, Lo Barnechea, Santiago, 7710162, Chile
| | - Cristhian A Urzua
- Departamento de Oftalmología, Facultad de Medicina, Universidad de Chile, Av. Independencia 1027, Santiago, Chile
| | - Scarleth Montecino
- Centro de Medicina Regenerativa, Facultad de Medicina Clínica Alemana-Universidad del Desarrollo, Av. Las Condes 12438, Lo Barnechea, Santiago, 7710162, Chile
| | - Karla Leal
- Centro de Medicina Regenerativa, Facultad de Medicina Clínica Alemana-Universidad del Desarrollo, Av. Las Condes 12438, Lo Barnechea, Santiago, 7710162, Chile
| | - Paulette Conget
- Centro de Medicina Regenerativa, Facultad de Medicina Clínica Alemana-Universidad del Desarrollo, Av. Las Condes 12438, Lo Barnechea, Santiago, 7710162, Chile
| | - Fernando Ezquer
- Centro de Medicina Regenerativa, Facultad de Medicina Clínica Alemana-Universidad del Desarrollo, Av. Las Condes 12438, Lo Barnechea, Santiago, 7710162, Chile.
| |
Collapse
|
50
|
Weiss JN, Levy S, Benes SC. Stem Cell Ophthalmology Treatment Study (SCOTS): bone marrow-derived stem cells in the treatment of Leber's hereditary optic neuropathy. Neural Regen Res 2016; 11:1685-1694. [PMID: 27904503 PMCID: PMC5116851 DOI: 10.4103/1673-5374.193251] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The Stem Cell Ophthalmology Treatment Study (SCOTS) is currently the largest-scale stem cell ophthalmology trial registered at ClinicalTrials.gov (identifier: NCT01920867). SCOTS utilizes autologous bone marrow-derived stem cells (BMSCs) to treat optic nerve and retinal diseases. Treatment approaches include a combination of retrobulbar, subtenon, intravitreal, intra-optic nerve, subretinal, and intravenous injection of autologous BMSCs according to the nature of the disease, the degree of visual loss, and any risk factors related to the treatments. Patients with Leber's hereditary optic neuropathy had visual acuity gains on the Early Treatment Diabetic Retinopathy Study (ETDRS) of up to 35 letters and Snellen acuity improvements from hand motion to 20/200 and from counting fingers to 20/100. Visual field improvements were noted. Macular and optic nerve head nerve fiber layer typically thickened. No serious complications were seen. The increases in visual acuity obtained in our study were encouraging and suggest that the use of autologous BMSCs as provided in SCOTS for ophthalmologic mitochondrial diseases including Leber's hereditary optic neuropathy may be a viable treatment option.
Collapse
Affiliation(s)
- Jeffrey N Weiss
- Retina Associates of South Florida, 5800 Colonial Drive, Suite 300, Margate, FL, USA
| | - Steven Levy
- MD Stem Cells, 3 Sylvan Road South, Westport, CT, USA
| | - Susan C Benes
- The Eye Center of Columbus, The Ohio State University, Columbus, OH, USA
| |
Collapse
|